
IEEE TRANSACTIONS AND JOURNALS TEMPLATE 1

Robust offset-free constrained Model Predictive
Control with Long Short-Term Memory Networks

Irene Schimperna, and Lalo Magni

Abstract— This paper develops a control scheme, based
on the use of Long Short-Term Memory neural network
models and Nonlinear Model Predictive Control, which
guarantees recursive feasibility with slow time variant set-
points and disturbances, input and output constraints and
unmeasurable state. Moreover, if the set-point and the dis-
turbance are asymptotically constant, offset-free tracking is
guaranteed. Offset-free tracking is obtained by augmenting
the model with a disturbance, to be estimated together with
the states of the Long Short-Term Memory network model
by a properly designed observer. Satisfaction of the output
constraints in presence of observer estimation error, time
variant set-points and disturbances is obtained using a
constraint tightening approach.

Index Terms— Nonlinear Model Predictive Control The-
ory and Applications, Feasibility and Stability Issues, Dis-
turbance Attenuation, Long Short-Term Memory Networks,
Tracking

I. INTRODUCTION

Model Predictive Control (MPC) [1] is an optimization-
based control method, that consists in solving at each sam-
ple time instant a Finite Horizon Optimal Control Problem
(FHOCP) and then applying only the first element of the
optimal control sequence. In the last 30 years many theoretical
results have been proposed in order to derive MPC control
algorithm with guaranteed properties both for linear and non-
linear systems. Stabilization of a given steady state equilibrium
is a largely solved problem, with approaches based on terminal
ingredients (terminal set/cost) [2], [3] or sufficiently long
prediction horizon [4], [5], [6], [7] in the nominal case, i.e.
when the model equation and state are exactly known. Starting
from this simple case, several results were developed in order
to consider more realistic situations that involves disturbances,
model uncertainties, time variant references a-priori unknown
and unmeasurable states. The development of MPC control
algorithms able to tackle these aspects is made particularly
difficult when state/output constraints, that are one of the
most important characteristic of MPC, are considered. In fact,
recursive feasibility is heavily affected by all these aspects. In
particular, to take into account model uncertainties and distur-
bances several algorithms were proposed both in a bounded
deterministic context [8] and in a stochastic one [9], [10],
[11]. For linear systems robustness is typically achieved using
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tube based robust MPC schemes [12]. For nonlinear systems
it is possible to rely on constraint tightening approaches, for
example based on the Lipschitz constant of the system under
control [13], [14], or on min-max approaches [15]. Concerning
the tracking problem most of the attention was devoted to
compensate exogenous signals (reference and/or disturbance
signals) generated by a neutrally stable ecosystem [16], [17]
and in particular constant signals [18], [19], and to guarantee
recursive feasibility with set-point changes by simultaneously
optimizing an artificial reference [20], [21], [22]. In [23] an
offline procedure to compute a parameterized terminal cost has
been developed for both set-point and trajectory stabilization.
Moreover, to guarantee offset-free tracking at steady state
despite the presence of persistent disturbances and model-plant
mismatch, a well-known method consists in augmenting the
model with a properly designed constant disturbance, to be
estimated by the observer together with the states of the model.
Sufficient conditions that the disturbance model, the observer
and the MPC have to satisfy in order to guarantee zero error
at steady state are analysed for linear models in [24], [25]
and for nonlinear models in [26]. The case of unmeasurable
states has been typically solved by the introduction of an
observer. The presence of constraints however calls for the
design of a robust state-feedback MPC and for a properly
designed observer. In most of the literature about output
MPC the observer estimation error is regarded as a generic
disturbance [27]. Few exceptions are [28], that proposes a
constraint tightening technique based on the evolution of the
maximum observer estimation error, and [29], that uses a
min-max optimization problem to simultaneously compute a
Moving Horizon Estimation and a robust MPC. The properties
of any MPC algorithm are also affected by the quality of
the model that can range from linear to nonlinear, physical
based to black-box identification, fine dimension to infinite
dimension.

In this paper, a Neural Network (NN) model has been
considered for its flexibility and modularity and possibility to
be learnt directly from the data without the need of analysing
the physics of the system. The idea of developing models
inspired by human brain neurons dates back to 1957 with
the Rosenblatt perceptron [30], and also some interesting
theoretical results concerning the modelling capabilities of
NN, like the universal approximation theorem [31], have been
known for years. Despite this, the use of NN had a great
increase in recent years, thanks to the availability of huge
amount of data and of cheap hardware specialized for parallel
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computations (GPUs), that allows to perform computationally
intensive training procedures that were infeasible until some
years ago. NN are now known to be effective in a large variety
of contexts and applications [32], like image [33], speech
[34] and handwriting recognition [35], prediction [36] and
forecasting [37], [38].

For MPC, a class of NN that can be used to provide
input-output models of the system under control are Recurrent
Neural Networks (RNN) [39]. In fact RNN have the same
mathematical structure of a discrete-time dynamical system,
and for this reason they can be very effective in describing
the dynamic nature of the system under control. In the fam-
ily of RNN, two architectures that have shown remarkable
performances in several tasks are Long Short-Term Memory
(LSTM) networks [40] and Gated Recurrent Units (GRU)
[41]. Recently, in the control field, a new architecture with
guaranteed stability properties called Recurrent Equilibrium
Networks (REN) has been proposed [42]. In [43], LSTM
neural networks have been analysed from a stability point of
view and applied as models for MPC. In particular, conditions
on LSTM model’s parameters guaranteeing the Input-to-State
Stability (ISS) [44] and the Incremental Input-to-State Stability
(δISS) [45] are designed. Then, assuming that the trained
model exactly represents the dynamic of the system and
relying on δISS, an observer guaranteeing that the estimated
state asymptotically converges to the true value is proposed.
Based on the LSTM model and on the state observer, a sta-
bilizing MPC control algorithm solving the tracking problem
for constant state and input reference values and in presence
of input constraints is proposed and analysed.

In this paper, the algorithm proposed in [43] has been
modified in order to cope with time variant set-points and
disturbances, output constraints and to guarantee zero-error
regulation for asymptotically constant set-points and distur-
bances. In this respect, the δISS LSTM model is employed
in the design of an MPC scheme that guarantees recursive
feasibility with a-priori unknown slow time variant bounded
reference signals, unknown disturbances and input and output
constraints by means of a properly designed robust MPC
inspired by [28] and a state observer properly designed for
the LSTM model completed with a disturbance model that
satisfies the sufficient conditions for offset-free stated in [26].
Further to the state-feedback MPC and the observer, the
control scheme includes a Reference calculator, that computes
state and input set-points for the MPC at every sample time
instant on the base of the current value of the output reference
signal and of the disturbance estimation. A preliminary version
of this zero-error control scheme for unconstrained systems
was presented in [46]. Remarkably, the results derived in this
paper are useful not only in combination with LSTM models
but for any δISS model like [42] and [47].

The paper is organized as follows. After the notation and
some preliminary definitions, in Section II the control problem
is described, and all the components of the proposed control
algorithm are introduced and analysed. In Section III the main
results of the paper are reported, concerning the feasibility,
stability and offset-free analysis of the control scheme. In
Section IV the proposed control algorithm is tested on a

benchmark pH neutralization process [48]. Finally, Section V
draws the conclusions of the work. The most important proofs
are reported in Appendix I, while, for space limitations, some
others can be found in [49].

A. Notation

Considering a vector v, v(j) is its j-th component, v⊤ is its
transpose, ∥v∥ is its 2-norm, ∥v∥∞ is its infinity-norm and
∥v∥2A = v⊤Av is the squared norm weighted with matrix
A. |v| is the vector containing the absolute values of the
elements of v. Inequalities between vectors are considered
element by element. Given two vectors v and w, v ◦ w is
their element-wise product. Considering a matrix M , M(ij)

is its element in position ij, M(j∗) is its j-th row, ρ(M) is
its spectral radius, i.e. the maximum absolute value of its
eigenvalues, and ∥M∥ and ∥M∥∞ are its induced 2-norm
and ∞-norm. λmax(M) and λmin(M) are respectively the
maximum and minimum eigenvalues of the symmetric matrix
M . Given a positive definite matrix A, A1/2 is the unique
positive definite matrix B such that BB = A. 0m,n is the
m × n null matrix, In is the n × n identity matrix and 1n

is the vector of ones of n elements. sat(v, vmax) denotes the
saturation operator between −vmax and +vmax, that is applied
element by element when v is a vector.

B. Definitions

Given the definition of functions of classes K, K∞ and KL
(see e.g. [1]), the notions of Input-to-State practical Stability
(ISpS) and δISS are now introduced for the generic discrete-
time dynamical system xk+1 = f(xk, uk), with x ∈ Rnx and
u ∈ Rnu . The stability notion are stated in the sets X ⊆ Rnx

and U ⊆ Rnu , with the set X assumed to be positive invariant
for the dynamical system, i.e. for any u ∈ U , it holds that
x ∈ X =⇒ f(x, u) ∈ X .

Definition (ISpS, [15]): The dynamical system xk+1 =
f(xk, uk) is ISpS in the sets X and U if there exist functions
β ∈ KL and γ ∈ K∞ and a constant c > 0 such that for any
k ∈ Z≥0, any initial condition x0 ∈ X , any input sequence
u0, u1, ..., uk−1 with uh ∈ U for all h = 1, .., k − 1, it holds
that:

∥xk∥ ≤ β(∥x0∥, k) + γ

(
max
0≤h<k

∥uh∥
)
+ c (1)

Definition (δISS): The dynamical system xk+1 = f(xk, uk)
is δISS in the sets X and U if there exist functions β ∈ KL
and γ ∈ K∞ such that for any k ∈ Z≥0, any pair of
initial conditions xa,0 ∈ X and xb,0 ∈ X , any pair of input
sequences ua,0, ua,1, ..., ua,k−1 and ub,0, ub,1, ..., ub,k−1, with
ua,h, ub,h ∈ U for all h = 1, .., k − 1, it holds that:

∥xa,k − xb,k∥ ≤ β(∥xa,0 − xb,0∥, k)

+ γ

(
max
0≤h<k

∥ua,h − ub,h∥
)

(2)

where xa,k and xb,k satisfy the dynamics equation xk+1 =
f(xk, uk) respectively with the inputs ua and ub and initial
states xa,0 and xb,0.
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Fig. 1. Block diagram of the control scheme.

