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Stability Criteria of Random Nonlinear Systems
and Their Applications
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Abstract—Stochastic differential equations (SDEs) are widely
adopted to describe systems with stochastic disturbances, while
they are not necessarily the best models in some specific situations.
This paper considers the nonlinear systems described by random
differential equations (RDEs). The notions and the corresponding
criteria of noise-to-state stability, asymptotic gain and asymptotic
stability are proposed, in the m-th moment or in probability.
Several estimation methods of stochastic processes are presented
to explain the reasonability of the assumptions used in theorems.
As applications of stability criteria, some examples about stabi-
lization, regulation and tracking are considered, respectively. A
theoretical framework on stability of RDEs is finally constructed,
which is distinguished from the existing framework of SDEs.

Index Terms—Lyapunov stability, nonlinear systems, random
differential equations.

I. INTRODUCTION

S TABILITY theory is one of the most important issues for
RDEs that are defined as differential equations involving

random elements. To show more specific stabilities as well
as other properties, researchers pay their attentions to the af-
fine form:

ẋ = f(x, t) + g(x, t)ξ(t), x(t0) = x0 (1)

where ξ(t) ∈ R
l is a stochastic process. When ξ(t) is a white

noise, regarding ξ(t) as the formal derivative of a Wiener
process W (t), (1) becomes the so called SDE described by

dx = f(x, t)dt+ g(x, t)dWt, x(t0) = x0. (2)

In this paper, we only consider the narrow sense of RDEs that
only refers to the affine form (1) where ξ(t) is not a white noise.
Nonlinear systems described by RDEs are called as random
nonlinear systems.

For stability of SDEs, fruitful results have been obtained,
which are applied in many fields such as theoretical physics,
economics and finances. Not long after Lyapunov theory was
introduced to the control community in [1], some important
results appeared in 1960s, primarily by Khas’minskii and Kush-
ner, respectively (see [2] and [3]). Since then, the stochastic
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Lyapunov’s second method has been developed to deal with the
stochastic stability by many authors, and here we only mention
[4]–[8]. There appeared some stochastic versions of LaSalle-
like theorem that locate limit sets of a system with linear
growth condition (see, [9]) or without linear growth condition
(see, [10]–[12]). Regarding the unknown covariance of Brown
motion as the input, the notion of noise-to-state stability (NSS)
was proposed by [10] and [11] with application in [13]. The
notion of γ-input-to-state stability (γ-ISS) was introduced by
Tsinias in [14], which corresponds to the stochastic robust
stability in a special case where some global linear growth
conditions were imposed. Different from the γ-ISS, the concept
of stochastic input-to-state stability (SISS) was initiated in [15],
in the form of β + γ estimate, which is a generalization of the
notion of NSS.

Although significant successes have been obtained for SDEs,
some preliminary questions still need convincing reasons. For
example, the white noise is viewed as the formal derivative of a
Wiener process, while the latter has no derivative everywhere.
A specific physical system with white noise can be described
by Itô integral equation and Stratonovich integral equation, re-
spectively, then how to decide which one is the best description?
What is the physical meaning of Hessian term in Itô’s formula?
It seems that the models descried by SDEs are not suit very
well for many control tasks in engineering. For example, road
irregularities are often described by white noises, but their final
effects to operation system of a car with spring absorber should
be illustrated by stationary processes. For another example,
in a circuit system with power noise filter, it is more rea-
sonable to describe the final effects of stochastic disturbances
to other electric elements by stationary processes than by
white noises.

Stability results of nonlinear RDEs are very few and the ex-
isting results are somewhat conservative. In [16] and [17], sta-
bility and asymptotic stability were proved by using Lyapunov
function V (x, t) ≥ a|x| for a constant a > 0, and
EV̇ (x, t) ≤ 0 (or < 0), which depends heavily on the
analytical solutions to RDEs. In [2], the existence and
boundedness in probability of solution were considered
under the assumption supx,t{g(x, t)} < c (constant). For
a Lyapunov function V with bounded Lipschitz coefficient
i.e., supt>0,xi∈Rn,x1 �=x2

{|V (x2, t)−V (x1, t)|/|x2−x1|}<c,
stability was analyzed. The almost surely asymptotic stability
in the large and exponential p-stability were proved under
the assumption |g(x, t)| ≤ V (x, t). Stability under small
random perturbations was researched by giving the condition
|x(t0)|+ supx,t{‖g(x, t)‖} < c. For these assumptions,
Khas’minskii gave the explanation: “unless certain restrictive
assumptions are made concerning a given system, it is not
likely that non-trivial and effective stability conditions can be
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found” (see [2]). These assumptions have prevented the wide
applications of RDE models in the engineering.

The aim of this paper is to construct a framework of stability
analysis for random nonlinear systems with second-order pro-
cesses. In Section II, the existence and uniqueness of solutions
are analyzed based on globally and locally Lipschitz conditions,
respectively. In Section III, notions of noise-to-state stability
are given in the m-th moment and in probability, respectively.
In Section IV, notions of asymptotic gain and their criteria are
presented by following lines of NSS. Suppose certain specific
estimations of disturbances are known, some results of asymp-
totical stability are obtained in Section V. Some estimations
of stochastic process ξ(t) are addressed in Section VI, under
some natural situations such as periodic, stationary, ergodic and
normal conditions. As applications, some examples of stabi-
lization, regulation and tracking are considered in Section VII.
Comparison to SDEs is presented in Section VIII. Conclusion
is presented in Section IX by summarizing the main idea of
this paper and pointing out some issues deserving consideration
in the future. It is expected that, by replacing of the restrictive
assumptions [2], [16] and [17] with some weaker conditions,
our research results will greatly widen the applications of RDE
models, and themselves will motivate many issues deserved
researching.

Notations: For a vector x, |x| stands for its usual Euclidean
norm and xT denotes its transpose; Rn stands for the real n-
dimensional space; ‖X‖ is the 2-norm of a matrix X; R+ is the
set of all nonnegative real numbers; UR stands for the ball |x| <
R and UC

R its complement in R
n. Ci denotes the set of all func-

tions with continuous i-th partial derivative; K stands for the
set of all functions: R+ → R+, which are continuous, strictly
increasing and vanish at zero; K∞ denotes the set of all func-
tions which are of class-K and unbounded; KL stands for the
set of all functions β(s, t) : R+ × R+ → R+ which is of class-
K for each fixed t, and decreases to zero as t → ∞ for each
fixed s. For a, b ∈ R, define a ∨ b = max{a, b} and a ∧ b =
min{a, b}. Function α : D → R is convex on D, if it satisfies
α((s1 + s2)/2) ≤ (α(s1) + α(s2))/2, ∀s1, s2 ∈ D.

II. THE EXISTENCE-AND-UNIQUENESS

OF SOLUTION TO RDES

Consider a random nonlinear system described by

ẋ = f(x, t) + g(x, t)ξ(t), x(t0) = x0 (3)

where x ∈ R
n is the state, the underlying complete probability

space is taken to be the quartet (Ω,F ,Ft, P ) with a filtration
Ft satisfying the usual conditions (i.e., it is increasing and right
continuous while F0 contains all P -null sets).

