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Abstract—Deployment algorithms proposed to improve cover-
age in sensor networks often rely on the Voronoi diagram, which
is obtained by using the position information of the sensors. It is
usually assumed that all measurements are sufficiently accurate,
while in a practical setting, even a small measurement error
may lead to significant degradation in the coverage performance.
This paper investigates the effect of measurement error on the
performance of coverage control in mobile sensor networks. It also
presents a distributed deployment strategy, namely the Robust
Max-Area strategy, which uses information on error bounds in
order to move the sensors to appropriate locations. To this end,
two polygons are obtained for each sensor, and it is shown that the
exact Voronoi polygon (associated with accurate measurements)
lies between them. A local spatial probability function is then
derived for each sensor, which translates the available information
about the error bound into the likelihood of the points being inside
the exact Voronoi polygon. Subsequently, the deployment strategy
positions each sensor such that the total covered area increases.
The sensors’ movements are shown to be convergent under the
proposed strategy.

Index Terms—Coverage control, measurement error, mobile
agents, Wireless sensor networks.

I. INTRODUCTION

W IRELESS sensor networks have attracted much atten-
tion in the literature recently, due to their broad range

of applications in different areas, such as weather monitoring,
traffic management, and surveillance [1]–[3]. In particular, mo-
bile sensor networks (MSNs) are very useful when the network
configuration needs to be continuously adapted to the most
current conditions of the environment. Typical objectives of
an MSN include coverage maximization and target monitoring
[4], [5]. In the coverage maximization problem, it is desired to
locate the sensors in the field in such a way that the coverage
holes in the network are minimized. In the target monitoring
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problem, on the other hand, the objective is to track a randomly
moving target by establishing a route from the target to a
destination point at all times.

One of the important issues in the design of an efficient
MSN is to properly coordinate the movement of the sensors
with limited communication between them. An effective coop-
erative control scheme plays an important role in the overall
performance of the network. Any control strategy relies on the
position information of other sensors. For example, in Voronoi-
based coverage strategies, each sensor needs to know the posi-
tion of its neighbors [6]. Different sensor deployment strategies
are proposed in [7], and a sensitivity analysis for Voronoi-based
algorithms is reported in [8]. The impact of communication
noise on network coverage is investigated in [9], where it is
shown that the optimal network configuration can be achieved
by balancing the tradeoff between sensing and communica-
tion. The effect of imperfect communication links on coverage
performance is discussed in [10]. A distributed coordination
scheme is provided in [11] to address the problem of outdated
location information in the deployment of mobile sensors. The
problem of quantized information exchange among a group of
robots is studied in [12], where a rate-constrained communica-
tion network is utilized by mobile agents. A motion coordina-
tion scheme is subsequently proposed for the rendezvous and
deployment missions.

Probabilistic sensing models are also introduced in the litera-
ture, where the probability of an event to be sensed by a sensor
is a value between 0 and 1. This type of uncertainty in sensing
and relevant coverage problems are discussed in [13]–[16]. The
problem of coverage optimization subject to uncertainty in the
initial position of sensors is reported in [17]. A soft computing
approach to manage the uncertainties in a sensor network is also
reported in [18]. A distributed partitioning scheme is presented
in [19] to determine the territory ownership for robots exploring
a nonconvex region using unreliable pairwise communication.

While the above-mentioned articles address the problem of
uncertainty or imperfect communication in sensor networks
to some extent, they do not provide an efficient deployment
strategy in the presence of measurement error. This paper is
concerned with coverage optimization in a network of mobile
sensors subject to inaccurate position information [20]. Given
the maximum magnitude of error, a technique is provided to
find two polygons for each sensor such that the exact Voronoi
polygon is guaranteed to lie between them. A spatial probability
function is defined accordingly for the margin between the two
polygons, which is used to design a proper sensor deployment
strategy.
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The objective of the deployment strategy developed in the
present work is to maximize the area covered by sensors. In [6],
it is desired to minimize an objective function representing the
total cost for all points of the field to access the sensors’ loca-
tions. Deployment protocols in the above work are generalized
in [11] to the case when the exchanged information is outdated.
The main idea behind the motion coordination strategy in the
above papers is to reduce the objective function by moving
every sensor towards the centroid of either its Voronoi polygon
or its bounding regions. The strategy relies on some differentia-
bility properties that do not hold in the coverage maximization
problem, and, hence, cannot be used for this objective. To
address this shortcoming, gradient-based schemes are proposed
in [21] and [22] for the area maximization problem. The present
paper extends the scope of the above articles to the case of er-
roneous measurements. To the best of the authors’ knowledge,
this is the first work to investigate measurement error in the
problem of area maximization in sensor networks.

The rest of this paper is structured as follows. Section II
presents some theoretical background on sensor network cov-
erage, as well as a model for measurement error. Some geo-
metric concepts are used in Section III to analyze the effect
of erroneous measurements on Voronoi polygons. Section IV
uses the available information about the uncertainty to quan-
tify the importance of coverage in different points around the
Voronoi polygon. An efficient coverage control algorithm is
then presented in Section V to optimally place the sensors
in their polygons. Finally, the contributions of the paper are
summarized in Section VI.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Voronoi-Based Coverage Control Strategies

Assume n mobile sensing agents S1, . . . , Sn randomly
placed in a 2D sensing field F. It is assumed that the field
has no obstacles and that the sensors have disk-shaped sensing
patterns with radius Rs. The Voronoi diagram of the sensor net-
work consists ofnpolygons denoted byΠ1, . . . ,Πn. PolygonΠi

corresponds to sensor Si and is mathematically defined as
Πi={q ∈ F|d(q, xi) ≤ d(q, xj), j ∈ n := {1, . . . , n}, j �= i},
where xi denoted the position of sensor Si, and d(q, xi) is the
Euclidean distance between xi and an arbitrary point q. The
field is said to be partitioned by the Voronoi cells if the cells
do not intersect with each other and span the entire field. Two
sensors are called neighbors if their Voronoi polygons share an
edge. The set of indices of the neighboring sensors of sensor Si

is denoted by Ni, for any i ∈ n.
The principles of a general class of distributed Voronoi-based

coverage control protocols will now be reviewed. This class
consists of algorithms that use distributed Voronoi partitioning
and increase each sensor’s covered area using local information.
At any point in time, every sensor collects the position informa-
tion of neighboring sensors and constructs its Voronoi polygon
accordingly. Once all Voronoi cells are constructed, each sensor
determines a candidate point inside its cell, according to a
given strategy. For instance, in the Minimax strategy [7], the
candidate point is the center of the smallest enclosing disk of

the Voronoi polygon. The sensor will move to the candidate
point only if its local coverage with respect to the current
polygon increases from the new location; otherwise, it remains
in its current position. Ideally, this procedure continues until
the sensor network reaches a steady state but, in practice, a
coverage improvement threshold is considered in order to stop
sensors in finite time. It can be shown that under this type
of local decision-making strategy, the total covered area will
monotonically increase. As a performance measure of the cov-
erage strategies, the ratio of the covered area to the overall area
of the field is defined as the coverage factor. Various Voronoi-
based algorithms are provided in the literature to determine the
candidate point for each sensor, e.g., see [7], [21], and [23].