Definition (exponential δISS): The dynamical system
xk+1 = f(xk, uk) is exponentially δISS in the sets X and
U if it it δISS in the sets X and U and the function β is
exponential with respect to the second argument, i.e. there
exist µ > 0 and λ ∈ (0, 1) such that

β(s, k) ≤ µsλk

II. PROBLEM FORMULATION AND CONTROL ALGORITHM

In this work a nonlinear plant with unknown dynamics,
input uϕ ∈ Rm, output yϕ ∈ Rp and a possible unknown
bounded asymptotically constant disturbance dϕ is considered
as system under control. The plant input is saturated:

uϕ ∈ Uϕ = {uϕ ∈ Rm : uϕ,min ≤ uϕ ≤ uϕ,max} (3)

with uϕ,min, uϕ,max ∈ Rm, and the output has to be limited:

yϕ ∈ Yϕ = {yϕ ∈ Rp : yϕ,min ≤ yϕ ≤ yϕ,max} (4)

with yϕ,min, yϕ,max ∈ Rp.
Assumption 1: The plant has the same number of inputs

and outputs, i.e. m = p.
Remark 1: Assumption 1 is typical of nonlinear offset-

free MPC schemes [26], and is required to have a unique
input combination associated to each output at equilibrium.
However, if m > p the proposed algorithm can still be applied
by selecting a subset of p inputs to be used for control and
leaving the other m− p inputs constant. □

The objective of the control is to achieve null error at
steady state for an asymptotically constant reference y0ϕ also in
presence of model-plant mismatch and of bounded asymptot-
ically constant plant disturbances dϕ, and to respect input and
output constraints. The proposed control scheme, whose block
diagram is reported in Fig. 1, is based on an LSTM nominal
model of the plant. A key element to obtain a well tuned
LSTM model is the normalization of input and output signals
that is represented in the scheme with the blocks “N” and that
consists in an affine transformation that scales the variables
in a predefined range (typically [-1,1]). The normalized input
is denoted with u and the normalized output with y. For the
normalized variables constraints (3)-(4) become

u ∈ U = {u ∈ Rm : ∥u∥∞ ≤ umax} (5)

where umax ∈ R and is typically equal to 1, and

y ∈ Y = {y ∈ Rp : ymin ≤ y ≤ ymax} (6)

Reference
calculator

LSTM
based
MPC

LSTM
model

∑
w

u

LSTM
based

observer

yy0

y0

x̂
d̂

x̄, ū ξ +
d
+

Fig. 2. Block diagram of the nominal closed-loop control schema,
where the real plant is replaced by its LSTM model augmented with
a disturbance term.

where ymin, ymax ∈ Rp.
To achieve null error at steady state the LSTM model is

augmented with an asymptotically constant disturbance term
d. Then an observer based on the equations of the LSTM
model provides an estimation x̂ of the state x of the LSTM
and an estimation d̂ of the disturbance d. At each sampling
instant the current values of the normalized set-point y0 and of
the disturbance estimation d̂ are used by a Reference calculator
to compute the current values of input and state set-points ū
and x̄ for the MPC. The last block is the MPC, that solves a
FHOCP and gives in output the first element of the achieved
optimal control sequence. Since in the control problem for-
mulation output constraints are considered, to ensure recursive
feasibility in presence of the observer estimation error and time
variant set-points, it is necessary to rely on a robust MPC.

As usually done for the analysis of offset-free control
schemes, closed-loop stability and constraint satisfaction will
be proven in Section III-A under the assumption that the plant
behaves according to its LSTM model with an asymptotically
constant additive disturbance d, as reported in Fig. 2, while
offset-free will be shown in Section III-B for the real closed-
loop system (Fig. 1) under the assumption that closed-loop
convergence is not lost.

In the following subsections the different components of the
control scheme are presented in detail.

A. Long Short-Term Memory neural network model
Long-Short Term Memory (LSTM) neural networks are

a particular kind of RNN, capable of learning long-term
dependencies between data. The LSTM module is composed
by two states: the cell state c ∈ Rn and the hidden state
h ∈ Rn, where n is also called number of neurons. At each
time-step k, the LSTM network receives an input u ∈ Rm

and produces an output prediction ξ ∈ Rp. Cell state and
hidden state are modified through structures called gates. The
equations that describe the LSTM network are the following

ck+1 = σ(Wfuk + Ufhk + bf) ◦ ck
+σ(Wiuk + Uihk + bi) ◦ tanh(Wcuk + Uchk + bc)

(7a)

hk+1 = σ(Wouk + Uohk + bo) ◦ tanh(ck+1) (7b)
ξk =Wyhk + by (7c)
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where σ(z) = 1
1+e−z is the sigmoid activation function.

tanh(·) and σ(·) activation functions are applied to vectors
element by element. Both tanh(·) and σ(·) are Lipschitz
continuous functions, with Lipschitz constants respectively 1
and 1

4 . Matrices Wf ,Wi,Wc,Wo ∈ Rn×m, Uf , Ui, Uc, Uo ∈
Rn×n, Wy ∈ Rp×n and vectors bf , bi, bc, bo ∈ Rn, by ∈ Rp

contain the trainable weights of the network.
The LSTM network (7) is a discrete-time time invariant

dynamical system, that can be written in a more compact way
as

xk+1 = f(xk, uk) (8a)
ξk = g(xk) (8b)

where x = [c⊤ h⊤]⊤ ∈ R2n.
1) LSTM stability properties: In the following the δISS sta-

bility condition and theorem for the LSTM network proposed
in [43] are recalled.

Assumption 2: The weights of the LSTM network (7) re-
spect the condition ρ(Aδ) < 1, where

Aδ =

[
σ̄f α
σ̄oσ̄f ασ̄o + 1

4 σ̄
x∥Uo∥

]
(9)

and
σ̄f = σ(∥[Wfumax Uf bf ]∥∞)

σ̄i = σ(∥[Wiumax Ui bi]∥∞)

σ̄o = σ(∥[Woumax Uo bo]∥∞)

σ̄c = tanh(∥[Wcumax Uc bc]∥∞)

σ̄x = tanh

(
σ̄iσ̄c

1− σ̄f

)

α =
1

4
∥Uf∥

σ̄iσ̄c

1− σ̄f
+ σ̄i∥Uc∥+

1

4
∥Uc∥σ̄c

Theorem 1 ( [43]): Let Assumption 2 hold. Then it is pos-
sible to upper bound the difference between any couple of
system trajectories xa = [c⊤a h⊤a ]

⊤ and xb = [c⊤b h⊤b ]
⊤ with

the following inequality[
∥ca,k+1 − cb,k+1∥
∥ha,k+1 − hb,k+1∥

]
≤ Aδ

[
∥ca,k − cb,k∥
∥ha,k − hb,k∥

]
+Bδ ∥ua,k − ub,k∥

(10)

where

Bδ =

[
β

βσ̄o + 1
4 σ̄

x∥Wo∥

]

β =
1

4
∥Wf∥

σ̄iσ̄c

1− σ̄f
+ σ̄i∥Wc∥+

1

4
∥Wi∥σ̄c

and the LSTM system (7) is exponentially δISS in the sets X
and U , where X = C ×H, with

C =

{
c ∈ Rn : ∥c∥∞ ≤ σ̄iσ̄c

1− σ̄f

}
H = {h ∈ Rn : ∥h∥∞ ≤ 1}

2) Incremental Lyapunov function for the LSTM: Under As-
sumption 2 it is possible to compute an incremental Lyapunov
function for the δISS LSTM model. Such Lyapunov function
will be used to define the terminal cost, the terminal constraint
and the constraint tightening for the MPC.

Lemma 1: Let Assumption 2 hold, and denote xa =
[c⊤a h⊤a ]

⊤, xb = [c⊤b h⊤b ]
⊤ with xa, xb ∈ X , and Ps the

solution of the Lyapunov equation A⊤
δ PsAδ − Ps = −Qs for

some symmetric positive definite matrix Qs. Then the function

Vs(xa, xb) =

∥∥∥∥[∥ca − cb∥
∥ha − hb∥

]∥∥∥∥
Ps

is an incremental Lyapunov function for the system (7), such
that

cs,l ∥xa − xb∥ ≤ Vs(xa, xb) ≤ cs,u ∥xa − xb∥ (11a)

Vs(x
+
a , x

+
b ) ≤ ρsVs(xa, xb) (11b)

|Wy(ha − hb)| ≤ csVs(xa, xb) (11c)

where x+a = f(xa, u), x+b = f(xb, u), cs,l =
√
λmin(Ps),

cs,u =
√
λmax(Ps), ρs =

√
1− λmin(Qs)

λmax(Ps)
and cs ∈ Rp with

cs(j) =
∥∥∥[0 ∥∥Wy(j∗)

∥∥]P−1/2
s

∥∥∥.
Proof: The proof is reported in Appendix I-A.

B. State and disturbance observer
In this subsection first a disturbance model is introduced in

order to take into account the inaccuracy of the model and
the effect of the possible disturbance dϕ. Then an observer is
proposed to provide estimations of the states of the LSTM
model and of the disturbance model. The disturbance is
modelled as the integral of a bounded unknown input w, that
represents the variation of the disturbance. This representation
is motivated by the fact that one of the goals of the paper is
to guarantee zero error at steady state when y0 and dϕ are
constant, and therefore w is null.

1) Disturbance model: The state of the disturbance model
is denoted by d ∈ Rp, while its variation is indicated with
w ∈ Rp. The equations of the LSTM model augmented with
the disturbance are then the following

ck+1 = σ(Wfuk + Ufhk + bf) ◦ ck
+σ(Wiuk + Uihk + bi) ◦ tanh(Wcuk + Uchk + bc)

(12a)
hk+1 = σ(Wouk + Uohk + bo) ◦ tanh(ck+1) (12b)
dk+1 = dk + wk (12c)
yk =Wyhk + by + dk (12d)

and will also be denoted by

χk+1 = faug(χk, uk) + Ewk (13a)
yk = gaug(χk) (13b)

where χ = [x⊤ d⊤]⊤ and E is matrix that can be obtained
from (12). Observer convergence, robust constraint satisfaction
and offset-free can be achieved only for bounded disturbances.
For this reason in the following d and w are assumed to be
bounded, i.e. d ∈ D = {d ∈ Rp : ∥d∥∞ ≤ dmax} and w ∈
W = {w ∈ Rp : ∥w∥ ≤ wmax}.
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Moreover, to achieve offset-free it is necessary that for the
model augmented with the constant disturbance there exists
an equilibrium associated to any possible pair (u, y), and that
this equilibrium is unique (see [26]). In the following lemma
and corollary it is shown that in view of the δISS property of
the LSTM model it is sufficient to add the disturbance only on
the output transformation to satisfy this property. Hence the
disturbance was not included also in the state equations.