Stochastic process ξ(t) ∈ R
l satisfies the following

assumption.
A1: Process ξ(t) is Ft-adapted and piecewise continuous,

and satisfies

sup
t0≤s≤t

E |ξ(s)|2 < ∞, ∀ t ≥ 0. (4)

A solution to system (3) on [t0, T ] (T < ∞) is a process
x(t) := x(t0, x0, t) satisfying:

1) x(t) is continuous for all t ∈ [t0, T ],
2) x(t) is adapted to Ft, and

3) for all t ∈ [t0, T ]

x(t) = x0 +

t∫
t0

f(x, s)ds+

t∫
t0

g(x, s)ξ(s)ds. (5)

The uniqueness of solution to (3) is in almost-sure sense. If
for any T > t0, system (3) has a unique solution on [t0, T ], then
it has a unique solution on the infinite interval [t0,∞). In this
case, we say system 1 is forward-complete, and {x(t) : t0 ≤
t < ∞} is the unique global solution to system (3).

To analyze the existence and uniqueness of global solution
to system (3), the following two preliminary assumptions are
frequently used.

P1: Functions f(x, t) and g(x, t) are piecewise continuous
in t, and Lipschitz in x, i.e., there exists a constant L such that
∀x1, x2 ∈ R

n, x1 �= x2,

|f(x2, t)−f(x1, t)|+‖g(x2, t)−g(x1, t)‖≤L|x2−x1|. (6)

P2: There exists a constant d0 ≥ 0 such that

|f(0, t)|+ ‖g(0, t)‖ < d0. (7)

The following conclusion named as Bellman-Gronwall
Lemma can be found in [18].

Lemma 1: Let λ ≥ 0 be a constant and k(t) be a nonnegative
piecewise continuous function of time t. If the function y(t)
satisfies the inequality

y(t) ≤ λ+

t∫
t0

k(s)y(s)ds, ∀ t ≥ t0 ≥ 0

then

y(t) ≤ λe

∫ t

t0
k(s)ds

, ∀ t ≥ t0 ≥ 0.

The following result can be found in [19].
Lemma 2: Let the function y(t) be absolutely continuous for

t ≥ t0 and let its derivative satisfy the inequality

ẏ(t) ≤ k(t)y(t) + h(t)

for almost all t ≥ t0, where k(t) and h(t) are almost every-
where continuous functions integrable over every finite interval.
Then for t ≥ t0

y(t) ≤ y(t0)e

∫ t

t0
k(s)ds

+

∫ t

t0

e

∫ t

s
k(u)du

h(s)ds.

We begin with presenting a result about existence and
uniqueness of global solution to random affine systems.

Lemma 3: Under assumptions A1, P1 and P2, system (3) has
a unique solution x(t) on [t0,∞).

Proof: First we prove the result on the interval [t0, T ],
where T ≥ t0 is any finite instant. From supt0≤s≤t E|ξ(s)|2 <
∞, for all t ≥ t0, one can verify |ξ(t)| < ∞, a.s.

Uniqueness. Let x(t) and x̄(t) be two solutions of system (3).
By (5) and (6), we have

|x(t)− x̄(t)| ≤
t∫

t0

|f(x, s)− f(x̄, s)| ds
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+

t∫
t0

‖g(x, s)− g(x̄, s)‖ |ξ(s)| ds

≤ ε+ L

t∫
t0

|x− x̄| (1 + |ξ(s)|) ds

where ε ≥ 0 is a parameter. According to Lemma 1

|x(t)− x̄(t)| ≤ εe
L
∫ T

t0
(1+|ξ(s)|)ds

which, together with the arbitrariness of ε and the |ξ(t)| < ∞,
a.s., implies x(t) = x̄(t), a.s., for all t ∈ [t0, T ].

Existence. For any T ≥ t0, applying the method of succes-
sive approximations to (5) on the interval [t0, T ], we define a
series of processes as

x(0)(t) ≡x0

x(n+1)(t) =x0 +

∫ t

t0

f
(
x(n)(s), s

)
ds

+

∫ t

t0

g
(
x(n)(s), s

)
ξ(s)ds,∀n ≥ 0. (8)

We get the estimates

∣∣∣x(1)(t)− x0

∣∣∣ ≤ (L|x0|+ d0)

t∫
t0

(1 + |ξ(s)|) ds

∣∣∣x(n+1)(t)− x(n)(t)
∣∣∣

≤ L

t∫
t0

∣∣∣x(n)(s)− x(n−1)(s)
∣∣∣ (1 + |ξ(s)|) ds, a.s.

and these imply the inequality∣∣∣x(n+1)(t)− x(n)(t)
∣∣∣ ≤ (|x0|+

d0
L

)

×

[
L
∫ t

t0
(1 + |ξ(s)|) ds

]n
n!

, a.s. (9)

then the series

x(0)(t) +

∞∑
n=1

∣∣∣x(n)(t)− x(n−1)(t)
∣∣∣

uniformly converges almost surely. Then there exists a process
x(t) such that

x(t) = lim
n→∞

x(n)(t), a.s., (10)

for all t ∈ [t0, T ]. Using this limitation to (8), one can verify
that x(t) satisfies (5). Obviously the sample of x(t) is continu-
ous in t ∈ [t0, T ]. Since ξ(t) is adapted to Ft, then x(0)(t) and
x(1)(t) are adapted. Following recursive procedures, it can be
inferred that x(n)(t) is adapted to Ft, thereby x(t) is adapted to
Ft, according to (10).

Finally, since T ≥ t0 is arbitrary, the result of this lemma
holds on [t0,∞). �

Some traditional notions about the space of states, such as re-
gion of attraction in [20], can not play the same roles as they are
in the deterministic case, because it is difficult to define them

in the almost-sure sense. Therefore, many methods expressed
in the viewpoint of space in the deterministic case, have to be
turned into expressions in the viewpoint of time. Introduce the
first exit time from a region Uk = {x : |x| < k} and its limit:

σk = inf {t ≥ t0 : |x(t)| ≥ k} , σ∞ = lim
k→∞

σk (11)

where inf ∅ = ∞ is assumed. An R
n-valued Ft-adapted con-

tinuous stochastic process {x(t) : t0 ≤ t < σ∞} is called a
maximal solution of system (3), if x(t0) = x0 and for all t ∈
[t0,∞) and k > 0

x(t ∧ σk) = x0 +

t∧σk∫
t0

f(x, s)ds+

t∧σk∫
t0

g(x, s)ξ(s)ds, a.s.

(12)

Here, [t0, σ∞) is called the maximal existence interval. If,
furthermore, σ∞ < ∞, a.s., then {x(t) : t0 ≤ t < σ∞} is called
a maximal local solution and σ∞ is called the explosion time.
A maximal solution {x(t) : t0 ≤ t < σ∞} is said to be unique
if any other maximal solution {x̄(t) : t0 ≤ t < σ̄∞} is indis-
tinguishable from it, namely, σ∞ = σ̄∞ and x(t) = x̄(t) for all
t0 ≤ t < σ∞ with probability 1.

The strictness of global Lipschitz condition in preliminary
assumption P1 leads to poor applications of the model, which
motivates us to research a milder one.
P1′: For any R > 0, there exists a constant LR possibly

depending on R such that ∀x1, x2 ∈ UR, x1 �= x2

|f(x1, t)− f(x2, t)|+ ‖g(x1, t)− g(x2, t)‖ ≤ LR|x2 − x1|.
(13)

The existence-and-uniqueness of the maximal solution is
given by the following lemma.

Lemma 4: Under assumptions A1, P1′ and P2, system (3)
has a unique solution in maximal interval [t0, σ∞).

Proof: For each k ≥ 1, define the truncation functions

fk(x, t) =

{
f(x, t), if |x| ≤ k
f(kx/|x|, t), if |x| > k

gk(x, t) =

{
g(x, t), if |x| ≤ k
g(kx/|x|, t), if |x| > k

then fk and gk satisfy Lipschitz conditions. Hence by Lemma
3, there exists a unique solution xk(·) to equation

ẋk(t) = fk(xk, t) + gk(xk, t)ξ(t), t ∈ [t0,∞) (14)

where xk(t0) = x0. It is easy to show that

xk(t) = xk+1(t), ∀t ∈ [t0, σk]. (15)

Define

x(t) = xk(t), t ∈ [σk−1, σk), k ≥ 1.