B. Modeling of the Measurement Error

Assume that each sensor has the exact information of its
position and that the positions of neighboring sensors are
measured either using a localization technique or by direct
communication with them. Assume also that an upper bound
on the position measurement error exists for each sensor. For
any j ∈ Ni, denote by xji the position of sensor Sj , measured
by sensor Si, and let the corresponding measurement error
be represented by eji. This means that, from the viewpoint
of sensor Si, sensor Sj lies within a disk Dj of radius eji,
centered at xji. The size of the position error depends on the
measurement method and is typically small, although its impact
on the performance of the coverage algorithms may not be
negligible. It is to be noted that for simulation purposes, a
bounded random value (as the measurement error of sensor Si)
is added to the exact position of its neighboring sensor Sj .
The resultant value is used as the erroneous measurement of
sensor Si. However, the error disk, noted earlier, around the
real position of the neighboring sensor is not known to the
measuring sensor (because knowing this disk implies that its
center is known, which means that the exact measurement is
also known). In the model used for the design of the deployment
strategy, on the other hand, the problem is considered from
the viewpoint of sensor Si with information that is available
to it. The sensor measures xji with a known error bound eji.
Then, it assumes that the real position of sensor Sj lies in a
disk of radius eji centered at the measured point xji, and based
on this assumption, it constructs the bounding polygons. Both
models imply that the distance between the measured position
and real position of Sj is less than eji, and hence, the models are
consistent. Note also that any sensor that measures the position
of Sj constructs a disk around its measured point and is not
aware of the measured values of other sensors. Thus, as far as
the design procedure is concerned, it is more sensible to use the
later model for error.

Given a probability density function for the position mea-
surement error of each sensor, the location of the neighboring
sensors can be characterized probabilistically. Without loss of
generality, a uniform probability density function is considered
in this paper for the position measurement error of every sensor.
This implies that all points inside the above-mentioned disk
have the same probability of being the real position of sensor
Sj . This is demonstrated for an example of five sensors in
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Fig. 1. Geometry of measurement error from the viewpoint of sensor S1.

Fig. 1, where x1 denotes the position of the measuring sensor
S1, and Di, i = 2, . . . , 5, represents the disk in which the ith
sensor lies, from the measuring sensor’s viewpoint.

C. Effect of Uncertainty on the Coverage Performance

The performance of the Voronoi-based coverage control
algorithms in mobile sensor networks highly depends on the
accuracy of the Voronoi partitioning. The Voronoi polygons
obtained by erroneous partitioning may not be mutually ex-
clusive or collectively exhaustive. This can negatively affect
the convergence of the sensor deployment algorithms and the
energy consumption of the sensors. The following example
illustrates the performance deterioration of coverage control
strategies in the presence of measurement error.

Example 1: Consider the coverage maximization problem for
a network of 30 mobile sensors with a sensing range of 6 m in a
50 m × 50 m field, using the Minimax algorithm introduced
in [7]. Initially, the sensors are assumed to be distributed
randomly and are then driven by the Minimax strategy. To make
the simulation statistically more realistic, 100 different initial
configurations are randomly generated for the sensors. The
coverage performance is then evaluated for the case of exact
position information of the neighboring sensors as well as the
case of erroneous measurements (for 10% and 15% measure-
ment errors).

As a measure of convergence speed, the required number
of rounds to reach steady state is also obtained. Simulations
exhibit that, with exact information, the average number of
rounds the Minimax deployment algorithm is executed to reach
steady state is equal to nine, while with 10% and 15% er-
ror in position information, this number increases to 18 and
39 rounds, respectively. Fig. 2 provides the average number
of moving sensors in each round versus time (the time unit
considered here is the duration of each round in the Minimax
algorithm) with perfect and erroneous measurements. As can
be observed in this figure, with exact measurements, it takes
18 rounds in the worst case to converge to the final point.
On the other hand, with 10% and 15% measurement error, the
number of rounds in the worst case are 33 and 89, respectively,
which translate to higher energy consumption. This example

Fig. 2. Average number of moving sensors using Minimax approach with and
without measurement error.

demonstrates that the measurement error can lead to higher
energy consumption and slower convergence in a mobile sensor
network. �

To achieve a better performance in the case of inaccurate
measurements, an algorithm is presented in the sequel which
uses a geometric approach to characterize the margins of the
Voronoi cell corresponding to each sensor by an inner-bounding
polygon and an outer-bounding polygon.

III. GEOMETRIC CHARACTERIZATION OF UNCERTAINTY

IN THE VORONOI PARTITIONING

Given an upper bound on the magnitude of the measurement
error, each sensor can construct a region in which the true
Voronoi polygon (i.e., the Voronoi polygon in the ideal case
of zero measurement error) lies. This region will hereafter be
referred to as the Voronoi margin, and its size is directly related
to the magnitude of the error bound. It is desired now to obtain
inner and outer boundaries in the form of polygons for each
Voronoi margin. It is also desired to characterize the relative
importance of the points inside a Voronoi margin, which will
later be used to develop an efficient coverage control strategy.

Corresponding to any sensor Si, two pairs of rays (half-
lines) are obtained for each neighboring sensor. It is shown
that any facet of the true Voronoi polygon lies between the
two pairs of rays associated with a neighboring node. These
rays are subsequently used to obtain two polygons for each
sensor such that the true Voronoi polygon lies between them.
The objective is to find the above-mentioned pairs of rays for
each neighboring node. A ray is mathematically described by a
starting point q0 and an angle θ0 (where −π < θ0 ≤ π) and is
defined in R

2 as follows:

R(q0, θ0) =

{
q ∈ R

2|q = q0 + γ

[
cos(θ0)
sin(θ0)

]
, γ ≥ 0

}
(1)

Definition 1: Two rays R1(q0, θ1) and R2(q0, θ2), θ1 �= θ2,
which have the same starting point q0 and distinct angles are
called joined rays and denoted by {R1, R2}. A pair of joined
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Fig. 3. Relative position of a line and two rays in a plane w.r.t. a point.
(a) {R1, R2} is an inner bound of the line l w.r.t. the point q̄; (b) {R1, R2} is
an outer bound of the line l w.r.t. the point q̄; and (c) {R1, R2} is neither an
inner bound nor an outer bound of the line l w.r.t. the point q̄.

Fig. 4. Geometry of inner bounding and outer bounding rays of a facet of the
Voronoi polygon.

rays partition R
2 into two subsets. Given an arbitrary point q̄,

let the subset generated by the rays R1 and R2 and containing q̄
be denoted byF (R1, R2, q̄). The angle between two joined rays
which contain the point q̄ is called the interior angle w.r.t. q̄.

Remark 1: If the interior angle w.r.t. the point q̄ is less than π,
then a point q is in F (R1, R2, q̄) when q and q̄ are on the same
side of both lines corresponding to rays R1 and R2. Similarly,
if the interior angle w.r.t. the point q̄ is greater than π, then a
point q is in F (R1, R2, q̄) when q and q̄ are on the same side of
either of the lines corresponding to rays R1 and R2.

Definition 2: Consider a point q̄, a line l, and two joined rays
R1 and R2 in R

2. The pair {R1, R2} is said to be an inner
bound of the line l w.r.t. q̄ if any point in R

2 that is on the
same side of {R1, R2} as q̄ is also on the same side of l that q̄ is
located. In other words, for a given point q, if q ∈ F (R1, R2, q̄),
then q and q̄ are on the same side of the line l. Similarly,
{R1, R2} is said to be an outer bound of the line l w.r.t. q̄ if
any point in R

2 that is on the same side of l as q̄ is also on the
same side of {R1, R2} as q̄. Obviously, a pair of joined rays
might be neither an inner-bound nor an outer-bound of a line
w.r.t. a given point. Fig. 3 provides illustrative examples of the
above-mentioned cases.