Lemma 2: If the dynamical system xk+1 = f(xk, uk) is
exponentially δISS in the sets X and U , then given a constant
input u ∈ U there exists a unique corresponding equilibrium
state x∗ ∈ X , such that

x∗ = f(x∗, u) (14)
Corollary 1: For the augmented system (12), given (u, y)

with u ∈ U , there exist unique values (x∗, d∗) with x∗ ∈ X
such that

x∗ = f(x∗, u) (15a)
y = g(x∗) + d∗ (15b)

Proofs: The proofs of Lemma 2 and of Corollary 1 are
reported in Appendix I-B.

2) Observer design: An observer is designed to obtain an
estimation χ̂ = [x̂⊤ d̂⊤]⊤, with x̂ = [ĉ⊤ ĥ⊤]⊤, of the state
χ of the augmented LSTM model (12). The structure of the
observer is based on the LSTM observer proposed in [43],
but it has an additional equation for the estimation of the
disturbance d. The equations of the observer are the following

ĉk+1 = σ(Wfuk + Uf ĥk + bf + Lf(yk − ŷk)) ◦ ĉk
+ σ(Wiuk + Uiĥk + bi + Li(yk − ŷk))

◦ tanh(Wcuk + Ucĥk + bc)

(16a)

ĥk+1 = σ(Wouk + Uoĥk + bo + Lo(yk − ŷk))

◦ tanh(ĉk+1)
(16b)

d̂k+1 = sat(d̂k + Ld(yk − ŷk), dmax) (16c)

ŷk =Wyĥk + by + d̂k (16d)

where Lf , Li, Lo ∈ Rn×p and Ld ∈ Rp×p are the gains
of the observer, that are selected according to the following
assumption.

Assumption 3: Denoting

ˆ̄σf = σ(∥[Wfumax, Uf − LfWy, bf , LfWy, 2Lfdmax]∥∞)

ˆ̄σi = σ(∥[Wiumax, Ui − LiWy, bi, LiWy, 2Lidmax]∥∞)

ˆ̄σo = σ(∥[Woumax, Uo − LoWy, bo, LoWy, 2Lodmax]∥∞)

α̂ =
1

4

σ̄iσ̄c

1− σ̄f
∥Uf − LfWy∥+ σ̄i∥Uc∥+

1

4
σ̄c∥Ui − LiWy∥

β̂ =
1

4

σ̄iσ̄c

1− σ̄f
∥Lf∥+

1

4
σ̄c∥Li∥

γ̂ = ˆ̄σoα̂+
1

4
σ̄x∥Uo − LoWy∥

Ad =

 ˆ̄σf α̂ β̂
ˆ̄σo ˆ̄σf γ̂ ˆ̄σoβ̂ + 1

4 σ̄
x∥Lo∥

0 ∥LdWy∥ ∥Ip − Ld∥

 (17)

the observer gains Lf , Li, Lo, Ld are selected so that ρ(Ad) <
1.

Remark 2: In Theorem 2 it will be shown that Ad is the
matrix dynamic for an upper bound of the estimation error
dynamic.

Remark 3: A possible suboptimal choice for the gains of
the observer that satisfies Assumption 3 is Lf = Li = Lo =
0n,p and Ld = ldIp with 0 < ld < 2. In fact with this choice
the matrix Ad becomes

Ad =

[
Aδ 02,1

0 ∥LdWy∥ |ld − 1|

]
and therefore the eigenvalues of Ad are the eigenvalues of
Aδ and an eigenvalue in |ld − 1| ∈ [0, 1). Hence, because the
LSTM is tuned with the constraint that ρ(Aδ) < 1, ρ(Ad) < 1.

3) Observer convergence: The following lemma defines a
positive invariant set for the state χ̂ of the observer, in which it
is possible to prove the convergence of the observer estimation.

Lemma 3: If hk ∈ H and dk ∈ D, ∀k ∈ Z≥0, then the set
Î = Ĉ × H ×D, with

Ĉ =

{
ĉ ∈ Rn : ∥ĉ∥∞ ≤

ˆ̄σiσ̄c

1− ˆ̄σf

}
is a positive invariant set for the observer (16).

Proof: The proof is reported in [49].
The following theorem reports the main results related to

the observer convergence.
Theorem 2: If the plant behaves according to (12) with x ∈

X , d ∈ D and w ∈ W , Assumption 2 holds, the observer
parameters are selected according to Assumption 3 and χ̂ ∈ Î,
then the function

Vo(χ̂, χ) =

∥∥∥∥∥∥
∥ĉ− c∥
∥ĥ− h∥
∥d̂− d∥

∥∥∥∥∥∥
Po

(18)

where Po is the solution of the Lyapunov equation A⊤
d PoAd−

Po = −Qo for a symmetric positive definite matrix Qo, is
an incremental Lyapunov function for the observer estimation
error, such that

co,l ∥χ̂− χ∥ ≤ Vo(χ̂, χ) ≤ co,u ∥χ̂− χ∥ (19a)

Vo(χ̂
+, χ+) ≤ ρoVo(χ̂, χ) + w̄ (19b)

|Wy(h− ĥ) + (d− d̂)| ≤ coVd(χ̂, χ) (19c)∥∥χ̂+ − faug(χ̂, u)
∥∥ ≤ LmaxVo(χ̂, χ) (19d)

where χ+ = faug(χ, u)+Ew, χ̂+ is the next state computed
by the observer (16), co,l =

√
λmin(Po), co,u =

√
λmax(Po),

ρo =
√
1− λmin(Qo)

λmax(Po)
∈ (0, 1), w̄ =

√
Po(3,3)wmax, Lmax >

0, and co ∈ Rp with co(j) =
∥∥∥[0 ∥∥Wy(j∗)

∥∥ 1
]
P

−1/2
o

∥∥∥.
Moreover, if wk → 0 for k → ∞, then the observer provides

a converging state estimation, i.e. ∥χk − χ̂k∥ → 0 for k → ∞.
Proof: The proof is reported in [49].
Remark 4: In view of the properties of the Lyapunov func-

tion Vo(χ̂, χ), the observer estimation error is also ISS with
respect to the disturbance w.
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C. Reference calculator
One of the most important characteristics of the proposed

algorithm is the possibility to be applied with time variant
set-point and disturbances unknown in advance. In order to do
this the MPC assumes a constant set-point along the prediction
horizon but it is designed in order to preserve, under suitable
assumptions, recursive feasibility even if the exogenous signals
change at any time instant. To manage possible variations
of the set-point y0 and/or of the disturbance estimation d̂, a
Reference calculator is introduced in the control loop. The
goal of the Reference calculator is to provide the state and
input references x̄ = [c̄⊤ h̄⊤]⊤ and ū for the MPC, that are
computed by solving the following equations:

x̄ = f(x̄, ū) (20a)

y0 = g(x̄) + d̂ (20b)

In order to guarantee offset-free of the closed-loop system,
the following assumption on the set-point y0 and on the LSTM
model is introduced. An additional assumption on the set-point
y0 will be introduced in the next section.

Assumption 4: The set-point y0 and the LSTM model (7)
respect the following conditions:

1) there exists a bounded set Y0 ⊂ Rp such that y0k ∈ Y0

∀k ∈ Z≥0;
2) the set-point is asymptotically constant, i.e. y0k → y0∞

for k → ∞;
3) ∀y0 ∈ Y0, ∀d̂ ∈ D, there exist (x̄, ū) with ū ∈ U solving

(20), and the Jacobian matrix[
∂
∂x (f(x̄, ū)− x̄) ∂

∂u (f(x̄, ū)− x̄)
∂
∂x (g(x̄) + d̂− y0) ∂

∂u (g(x̄) + d̂− y0)

]
(21)

is invertible.
Remark 5: The assumption that the Jacobian matrix (21)

is invertible implies the uniqueness of the couple (x̄, ū). □
Moreover, since a large variation of the set-points x̄, ū is

critical for the MPC recursive feasibility, in the following
lemma an upper bound for the variation of the state set-point x̄
between consecutive time-steps is derived. This upper bound
depends on the variation of the set-point y0 and on the observer
parameters.

Lemma 4: Under Assumption 4, given the maximum output
estimation error ēy = maxk∈Z≥0

∥yk − ŷk∥, there exists a
finite constant K̄ such that

∥x̄k+1 − x̄k∥ ≤ K̄ ∥Ld∥ ēy + K̄
∥∥y0k+1 − y0k

∥∥ (22)
Proof: The proof is reported in Appendix I-C.
Remark 6: In general K̄ cannot be computed explicitly, but

it can be estimated numerically by gridding.

D. Robust MPC formulation
The robust MPC solves at every time-step a Finite Horizon

Optimal Control Problem (FHOCP), where the evolution of
the states of the system is predicted with the LSTM model
and is initialized with the observer state estimation. The
cost function penalizes the deviation from the state and the
input set-points computed at the current time instant by the
Reference calculator, that are assumed constant along the

prediction horizon. The terminal cost and the terminal set
are designed to stabilize the closed-loop system. To ensure
satisfaction of the output constraints despite the observer
estimation error, the disturbance and the set-point variation,
a constraint tightening approach similar to the one proposed
in [28] and a time variant terminal set are employed. For the
constraint tightening, the MPC uses also a time variant term
êo ∈ R related to the uncertainty of the observer. This term has
the same time evolution of the incremental Lyapunov function
for the observer estimation error (19b), that is described by the
following equation

êo,k+1 = ρoêo,k + w̄ (23)

Note that depending on the values of êo,0, of ρo and of w̄, êo
can increase or decrease, but its behavior is always monotonic
with

lim
k→∞

êo,k = ē∞ =
w̄

1− ρo
(24)

Definition (FHOCP): Given the prediction horizon N , the
FHOCP for the robust MPC is the following

min
u·|k

N−1∑
i=0

(∥∥xi|k − x̄k
∥∥2
Q
+

∥∥ui|k − ūk
∥∥2
R

)
+

∥∥∥∥[∥cN |k − c̄k∥
∥hN |k − h̄k∥

]∥∥∥∥2
Pf

(25a)

s.t. x0|k = x̂k (25b)
xi+1|k = f(xi|k, ui|k) (25c)
Wyhi|k + by + dmax1p ≤ ymax − aiêo,k − bi (25d)
Wyhi|k + by − dmax1p ≥ ymin + aiêo,k + bi (25e)
ui|k ∈ U (25f)
for i = 0, ..., N − 1 (25g)
xN |k ∈ Xf (k) (25h)

where Q and R are positive definite matrices and are design
choices, while Pf is a positive definite matrix satisfying the
Lyapunov condition A⊤

δ PfAδ − Pf < −qI2, where q =
λmax(Q). Coefficients ai ∈ Rp and bi ∈ Rp for the constraint
tightening are defined as

a0 = co, b0 = 0p,1 (26a)

ai+1 = ρoai + ρiscs,uLmaxco,s (26b)
bi+1 = bi + aiw̄ (26c)