By (15), x(t ∧ σk) = xk(t ∧ σk). It follows from (14) that

x(t ∧ σk) =x0 +

t∧σk∫
t0

fk(x(s), s)ds+

t∧σk∫
t0

fk(x(s), s)ξ(s)ds

=x0 +

t∧σk∫
t0

f(x(s), s)ds+

t∧σk∫
t0

g(x(s), s)ξ(s)ds
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for all t ∈ [t0,∞), k ≥ 1. If σ∞ < T < ∞, then

lim sup
t→σ∞

|x(t)| ≥ lim sup
k→∞

|x(σk)| = lim sup
k→∞

|xk(σk)| = ∞.

Hence, {x(t) : t0 ≤ t < σ∞} is a maximal solution. The
uniqueness can be easily verified by that of xk. �

Roughly speaking, the global Lipschitz condition leads to the
existence of a global solution, and local condition leads to that
of a maximal solution. To obtain a global solution from local
Lipschitz condition, we need additional information.

Lemma 5: For system (3) under assumptions A1, P1′ and
P2, if there exist a positive function V (x(t), t) ∈ C and con-
stants c, d > 0 such that for all t ≥ t0

lim
k→∞

inf
|x|>k

V (x, t) = ∞, (16)

and

EV (x(t ∧ σk), t ∧ σk) ≤ dect, ∀k > 0 (17)

then system (3) has a unique solution x(t) on [t0,∞).
Proof: From Lemma 4, there exists a maximal solution

x(t) on [t0, σ∞). We need to show σ∞ = ∞, a.s. Otherwise,
we can find a pair of positive constants ε and T such that

P{σ∞ ≤ T} > 2ε.

Since σ∞ = limk→∞ σk almost surely, there exists a larger
integer k0 such that for any k ≥ k0,

P{σk ≤ T} > ε. (18)

Fixing k ≥ k0, for any t0 ≤ t ≤ T , by (17), one has

EV (x(T ∧ σk), T ∧ σk) ≤ decT

which means

E [Iσk≤TV (x(σk), σk)] ≤ decT . (19)

On the other hand, if we define

hk = inf {V (x, t) : |x| ≥ k, t ∈ [t0, T ]}
then hk → ∞ as k → ∞ by (16). It follows from (18) and (19)
that

decT ≥ hkP{σk ≤ T} ≥ εhk.

Letting k → ∞ yields a contradiction, so we must have σ∞ =
∞, a.s. �

Remark 1: Based on locally Lipschitz conditions of f
and g and a Lyapunov function V , the global solution
was considered in [2], while additional assumptions such as
supx,t{‖g(x, t)‖} < c (constant) and V being globally Lips-
chitz were imposed to system (3). �

Definition 1: The stochastic process φ(t) : R+ × Ω → R
n is

called (strongly) bounded in probability if for any ε > 0 there
exists an r > 0 such that

P

{
sup
t≥t0

|φ(t)| > r

}
≤ ε.

The boundedness in probability here is stronger than the
(weak) boundedness in probability proposed in [2, p. 13] con-
sidering the fact P{supt≥t0 |φ(t)|>r}≥supt≥t0P{|φ(t)|>r}.

Lemma 6: For system (3) under assumptions A1, P1′ and
P2, if there exist a positive-definite function V (x, t) ∈ C and a

constant d ≥ 0 such that (16) and

EV (x(t ∧ σk), t ∧ σk) ≤ d,∀t ≥ t0, k > 0 (20)

then system (3) has a unique solution x(t) on [t0,∞), which is
bounded in probability.

Proof: The proof is the same as the proof of
[21, Lemma 2]. �

III. NOISE-TO-STATE STABILITY

Even in the deterministic case, the concept of stability can
be given various meanings. The diversity is even greater in the
presence of randomness. We shall not list here all the possible
definitions, but we shall confine ourselves to those plausible in
control field such as stability, asymptotic stability, exponential
stability, ultimate boundedness and ISS (or NSS).

Regarding ξ(t) as a stochastic input, notions of NSS will be
presented in a background different from [10] where NSS was
first proposed for SDEs.

A condition stricter than A1 will be used to prove the
existence-and-uniqueness of solution.
A1′: Process ξ(t) is Ft-adapted and piecewise continuous,

and there exists parameters c0, d0 > 0 such that

E |ξ(t)|2 ≤ d0e
c0t, ∀t ≥ t0. (21)

In this section, we further consider system (3), i.e.,

ẋ = f(x, t) + g(x, t)ξ(t), x(t0) = x0 (22)

where functions f and g satisfy assumptions P1′ and P2, and
ξ(t) satisfies assumption A1′.

Definition 2: System (22) is said to be noise-to-state stable in
the m-th moment (NSS-m-M) if there exist a class-KL function
β(·, ·) and a class-K function γ(·) such that ∀t ∈ [t0,∞)

E |x(t)|m ≤ β (|x0|, t− t0) + γ

(
sup

t0≤s≤t
E |ξ(s)|2

)
. (23)

Definition 3: System (22) is said to be noise-to-state stable
in probability (NSS-P) if for any ε > 0 there exist a class-KL
function β(·, ·) and a class-K function γ(·) such that for all t ∈
[t0,∞) and x0 ∈ R

n

P {|x(t)| ≤ β (|x0|, t− t0)

+ γ

(
sup

t0≤s≤t
E |ξ(s)|2

)}
≥ 1− ε. (24)

Theorem 1: Under assumptions A1′, P1′ and P2, for system
(22), assume that there exist a function V ∈ C1 and constants
a1, a2, a, d > 0 such that

a1|x|m ≤ V (x) ≤ a2|x|m (25)
∂V

∂x
f(x, t) + d

∣∣∣∣∂V∂x g(x, t)

∣∣∣∣
2

≤ −a|x|m. (26)

Then there exists a unique global solution to system (22) and
the system is NSS-m-M.

Proof: From (26), the derivative of V along system (22)
satisfies that

V̇ (x(t)) =
∂V

∂x
f(x, t) +

∂V

∂x
g(x, t)ξ(t)

≤ ∂V

∂x
f(x, t) + d

∣∣∣∣∂V∂x g(x, t)

∣∣∣∣
2

+
1

4d
|ξ(t)|2

≤ − a

a2
V (x) +

1

4d
|ξ(t)|2. (27)



1042 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 4, APRIL 2015

Taking integrals first in [t0, t ∧ σk) and then expectations on
both sides of (27), we have

EV (x(t ∧ σk))− V (x0)

≤ − a

a2
E

t∧σk∫
t0

V (x)ds+
1

4d
E

t∫
t0

|ξ(s)|2ds (28)

which, together with (21), gives

EV (x(t ∧ σk))<V (x0) +
d0
4c0d

ec0t≤
(
V (x0) +

d0
4c0d

)
ec0t

(29)

therefore, according to Lemma 5, the existence of solution on
[t0,∞) can be obtained, that is, σ∞ = ∞ almost surely. It
follows from σ∞ = ∞, a.s., and (27) that

V (x(t)) < ∞, V̇ (x(t)) < ∞,

then from Fubini’s theorem [22, Theorem 2.39], we have
t∫

t1

EV̇ (x(s))ds = E

t∫
t1

V̇ (s)ds = EV (x(t))− EV (x(t1)),

i.e.,

E
dV (x(t))

dt
=

dEV (x(t))

dt
(30)

which means the exchangeability of expectation and derivative.
By defining v(t) = EV (x(t)), according to Lemma 2, we have

v(t) ≤ |v(t0)| e−
a
a2

(t−t0) +
a2
4ad

sup
t0≤s≤t

E |ξ(s)|2 (31)

which, together with (25), means that

E |x(t)|m ≤ a2
a1

|x0|me−
a
a2

(t−t0) +
a2

4aa1d
sup

t0≤s≤t
E |ξ(s)|2 .