To find an inner bound and an outer bound of a facet of
Voronoi cell, one can consider the geometry shown in Fig. 4.
The real position of sensor Sj , denoted by x̃j , is somewhere
in the disk Dj = {q ∈ R

2|‖q − xji‖ ≤ eji}. Let DH
j be a disk

obtained by downscaling Dj by a factor of 1/2 as

DH
j =

{
q ∈ R

2

∣∣∣∣
∥∥∥∥q − 1

2
(xi + xji)

∥∥∥∥ ≤ 1

2
eji

}
. (2)

Fig. 5. Geometry of a general perpendicular bisector discussed in Lemma 1.

Note that the midpoint of the segment connecting xi to x̃j

(which is the foot of the corresponding perpendicular bisector)
is located in the disk DH

j . Denote the unit vector pointing from
xi to xji by rji, i.e.,

rji =
xji − xi

‖xji − xi‖
. (3)

Note that there is an innermost point as well as an outermost
point on the boundary of the disk DH

j w.r.t. Si. These points are
denoted by qinji and qoutji , respectively, and are mathematically
expressed as

qinji =
1

2
(xi + xji)−

1

2
ejirji (4)

qoutji =
1

2
(xi + xji) +

1

2
ejirji. (5)

The next lemma is used later to prove some important
geometric properties of the bounding rays.

Lemma 1: Assume that the real position of sensor Sj (de-
noted by x̃j ) is somewhere in the disk Dj . Then, the perpen-
dicular bisector of the segment xix̃j intersects the line passing
through xi and xji at some point between qinji and qoutji .

Proof: Fig. 5 depicts the geometry considered in this
lemma. Let the distance between xi and xji be denoted by
dji. Define a Cartesian coordinate system q2q1 whose origin
is, in fact, at (1/2)(xi + xji) (which is also the center of
the disk DH

j ) with the q2 axis directed towards xji, and q1
perpendicular to it. Therefore, xi = [0,−(1/2)dji] and xji =
[0, (1/2)dji]. An arbitrary point q⊥ in DH

j represents the foot of
a perpendicular to the segment xix̃j , for x̃j somewhere in the
disk Dj . Such a point can be parametrically characterized as
q⊥ = [r cos(α), r sin(α)]T , where 0 ≤ r ≤ (1/2)eji and 0 ≤
α < 2π. Therefore, the perpendicular bisector of the segment
xix̃j passes through q⊥ is characterized as

q2 − r sin(α) = − r cos(α)

r cos(α) + 1
2dji

(q1 − r cos(α)) . (6)

Now, set q1 in the above equation to zero in order to find the
intersection of this line and the q2 axis (i.e., q2-intercept value)
as follows:

q2⊥ =
r2 + 1

2djir sin(α)

r sin(α) + 1
2dji

. (7)
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In fact, a general perpendicular to the segment xiq⊥ can be
expressed as

q2 −mq1 − q2⊥ = 0. (8)

It is desired now to show that the point [0, q2⊥]T is located
somewhere between qinji and qoutji . To this end, it is noted
that q2⊥ is a function of two independent variables r and
sin(α). Denote sin(α) by y; the minimum and maximum values
of q2⊥(r, y) over the region Dry = {0 ≤ r ≤ (1/2)dji,−1 ≤
y ≤ 1} are needed to proceed further. First, notice that the
partial derivative of q2⊥ w.r.t. y is given by

∂

∂y
q2⊥ =

∂

∂y

[
r2 + 1 2

d ji
ry

ry + 1
2dji

]
=

r
(
1 2
d ji

)2

− r3(
ry + 1

2dji
)2 (9)

which is obviously non-negative as (1/2)dji ≥ (1/2)eji ≥ r.
This means that q2⊥ takes its maximum and minimum values on
the boundaries y = 1 and y = −1. It is straightforward to verify
that y = 1 and y = −1 are associated with the respective values
max(r) and −max(r) for q2⊥. This means that −(1/2)eji ≤
q2⊥ ≤ (1/2)eji. �

Upper and lower bounds onm (the slope of the perpendicular
bisector (8)) can also be obtained by considering the maximum
and minimum slope of a line passing through xi and an arbi-
trary point inside Dj (in Fig. 4, the lines with minimum and
maximum slopes are depicted by lmin

ji and lmax
ji ). Let the angles

θ1 and θ2 in Fig. 4 be defined as follows:

θ1 = sin−1

(
eji
dji

)
(10)

θ2 =∠(xji − xi) = tan−1

(
(xji − xi)2
(xji − xi)1

)
(11)

where (.)1 and (.)2 denote the components of a vector along
the q1 and q2 axes, respectively, and the angle tan−1(.) lies
in the interval [−π, π]. The angle of a line passing through xi

and x̃j is between θ2 − θ1 and θ2 + θ1. Hence, the slope of the
corresponding perpendicular line is bounded by

m⊥1 = − 1

tan(θ2 + θ1)
(12)

m⊥2 = − 1

tan(θ2 − θ1)
. (13)

The following theorem states that the perpendicular bisector
(a segment of which is the facet of the Voronoi polygon Πi) lies
between the rays drawn from innermost and outermost points
with minimum and maximum slopes.

Theorem 1: The true Voronoi facet between each (Si, Sj)
pair is inner-bounded by a pair of joined rays RinL

ji and RinR
ji

defined as follows:

RinL
ji =R

(
qinji , θ

inL
ji

)
(14)

RinR
ji =R

(
qinji , θ

inR
ji

)
(15)

where

θinRji = θ2 − θ1 −
π

2
(16)

θinLji = θ2 + θ1 +
π

2
(17)

(note that the superscripts R and L represent, respectively,
the right and left rays from the viewpoint of Si). Also, the
aforementioned facet is outer-bounded by a pair of rays RoutL

ji

and RoutR
ji defined as follows:

RoutL
ji =R

(
qoutji , θoutLji

)
(18)

RoutR
ji =R

(
qoutji , θoutRji

)
(19)

where

θoutRji = θ2 + θ1 −
π

2
(20)

θoutLji = θ2 − θ1 +
π

2
. (21)

Proof: Let the q2 axis be the same as the one introduced
in the previous lemma. Consider a lower bound and an up-
per bound on the slope of the perpendicular bisector denoted
by mmin = min{m⊥1,m⊥2} and mmax = max{m⊥1,m⊥2},
respectively. Then, the inner-bounding rays are parts of the
following lines:

q2 −mminq1 −
(
qinji

)
2
=0 (22)

q2 −mmaxq1 −
(
qinji

)
2
=0. (23)

Similarly, the outer-bounding rays are parts of the following
lines:

q2 −mminq1 −
(
qoutji

)
2
=0 (24)

q2 −mmaxq1 −
(
qoutji

)
2
=0. (25)

Note that the interior angle of the subset F (RinR
ji , RinL

ji , xi) is
equal to π − 2θ1. Since the error eji is assumed to be less than
dji, the angle θ1 is less than π/2 and, hence, π − 2θ1 is between
0 and π. Therefore, a point belongs to F (RinR

ji , RinL
ji , xi) if it is

on the same side as Si with respect to both lines (22) and (23).
Similarly, the interior angle of F (RoutR

ji , RoutL
ji , xi) is π + 2θ1,

which is greater than or equal to π. Thus, a point belongs to
F (RoutR

ji , RoutL
ji , xi) if it is on the same side as Si with respect

to either of the lines (24) and (25).
To prove the first part of the theorem, it is noted that for the

point xi = [0,−(1/2)dji]