Xf (k) is a time variant terminal set, chosen as a sublevel set
of the terminal cost:

Xf (k) =

{[
c
h

]
∈ R2n :

∥∥∥∥[ ∥c− c̄k∥∥∥h− h̄k
∥∥]∥∥∥∥

Pf

≤ αk

}
(27)

with

αk = min
j=1,...,p

min
{
αmax
j,k , αmin

j,k

}
(28a)

where

αmax
j,k =

∥∥∥[0 ∥∥Wy(j∗)
∥∥]P−1/2

f

∥∥∥−1

· (ymax(j) − y0k(j) − 2dmax − aN(j)ẽo,k − bN(j))
(28b)
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αmin
j,k =

∥∥∥[0 ∥∥Wy(j∗)
∥∥]P−1/2

f

∥∥∥−1

· (y0k(j) − ymin(j) − 2dmax − aN(j)ẽo,k − bN(j))
(28c)

ẽo,k = max {êo,k, ē∞} (28d)

□
At each time-step k the solution of the FHOCP is denoted by

u∗0|k, ..., u
∗
N−1|k. According to the Receding Horizon principle,

the MPC control law is obtained applying only the first
element of the optimal input sequence

uk = kMPC(x̂k, êo,k, x̄k, ūk, y
0
k) = u∗0|k (29)

III. STABILITY AND OFFSET-FREE RESULTS

In this section the properties of the proposed control schema
are analysed. In order to guarantee offset-free results a mild
assumption on the convergence of the closed-loop of Fig.
1 will be introduced in Section III-B. However, first it is
necessary to prove recursive feasibility and stability for the
nominal closed-loop system reported in Fig. 2, where the plant
has been substituted by the LSTM with an additive disturbance
on the output (12).

A. Recursive feasibility and stability analysis
In this subsection recursive feasibility and stability of the

nominal closed-loop system reported in Fig. 2 are analysed.
First note that in order to have a solution of the FHOCP,
it is necessary that αk > 0 for all k ∈ Z≥0. To guarantee
this condition, the following assumption on the set-point is
introduced.

Assumption 5: The set-point y0 is such that

y0k(j) < ymax(j) − 2dmax − aN(j)ẽo,k − bN(j) (30a)

y0k(j) > ymin(j) + 2dmax + aN(j)ẽo,k + bN(j) (30b)

for all j = 1, ..., p, for all k ∈ Z≥0. □
Consider the closed-loop system composed by the aug-

mented LSTM (13), the observer (16), the Reference calculator
(20) and the MPC (29). This system has state

ψ = [c⊤ h⊤ ĉ⊤ ĥ⊤ d̂⊤ êo]
⊤

and inputs d and y0. Let’s now define the feasible set of states
and inputs

XMPC ={(ψ, d, y0) : x ∈ X , χ̂ ∈ Î, d ∈ D, y0 ∈ Y0,

êo is such that Vo(χ̂, χ) ≤ êo

and ∃ a solution of the FHOCP}

Remark 7: In the feasible set XMPC it is required that êo
is an upper bound for Vo(χ̂, χ). This condition is similar to
require that êo is an upper bound of the observer estimation
error. In fact, using Equation (19a) and Vo(χ̂, χ) ≤ êo, the
following inequality relating êo and ∥χ− χ̂∥ can be derived:

∥χ− χ̂∥ ≤ êo
co,l

□
In the following theorem the main result for the nominal

closed-loop schema described in Fig. 2 is derived.

Theorem 3: Let Assumptions 1, 2, 3, 4, 5 hold. Then there
exist L̄max > 0, L̄d > 0 and ∆y0max > 0 such that for
Lmax ≤ L̄max, ∥Ld∥ ≤ L̄d and y0 such that

∥∥y0k+1 − y0k
∥∥ ≤

∆y0max for all k ∈ Z≥0, for the closed-loop system composed
by the augmented LSTM (13), the observer (16), the Reference
calculator (20) and the MPC (29) the following properties
hold:

• constraints (5) and (6) are satisfied ∀(ψ, d, y0) ∈ XMPC ;
• the FHOCP is recursively feasible, i.e. (ψk, dk, y

0
k) ∈

XMPC =⇒ (ψk+1, dk+1, y
0
k+1) ∈ XMPC ;

• the closed-loop system (13)-(20)-(29) is ISpS with respect
to the observer estimation error χ− χ̂ in XMPC ;

• if d→ d̄∞ for k → ∞, then

lim
k→∞

∥ψ − ψ∞∥ = 0

where
ψ∞ = [c̄⊤∞ h̄⊤∞ c̄⊤∞ h̄⊤∞ d̄⊤∞ ē∞]⊤

and x̄∞ = [c̄⊤∞ h̄⊤∞]⊤ and ū∞ are the solution of (20)
when y0 = y0∞ and d̂ = d̄∞.

Proof: The proof is reported in Appendix I-D.

B. Offset-free result

It is now possible to follow the results in [26] to show that
the proposed scheme based on the model augmented with the
disturbance and on the Reference calculator guarantees offset-
free at steady state also when applied to the real plant (see Fig.
1), provided that the uncertainty on the model is sufficiently
small to preserve convergence and constraints satisfaction, as
assumed in the following assumption.

Assumption 6: The plant disturbance dϕ is bounded and
asymptotically constant, and the closed-loop system composed
by the plant, the observer (16), the Reference calculator (20)
and the MPC (29) respects the constraints and converges to
constant values strictly in the interior of the feasible set.

Theorem 4: If Assumptions 1, 2, 3, 4, 5, 6 are satisfied, then
the closed-loop system composed by the plant, the observer
(16), the Reference calculator (20) and the MPC (29) is offset-
free at steady state, i.e. yϕ,k → y0ϕ,∞ for k → ∞, where
y0ϕ,∞ = limk→∞ y0ϕ.

Proof: The proof is based on [26] and is reported in [49].

IV. NUMERICAL EXAMPLE

As benchmark example to test the proposed control algo-
rithm a pH neutralization process described in [48] and used
also in [43] was considered. The process consists in a tank
where three flows of substances are mixed: an acid flow q1, a
buffer flow q2 and an alkaline flow q3. The measured variable
is the pH on the output flow. The objective is to control the
pH by acting on the alkaline flow q3, while the acid flow q1
is assumed to be constant and the buffer flow q2 is considered
as a disturbance. The alkaline flow is considered saturated, so
that

uϕ = q3 ∈ Uϕ = [12.5, 17] mL/s
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A. LSTM model identification
To extract the dataset for the training of the LSTM model,

a simulator of the plant was forced with multilevel pseudo-
random signals, and the input-output response was sampled
with a sampling period of Ts = 10s, as done in [43]. In
particular the input signals for the plant simulator are piece-
wise constant signals with random values in Uϕ, where each
constant value is applied for a random time between 10Ts and
100Ts. 15 sequences of Nt = 1500 time-steps each have been
extracted, and have been split in 10 sequences for training, 3
for validation and 2 for testing. All the sequences have been
generated considering the disturbance constant at its nominal
value q2 = 0.55mL/s. Before the training, inputs and outputs
have been normalized using their maximum and minimum
values present in the training dataset, so that −1 ≤ u ≤ 1
and −1 ≤ y ≤ 1.

To obtain a final network respecting the δISS condition of
Assumption 2, the training loss and the stopping rule for the
training have been modified as suggested in [43] and [39].
More details about the training procedure are reported in [49].
The performances of the final model were assessed with the
FIT index, defined as

FIT = 100

(
1− ∥yreal − y∥

∥yreal − yavg∥

)
%

where y and yreal are the vectors containing the predicted
and the real evolution of the system, and yavg is the average
of yreal. A trained network with n = 5 neurons with a FIT
on the test set of 94.0% was used for the MPC simulations.
The model respects the δISS condition of Assumption 2, and
has ρs = 0.92 when the incremental Lyapunov function Vs is
computed using Qs = 1000I2.

B. Control implementation
In order to tune the controller it was assumed dmax = 0.1,

that corresponds to the 5% of the range of variation of the
output in the training dataset, since the output was normalized
so that −1 ≤ y ≤ 1, and w̄ = 0.01. Under this assumption,
the following parameters have been used. The cost matrices
were set to Q = I2n and R = 1, and the prediction
horizon to N = 5. The output constraint set was selected
as Yϕ = [6.0, 9.0]. The observer gains Lf , Li, Lo were chosen
by solving the optimization proposed in [43], while Ld was
set equal to 0.01. The matrix Po was obtained by solving the
Lyapunov equation with Qo = 1000I3, leading to ρo = 0.99,
Lmax = 8.4 × 10−4, wmax = 4.3 × 10−5 and ē∞ = 1.04.
Concerning the parameters related to the recursive feasibility
condition, K̄ = 2.67 has been estimated by gridding, while ēy
was set to 0.03. This value is clearly affected by the quality of
the initialization of the observer. In the considered simulations
this bound is always largely respected. The initial value for the
observer state was set to the state equilibrium of the LSTM
model associated with the initial output of the system under
control and d̂0 = 0. With the considered parameters, the
time variant interval for y0 needed to satisfy Assumption 5
converges to [6.49, 8.51] after an initial transient.

In [49] the conservatism of the feasibility/stability condi-
tions has been tested by performing some simulations where
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Fig. 3. Output evolution (blue line) compared with reference y0
ϕ (black

dashed line), and evolution of the disturbance dϕ (orange dash-dotted
line).

the controller was applied on a perturbed version of the LSTM
model. In the first simulation, slow variations of the set-point
y0 and of the disturbance d are applied, in order to respect
all the sufficient conditions required by Theorem 3. Then,
considering that all the bounds have been derived using a
sequence of possibly conservative inequalities, an analysis has
been carried out to verify the applicability of the control in
presence of larger variations of the set-point y0 and of the
disturbance d. It was noticed that it is possible to increase
the rate of change of d without losing recursive feasibility.
Moreover, feasibility is maintained for faster variations of y0

with respect to the ones predicted by the theory, but it is lost
in presence of large step variations of y0.

Then, the controller was applied to the real plant (repre-
sented by the physical equations describing the system). Since
model uncertainty has not been estimated the bounds dmax and
w̄ are considered as tuning parameters of the control. Also
the parameter êo has been considered as an additional tuning
parameter of the control, since the states of the plant do not
coincide with the states of the LSTM. The first simulation has
been carried out using the same parameters of the simulations
performed using the LSTM model, but it was found that the
response of the plant to the disturbances was very slow, and
null error was reached only after a very long transient. Hence,
Ld was increased to 0.1 to make the disturbance estimation in
the observer faster. With this tuning of the observer ρo = 0.97,
Lmax = 8.5 × 10−3 and ē∞ = 0.38. In this case, the
asymptotic interval for y0 needed to satisfy Assumption 5 is
[6.57, 8.43]. The resulting trajectory is reported in Fig. 3, and
it can be seen that the control is able to correctly manage
the plant, maintain the recursive feasibility and achieve null
tracking error also in presence of disturbances.