Thus, we complete the proof. �
From the above proof, the following corollary is easily

obtained.
Corollary 1: The result of Theorem 1 remains valid if we

replace (26) with (27).
Theorem 2: Under assumptions A1′, P1′ and P2, for system

(22), assume that there exist a parameter d > 0, a function V ∈
C1, class-K∞ functions α, α and a class-K function α such that

α(|x|) ≤ V (x) ≤ α(|x|), (32)

∂V

∂x
f(x, t) + d

∣∣∣∣∂V∂x g(x, t)

∣∣∣∣
2

≤ −α(|x|). (33)

Then there exists a unique global solution to system (22). If
α(ᾱ−1(·)) is a convex function, the system is NSS-P.

Proof: From (33), the derivative of V along system (22)
satisfies that

V̇ (x(t)) =
∂V

∂x
f(x(t), t) +

∂V

∂x
g(x(t), t)ξ(t)

≤ ∂V

∂x
f(x(t), t) + d

∣∣∣∣∂V∂x g(x(t), t)

∣∣∣∣
2

+
1

4d
|ξ(t)|2

≤ −α(|x(t)|) + 1

4d
|ξ(t)|2. (34)

By following the same line as the proof from (27) to (29),
the existence of solution on [t0,∞) can be obtained, that is,

σ∞ = ∞, a.s. It follows from (34) that

V̇ (x(t)) ≤ −α
(
ᾱ−1 (V (x))

)
+

1

4d
|ξ(t)|2 . (35)

By defining v(t) = EV (x(t)), from (30) and the convexity of
α(ᾱ−1(s)), we have

v̇(t) = EV̇ (x(t)) ≤ −Eα
(
ᾱ−1 (V (x(t))

)
+

1

4d
E |ξ(t)|2

≤ −α
(
ᾱ−1 (v(t))

)
+

1

4d
E |ξ(t)|2

where Jensen’s inequality is used to conclude Eα(ᾱ−1(V ×
(x(t))) ≥ α(ᾱ−1(EV (x(t))), therefore, from [23] and [24],
there exist a class-KL function β̄ and a class-K∞ function γ̄
such that

v(t) ≤ β̄(|x0|, t− t0) + γ̄

(
1

d
sup

t0≤s≤t
E|ξ(s)|2

)
. (36)

According to Chebyshev’s inequality, for any ε > 0, it comes
from (32) and (36) that

P{α(|x(t)|) > 1

ε
β̄(|x0|, t− t0) +

1

ε
γ̄(

1

d
sup

t0≤s≤t
E|ξ(s)|2)}

≤ P{V (x(t)) >
1

ε
β̄(|x0|, t− t0) +

1

ε
γ̄(

1

d
sup

t0≤s≤t
E|ξ(s)|2)}

≤ EV (x)ε

β̄(|x0|, t− t0) + γ̄( 1d supt0≤s≤t E|ξ(s)|2)
≤ ε,

thus, by taking β(·, ·) = α−1((2/ε)β̄(·, ·)) and γ(·) =
α−1((2/ε)γ̄(·)), we have

P{|x(t)| ≤ β(|x0|, t− t0) + γ(
1

d
sup

t0≤s≤t
E|ξ(s)|2)} ≥ 1− ε

which completes the proof. �
From the proof procedure of Theorem 2, we can obtain the

following result easily.
Corollary 2: The result of Theorem 2 remains valid if we

replace (33) with (34).
Remark 2: In Theorems 1-2 and their corollaries, parameter

d can be neglected by taking 1 and there is no effect on the
results. The importance of d can be found in the controller
design in Section VII. �

Remark 3: In [2], the effect of noise on state of system (22)
was described by the stability of its truncated systems ẋ =
f(x, t), x(t0) = x0 under small random perturbations. This was
researched under the condition |x(t0)|+ supx,t{‖g(x, t)‖} <
c and V (x, t) being globally Lipschitz in x. Compared with
[2, Theorem 1.6.2], these conditions are all removed from
Theorems 1 and 2 in this paper, which gives conveniences of
wide applications. �

IV. ASYMPTOTIC GAIN PROPERTIES OF SYSTEM

When the mean-square of disturbance is bounded by an
exponential function of time, notions and criteria of NSS-m-
M and NSS-P are proposed, while if the bound of mean-square
of disturbance is a constant, some more specific properties than
NSS are expected.

For further arguments, we need the following assumption.
A1′′: Process ξ(t) is Ft-adapted and piecewise continuous,

and there exists a constant K > 0 such that

sup
t≥t0

E|ξ(t)|2 < K. (37)
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In this section, assumptions A1′′, P1′ and P2 are imposed to
system (22).

For nonlinear systems with bounded disturbance (in the
deterministic case), estimation of ultimate bound of state was
researched in [20], which motivates the following notions.

Definition 4: The state of system (22) has an asymptotic
gain in the m-th moment (AG-m-M) if there exists a class-K
function γ(·) such that, for any x0 ∈ Rn

lim
t→∞

E|x(t)|m ≤ γ(K). (38)

Definition 5: The state of system (22) has an asymptotic gain
in probability (AG-P) if for any ε > 0 there exists a class-K
function γ(·) such that, for any x0 ∈ Rn

P
{
lim
t→∞

|x(t)| ≤ γ(K)
}
≥ 1− ε. (39)

Comparing to Definitions 2-3, the corresponding criteria of
Definitions 4-5 can be obtained.

Theorem 3: Under assumptions A1′′, P1′ and P2, for sys-
tem (22), if there exists a function V ∈ C1 and constants
a1, a2, a, d > 0 such that

a1|x|m ≤ V (x) ≤ a2|x|m (40)

∂V

∂x
f(x, t) + d

∣∣∣∣∂V∂x g(x, t)

∣∣∣∣
2

≤ −a|x|m (41)

then system (22) is NSS-m-M and has a unique global solution,
and the state of system has an AG-m-M.

Proof: According to Theorem 1, the existence-and-
uniqueness of solution and NSS-m-M of system can be ob-
tained, and moreover, for the given d > 0, we have

E|x(t)|m ≤ β (|x0|, t− t0) + γ

(
K

d

)
. (42)

By letting t → ∞, (38) can be concluded, which completes the
proof. �

Corollary 3: The result of Theorem 3 remains valid if we
replace (41) with (27).

Theorem 4: Under assumptions A1′′, P1′ and P2, for sys-
tem (22), if there exist a parameter d > 0, a function V ∈ C1

and class-K∞ functions α, α and a class-K function α such that

α(|x|) ≤ V (x) ≤ α(|x|) (43)

∂V

∂x
f(x, t) + d

∣∣∣∣∂V∂x g(x, t)

∣∣∣∣
2

≤ −α(|x|) (44)

then there exists a unique global solution to system (22). If
α(ᾱ−1(·)) is a convex function, the system is NSS-P, and the
state of system has an AG-P.