(xi)2 −mmin(xi)1 −
(
qoutji

)
2
= −1

2
dji −

1

2
eji ≤ 0 (26)

(xi)2 −mmax(xi)1 −
(
qoutji

)
2
= −1

2
dji −

1

2
eji ≤ 0. (27)

Consider an arbitrary point q̄ = [q̄1, q̄2]
T on the same side of

the inner-bounding rays that Si is located, i.e.,

q̄2 −mminq̄1 −
(
qinji

)
2
≤ 0 (28)

q̄2 −mmaxq̄1 −
(
qinji

)
2
≤ 0. (29)
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It is desired to show that q̄ is also on the same side of the
perpendicular (8) that Si lies, i.e.,

q̄2 −mq̄1 − q2⊥ ≤ 0. (30)

On the other hand, the inequality (qinji)2 ≤ q2⊥ implies that

q̄2 − q2⊥ ≤ q̄2 −
(
qinji

)
2
. (31)

Since mmin ≤ m ≤ mmax, one can conclude that for any
positive q̄1

−mq̄1 ≤ −mminq̄1. (32)

By adding (32) and (31) and using (28), the inequality (30) is
deduced for q̄1 ≥ 0. Similarly, for negative values of q̄1

−mq̄1 ≤ −mmaxq̄1. (33)

By adding (33) and (31) and using (29), the inequality (30) is
resulted for any q̄1 ≤ 0.

The result for outer-bounding rays is that if a point q̄ =
[q̄1, q̄2]

T lies on the same side of the perpendicular line (8) that
Si is located (as described by (30)), then at least one of the
following two relations holds:

q̄2 −mmaxq̄1 −
(
qoutji

)
2
≤ 0 (34)

q̄2 −mminq̄1 −
(
qoutji

)
2
≤ 0. (35)

Similarly, it is straightforward to show that the inequality q2⊥ ≤
(qoutji )

2
yields

q̄2 −
(
qoutji

)
2
≤ q̄2 − q2⊥. (36)

For positive values of q̄1, it is obvious that

−mmaxq̄1 ≤ −mq̄1. (37)

By adding (36) and (37) and using (30), one arrives at (34).
Similarly, for negative values of q̄1

−mminq̄1 ≤ −mq̄1. (38)

Adding (36) and (38) and using (30) leads to (35). �
The following corollary on the convexity of the set generated

by the inner-bounding rays is a direct result of the previous
theorem.

Corollary 1: The set F (RinR
ji , RinL

ji , xi) is convex.
Proof: The above set is characterized by the points for

which both (28) and (29) hold. These inequalities represent
convex sets in R

2, and, hence, their intersection is a convex
region as well. �

Remark 2: Due to the singularity of tan(θ) at θ = π/2,
theoretically the slope of the perpendicular line (8) may lie in
the interval (−∞,m⊥2] ∪ [m⊥1,+∞). This, however, does not
affect the proof of Theorem 1 because if the q2-axis and the
line passing through xi and xji coincide, then the slope of the
perpendicular line is between mmin < 0 and mmax > 0.

The concepts of the inner bound and outer bound of a facet
will now be used to find the inner- and outer-bounding polygons

Fig. 6. A simple example of inner-bounding and outer-bounding polygons for
a sensor with four neighbors.

of the true Voronoi polygon. To this end, these polygons need
to be characterized mathematically.

Definition 3: Consider dim(Ni) pairs of outer-bounding rays
{RoutR

ji , RoutL
ji } for j ∈ Ni and define the following subset

of R2:

F out
i = F ∩

[
∩

j∈Ni

F
(
RoutR

ji , RoutL
ji , xi

)]
(39)

(note that this set can be nonconvex, in general). Define also
the smallest convex envelope of F out

i as the outer-bounding
polygon of the true Voronoi polygon containing Si and denote it
by Πouter

i . Similarly, consider dim(Ni) pairs of inner-bounding
rays {RinR

ji , RinL
ji }, j ∈ Ni. Every subset F (RinR

ji , RinL
ji , xi),

j∈Ni, is convex and the inner-bounding polygon is defined as

Πinner
i = F ∩

[
∩

j∈Ni

F
(
RinR

ji , RinL
ji , xi

)]
(40)

(the field F in expressions (39) and (40) specifies the area
desired to be covered).

Definition 4: The set of all points between the inner-
bounding and outer-bounding polygons of a sensor (i.e.,
Πouter

i −Πinner
i ) is referred to as the Voronoi margin.

An example of the inner-bounding and outer-bounding poly-
gons obtained by intersecting the inner and outer rays as
described above is given in Fig. 6. The following theorem states
that the true Voronoi polygon corresponding to any sensor lies
between the inner-bounding and outer-bounding polygons of
that sensor.

Theorem 2: Assume that every node in a sensor network
constructs the inner-bounding and outer-bounding polygons
defined above, using the neighboring sensors’ position mea-
surements and available information about the error bounds.
Then, Πinner

i ⊆ Πi ⊆ Πouter
i , where Πi is the true Voronoi

polygon corresponding to sensor Si.
Proof: Denote the size of the neighboring set Ni by

dim(Ni), and let the points inside the polygon Πi be described
by the inequality Hq −K ≤ 0, where H ∈ R

dim(Ni)×2 and
K ∈ R

dim(Ni)×1 (note that the facets of the polygon are given
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Fig. 7. Illustrative example for the case when the outer-bounding polygon is
not the same as the convex hull created by the outer-bounding rays.

by Hq −K = 0). Let also q be a point in Πinner
i . Relation (40)

implies that q ∈ F (RinR
ji , RinL

ji , xi) for all j ∈ Ni. It follows
from the previous theorem that (H)jq − (K)j ≤ 0, where (.)j
represents the jth row of the corresponding matrix. This obvi-
ously means that q ∈ Πi. Using a similar approach, assuming
that q ∈ Πi, it can also be shown that q ∈ F out

i , and note that
F out
i is a subset of Πouter

i . �
Remark 3: Although in the simple configuration shown in

Fig. 6 the outer-bounding polygon turns out to be the same as
the convex hull created by the outer-bounding rays, this is not
necessarily the case in general (even when these polygons are
completely inside the field, and have no intersection with its
boundaries). This is illustrated in Fig. 7 for a sensor S1 with
seven neighboring sensors S2-S8. It can be observed that the
point A in this figure is the intersection point of the outer-
bounding rays for S6 and S8, but it does not belong to the outer-
bounding polygon. The inner-bounding polygon, however, is
always the convex hull created by the inner-bounding rays.

Geometric algorithms are provided in Appendix A, which
can be used to find the inner-bounding and outer-bounding
polygons. These algorithms rely only on information available
to each sensing agent and, hence, can be implemented in a
distributed fashion. Using these algorithms, each sensor can
find its inner- and outer-bounding polygons.

As far as coverage is concerned, the points in the inner-
bounding polygon cannot be covered by any neighboring sensor
if they are not covered by the sensor inside that polygon.
From a probabilistic viewpoint, all points inside the inner-
bounding polygon belong to the true Voronoi polygon as well,
with probability 1. On the other hand, for the points inside the
Voronoi margin, this probability varies between 0 and 1. More
precisely, the points closer to the inner-bounding polygon are
more likely to lie inside the true Voronoi polygon, as well. This
implies that the points inside the inner-bounding polygon are
the most important points to be covered by the sensor inside
that polygon.