V. CONCLUSION

In this paper an MPC control scheme based on an LSTM
model of the plant under control has been proposed. The
MPC algorithm is able to take into account input and output
constraints and to guarantee null error at steady state also in
presence of modelling errors and of asymptotically constant
bounded disturbances. Offset-free is obtained by introducing
the estimation of a disturbance term in the observer, that is
used to update at every time-step the reference values for the
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MPC cost. The satisfaction of output constraints in presence
of the observer estimation error and time variant set-point is
obtained using a constraint tightening technique, based on an
upper bound of the norm of the observer estimation error.
The key element for the design of the constraint tightening
is the derivation of incremental Lyapunov functions for the
LSTM model and for the observer, whose parameters are
employed in the definition of the coefficients for the constraint
tightening. In the FHOCP formulation for the MPC a time
variant terminal constraint is also introduced, that guarantees
recursive feasibility in presence of variations of the reference
values. Then, ISpS and convergence are proven by means of
a Lyapunov function, different from the optimal cost because
it considers the deviation from the asymptotic values of state
and input set-points that are a-priori unknown.

The main limitation of the proposed approach is the con-
servatism of the robust constrained MPC algorithm that must
cope with both the disturbances and the set-point variations. In
order to partially reduce this limitation an artificial reference
approach could be adopted, avoiding the restriction on the
tightened constraints introduced by the set-point variation.
Further improvement could be achieved by deriving less
conservative bounds along all the proofs. However most of
the conservatism is inherent in the worst case deterministic
approach. As shown in the simulation example it is possible to
find a compromise between a-priori feasibility guarantee and
performance by adapting some of the algorithm parameters.

APPENDIX I
PROOFS

The following lemmas will be used for the proofs.
Lemma 5 ( [43]): Given two vectors a, b ∈ Rn and a

positive definite matrix M , for any φ ̸= 0 it holds that

∥a+ b∥2M ≤ (1 + φ2)∥a∥2M +

(
1 +

1

φ2

)
∥b∥2M (31)

Lemma 6: Given two sets of n numbers each, {a1, ..., an}
and {b1, ..., bn}, one has that

min
i=1,...,n

ai − min
i=1,...,n

bi ≥ min
i=1,...,n

(ai − bi) (32)
Proof: The proof is reported in [49].

A. Proof of Lemma 1
Condition (11a) is easily verified for the definition of Vs.
Condition (11b) can be verified as follows:

Vs(x
+
a , x

+
b ) =

√[
∥c+a − c+b ∥
∥h+a − h+b ∥

]⊤
Ps

[
∥c+a − c+b ∥
∥h+a − h+b ∥

]
(10)
≤

√[
∥ca − cb∥
∥ha − hb∥

]⊤
A⊤

δ PsAδ

[
∥ca − cb∥
∥ha − hb∥

]

=

√[
∥ca − cb∥
∥ha − hb∥

]⊤
(Ps −Qs)

[
∥ca − cb∥
∥ha − hb∥

]
≤

√∥∥∥∥[∥ca − cb∥
∥ha − hb∥

]∥∥∥∥2
Ps

− λmin(Qs)

∥∥∥∥[∥ca − cb∥
∥ha − hb∥

]∥∥∥∥2
≤

√(
1− λmin(Qs)

λmax(Ps)

)∥∥∥∥[∥ca − cb∥
∥ha − hb∥

]∥∥∥∥2
Ps

= ρsVs(xa, xb)

Finally, to verify condition (11c), consider the j-th row of
|Wy(ha − hb)| for j = 1, ..., p:

|Wy(j∗)(ha − hb)| =
∣∣∣∣[01,n Wy(j∗)]

[
ca − cb
ha − hb

]∣∣∣∣
≤

∣∣∣∣[∥0n,1∥
∥∥Wy(j∗)

∥∥] [∥ca − cb∥
∥ha − hb∥

]∣∣∣∣
=

∣∣∣∣[0 ∥∥Wy(j∗)
∥∥]P−1/2

s P 1/2
s

[
∥ca − cb∥
∥ha − hb∥

]∣∣∣∣
≤

∥∥∥[0 ∥∥Wy(j∗)
∥∥]P−1/2

s

∥∥∥ ·
∥∥∥∥P 1/2

s

[
∥ca − cb∥
∥ha − hb∥

]∥∥∥∥
= cs(j)Vs(xa, xb)

B. Proofs of Lemma 2 and of Corollary 1

Proof of Lemma 2:
Existence of x∗: It is first proven that if a constant input u is

applied to a δISS system, then the resulting state trajectory is
asymptotically constant. Considering any possible initial state
x0, and applying the definition of δISS (2) with xb,0 = x0,
xa,0 = x1 = f(x0, u) and ua,h = ub,h = u for all h =
0, ..., k − 1, it follows that:

∥xk+1 − xk∥ ≤ β(∥x1 − x0∥, k)

Hence the difference between xk+1 and xk becomes small
when k increases. By summing up the previous inequality one
has that limT→∞ ∥xT − x0∥ ≤

∑∞
k=0 β(∥x1−x0∥, k), that is

finite in view of the exponential nature of the function β. Then
the resulting trajectory is asymptotically constant. Moreover,
given any u there exists x∗ solving (15a), that corresponds
to the asymptotic value of the trajectories associated to the
constant input u. Finally, x∗ ∈ X in view of the positive
invariance of X .

Uniqueness of x∗: Consider the definition of δISS (2), and
assume that there exist two different equilibrium states x∗a and
x∗b corresponding to the same input u. Under this assumption it
is possible to study the evolution of the system with xa,0 = x∗a,
xb,0 = x∗b and ua,h = ub,h = u for all h = 0, ..., k− 1. Then,
for the δISS assumption, it follows that ∥xa,k − xb,k∥ → 0
for k → ∞. This is a contradiction with the fact that x∗a and
x∗b are two different equilibrium states. Then the equilibrium
state x∗ is unique.

Proof of Corollary 1:
The existence and uniqueness of x∗ follows from Lemma

2. Then there exists a unique value d∗ satisfying (15b), that is
d∗ = y − g(x∗).

C. Proof of Lemma 4

Let’s define ŷ0 = d̂ − y0 and ζ = [x̄⊤ ū⊤]⊤. Then the
equilibrium problem (20) can be rewritten as the problem of
finding the solution of F (ŷ0, ζ) = 0, with

F (ŷ0, ζ) =

[
f(x̄, ū)− x̄
g(x̄) + ŷ0

]
In this proof the function ζ = γ(ŷ0) such that

F (ŷ0, γ(ŷ0)) = 0 is studied. Let’s define the following
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Jacobian matrices of F in the point (ŷ0, γ(ŷ0)):

Jζ(ŷ
0, γ(ŷ0)) =

[
∂
∂x (f(x̄, ū)− x̄) ∂

∂u (f(x̄, ū)− x̄)
∂
∂x (g(x̄) + ŷ0) ∂

∂u (g(x̄) + ŷ0)

]

Jŷ0(ŷ0, γ(ŷ0)) =

[
∂

∂ŷ0 (f(x̄, ū)− x̄)
∂

∂ŷ0 (g(x̄) + ŷ0)

]
=

[
02n,p

Ip

]
Under Assumption 4, the implicit function theorem states

that
∂γ

∂ŷ0
(ŷ0) = −[Jζ(ŷ

0, γ(ŷ0))]−1Jŷ0(ŷ0, γ(ŷ0)) = K(ŷ0)

Let’s denote K(ŷ0) = [Kx̄(ŷ
0)⊤ Kū(ŷ

0)⊤]⊤, where
Kx̄(ŷ

0) are the first 2n rows of K(ŷ0) and Kū(ŷ
0) are the

remaining m rows. Then, denoting

K̄ = max
ŷ0:y0∈Y0,d̂∈D

∥∥Kx̄(ŷ
0)
∥∥

it is possible to obtain a relationship between the maximum
variation of x̄ and the variation of ŷ0:

∥x̄k+1 − x̄k∥ ≤ K̄
∥∥ŷ0k+1 − ŷ0k

∥∥
Note that the maximum that defines K̄ is always finite in view
of the boundedness of the sets Y0 and D.

The variation of ŷ0 = d̂−y0 can be given by a variation of
the disturbance estimation d̂ and/or by a variation of the set-
point y0. This two contributions can be separated, obtaining

∥x̄k+1 − x̄k∥ ≤ K̄
∥∥∥d̂k+1 − d̂k

∥∥∥+ K̄
∥∥y0k+1 − y0k

∥∥ (33)

The maximum variation of the disturbance estimation d̂
depends on the maximum estimation error ēy and on the
observer gain Ld. In particular it holds that∥∥∥d̂k+1 − d̂k

∥∥∥ (16c)
≤ ∥Ld(yk − ŷk)∥ ≤ ∥Ld∥ ēy (34)

Then, combining (33) and (34), (22) is proven.

D. Proof of Theorem 3

The proof is divided in 3 parts:
1) Proof of satisfaction of constraints (5) and (6), given that

(ψ, d, y0) ∈ XMPC .
2) Proof of recursive feasibility, that is divided in:

a) Show that if [c⊤ h⊤]⊤ ∈ Xf (k) then Wyh+ by +
dmax1p ≤ ymax − aN êo,k − bN and Wyh+ by −
dmax1p ≥ ymin + aN êo,k + bN ;

b) Show that the candidate solution satisfies (25d) and
(25e);

c) Show that the candidate solution satisfies the ter-
minal constraint (25h).

3) Proof of ISpS and convergence, that is divided in:
a) Proof of ISpS;
b) Proof of convergence.