Proof: According to Theorem 2, the existence-and-
uniqueness of solution and NSS-P of system can be obtained,
and moreover, for the given d > 0 and any ε > 0, we have

P

{
|x(t)| ≤ β (|x0|, t− t0) + γ

(
K

d

)}
≥ 1− ε. (45)

By letting t → ∞, (39) can be concluded. �
Corollary 4: The result of Theorem 4 remains valid if we

replace (44) with (34).

V. GLOBAL ASYMPTOTIC STABILITY

Some definitions of stability for stochastic systems (2) can
be found in [2]–[8], [10], [11], which are now redefined for
random systems in this section.

To guarantee x(t) ≡ 0 being the equilibrium, preliminary
assumption P2 to system (22) needs be replaced with the
following assumption.
P2′: Functions f and g vanish at the origin, i.e., f(0, t) = 0

and g(0, t) = 0, ∀t ∈ [t0,∞).
In this section, assumptions A1′′, P1′ and P2′ are proposed

for system (22).
Definition 6: For system (22), the equilibrium x(t) ≡ 0 is

said to be globally stable in probability (GS-P) if for every ε >
0 there exists a class-K function γ(·) such that ∀t ≥ t0, x0 ∈
R

n\{0}
P {|x(t)| < γ (|x0|)} ≥ 1− ε. (46)

Definition 7: For system (22), the equilibrium x(t) ≡ 0 is
said to be globally asymptotically stable in probability (GAS-
P) if for every ε > 0 there exists a class-KL function β(·, ·)
such that ∀t ≥ t0, x0 ∈ R

n\{0}
P {|x(t)| ≤ β(|x0|, t− t0)} ≥ 1− ε. (47)

Definition 8: For system (22), the equilibrium x(t) ≡ 0 is
said to be globally stable in m-th moment (GS-m-M) if there
exists a class-K function γ(·) such that ∀t ≥ t0, x0 ∈ R

n\{0}
E |x(t)|m < γ (|x0|) . (48)

Definition 9: For system (22), the equilibrium x(t) ≡ 0 is
said to be globally asymptotically stable in m-th moment
(GAS-m-M) if there exists a class-KL function β(·, ·) such that
∀t ≥ t0, x0 ∈ R

n\{0}
E |x(t)|m < β (|x0|, t− t0) . (49)

Definition 10: For system (22), the equilibrium x(t) ≡ 0 is
said to be exponentially stable in m-th moment (ES-m-M) if
there exist parameters k1, k2>0 such that ∀t≥ t0, x0∈R

n\{0}

E |x(t)|m < k1|x0|me−k2(t−t0). (50)

Criteria on GAS-P and ES-m-M of system are to be pre-
sented, and others can also be addressed and proved in similar
ways.

A2: For a stochastic process ξ(t), if for any ε > 0, δ > 0,
there exists a T > t0 such that for all t ≥ T

P

⎧⎨
⎩
∣∣∣∣∣∣

1

t− t0

t∫
t0

|ξ(s)|2ds− E|ξ(t)|2
∣∣∣∣∣∣ ≥ δ

⎫⎬
⎭ ≤ ε (51)

we say that |ξ|2 satisfies the weak law of large numbers.
Theorem 5: Under assumptions A1′′, A2, P1′ and P2′, for

system (22), assume that there exist a function V ∈ C1 and
class-K∞ functions α, α and constants c1, c2 > 0 such that

α(|x|) ≤ V (x) ≤ α(|x|) (52)

∂V

∂x
f(x, t) ≤ −c1V (x(t)),

∣∣∣∣∂V∂x g(x, t)

∣∣∣∣ ≤ c2V (x(t)). (53)

If c1 > 2c2
√
K, then there exists a unique solution to system

(22) on [t0,∞), and its equilibrium is GAS-P.
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Proof: From (53), the derivative of V along system (22)
satisfies that

V̇ (x(t)) ≤ ∂V

∂x
f(x, t) +

(
∂V

∂x
g(x, t)

)
ξ(t)

≤ (−c1 + c2|ξ(t)|)V (x(t)) (54)

which, according to Lemma 2, implies that

V (x(t ∧ σk)) ≤V (x0)e

∫ t

t0
(−c1+c2|ξ(s)|)ds

=V (x0)e
−c1(t−t0)e

c2

t∫
t0

|ξ(s)|ds

< ∞. (55)

From (37), it is obvious |ξ(t)| < ∞, a.s., then from (52) and
(55) one has σ∞ = ∞, that is, there exists a unique solution to
system (22) on [t0,∞), according to Lemma 4. Letting k → ∞
in (55), we have

V (x(t)) ≤ V (x0)e
−c1(t−t0)e

c2
∫ t

t0
|ξ(s)|ds

. (56)

1) Attraction: For each ε > 0 and δ ∈ (0, 3K), defining

A =

⎧⎨
⎩
∣∣∣∣∣∣

1

t− t0

t∫
t0

|ξ(s)|2ds− E|ξ(t)|2|

∣∣∣∣∣∣ ≤ δ

⎫⎬
⎭

from (51), there exists a T > 0 such that for all t ≥ T

P{A} ≥ 1− ε. (57)

Combining the definition A with supt≥t0 E|ξ(t)|2 < K gives
t∫

t0

|ξ(s)|2ds ≤ t− t0)(E|ξ(t)|2 + δ) ≤ 4K(t− t0),

ω ∈ A, t ≥ T (58)

then, we have

t∫
t0

|ξ(s)|ds ≤ c
√
t− t0

⎛
⎝ t∫

t0

|ξ(s)|2ds

⎞
⎠

1
2

≤ 2
√
K(t− t0), ω ∈ A, t ≥ T. (59)

Substituting (59) into (56) gives

V (x(t)) ≤ V (x0)e
−(c1−2c2

√
K)(t−t0), ∀ω ∈ A, t ≥ T (60)

which, along with (52) and (57), results in

P
{
|x(t)| ≤ α−1(ᾱ(|x0|)e−(c1−2c2

√
K)(t−t0)

}
≥ 1− ε,

∀ t ≥ T. (61)

2) Stability: From supt≥t0 E|ξ(t)|2 < K, for the given ε,
there exists a δ0 > 0 such that

P{|ξ(t)| > δ0} ≤ E|ξ(t)|2
δ20

<
K

δ20
= ε, ∀ t ≥ t0

which, together with (56), leads to

P {V (x(t)) ≤ V (x0)M} ≥ 1− ε, t ≤ T (62)

where M = e(c2δ0−c1)(T−t0). From (52) and (62), it is ob-
tained that

P
{
|x(t)| ≤ α−1(Mᾱ(|x0|))

}
≥ 1− ε, ∀t ≤ T. (63)

Combining (61) with (63) gives

P{|x(t)| ≤ α(|x0|)} ≥ 1− ε, ∀t ≥ t0. (64)

where α(|x0|) = α−1(Mᾱ(|x0|)) + α−1(ᾱ(|x0|))M̄ and M̄ =

e−(c1−2c2
√
K)(T−t0).

3) Asymptotic Stability: By combining (61) with (64), it can
be learned that for each ε > 0 there exists a class-KL function
β(·, ·) such that

P{|x(t)| ≤ β(|x0|, t− t0)} ≥ 1− ε, (65)

thus we complete the proof. �
Before further arguments, we present an estimation of

stochastic processes.
A3: For a stationary process ξ(t), there exists a function δ(·)

such that, for any given ε > 0, t1 ≥ t0, we have

Ee
ε
∫ t1

t0
|ξ(s)|ds ≤ eδ(ε)(t1−t0) (66)

which will play a major role in the theory of asymptotical
stability of random systems.