Remark 4: It is to be noted that each deployment strategy
may require a specific partitioning algorithm. The effect of
uncertainty on the Voronoi diagram is also investigated in [24],

Fig. 8. Illustrative example for the probabilistic analysis concerning two
sensors subject to position measurement error.

where uncertain information is used to find an approximate
shape for the inner-bounding polygon only. Bounding regions
for the case of inaccurate or outdated information are also
presented in [11] and [25]. The deployment scheme in [11] aims
at minimizing the total access cost as noted earlier in Section I.
The results of the above work show that if every sensor moves
towards the centroid of its Voronoi polygon, the cost function
decreases. In the presence of outdated information, the dual-
guaranteed Voronoi diagram introduced in [11] can be used to
ensure that the cost function decreases. To this end, the inner-
bounding and outer-bounding cells do not need to be convex.
Our approach, on the other hand, aims at maximizing the
covered area, and the underlying optimization strategy (i.e., the
Max-Area technique) deals with convex polygons. In addition,
to efficiently locate the sensing disk, it is important to character-
ize the points between the inner-bounding and outer-bounding
polygons in terms of likelihood of being inside the true Voronoi
polygon. This leads to the introduction of the local spatial prob-
ability functions, which will be described in the next section.

IV. SPATIAL PROBABILITY FUNCTION

FOR THE VORONOI MARGIN

It is desired now to systematically formulate the effect of
measurement error in a sensor network by properly assigning a
probability (as discussed in the previous section) to every point
in the Voronoi margin. This probability provides a metric for
the degree of importance of coverage for different points and is
used as a priority function over the field.

To illustrate the idea with a simple example, consider a
network of two mobile sensors S1 and S2. Let the real position
of sensor S2 be represented by x̃2, and the maximum measure-
ment error be denoted by e21. For simplicity of notation, let
the distances d(q, x1) and d(q, x2) be denoted by dq1 and dq2,
respectively. It is desired to find the probability

P21(q) = Prob [dq1 ≤ d(q, x̃2)] (41)

for any point q (note that in the above expression d(q, x̃2) is a
probabilistic quantity, while dq1 is deterministic).

Given the sensor configuration in Fig. 8, draw a circle of
radius dq1 centered at q and denote it byDq. The real position of
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S2 is somewhere inside the dashed circle of radius e21 centered
at x2 (i.e., the measured location of S2). If these two circles do
not intersect, then P21 is either zero (complete overlap) or one
(no overlap at all). For the case when they intersect, P21 can be
found using the area between two intersecting circles. This area
is a known function of the radii of two circles and the distance
of their centers as follows [26]:

Aqx2
= d2q1 cos

−1

(
d2q2 + d2q1 − e221

2dq2dq1

)

+ e221 cos
−1

(
d2q2 + e221 − d2q1

2dq2e21

)

− 1

2

√[
(e21 + dq1)2−d2q2

] [
d2q2−(dq1−e21)2

]
.

(42)

Hence, P21 can be obtained as

P21(q) =

⎧⎪⎨
⎪⎩
0, dq1 > dq2 + e21

P̂21(q), dq2 − e21 ≤ dq1 ≤ dq2 + e21

1, dq1 < dq2 − e21

(43)

where

P̂21(q) = 1− Aqx2

πe221
. (44)

The spatial probability function for the Voronoi margin,
which is denoted by ϕi(q), can now be derived by extending the
relation obtained for P21(q) to any sensor configuration with an
arbitrary number of sensors as follows:

ϕi(q) =Prob{q ∈ Πi}

=
∏
j∈Ni

Prob [dqi ≤ d(q, x̃j)] =
∏
j∈Ni

Pji(q). (45)

An example of the probability function around the true
Voronoi polygon of a sensor as described above is depicted in
Fig. 9 for the case when the magnitude of error is eji = 0.1dji.
The three color contours correspond to three different level
sets ϕi(q) = 0, 0.5, 1. More precisely, the small contour is
the largest closed-path such that every point on it (and inside
it) is guaranteed to belong to the true Voronoi polygon, and
the large contour is the smallest closed path such that every
point on it (and outside it) is guaranteed not to belong to the
true Voronoi polygon with probability 1. Every point on the
middle contour, on the other hand, belongs to the true Voronoi
polygon with probability 0.5 for the given setup. As expected,
the inner-bounding polygon (which is the small polygon in this
figure) is enclosed by the contour corresponding to ϕi(q) = 1,
and the outer-bounding polygon (which is the large polygon in
this figure) encloses the contour corresponding to ϕi(q) = 0.

It is known that the contours corresponding to ϕi(q) = 1
and ϕi(q) = 0 can also be characterized as a set of hy-
perbolic curves [11]. For instance, considering the geometry
shown in Fig. 8, the boundary between the two sensors with
ϕ1(q) = 1 can be characterized as the boundary of the re-
gion where Prob[dq1 ≤ d(q, x̃2)] = 1 or, equivalently, dq1 ≤

Fig. 9. Inner-bounding and outer-bounding polygons and three different level
sets for a typical local spatial probability function ϕi(q).

minx̃2∈D2
d(q, x̃2) = dq2 − e21. Hence, the boundary is char-

acterized by a hyperbola as dq2 − dq1 = e21. Therefore, con-
sidering all neighboring sensors, the boundary corresponding
to ϕ1(q) = 1 can be expressed as the intersection of several
hyperbolas. The concept of bounding polygons can help to
find approximate regions efficiently in order to apply coverage
strategies.

One can draw the contours described above for different
values of ϕi between 0 and 1 in Fig. 9 (given the value
of position measurement error eji for different j ∈ Ni). For
simplicity of computation, however, one can use the inner- and
outer-bounding polygons instead. As an approach for coverage
improvement, the inner polygon of every sensor can be used to
partition the field, in which case some points in the field will
not be inside any of these polygons (assuming that there is at
least one sensor with erroneous measurement). In this case,
there is a better chance that the most important points (i.e.,
the points inside the inner polygons) are covered by using a
proper sensor-deployment strategy. Alternatively, one can use
the outer-bounding polygons to partition the field, in which case
some points inside a polygon will be covered by some other
polygons as well. These two approaches are further discussed
in Section V.

The importance of the probabilistic characterization de-
scribed above is that it transforms information about the mea-
surement error bound into a function representing the relative
importance of the points in terms of coverage. This leads to
a prioritized sensing field with overlapping polygons, where
the coverage priority of different points in each polygon is
characterized by a local spatial probability function.

Remark 5: In the procedure described above for computing
the local spatial probability function ϕi(q), it is assumed that
the distribution of the measurement error is uniform. In prac-
tice, however, it is often the case that the points closer to the
measured positions are more probable to be the real location
of the corresponding neighboring sensor. For example, in the
simple configuration of Fig. 8, the real position of sensor S2 is
more likely to be closer to the center of the disk DS2

. In general,



3338 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 11, NOVEMBER 2016

the spatial probability function ϕi depends on the statistical
characteristics of the error eij . Given a nonuniform distribution
for measurement error, similar steps can be taken to find the
corresponding local spatial probability function. For instance,
for the case of a Gaussian measurement error, finding P21(q) in
(41) would require double integration of the Gaussian density
function over the disk Dq in Fig. 8.

V. COVERAGE CONTROL

A. Robust Max-Area Deployment Strategy

Thus far, it is shown that using the upper bounds of the
measurement error, a local spatial probability function can be
defined around each sensor. As noted earlier, this function
reflects the relative importance of different points in the field
for coverage purposes. It was also shown that one can use
a systematic approach to construct two polygons which the
contours of the spatial probability function lie between them.
It is desired in the sequel to use the results obtained so far to
develop a distributed coverage control strategy for coordinating
the movement of the sensors in order to maximize coverage. To
this end, the function ϕi(q), i ∈ n, is employed as a weight
function to prioritize the coverage of different points in the
field accordingly. A sensor deployment strategy is subsequently
used to find the optimal candidate point for each sensor (inside
its outer-bounding polygon) to move to. In order to describe
the algorithm, the following geometric optimization problem is
introduced first.