Part 1: If ψ ∈ XMPC , the satisfaction of the input
saturation (5) follows from constraint (25f) of the FHOCP
formulation. Also the satisfaction of the output constraint (6)

is guaranteed by the control design. In particular yk ≤ ymax

follows from

yk =Wyhk + by + dk
(19c)
≤ Wyĥk + by + d̂k

+ coVo(χ̂k, χk) ≤Wyh0|k + by + dmax1p + coêo,k
(26a)(25d)

≤ ymax − a0êo,k + a0êo,k = ymax

The fact that yk ≥ ymin can be proven in a similar way.
Part 2a: To verify that if x ∈ Xf (k) then the tightened

output constraints are satisfied, first note that if x ∈ Xf (k)
one has that∣∣Wy(j∗)(h− h̄k)

∣∣ = ∣∣∣∣[01,n Wy(j∗)]

[
c− c̄k
h− h̄k

]∣∣∣∣
≤

∣∣∣∣[0 ∥∥Wy(j∗)
∥∥] [ ∥c− c̄k∥∥∥h− h̄k

∥∥]∣∣∣∣
=

∣∣∣∣[0 ∥∥Wy(j∗)
∥∥]P−1/2

f P
1/2
f

[
∥c− c̄k∥∥∥h− h̄k

∥∥]∣∣∣∣
≤

∥∥∥[0 ∥∥Wy(j∗)
∥∥]P−1/2

f

∥∥∥ ·
∥∥∥∥[ ∥c− c̄k∥∥∥h− h̄k

∥∥]∥∥∥∥
Pf

(27)
≤

∥∥∥[0 ∥∥Wy(j∗)
∥∥]P−1/2

f

∥∥∥αk

(35)

Considering now the j-th row of Wyh+ by + dmax1p one
has

Wy(j∗)h+ by(j) + dmax

=Wy(j∗)(h− h̄k) +Wy(j∗)h̄k + by(j) + d̂k(j) − d̂k(j)

+ dmax
(20b)
= Wy(j∗)(h− h̄k) + y0k(j) − d̂k(j) + dmax

≤
∣∣Wy(j∗)(h− h̄k)

∣∣+ y0k(j) + 2dmax

(35)
≤

∥∥∥[0 ∥∥Wy(j∗)
∥∥]P−1/2

f

∥∥∥αk + y0k(j) + 2dmax

(28a)
≤ ymax(j) − aN(j)ẽo,k − bN(j)

(28d)
≤ ymax(j) − aN(j)êo,k − bN(j)

In a similar way it is possible to prove that Wyh + by −
dmax1p ≥ ymin + aN êo,k + bN .

Part 2b: Given the optimal solution of the optimization
problem at time-step k, that is u∗0|k, ..., u

∗
N−1|k, let’s denote

with x∗0|k, ..., x
∗
N−1|k the associate state trajectory defined by

x∗i+1|k = f(x∗i|k, u
∗
i|k) with x∗0|k = x̂k. Let’s also define

x∗N+1|k = f(x∗N |k, ūk+1).
Let’s define ũi|k+1 with i = 0, ..., N − 1 the candidate

solution at time-step k + 1, where ũi|k+1 = u∗i+1|k for
i = 0, ..., N − 2 and ũN−1|k+1 = ūk+1. Note that ūk+1 ∈
U for Assumption 4. Consider also the associate trajectory
x̃0|k+1, ..., x̃N |k+1 defined by x̃i+1|k+1 = f(x̃i|k+1, ũi|k+1)
with x̃0|k+1 = x̂k+1.

Preliminarily, note that thanks to Lemma 1 and Theorem 2
one has that

Vs(x̃0|k+1, x
∗
1|k)

(11a)
≤ cs,u

∥∥∥x̃0|k+1 − x∗1|k

∥∥∥
≤ cs,u

∥∥∥∥[x̃0|k+1

d̂k+1

]
−

[
x∗1|k
d̂k

]∥∥∥∥
(19d)
≤ cs,uLmaxVo(χ̂k, χk) ≤ cs,uLmaxêo,k
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and that using Lemma 1 and inequality (11b) recursively it
follows

Vs(x̃i|k+1, x
∗
i+1|k) ≤ cs,uρ

i
sLmaxêo,k (36)

for i = 0, ..., N .
Moreover, as shown in Part 2a of the proof, since x∗N |k ∈

Xf (k)

Wyh
∗
N |k + by + dmax1p ≤ ymax − aN êo,k − bN

Wyh
∗
N |k + by − dmax1p ≥ ymin + aN êo,k + bN

Hence, x̃i|k+1 satisfies (25d) for i = 0, ..., N − 1 as shown
in the following

Wyh̃i|k+1 + by + dmax1p

(11c)
≤ Wyh

∗
i+1|k + csVs(x̃i|k+1, x

∗
i+1|k) + by + dmax1p

(25d)(36)
≤ ymax − ai+1êo,k − bi+1 + cs,uρ

i
sLmaxêo,kcs

(26b)(26c)
= ymax − ρoaiêo,k − cs,uρ

i
sLmaxêo,kcs − bi − aiw̄

+ cs,uρ
i
sLmaxêo,kcs

(23)
= ymax − aiêo,k+1 − bi

In a similar way it follows that x̃i|k+1 also satisfies (25e)
for i = 0, ..., N − 1.

Part 2c: In this part it is proven that x̃N |k+1 ∈ Xf (k+1),
i.e. ∥∥∥∥[∥c̃N |k+1 − c̄k+1∥

∥h̃N |k+1 − h̄k+1∥

]∥∥∥∥
Pf

≤ αk+1 (37)

starting from the fact that x∗N |k ∈ Xf (k), i.e.∥∥∥∥∥
[
∥c∗N |k − c̄k∥
∥h∗N |k − h̄k∥

]∥∥∥∥∥
Pf

≤ αk (38)

Comparing (37) and (38) it is apparent that both the sides of
the inequalities change. Hence, an upper bound for the left
hand side of (37) and a lower bound for the variation of the
right hand side are computed in the following.

Before deriving the upper bound for the left hand side, the
following preliminary inequalities are derived:∥∥∥x̃N |k+1 − x∗N+1|k

∥∥∥ (11a)
≤ 1

cs,l
Vs(x̃N |k+1, x

∗
N+1|k)

(36)
≤ cs,u

cs,l
ρNs Lmaxêo,k

(39)

and∥∥∥∥∥
[
∥c∗N+1|k − c̄k+1∥
∥h∗N+1|k − h̄k+1∥

]∥∥∥∥∥
Pf

≤ ρf

∥∥∥∥∥
[
∥c∗N |k − c̄k+1∥
∥h∗N |k − h̄k+1∥

]∥∥∥∥∥
Pf

(40)

with ρf =
√
1− q

λmax(Pf )
. The proof of this inequality is

similar to the proof of Equation (11b) in Lemma 1, using
Qs = qI2.

Then, the upper bound for the left hand side of (37) is∥∥∥∥[∥c̃N |k+1 − c̄k+1∥
∥h̃N |k+1 − h̄k+1∥

]∥∥∥∥
Pf

≤∥∥∥∥∥
[
∥c̃N |k+1 − c∗N+1|k∥
∥h̃N |k+1 − h∗N+1|k∥

]∥∥∥∥∥
Pf

+

∥∥∥∥∥
[
∥c∗N+1|k − c̄k+1∥
∥h∗N+1|k − h̄k+1∥

]∥∥∥∥∥
Pf

(40)
≤

√
λmax(Pf)

∥∥∥∥∥
[
∥c̃N |k+1 − c∗N+1|k∥
∥h̃N |k+1 − h∗N+1|k∥

]∥∥∥∥∥
+ ρf

∥∥∥∥∥
[
∥c∗N |k − c̄k+1∥
∥h∗N |k − h̄k+1∥

]∥∥∥∥∥
Pf

≤
√
λmax(Pf)

∥∥∥x̃N |k+1 − x∗N+1|k

∥∥∥
+ ρf

∥∥∥∥∥
[
∥c∗N |k − c̄k∥
∥h∗N |k − h̄k∥

]∥∥∥∥∥
Pf

+ ρf

∥∥∥∥[∥c̄k − c̄k+1∥
∥h̄k − h̄k+1∥

]∥∥∥∥
Pf

(38)(39)
≤

√
λmax(Pf)

(
cs,u
cs,l

ρNs Lmaxêo,k

+ ρf ∥x̄k+1 − x̄k∥
)
+ ρfαk

(22)
≤

√
λmax(Pf)

(
cs,u
cs,l

ρNs Lmaxêo,k + ρfK̄ ∥Ld∥ ēy

+ ρfK̄
∥∥y0k+1 − y0k

∥∥)+ ρfαk

(41)

Let’s now compute a lower bound for the possible variation
of α (right hand side of (37) and (38)):

αk+1 − αk

(28a)
= min

j=1,...,p
min

{
αmax
j,k+1, α

min
j,k+1

}
− min

j=1,...,p
min

{
αmax
j,k , αmin

j,k

}
(32)
≥ min

j=1,...,p
min

{
αmax
j,k+1 − αmax

j,k , αmin
j,k+1 − αmin

j,k

}
Noting that

min
{
αmax
j,k+1 − αmax

j,k , αmin
j,k+1 − αmin

j,k

}
(28b)(28c)

= min

{
−
∥∥∥[0 ∥∥Wy(j∗)

∥∥]P−1/2
f

∥∥∥−1

(y0k+1(j) − y0k(j))

−
∥∥∥[0 ∥∥Wy(j∗)

∥∥]P−1/2
f

∥∥∥−1

aN(j)(ẽo,k+1 − ẽo,k),∥∥∥[0 ∥∥Wy(j∗)
∥∥]P−1/2

f

∥∥∥−1

(y0k+1(j) − y0k(j))

−
∥∥∥[0 ∥∥Wy(j∗)

∥∥]P−1/2
f

∥∥∥−1

aN(j)(ẽo,k+1 − ẽo,k)

}
= −

∥∥∥[0 ∥∥Wy(j∗)
∥∥]P−1/2

f

∥∥∥−1 ∣∣∣y0k+1(j) − y0k(j)

∣∣∣
+

∥∥∥[0 ∥∥Wy(j∗)
∥∥]P−1/2

f

∥∥∥−1

aN(j)(ẽo,k − ẽo,k+1)

it is possible to derive that

αk ≤ αk+1

+ max
j=1,...,p

{∥∥∥[0 ∥∥Wy(j∗)
∥∥]P−1/2

f

∥∥∥−1 ∣∣∣y0k+1(j) − y0k(j)

∣∣∣}
− min

j=1,...,p

{∥∥∥[0 ∥∥Wy(j∗)
∥∥]P−1/2

f

∥∥∥−1

aN(j)(ẽo,k − ẽo,k+1)

}
≤ αk+1

+ max
j=1,...,p

{∥∥∥[0 ∥∥Wy(j∗)
∥∥]P−1/2

f

∥∥∥−1 ∣∣∣y0k+1(j) − y0k(j)

∣∣∣}
(42)
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Moreover, from (41) and (42) it is possible to obtain∥∥∥∥[∥c̃N |k+1 − c̄k+1∥
∥h̃N |k+1 − h̄k+1∥

]∥∥∥∥
Pf

(41)
≤

√
λmax(Pf)

(
cs,u
cs,l

ρNs Lmaxêo,k + ρfK̄ ∥Ld∥ ēy

+ ρfK̄
∥∥y0k+1 − y0k

∥∥)+ ρfαk

(42)
≤

√
λmax(Pf)