Theorem 6: For system (22) under assumptions A1′′, A3,
P1′ and P2, assume that there exist a function V ∈ C1 and
constants a1, a2, c1, c2 > 0 such that

a1|x|m ≤ V (x) ≤ a2|x|m (67)
∂V

∂x
f(x, t) ≤ −c1V (x),

∣∣∣∣∂V∂x g(x, t)

∣∣∣∣ ≤ c2V (x). (68)

If

c1 > δ(c2), (69)

then there exists a unique global solution to system (22), and its
equilibrium is ES-m-M.

Proof: From (68), the derivative of V along system (22)
satisfies that, for all k > 0 and t0 ≤ t < σk

V̇ (x(t)) ≤ ∂V

∂x
f(x(t), t) +

(
∂V

∂x
g(x(x), t)

)
ξ(t)

≤ (−c1 + c2|ξ(t)|)V (x(t)), a.s. (70)

Following the same line as the proof from (54) to (55), the
existence-and-uniqueness of solution to system (22) on [t0,∞)
can be verified. According to Lemma 2, it comes from (67) and
(70) that

a1|x(t ∧ σk)|m ≤V (x(t ∧ σk)) ≤ V (x0)e

t∫
t0

(−c1+c2|ξ(s)|)ds

≤ a2|x0|me−c1(t−t0)e

c2

t∫
t0

|ξ(s)|ds

(71)

then, by letting k → ∞, we have

E|x(t)|m ≤ a2
a1

|x0|me−c1(t−t0)Ee

c2

t∫
t0

|ξ(s)|ds

. (72)

According to (66), we have

Ee
c2
∫ t

t0
|ξ(s)|ds ≤ eδ(c2)(t−t0)

which, combining with (72), gives

E|x(t)|m ≤ a2
a1

|x0|me−(c1−δ(c2))(t−t0). (73)
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By noting condition (69), one completes the proof. �
Remark 4: In [2], the asymptotic stability of system (22)

was analyzed by using a Lyapunov function V (x, t) satisfying
global Lipschitz condition: there exists a constant

B = sup
t>0,xi∈Rn,x1 �=x2

|V (x2, t)− V (x1, t)|
|x2 − x1|

.

Other conditions such as supx,t{g(x, t)} < c2V or V (x, t) >
c3|x| were also used in different situations. Comparing The-
orems 1.5.1 and 1.5.2 in [2] with Theorems 5 and 6, these
conditions are all removed or replaced by milder ones in this
paper, which is popular to the the practical applications. �

Remark 5: In [16], stability and asymptotic stability were
proved by using Lyapunov function satisfying V (x, t)≥a|x|
for a constant a>0. The main stability conditions with respect
to (22) are given in terms of a Lyapunov function V (x, t)≥
0 such that EV̇ (x, t)<0. However, in order to calculate the
expectation EV̇ (x, t) one must solve the system (22) with a
suitable initial condition, and this limits the practical use of the
criterion. �

Remark 6: For different purposes, assumptions P1, P1′,
P2 and P2′ are proposed to functions f and g of system,
and assumptions A1, A1′, A1′′, A2 and A3 are imposed to
stochastic process ξ(t). It should be noted that some relations
among these conditions exist:

A1′′ ⇒ A1′ ⇒ A1,P1′ ⇒ P1,P2′ ⇒ P2,

which can be easily verified. �

VI. ESTIMATIONS AND SIMULATIONS OF

SOME STOCHASTIC PROCESSES

For system (3), the existence-and-uniqueness of solution
is analyzed under the assumption A1: supt≥t0 E|ξ(t)|2 < ∞.
For system (22), conclusions about noise-to-state stability are
obtained under the assumption A1′: E|ξ(t)|2 < d0e

c0t. The
asymptotic stabilities require more specific statistic properties
such as A1′′, A2 and A3. The reasonability of these require-
ments in previous sections on the stochastic processes ξ(t) will
be investigated in this section.

A. Second-Order Process

Suppose that ξ(t)(t ∈ [t0,∞)) is a stochastic process with
state space in Rl, defined on a probability space (Ω,F , P ).
The process ξ(t) is a second-order process if E|ξ(t)|2 < ∞
for every t ∈ [t0,∞). From basic properties of higher mo-
ments, this condition implies that E|ξ(t)| < ∞ and also that
E(|ξT (s)ξ(t)|) < ∞ for every s, t ∈ [t0,∞).

For a second-order process ξ(t), define expectation, variance
and covariance

Eξ(t) = m(t)

E|ξ(t)−m(t)|2 = D(t)

E(ξ(t)−m(t))T (ξ(s)−m(s)) = H(s, t)

respectively. By the second-order assumption in the last para-
graph, these are well defined. In general of course, these
functions do not determine the finite dimensional distributions
of ξ(t), but are nonetheless important. In some applications,
the mean and covariance functions may be known, at least ap-
proximately, when the finite dimensional distributions are not.

It is obvious that a stochastic process ξ(t) is second-order if
and only if it satisfies assumption A1.

B. Widely Periodic Process

A second-order process ξ(t) is said to be widely periodic
with period θ if there exists a constant θ > 0 such that its
moments satisfy

m(t+ θ) = m(t), D(t+ θ) = D(t)

and

H(s+ θ, t+ θ) = H(s, t), ∀ s, t ≥ t0.

Assume ξ(t) is piecewise continuous, which implies the
same property of m(t) and D(t), thus E|ξ(t)|2 = D(t) +
|m(t)|2 is bounded in [t0, t0 + θ], so it is bounded in [t0,∞).
This leads to a claim that for a widely periodic process ξ(t)
which is piecewise continuous there exists a constant K > 0
such that supt≥t0 E|ξ(t)|2 < K, that is, assumption A1′′ holds.

C. Widely Stationary Process

One popular kind of second-order processes in practice is the
widely stationary one, i.e., a second-order process ξ(t) whose
moments satisfy

m(t) = m,D(t) = D,H(s, t) = H(t− s), ∀s, t ≥ t0.

Since E|ξ(t)|2=m2 +D, then supt≥t0E|ξ(t)|2≤m2+D.
It is obvious that a widely stationary process is widely pe-

riodic with arbitrary period and thus satisfies assumption A1′′.

D. Strictly Stationary Process

We say a process ξ(t) defined on (Ω,F , P ) is strictly sta-
tionary, if for any t1, · · · , tn, t ≥ t0, the distribution of ξ(t1 +
t), · · · , ξ(tn + t) is independent of t.

Since a strictly stationary process isn’t necessarily a second-
order process, then, strictly stationary process and widely sta-
tionary one can’t cover each other.

For a second-order process ξ(t), if it is strictly stationary,
then it must be widely stationary, and thus it satisfies assump-
tion A1′′.

As a counterexample, white noise is strictly stationary, but it
is not a second-order process. It does not satisfies assumptions
A1, A1′ and A1′′.

E. Mean-Ergodicity and Variance-Ergodicity of Widely
Stationary Process

Given a widely stationary process ξ(t), let us estimate its
mean m = Eξ(t). For this end, we define its mean in time

mT =
1

T − t0

T∫
t0

ξ(t)dt.

Clearly, mT is a random variable with the mean m. If its
variance E|mT −m|2 → 0 as T → ∞, then we say that the
process ξ(t) is mean-ergodic. According to [25], ξ(t) is mean-
ergodic if and only if limT→∞(1/T − t0)

∫ T

t0
H(s)ds = 0.
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Turn to estimate D = E|ξ(t)−m|2. Under assumption of
m = 0, to estimate the mean of |ξ(t)|2, let us introduce

DT =
1

T − t0

T∫
t0

|ξ(t)|2dt.