Optimal Sensor Location (OSL) Problem: Consider a sensor
S located at xs inside a polygon Π, with a disk-shaped sensing
pattern D of radius Rs, centered at xs. Assume that a spatial
probability function denoted by ϕ(q) is available over Π, which
is used as a weight function to formulate the relative importance
of different points inside Π in terms of coverage. The optimal
sensor location problem is concerned with finding a proper
location x∗

s for the sensor to move to, such that the weighted
coverage within the intersection of the sensing disk D and the
polygon Π is maximized, i.e.,

x∗
s = argmax

xs∈Π
F (xs) = argmax

xs∈Π

∫
Π∩D

ϕ(q)dq. (46)

�
Consider now the problem of coverage maximization in a

sensor network subject to position measurement error. Let S
be a sensor in the network whose inner-bounding and outer-
bounding polygons are denoted by Πinner and Πouter, re-
spectively. The optimal solution of the OSL problem can be
obtained by using a gradient-based approach. One can assume
Π = Πouter, and use the iterative nonlinear optimization ap-
proach given in [22], i.e., the Max-Area technique, and solve the
underlying nonlinear optimization problem by reformulating
(46) as

x∗
s = arg min

xs∈Π
f(xs) = arg min

xs∈Π

⎡
⎣− ∫

Π∩D

ϕ(q)dq

⎤
⎦ (47)

where f(xs) := −F (xs). Denoting the optimization variable
in the kth iteration by xk , the Max-Area approach updates this
variable using the relation

xk+1 = xk + αkpk (48)

where the vector pk is a gradient-based search direction, and
the scalar αk is the step size in the selected direction. It
is straightforward to show that the gradient of this objective
function is given by [21], [22]

∇f(x) = −Rs

∫
θ∈Θ

n(q)ϕ(q)dθ (49)

where Θ is the part of the perimeter of the sensing disk that
lies inside the outer-bounding polygon, and n(q) is the normal
vector to the perimeter pointing outward from the polygon. The
search direction pk is a scaled gradient vector and is updated
at each iteration [22]. The value of αk, on the other hand, is
determined by using a line search procedure.

Notice that it is not required to compute the spatial probabil-
ity function for the whole Voronoi margin in the robust Max-
Area approach. The spatial probability function characterizes
the importance of the points within the Voronoi margin in terms
of coverage objective. However, for implementing the proposed
algorithm, this function is required to be computed only for the
points on the perimeter of the sensing disk, which lie inside
the outer-bounding polygon of a sensor. In fact, to obtain the
gradient of the objective function [as characterized by relation
(49)], it is only required to perform a numerical integration
over an arc. To this end, a set of points are considered on
the perimeter of the sensing disk, and subsequently, the term
n(q)ϕ(q) is computed for every point q and is added to a
summation if the point is inside the outer-bounding polygon.

Once the iterative algorithm given above converges to the
optimum point, the final value of the resultant sequence {xk},
denoted by x∗

s, is considered as the candidate point for the
next position of the sensor. A similar optimization procedure
is performed by all sensors in the case of multi-sensor coverage
optimization, and each sensor finds the optimum point inside
its outer-bounding polygon. Then, the sensor performs a test
to check if the coverage increases more than a prescribed
percentage by moving to this point. Such a test is considered
to achieve network-wide convergence properties. To proceed
further, let the following notation be introduced first.

• Ψin
i (k

−) is the covered region inside Πin
i (k−) at the

beginning of the kth round.
• Ψin

i (k
+) is the region inside Πin

i (k−) covered by sensor
Si if it moves to the candidate point obtained in the kth
round of the algorithm.

• Ψout
i (k−) is the covered region inside Πout

i (k−) at the
beginning of the kth round.

• Ψout−zero
i (k−) is the region inside Πout

i (k−) with the
property ϕi(q) = 0, which is covered by sensor Si at the
beginning of the kth round.

• Ψout
i (k+) is the region inside Πout

i (k−) covered by sensor
Si if it moves to the candidate point obtained in the kth
round.
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• Ψout−one
i (k+) is the region inside Πout

i (k−)−Πin
i (k−)

with the property ϕi(q) = 1, which is covered by sensor
Si if it moves to the candidate point obtained in the kth
round (note that the region Ψout−one

i (k+) includes all
points that are outside the inner-bounding polygon but
certainly belong to the true Voronoi polygon).

In the kth round of the algorithm, sensor Si will move to the
candidate point if

∣∣Ψin
i (k

+)
∣∣+ ∣∣Ψout−one

i (k+)
∣∣

≥ (1 + ε)
[∣∣Ψout

i (k−)
∣∣− ∣∣Ψout−zero

i (k−)
∣∣] (50)

where |.| denotes the area of the corresponding region (which
is a positive real number) and ε is a small positive constant
(which is a design parameter). The idea behind (50) is to
guarantee that if a sensing agent moves to its candidate point, its
local coverage w.r.t. its current unknown Voronoi polygon will
increase. To this end, the bounding polygons and the spatial
probability function are used in the movement condition (50),
which states that the sensor will move only if the area that it will
certainly cover from the new location is greater than an upper
bound for the current covered area by a certain percentage. It
will be shown in Section V-B that the above condition ensures
the convergent movement of sensors at the network level.

Once the sensors move to the candidate points [in accordance
with the movement condition (50)], the new inner- and outer-
bounding polygons are constructed, and the algorithm uses
the new polygons and new local spatial probability functions
subsequently. Eventually, when the local weighted coverage of
no sensor increases w.r.t. its outer-bounding polygon (by the
percentage described earlier), the algorithm stops.

Example 2: To illustrate the robust Max-Area coverage
scheme, a simple case is presented here in which four sensors
with similar sensing range of Rs = 3 m are deployed in a
10 m × 10 m field. The error in measuring the position of
every neighboring sensor is assumed to be less than or equal to
10% of the exact distance. The initial positions of the sensors
are randomly selected within the field, resulting in an initial
coverage factor of 55%. With the erroneous measurements, the
sensors under the proposed algorithm reach the steady-state
configuration in four iterations with a final coverage factor of
94%. The evolution of the bounding polygons is demonstrated
in Fig. 10, where the inner-bounding and outer-bounding poly-
gons are depicted in dashed and solid lines, respectively. �

B. Convergence Properties

The robust Max-Area algorithm presented in the previous
subsection uses the local inaccurate information available to
each sensor in order to relocate it. It is shown in the present
subsection that the movement of every sensor under this strat-
egy is convergent. Starting from the initial configuration, the
locations of the sensors after the first round of the algo-
rithm depend on the corresponding position measurements,
and can be characterized by a set-valued map. In what fol-
lows, some concepts and notations (in particular, Theorem 3)
are borrowed from [27], and the convergence properties are

Fig. 10. Evolution of the bounding polygons constructed by the sensors:
(a) initial configuration and (b) final configuration.

proved using LaSalle’s invariance principle for set-valued
maps. It is desired to show that a Lyapunov function exists
for the robust Max-Area coverage strategy, with the required
convergence conditions. For this purpose, some preliminary
results on the Voronoi-based coverage optimization algorithms
are reviewed briefly. Note that these results are related to the
traditional Voronoi partitioning of the field with exact position
information.