(
cs,u
cs,l

ρNs Lmaxêo,k + ρfK̄ ∥Ld∥ ēy

+ ρfK̄
∥∥y0k+1 − y0k

∥∥)+ (ρf − 1)αk+1

+ ρf max
j=1,...,p

{∥∥∥[0 ∥∥Wy(j∗)
∥∥]P−1/2

f

∥∥∥−1 ∣∣∣y0k+1(j) − y0k(j)

∣∣∣}
+ αk+1

Finally, note that ρf < 1 by definition and αk+1 > 0 for all k
in view of Assumption 5. Then there exist L̄max > 0, L̄d > 0
and ∆y0max > 0 such that for Lmax ≤ L̄max, ∥Ld∥ ≤ L̄d and
y0 such that

∥∥y0k+1 − y0k
∥∥ ≤ ∆y0max∥∥∥∥[∥c̃N |k+1 − c̄k+1∥

∥h̃N |k+1 − h̄k+1∥

]∥∥∥∥
Pf

≤ αk+1

Part 3: To prove the ISpS and convergence properties
of the closed-loop system a candidate Lyapunov function is
introduced. The candidate Lyapunov function has a structure
similar to the optimal cost of the MPC, but it considers the
asymptotic values of the state and input set-points instead of
their values at time-step k. Note that these values cannot be
used in the MPC cost function because are unknown. The
expression of the candidate Lyapunov function is the following

Vk =

N−1∑
i=0

(
∥x∗i|k − x̄∞∥2Q + ∥u∗i|k − ū∞∥2R

)
+

∥∥∥∥∥
[
∥c∗N |k − c̄∞∥
∥h∗N |k − h̄∞∥

]∥∥∥∥∥
2

Pf

where u∗0|k, ..., u
∗
N−1|k and x∗0|k, ..., x

∗
N |k are defined as in Part

2b of this proof, and x∗N |k =
[
(c∗N |k)

⊤ (h∗N |k)
⊤
]⊤

. Note that
Vk is a function of x = x̂k, êo,k, x̄k and ūk, because all
these values are needed to compute the optimal input sequence
u∗0|k, ..., u

∗
N−1|k.

In Part 3a, a lower bound and an upper bound for Vk and a
bound on the variation of Vk between subsequent time-steps
are derived to prove ISpS. In Part 3b, convergence is shown
by studying the asymptotic values of the bounds, under the
assumption that y0k → y0∞ and dk → d̄∞ for k → ∞.

Part 3a: The lower bound for Vk follows from

Vk ≥ ∥x∗0|k − x̄∞∥2Q = ∥x̂k − x̄∞∥2Q ≥ λmin(Q)∥x̂k − x̄∞∥2
(43)

The upper bound for Vk is now proven.
Consider the possibly suboptimal control input ũi|k = ūk

for all i = 0, ..., N − 1, and denote with x̃0|k, ..., x̃N |k the
correspondent state trajectory with initial condition x̃0|k = x̂k.
Note that there exists µ > 0 such that this control input is
feasible at time-step k for all x̂k such that ∥x̂k − x̄k∥ ≤ µ.

Three different cases are considered:
1) ∥x̂k − x̄∞∥ ≤ µ

2 and ∥x̄k − x̄∞∥ ≤ µ
2 ;

2) ∥x̂k − x̄∞∥ > µ
2 ;

3) ∥x̂k − x̄∞∥ ≤ µ
2 and ∥x̄k − x̄∞∥ > µ

2 .
Case 1: ∥x̂k − x̄∞∥ ≤ µ

2 and ∥x̄k − x̄∞∥ ≤ µ
2 .

In this case the sequence ũi|k is feasible. In fact

∥x̂k − x̄k∥ ≤ ∥x̂k − x̄∞∥+ ∥x̄k − x̄∞∥ ≤ µ

2
+
µ

2
= µ

Let’s introduce new variables for the difference between the
set-point at step k and the set-point for k → ∞

δx̄k = x̄k − x̄∞, δūk = ūk − ū∞

δc̄k = c̄k − c̄∞, δh̄k = h̄k − h̄∞

Terms δx̄k, δūk, δc̄k, δh̄k can be related to d̂k − d̄∞ and
y0k − y0∞ with a reasoning similar to the proof of Lemma 4.
In particular, under Assumption 4, there exist finite constants
K̄x and K̄u such that

∥δx̄k∥ ≤ K̄x

∥∥∥d̂k − d̄∞

∥∥∥+ K̄x

∥∥y0k − y0∞
∥∥ (44a)

∥δūk∥ ≤ K̄u

∥∥∥d̂k − d̄∞

∥∥∥+ K̄u

∥∥y0k − y0∞
∥∥ (44b)

Considering Vk, one has that

Vk ≤
N−1∑
i=0

(
∥x∗i|k − x̄k∥2Q + ∥u∗i|k − ūk∥2R

)
+

∥∥∥∥∥
[
∥c∗N |k − c̄k∥
∥h∗N |k − h̄k∥

]∥∥∥∥∥
2

Pf

+

N−1∑
i=0

(
∥δx̄k∥2Q + ∥δūk∥2R

+ 2(x∗i|k − x̄k)
⊤Qδx̄k + 2(u∗i|k − ūk)

⊤Rδūk

)
+

∥∥∥∥[∥δc̄k∥∥δh̄k∥

]∥∥∥∥2
Pf

+ 2

[
∥c∗N |k − c̄k∥
∥h∗N |k − h̄k∥

]⊤

Pf

[
∥δc̄k∥
∥δh̄k∥

]
This expression contains the optimal cost of the MPC

optimization at step k, that is

J∗
k =

N−1∑
i=0

(
∥x∗i|k − x̄k∥2Q + ∥u∗i|k − ūk∥2R

)
+

∥∥∥∥∥
[
∥c∗N |k − c̄k∥
∥h∗N |k − h̄k∥

]∥∥∥∥∥
2

Pf

Consider now the cost associate to the suboptimal control
input ũi|k, and note that it is greater or equal than the optimal
cost, i.e.

J∗
k ≤

N−1∑
i=0

∥x̃i|k − x̄k∥2Q +

∥∥∥∥[∥c̃N |k − c̄k∥
∥h̃N |k − h̄k∥

]∥∥∥∥2
Pf

It is now used that∥∥∥∥[∥c̃N |k − c̄k∥
∥h̃N |k − h̄k∥

]∥∥∥∥2
Pf

≤ λmax(Pf)

∥∥∥∥[∥c̃N |k − c̄k∥
∥h̃N |k − h̄k∥

]∥∥∥∥2
= λmax(Pf)∥x̃N |k − x̄k∥2

and that, in view of Assumption 2 and Theorem 1, there exist
µ̄ ≥ 0 and λ ∈ (0, 1) such that ∀i ≥ 0

∥x̃i|k − x̄k∥ ≤ µ̄λi∥x̃0|k − x̄k∥ = µ̄λi∥x̂k − x̄k∥
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to obtain that there exists a constant b̃ ≥ 0 such that

J∗
k ≤ b̃∥x̂k − x̄k∥2 = b̃∥x̂k − x̄∞ − δx̄k∥2

= b̃∥x̂k − x̄∞∥2 + b̃∥δx̄k∥2 − 2b̃(x̂k − x̄∞)⊤δx̄k

Therefore

Vk ≤ b̃∥x̂k − x̄∞∥2 + β(k) (45)

where

β(k) =

N−1∑
i=0

(
∥δx̄k∥2Q + ∥δūk∥2R

+2(x∗i|k − x̄k)
⊤Qδx̄k + 2(u∗i|k − ūk)

⊤Rδūk

)
+

∥∥∥∥[∥δc̄k∥∥δh̄k∥

]∥∥∥∥2
Pf

+ 2

[
∥c∗N |k − c̄k∥
∥h∗N |k − h̄k∥

]⊤

Pf

[
∥δc̄k∥
∥δh̄k∥

]
+ b̃∥δx̄k∥2 − 2b̃(x̂k − x̄∞)⊤δx̄k

In view of (44) and boundedness of D and Y0, terms δx̄k,
δūk, δc̄k and δh̄k are bounded for all k ∈ Z≥0. In addition,
inputs are limited in U and states are limited in Ĉ × H. Then
there exists a constant c̃1 ≥ 0 such that β(k) ≤ c̃1 for all
k ∈ Z≥0.

Case 2: ∥x̂k − x̄∞∥ > µ
2 .

There exists Vmax > 0 such that Vk ≤ Vmax in XMPC .
Then

Vk ≤ 4Vmax

µ2
∥x̂k − x̄∞∥2 (46)

Case 3: ∥x̂k − x̄∞∥ ≤ µ
2 and ∥x̄k − x̄∞∥ > µ

2 .
One has that

Vk ≤ 0 ∥x̂k − x̄∞∥2 + β̃(k) (47)

with β̃(k) = Vk ≤ Vmax.
Hence, in view of (45), (46) and (47),

Vk ≤ b∥x̂k − x̄∞∥2 + c1 (48)

with b = max
{
b̃, 4Vmax

µ2

}
and c1 = max {c̃1, Vmax}.

Let’s now study the variation of Vk between subsequent
time-steps.