If its variance E|DT −D|2 → 0 as T → ∞, then we say that
the process ξ(t) is variance-ergodic, i.e., |ξ(t)|2 obeys the
mean-square law of large number. According to [25], ξ(t)

is variance-ergodic if and only if limT→∞(1/T − t0)
∫ T

t0
E ×

(|ξ(t+ s)|2|ξ(t)|2)ds = D2.
In this case, |ξ(t)|2 also obeys the weak law of large number

(51) and thus assumption A2 is satisfied.

F. Ergodicity of Strictly Stationary Process

For a strictly stationary process ξ(t). Define Fξt as the σ-
field generated by ξ(t). A strictly stationary process ξ(t) is
called ergodic if for every set A ∈ Fξt there holds P (A) = 0
or 1. According to [26], for an ergodic process ξ(t), if there
exists a measurable function f such that E|f(ξ(t))| < ∞ for
any t > t0, we have

lim
t→∞

1

t− t0

t∫
t0

f(ξ(s))ds = Ef(ξ(t)), a.s.

i.e., f(ξ(t)) satisfies the strong law of large number. This
implies that f(ξ(t)) also satisfies the weak law of large number,
then, letting f(ξ(t)) = |ξ(t)|2, assumption A2 is satisfied.

G. Stationary Gaussian Process

Suppose that ξ(t) ∈ Rl(t ∈ [t0,∞)) is a stochastic process.
Then ξ(t) is said to be a Gaussian process if all of the finite
dimensional distributions are normal.

According to (1.7.15) in [2], if a Gaussian process ξ(t)
satisfies

E|ξ(t)|2 ≤ c1,

∞∫
t0

‖H(s, t)‖dt ≤ c2

for some ci > 0 and all t ≥ t0, then the following estimate
holds for all ε > 0 and t1 > t0

Ee
ε
∫ t1

t0
|ξ(s)|ds ≤ Ee

ε
∫ t1

t0
(|Eξ(s)|+|ξ(s)−Eξ(s)|)ds

≤ eε
√
c1(t1−t0)eε(

√
c1+

εc2
2 )(t1−t0) = eε(2

√
c1+

εc2
2 )(t1−t0)

thus assumption A3 is satisfied.

H. Producing a Stationary Process Using Matlab

It is interesting to invesqtigate how to produce stationary
processes by using Matlab.

Consider a stochastic process ξ(t) ∈ R, t ∈ T , defined by

ξ(t) = a cos(λt+ U) (74)

where a and λ are real constants and U is a random variable
uniformly distributed on the interval [0, 2π]. It is not only a
strictly stationary process but also a widely one, and Eξ2(t) <
a2. Uniform distribution can be produced by Matlab software.

Consider another stochastic process ξ(t) ∈ R produced By

qξ̇(t) = −ξ(t) + w(t), ξ(0) = 0, (75)

where q > 0 is a parameter and w(t) ∈ R is a zero-mean white
noise whose spectral function equals a constant A > 0. Ac-
cording to P.135 of [27], ξ(t) is a zero-mean widely stationary
process with mean-square value A/2q.

Consider (75) where w(t) ∈ R is a zero-mean bandlimited
white noise whose power spectrum is

Fw(jλ) =

{
A, |λ| ≤ λc

0, otherwise

where A > 0 is noise power and λc > 0 is bandwidth. Ac-
cording to P.135 of [27], ξ(t) is a zero-mean widely stationary
process whose power spectrum and variance equal to

Fξ(jλ) =

{
A

1+q2λ2 , |λ| ≤ λc

0, otherwise

E|ξ|2 =
1

2π

λc∫
−λc

A

1 + q2λ2
dλ =

A

πq
tan−1(λcq)

respectively. It is the bandlimited white noise instead of pure
white noise that is physically plausible and can be generated
by a block in Simulink software. In bandlimited-white-noise
block, there are two dialog box parameters: noise power A and
correlation time tc ≈ (1/100)(2π/λc).

VII. SOME APPLICATIONS IN CONTROL PROBLEMS

The reasonability of Lyapunov criteria can be verified by
applying them in controller design.

Consider a random nonlinear control system

ẋ = f(x, u, t) + g(x, t)ξ(t), x(t0) = x0

y =h(x) (76)

where ξ(t) satisfies assumption A1′′, i.e., supt≥t0E|ξ(t)|2≤K.
Many control objectives can be achieved by designing con-

trollers in the form

u = u(x, z, t), ż = χ(x, z)

where z is a dynamic.
Functions f(x, u(x, z, t), t), g(x, u(x, z, t), t), h(x) and

χ(x, z) satisfy locally Lipschitz condition and local bounded-
ness.

Firstly, for regulation, we give the following example.
Example 1: Consider how to design a controller to regulate

the state of system

ẋ = u+ ξ(t), x(0) = x0, (77)

where x ∈ R and stochastic process ξ ∈ R satisfies
supt≥t0 E|ξ(t)|2 < K (constant), to a set-point xs.

Select

u = −c(x− xs),

where c > 0 is a design parameter, and choose a Lyapunov
function

V =
1

2
(x− xs)

2
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then, we have

V̇ ≤ (x− xs)(−c(x− xs) + ξ(t)) ≤ −cV +
|ξ(t)|2
2c

which, according to Lemma 2, means that

E|x− xs|2 ≤ |x0 − xs|2e−c(t−t0) +
K

c2
.

Therefore, according to Theorem 3, system (77) is NSS-2-M,
and its AG-2-M is 1/c2, which can be made arbitrarily small by
tuning design parameter c large enough. �

Secondly, pay attention to the tracking of random nonlinear
system.

Example 2: Consider a strict-feedback system with stochas-
tic disturbance as follows:

ẋ1 = f1(x1) + x2 + h1(x1)ξ1

ẋ2 = f2(x1, x2) + u+ h2(x1, x2)ξ2

y =x1 (78)

where x = (x1, x2)
T ∈ R

2 is state, u ∈ R is control, y ∈ R

is the output, functions fi, gi, hi are locally lipschitz, and
the adapted stochastic process ξ = (ξ1, ξ2)

T ∈ R
2 is piecewise

continuous and satisfies supt≥t0 E|ξ(t)|2 < K.
The control object is to design a smooth controller u = u(x)

such that the output of the closed-loop system can track a
known reference yr as close as possible, where yr, ẏr and ÿr
are bounded.

The integral backstepping controller can be designed step by
step.

Step 1: Introduce a transform

z1 = x1 − yr z2 = x2 − ẏr − α1

where α1 is a function to be designed, and choose a Lyapunov-
like function

V1 =
1

2
z21 .

The derivative of V1 satisfies

V̇1 = z1(f1(x1) + x2 + h1(x1)ξ1 − ẏr)

≤ z1(f1(x1) +
d1
4
z1h

2
1(x1) + α1) + z1z2 +

1

d1
ξ21 (79)

where Young’s inequality is used. By selecting

α1 = −c1z1 − f1(x1)−
d1
4
z1h

2
1(x1)

it follows from (79) that

V̇1 ≤ z1z2 − c1z
2
1 +

1

d1
ξ21 . (80)

Step 2: The second Lyapunov-like function is

V2 = V1 +
1

2
z22 .