Consider a general Voronoi-based sensor deployment strat-
egy and the scheme reviewed in Section II-A. The following
notation will be used to characterize different sets of points in
the field.

• Πi(k
−) is the Voronoi polygon containing sensor Si at the

beginning of the kth round of the algorithm.
• Ψ(k−) is the region in the field which is covered by the

sensors at the beginning of the kth round of the algorithm.
• Ψi(k

−) is the covered region inside Πi(k
−) at the begin-

ning of the kth round (it is easy to verify that Ψi(k
−) is

equal to the intersection of Πi(k
−) and the coverage circle

of sensor Si).
• Ψi(k

+) is the region inside Πi(k
−) covered by sensor

Si if it moves to the candidate point obtained in the kth
round. It is important to note that Πi(k

−) is different from
the Voronoi polygon of sensor Si when it is located at the
candidate point obtained in the kth round.

The convergence of a general Voronoi-based coverage strat-
egy in a mobile sensor network is addressed in the following
theorem [27, Theorem 2].

Theorem 3: Assume that a set of n mobile sensors are driven
by a general distributed Voronoi-based protocol (as described in
Section II-A) in a target field that is partitioned by the Voronoi
polygons at the beginning of each coverage round. Then, the
trajectories of the sensors converge to a set of points (possibly
infinitely many) for which the overall weighted coverage is
the same, regardless of how the sensors’ positions are chosen
among the points. Moreover, before reaching the steady state,
the overall weighted coverage under the general Voronoi-based
strategy increases in each round.

Proof: See [27] for a detailed proof.
It can be shown that under the Max-Area technique, where

each sensor moves to the optimal point within its Voronoi
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polygon (such that the area covered within the polygon is
maximized), the total covered area is maximized locally in the
final configuration [27]. The following theorem presents the
convergence result for a mobile sensor network subject to
the position measurement errors.

Theorem 4: Consider a group of mobile sensors with erro-
neous position measurements, driven by the robust Max-Area
deployment strategy. The trajectories of the sensors converge to
a set of points with identical coverage factors. Moreover, the
total covered area is monotonically increasing, while reaching
the steady state.

Proof: Let the evolution of the positions of the sensors in
different rounds of the algorithm be described by a set-valued
map TU (the subscript U stands for uncertainty). This means
that given a set of deterministic points Xs(k), the positions
of the sensors in the next round (i.e. Xs(k + 1)) belong to the
set TU [Xs(k)]. For any sensor configuration, the true Voronoi
diagram (corresponding to the real position of the sensors)
partitions the field. Considering the notations introduced earlier
in this subsection for the true Voronoi diagram, it is desired to
prove that V (Xs(k)) = nAD − |Ψ(k−)| is a Lyapunov func-
tion for the set-valued map TU [Xs(k)], where AD = πR2

s is
the area of each sensing disk. To this end, it is shown first that
V (Xs(k + 1)) ≤ V (Xs(k)) for any Xs(k + 1) ∈ TU [Xs(k)].
Note that at the kth round, sensor Si uses the set of measured
positions of its neighboring sensors to construct its inner-
bounding and outer-bounding polygons. These polygons can
be different for a different set of measured positions, but the
true Voronoi polygon Πi(k

−) is always bounded by the two
polygons as shown in Theorem 2. Hence∣∣Ψin

i (k
−)
∣∣ ≤ ∣∣Ψi(k

−)
∣∣ ≤ ∣∣Ψout

i (k−)
∣∣ (51)∣∣Ψin

i (k
+)

∣∣ ≤ ∣∣Ψi(k
+)

∣∣ ≤ ∣∣Ψout
i (k+)

∣∣ . (52)

A less conservative upper bound for |Ψi(k
−)| can be ob-

tained by excluding the points whose probability of being inside
the true Voronoi region is zero as characterized byϕi(.) = 0, i.e.,∣∣Ψin

i (k
−)
∣∣ ≤ ∣∣Ψi(k

−)
∣∣≤ ∣∣Ψout

i (k−)
∣∣−∣∣Ψout-zero

i (k−)
∣∣ . (53)

Similarly, a less conservative lower bound for |Ψi(k
+)| is

obtained by including the points outside Πin
i (k−) whose prob-

ability of being inside the corresponding true Voronoi region is
one as characterized by ϕi(.) = 1. Note that the set containing
such points was defined before as Ψout-one

i (k+). Hence∣∣Ψin
i (k

+)
∣∣+ ∣∣Ψout-one

i (k+)
∣∣ ≤ ∣∣Ψi(k

+)
∣∣≤ ∣∣Ψout

i (k+)
∣∣ .
(54)

Now, for any Xs(k + 1) ∈ TU [Xs(k)], the relation (50) with
ε > 0 implies that |Ψi(k

+)| > |Ψi(k
−)|, and, hence, the local

coverage of Si w.r.t. Πi(k
−) increases in the kth round. The

descent property of the candidate Lyapunov function is then
concluded from Theorem 3. According to LaSalle’s invari-
ance principle for set-valued maps, the sequence {Xs(k)}
converges to the largest invariant set in MU = {Xs|∃Ys ∈
TU (Xs);V (Ys) = V (Xs)} [21]. The convergence of the sensor
movement is now deduced from Theorem 3 on noting that Xs

converges to a set with the same total coverage. �

Remark 6: Note that although the true Voronoi polygons are
not available, by utilizing the local spatial probability functions
ϕi(q) and finding the bounding polygons, a convergent move-
ment strategy is the result, as shown in Theorem 4. The theorem
also shows that under the robust Max-Area strategy, the total
covered area is a monotonic nondecreasing function of time.

C. Comparative Performance Evaluation

In this subsection, the performance of the robust Max-Area
algorithm in terms of total coverage and the convergence rate
is evaluated and compared with that of Minimax and Max-
Area strategies. These two algorithms do not use the knowledge
of uncertainty and also do not use the notion of bounding
polygons introduced in the present paper. They simply assume
that the measurements are accurate and based on that every
sensor constructs its Voronoi region. Subsequently, the sensor
moves to a new position inside the polygon in order to improve
the coverage factor. Since these algorithms do not require
local spatial probability functions, they have lower computa-
tional complexity. However, ignoring the effect of inaccurate
measurements in the Minimax and Max-Area strategies leads
to the fluctuating behavior and slow convergence of sensor
movements.

To investigate the effect of using bounding polygons instead
of the true Voronoi cells (which are not known), two vari-
ants of the Minimax strategy, namely the Inner-Minimax and
Outer-Minimax algorithms, are introduced here. Under these
algorithms, every sensor constructs its inner-bounding or outer-
bounding polygon, and then, similar to the Minimax approach,
considers the center of the smallest enclosing disk of the poly-
gon as the candidate point to move to. It is to be noted that these
algorithms do not take the local spatial probability functions
into consideration and only utilize partial information about the
measurement error for constructing the bounding polygons.

Example 3: Consider a network of 30 mobile sensors ran-
domly placed in a 50 m × 50 m field, and let the sensing
radius of every sensor be 6 m. The coverage performance
under different strategies is evaluated for the case when the
position measurements are subject to zero, 5%, 10%, 15%, and
20% error. For each case, 50 different random initial sensor
configurations are considered, and five different deployment
strategies (including the robust Max-Area strategy) are subse-
quently used to increase coverage. The performance of each
strategy is evaluated by taking the average over all simulations.

Fig. 11(a) depicts the convergence results, which show that
the number of rounds it takes for the robust Max-Area algorithm
to converge to the desirable neighborhood of the final coverage
is less than that for the Minimax and Max-Area algorithms.
This demonstrates the energy efficiency of the algorithm intro-
duced in this work because the energy consumption increases
with the number of sensor movements (note that after each
round of the algorithm every sensor moves, and each move
requires the sensor to overcome the static friction). As for
the coverage factor, Fig. 11(b) shows that for the case of no
measurement error the robust Max-Area algorithm performs
the same as the Max-Area algorithm, as expected, and better
than the Minimax technique. Note that the better coverage
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Fig. 11. Average performance indicators over 50 simulations for five dif-
ferent coverage optimization strategies with different measurement errors in
Example 3. (a) Number of coverage rounds and (b) final coverage factor.

performance comes at the cost of lower convergence rate and
higher energy consumption, as discussed above. This intro-
duces a tradeoff between coverage performance and the energy
efficiency of the algorithm. In other words, the reliability and
guaranteed convergence of the robust Max-Area method in the
presence of measurement error compromises coverage perfor-
mance, to some extent.

It is to be noted that the inner-Minimax and outer-Minimax
methods also prove efficient in both increasing the coverage
factor and reducing the computation time (which is measured
based on the number of coverage rounds). In addition, these
ad hoc algorithms are computationally simpler than the robust
Max-Area approach. However, among all five algorithms, the
robust Max-Area scheme is the only one that is analytically
proved to converge to a steady-state configuration in the pres-
ence of measurement error. �

VI. CONCLUSION

The problem of coverage maximization in a mobile sensor
network (MSN) subject to measurement errors is studied in this
paper. Given the maximum size of the position measurement
error, a geometric approach is provided to find two convex

polygons, namely inner- and outer-bounding polygons, which
the exact Voronoi polygon is guaranteed to lie between them.
A probabilistic characterization for the region between the two
polygons is given, which is subsequently used to develop a
sensor deployment strategy for maximizing network coverage.
The robust Max-Area strategy is based on a nonlinear opti-
mization approach which optimally positions the sensing disk
inside the outer-bounding polygon. It is shown that under the
proposed deployment strategy the movement of the sensors
is guaranteed to converge and also the total covered area by
the sensors either increases or does not change in consecutive
coverage rounds of the algorithm. Simulations demonstrate
the effectiveness of the robust Max-Area coverage optimiza-
tion technique in the presence of position measurement error.
Two other algorithms, namely the inner-Minimax and outer-
Minimax, are also presented, which partially utilize existing
information on the measurement error to position sensors in the
field such that coverage increases. The convergence analysis of
these two methods is the subject of future research.

APPENDIX A
GEOMETRIC ALGORITHMS TO FIND INNER-BOUNDING

AND OUTER-BOUNDING POLYGONS

To obtain the inner-bounding polygon of a sensor (formally
defined by (40)), one needs to obtain the inner-bounding rays
associated with every neighboring sensor and then find the
corresponding vertices (the intersection of facets). These facets
are described as

q2 −m⊥1q1 =
(
qinji

)
2
−m⊥1

(
qinji

)
1

(55)

q2 −m⊥2q1 =
(
qinji

)
2
−m⊥2

(
qinji

)
1
. (56)

The following algorithm constructs the inner-bounding poly-
gon for sensor Si. The polygon will be represented by the
inequality H inner

i q ≤ K inner
i .

Algorithm I: Obtaining the Inner-Bounding Polygon for Si

I) Initialize the matrices describing the polygon Πinner
i as

H inner
i = [] and K inner

i = [].
II) Sort the neighboring sensors based on the measured angle
by sensor Si as defined in (11). Let the indices of the neigh-
boring nodes be contained in the ordered set Ni.
III) For j = 1 : dim(Ni),

1) Compute qinji , θ1, θ2, m⊥1 and m⊥2 from (4), (10), (11),
(12) and (13), respectively.

2) if (xi)2 −m⊥1(xi)1 ≤ (qinji)2 −m⊥1(q
in
ji)1,

H inner
i ← [H inner

i ; [−m⊥1, 1]] and K inner
i ← [K inner

i ;
(qinji)2 −m⊥1(q

in
ji)1];

else,
H inner

i ← [H inner
i ; [m⊥1,−1]] and K inner

i ← [K inner
i ;−

(qinji)2 +m⊥1(q
in
ji)1];

3) if (xi)2 −m⊥2(xi)1 ≤ (qinji)2 −m⊥2(q
in
ji)1,

H inner
i ← [H inner

i ; [−m⊥2, 1]] and K inner
i ← [K inner

i ;
(qinji)2 −m⊥2(q

in
ji)1];
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else,
H inner

i ← [H inner
i ; [m⊥2,−1]] and K inner

i ← [K inner
i ;−

(qinji)2 +m⊥2(q
in
ji)1];

IV) In order to find a minimal representation of the inner-
bounding polygon, remove those rows in H inner

i and K inner
i

which correspond to the redundant facets. �

Note that the conditional statements in step III of the algo-
rithm are to obtain the correct sign for the gains H inner

i and
K inner

i describing the facets. Since xi belongs to Πinner
i , this is

done by using (55) and (56), and verifying in which side of each
facet the point xi lies.

Note that if a neighboring sensor is too far from Si, its
inner-bounding rays will not form any of the facets of the
inner-bounding polygon of Si. Such neighboring sensors (and
the corresponding outer-bounding rays) are termed ineffective
here. The approach to find the outer-bounding polygon of a
sensor is to disregard its ineffective neighboring sensors and
intersect the effective outer-bounding rays of its neighboring
sensors in an ordered manner and then to obtain the vertices
of the polygon. The intersection points of the outer-bounding
rays associated with the effective neighboring sensors are then
used to form an ordered set, which is, in fact, the set of points
characterizing the outer-bounding polygon of the sensor. The
steps of the procedure described above are summarized in the
following algorithm (note that the inner-bounding polygon of
Si is assumed to be obtained beforehand).

Algorithm II: Obtaining the Outer-Bounding Polygon for Si

I) Initialize the set of vertices describing the polygon Πouter
i

as V outer
i = {}.

II) Initialize the set of indices of the effective sensors as
N eff

i = {}, and then use the following procedure to find such
sensors one-by-one:

For j = 1 : dim(Ni),

1) Compute qinji , θ1, θ2, m⊥1 and m⊥2 from (4), (10), (11),
(12) and (13), respectively.

2) If any of the two lines (55) and (56) form a facet of
Πinner

i , then N eff
i = N eff

i ∪ {j}.

III) Sort the indices of the effective neighboring sensors in
N eff

i based on the angle viewed by sensor Si as provided in
(11). Let the new ordered set of indices be denoted by N̄ eff

i .
IV) For k = 1 : dim(N̄ eff

i ),

1) Obtain two pairs of outer-bounding rays associated
with sensors k and k + 1 using (18) and (19). If k =
dim(N̄ eff

i ), then obtain the rays for sensors k and 1.
2) Obtain every intersection point of the two pairs of outer-

bounding rays obtained in step (IV-1), and denote it by
pk. Set V outer

i = V outer
i ∪ {pk}.

V) The outer-bounding polygon is characterized by the convex
hull of the points in V outer

i . �

Note that the details of some geometric procedures in the
above algorithm (e.g., finding the intersection points of two
pairs of rays in step IV-2) are omitted for brevity. Note also
that both algorithms only use information available to sensor
Si, and, hence, they operate in a distributed fashion.
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