The derivative of V2 satisfies

V̇2 = V̇1 + z2(f2(x) + u+ h2(x)ξ2 − ÿr

−∂α1

∂yr
ẏr −

∂α1

∂x1
(f1(x1) + x2)−

∂α1

∂x1
h1(x1)ξ1). (81)

According to Young’s inequality, one has

z2h2(x)ξ2 ≤ d2
4
h2
2(x)z

2
2 +

1

d2
ξ22

z2
∂α1

∂x1
h1(x1)ξ1 ≤ d3

4

[
∂α1

∂x1
h1(x1)

]2
z22 +

1

d3
ξ21 . (82)

Substituting (82) into (81) results in

V̇2 ≤ V̇1 + z2(f2(x) +
d2
4
z2h

2
2(x)−

∂α1

∂yr
ẏr

− ∂α1

∂x1

(
f1(x1) + x2) + u− ÿr +

d3
4

[
∂α1

∂x1
h1(x1)

]2
z2

)

+
1

d2
ξ22 +

1

d3
ξ21 (83)

which, together with (80), leads to

V̇2 ≤ z2(f2(x) +
d2
4
z2h

2
2(x) + z1 −

∂α1

∂yr
ẏr

− ∂α1

∂x1

(
f1(x1) + x2) + u− ÿr +

d3
4

[
∂α1

∂x1
h1(x1)

]2
z2

)

− c1z
2
1 +

1

d1
ξ21 +

1

d3
ξ21 +

1

d2
ξ22 . (84)

Choose

u = −c2z2 − f2(x)− z1 +
∂α1

∂yr
ẏr −

d2
4
z2h

2
2(x)

+
∂α1

∂x1
(f1(x1) + x2) + ÿr −

d3
4
[
∂α1

∂x1
h1(x1)]

2z2 (85)

such that

V̇2 ≤ −c1z
2
1 − c2z

2
2 +

(
1

d1
+

1

d3

)
ξ21 +

1

d2
ξ22

which satisfies

V̇ ≤ −cV +
1

d
|ξ|2 (86)

where c = 2min{c1, c2} and 1/d = max{(1/d1) + (1/d3),
(1/d2)}. From (86) and supt≥t0 E|ξ(t)|2 < K, the tracking
error satisfies

E|y − yr|2 ≤ 2EV (t) ≤ 2V (x0)e
−c(t−t0) +

2K

cd
(87)

whose proof can be refereed to (31).
According to Theorem 4, from (86), the closed-loop system

is NSS-P, and the state of the closed-loop system has an AG-P,
therefore, all the signals in the closed-loop system are bounded
in probability. From (86), the tracking error can be made
arbitrarily small by tuning di(i = 1, 2, 3) large enough.

To perform a simulation to system (78), the reference signal
yr = sin t, functions fi, hi(i = 1, 2) are chosen as

f1(x1) = x2
1 + 1, h1(x1) = −x1, f2 = x2

1 − x2
2, h2 = x1x2

the initial values x1(0) = 0.4, x2(0) = −1, the design parame-
ters c1 = c2 = 1, d1 = 50, d2 = d3 = 2, and the disturbances
ξ1 and ξ2 are all produced by (75) where coefficient q = 1,
noise power A = 0.1 and sample time tc = 0.1. From Fig. 1,
it can be learned that the tracking error is very small and
all the other signals including x2 and control u are bounded,
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Fig. 1. Responses of closed-loop system.

which demonstrates the efficiency of the controller and the
reasonability of stability analysis. �

Finally, an example of asymptotic stabilization is considered.
Example 3: A linear random system is given as follows:

ẋ = Ax+Bu+ Cxξ, x(0) = x0 (88)

where x ∈ R
n and ξ(t) ∈ R satisfies supt≥t0 E|ξ(t)|2 < K

(constant) and |ξ(t)|2 satisfies the weak law of large numbers.
Choose a Lyapunov function

V = xTPx.

Consider a controller u = −cx.
If there exists a parameter c such that the following LMI has

a positive definite solution:

PĀ+ ĀTP + c1P < 0
PC + CTP − c2P < 0 (89)

where Ā = A−Bc and c1 > 2c2
√
K, that is

∂V

∂x
f(x, t) ≤ −c1V (x(t)),

∣∣∣∣∂V∂x g(x, t)

∣∣∣∣ ≤ c2V (x(t)). (90)

Therefore, x = 0 is GAS-P, according to Theorem 5. �

VIII. COMPARISON WITH STOCHASTIC

DIFFERENTIAL EQUATION

Great achievements in stability analysis have been obtained
for SDE described by

dx = f(x, t, u)dt+ g(x, t)dWt (91)

where Wt is a Wiener process.

In the deterministic case, many results of asymptotic stabi-
lization can also be used in asymptotic tracking problems by
performing a coordination transformation. It is not the same
case for stochastic control systems (91). About the tracking
problems, no asymptotic stability results can be found in the
existing references.

Example 4: By taking u = −cx with a parameter c > 1, the
System

dx = udt+ xdWt (92)

can be stabilized to x ≡ 0. In fact, by using Lyapunov func-
tion V = (1/2)x2, one can obtain LV ≤ −(2c− 1)V , which
implies the stability of equilibrium. �

Example 5: For system (92), we can not find a controller to
asymptotically regulate the state to a set-point x = xe �= 0 in
probability.

By selecting u = −c(x− xe) and Lyapunov function V =
(1/4)(x− xe)

4 such that

LV = −c(x− xe)
4 +

3

2
x2(x− xe)

2

≤ −c(x− xe)
4 + 3(x− xe)

4 + 3(x− xe)
2x2

e

≤ −c(x− xe)
4 + 3(x− xe)

4 +
9

4ε
(x− xe)

4 + εx2
e

≤ −(c− 3− 9

4ε
)(x− xe)

4 + εx2
e

where ε > 0 is any parameter, which leads to

E|x− xe|4 ≤ |x0|4e−(c−3− 9
4ε )(t−t0) +

4εx2
e

c− 3− 9
4ε

.

Thus c should be chosen such that c > 3 + (9/4ε). The regula-
tion error of this example depends on the set-point xe, which
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implies that the regulation task becomes more difficult with
xe being farther away from the origin. For system (77), the
regulation error is independent of xe. �

Example 6: For system (92), we cannot find a controller
to let the state track asymptotically a reference signal xr in
probability. Assume that |xr| ≤ dr, |ẋr| ≤ d̄r.

By selecting u = −c(x− xr) + ẋr and Lyapunov function
V = (1/4)(x− xr)

4 such that

LV = (x− xr)
3u− (x− xr)

3ẋr +
3

2
x2(x− xr)

2

= −c(x− xr)
4 +

3

2
x2(x− xr)

2

≤ −(c− 3− 9

4ε
)(x− xr)

4 + εx2
r

which leads to

E|x− xr|4 ≤ |x0|4e−(c−3− 9
4ε )(t−t0) +

4εd2r
c− 3− 9

4ε

.

Similarly, the tracking error depends on the bound of xr.
For system (78), the tracking error is independent of reference
signal. �

Remark 7: RDE model (see (3)) has no so significant im-
pacts on the physics, mathematics and social science as SDE
model (see (91)), but has at least the following advantages.

1) The error of tracking (or regelation) does not depend on
the reference signal, which is more reasonable in practice.

2) Many analysis tools proposed for ordinary differential
equation can be applied in RDE models. �

IX. CONCLUSION

The existing results of Lyapunov stability for RDEs were
given under some strict assumptions (see, [2], [16], [17]). In this
paper, we try to replace these requirements with some milder
ones, and develop a theoretical framework of Lyapunov stabil-
ity, parallelling to that of SDEs. One outstanding advantage of
controllers designed for random nonlinear systems is that the
tracking errors (or regulation errors) are independent of the
magnitude of the reference signals. So far, the framework is
uncompleted, thus it needs develop in many directions such
as optimal control, observer-based control, H2/H∞ control,
inverse Lyapunov function design, dissipativity, and controller
design for mechanical and power systems.
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