Consider the Lyapunov function at time-step k + 1:

Vk+1 =

N−1∑
i=0

(
∥x∗i|k+1 − x̄∞∥2Q + ∥u∗i|k+1 − ū∞∥2R

)
+

∥∥∥∥∥
[
∥c∗N |k+1 − c̄∞∥
∥h∗N |k+1 − h̄∞∥

]∥∥∥∥∥
2

Pf

where u∗0|k+1, ..., u
∗
N |k+1 is the optimal sequence given by the

MPC at step k + 1 and x∗i+1|k+1 = f(x∗i|k+1, u
∗
i|k+1) with

x∗0|k+1 = x̂k+1. Note that in general x̂k+1 can be different
from x∗1|k. It is possible to derive the following upper bound

for Vk+1:

Vk+1 ≤
N−1∑
i=0

(
∥x∗i|k+1 − x̄k+1∥2Q + ∥u∗i|k+1 − ūk+1∥2R

)
+

∥∥∥∥∥
[
∥c∗N |k+1 − c̄k+1∥
∥h∗N |k+1 − h̄k+1∥

]∥∥∥∥∥
2

Pf

+

N−1∑
i=0

(
∥δx̄k+1∥2Q

+ ∥δūk+1∥2R + 2(x∗i|k+1 − x̄k+1)
⊤Qδx̄k+1

+ 2(u∗i|k+1 − ūk+1)
⊤Rδūk+1

)
+

∥∥∥∥[∥δc̄k+1∥
∥δh̄k+1∥

]∥∥∥∥2
Pf

+ 2

[
∥c∗N |k+1 − c̄k+1∥
∥h∗N |k+1 − h̄k+1∥

]⊤

Pf

[
∥δc̄k+1∥
∥δh̄k+1∥

]

This expression contains the optimal cost of the MPC opti-
mization at step k + 1, that is

J∗
k+1 =

N−1∑
i=0

(
∥x∗i|k+1 − x̄k+1∥2Q + ∥u∗i|k+1 − ūk+1∥2R

)
+

∥∥∥∥∥
[
∥c∗N |k+1 − c̄k+1∥
∥h∗N |k+1 − h̄k+1∥

]∥∥∥∥∥
2

Pf

Consider now the feasible trajectory ũi|k+1 for i =
0, ..., N − 1 used in Part 2b of this proof. Noting that the
cost associated to the feasible trajectory is greater or equal
than J∗

k+1, one has

Vk+1 ≤
N−2∑
i=0

(
∥x̃i|k+1 − x̄k+1∥2Q + ∥u∗i+1|k − ūk+1∥2R

)
+ ∥x̃N−1|k+1 − x̄k+1∥2Q + ∥ūk+1 − ūk+1∥2R

+

∥∥∥∥[∥c̃N |k+1 − c̄k+1∥
∥h̃N |k+1 − h̄k+1∥

]∥∥∥∥2
Pf

+N∥δx̄k+1∥2Q +N∥δūk+1∥2R

+

N−1∑
i=0

(
2(x∗i|k+1 − x̄k+1)

⊤Qδx̄k+1

+ 2(u∗i|k+1 − ūk+1)
⊤Rδūk+1

)
+

∥∥∥∥[∥δc̄k+1∥
∥δh̄k+1∥

]∥∥∥∥2
Pf

+ 2

[
∥c∗N |k+1 − c̄k+1∥
∥h∗N |k+1 − h̄k+1∥

]⊤

Pf

[
∥δc̄k+1∥
∥δh̄k+1∥

]

Therefore the variation of the Lyapunov function is bounded
by

Vk+1 − Vk ≤
− ∥x∗0|k − x̄∞∥2Q − ∥u∗0|k − ū∞∥2R

+

N−1∑
i=1

(
∥x̃i−1|k+1 − x̄k+1∥2Q − ∥x∗i|k − x̄∞∥2Q

)
+

N−1∑
i=1

(
∥u∗i|k − ūk+1∥2R − ∥u∗i|k − ū∞∥2R

)
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+ ∥x̃N−1|k+1 − x̄k+1∥2Q

−

∥∥∥∥∥
[
∥c∗N |k − c̄∞∥
∥h∗N |k − h̄∞∥

]∥∥∥∥∥
2

Pf

+

∥∥∥∥[∥c̃N |k+1 − c̄k+1∥
∥h̃N |k+1 − h̄k+1∥

]∥∥∥∥2
Pf

+

N−1∑
i=0

(
2(x∗i|k+1 − x̄k+1)

⊤Qδx̄k+1

+ 2(u∗i|k+1 − ūk+1)
⊤Rδūk+1

)
+ 2

[
∥c∗N |k+1 − c̄k+1∥
∥h∗N |k+1 − h̄k+1∥

]⊤

Pf

[
∥δc̄k+1∥
∥δh̄k+1∥

]
+N∥δx̄k+1∥2Q +N∥δūk+1∥2R +

∥∥∥∥[∥δc̄k+1∥
∥δh̄k+1∥

]∥∥∥∥2
Pf

It is possible to introduce the error terms related to the fact
that x̃0|k+1 = x̂k+1 ̸= x∗1|k because of the presence of the
observer in the control loop:

εk+i+1 = x̃i|k+1 − x∗i+1|k

εc,k+N = c̃N−1|k+1 − c∗N |k

εh,k+N = h̃N−1|k+1 − h∗N |k

The different terms of the upper bound of Vk+1−Vk are now
considered separately.

Consider the state terms at time-steps between k + 1 and
k +N − 1:
N−1∑
i=1

(
∥x̃i−1|k+1 − x̄k+1∥2Q − ∥x∗i|k − x̄∞∥2Q

)
=

N−1∑
i=1

(
∥x∗i|k − x̄∞ + εk+i − δx̄k+1∥2Q − ∥x∗i|k − x̄∞∥2Q

)
=

N−1∑
i=1

(
2(x∗i|k − x̄∞)⊤Q(εk+i − δx̄k+1)

+ ∥εk+i − δx̄k+1∥2Q
)

Consider the input terms at time-steps between k + 1 and
k +N − 1:

N−1∑
i=1

(
∥u∗i|k − ūk+1∥2R − ∥u∗i|k − ū∞∥2R

)
=

N−1∑
i=1

(
∥u∗i|k − ū∞ − δūk+1∥2R − ∥u∗i|k − ū∞∥2R

)
=

N−1∑
i=1

(
−2(u∗i|k − ū∞)⊤Rδūk+1

)
+ (N − 1)∥δūk+1∥2R

Finally, consider the state terms at time-steps k + N and
k+N +1. In view of Lemma 5 one has that, for any φ ̸= 0,

∥x̃N−1|k+1 − x̄k+1∥2Q
= ∥x∗N |k − x̄∞ + εk+N − δx̄k+1∥2Q
(31)
≤ (1 + φ2)∥x∗N |k − x̄∞∥2Q

+

(
1 +

1

φ2

)
∥εk+N − δx̄k+1∥2Q

≤ q(1 + φ2)∥x∗N |k − x̄∞∥2

+

(
1 +

1

φ2

)
∥εk+N − δx̄k+1∥2Q

= q(1 + φ2)

∥∥∥∥∥
[
∥c∗N |k − c̄∞∥
∥h∗N |k − h̄∞∥

]∥∥∥∥∥
2

+

(
1 +

1

φ2

)
∥εk+N − δx̄k+1∥2Q

Moreover, for any φ ̸= 0,∥∥∥∥[∥c̃N |k+1 − c̄k+1∥
∥h̃N |k+1 − h̄k+1∥

]∥∥∥∥2
Pf

(10)
≤

∥∥∥∥Aδ

[
∥c̃N−1|k+1 − c̄k+1∥
∥h̃N−1|k+1 − h̄k+1∥

]∥∥∥∥2
Pf

≤

∥∥∥∥∥
[
∥c∗N |k − c̄∞ + εc,k+N − δc̄k+1∥
∥h∗N |k − h̄∞ + εh,k+N − δh̄k+1∥

]∥∥∥∥∥
2

A⊤
δ PfAδ

(31)
≤ (1 + φ2)

∥∥∥∥∥
[
∥c∗N |k − c̄∞∥
∥h∗N |k − h̄∞∥

]∥∥∥∥∥
2

A⊤
δ PfAδ

+

(
1 +

1

φ2

)∥∥∥∥[∥εc,k+N − δc̄k+1∥
∥εh,k+N − δh̄k+1∥

]∥∥∥∥2
A⊤

δ PfAδ

Then the following inequality holds:

−

∥∥∥∥∥
[
∥c∗N |k − c̄∞∥
∥h∗N |k − h̄∞∥

]∥∥∥∥∥
2

Pf

+ ∥x̃N−1|k+1 − x̄k+1∥2Q

+

∥∥∥∥[∥c̃N |k+1 − c̄k+1∥
∥h̃N |k+1 − h̄k+1∥

]∥∥∥∥2
Pf

≤

∥∥∥∥∥
[
∥c∗N |k − c̄∞∥
∥h∗N |k − h̄∞∥

]∥∥∥∥∥
2

−Pf+(1+φ2)qI2+(1+φ2)A⊤
δ PfAδ

+

(
1 +

1

φ2

)
∥εk+N − δx̄k+1∥2Q

+

(
1 +

1

φ2

)∥∥∥∥[∥εc,k+N − δc̄k+1∥
∥εh,k+N − δh̄k+1∥

]∥∥∥∥2
A⊤

δ PfAδ

By construction Pf is selected such that A⊤
δ PfAδ − Pf <

−qI2. Therefore there exists a value of φ small enough to
have −Pf + (1 + φ2)qI2 + (1 + φ2)A⊤

δ PfAδ < 0.
Combining all the computations, one obtains that

Vk+1 − Vk ≤ −∥x∗0|k − x̄∞∥2Q − ∥u∗0|k − ū∞∥2R + γ(k)

(49)

where

γ(k) =

N−1∑
i=1

(
2(x∗i|k − x̄∞)⊤Q(εk+i − δx̄k+1)

+ ∥εk+i − δx̄k+1∥2Q
)

+

N−1∑
i=1

(
−2(u∗i|k − ū∞)⊤Rδūk+1

)
+ (N − 1)∥δūk+1∥2R
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+

(
1 +

1

φ2

)
∥εk+N − δx̄k+1∥2Q

+

(
1 +

1

φ2

)∥∥∥∥[∥εc,k+N − δc̄k+1∥
∥εh,k+N − δh̄k+1∥

]∥∥∥∥2
A⊤

δ PfAδ

+

N−1∑
i=0

(
2(x∗i|k+1 − x̄k+1)

⊤Qδx̄k+1

+ 2(u∗i|k+1 − ūk+1)
⊤Rδūk+1

)
+ 2

[
∥c∗N |k+1 − c̄k+1∥
∥h∗N |k+1 − h̄k+1∥

]⊤

Pf

[
∥δc̄k+1∥
∥δh̄k+1∥

]
+

∥∥∥∥[∥δc̄k+1∥
∥δh̄k+1∥

]∥∥∥∥2
Pf

+N∥δūk+1∥2R +N∥δx̄k+1∥2Q

In this expression:
• Terms εk+i, εc,k+N , εh,k+N are present because x̂k+1 ̸=
x∗1|k. These terms have bounds related to the observer
estimation error χk − χ̂k. In particular

∥εk+1∥
(19c)
≤ LmaxVo(χ̂k, χk)

(19a)
≤ co,uLmax ∥χk − χ̂k∥

∥εk+i∥
(11a)
≤ 1

cs,l
Vs(x̃i−1|k+1, x

∗
i|k)

(11b)
≤ ρi−1

s

cs,l
Vs(x̃0|k+1, x

∗
1|k)

(11a)
≤ cs,uρ

i−1
s

cs,l
∥εk+1∥

≤ cs,uρ
i−1
s

cs,l
co,uLmax ∥χk − χ̂k∥

• Terms δx̄k+1, δūk+1, δc̄k+1, δh̄k+1 are present because
reference values x̄ and ū change at each time-step with
the variation of the disturbance estimation d̂k. As already
noted, these terms are bounded.

• Inputs are limited thanks to MPC constraint (25f).
• States are limited in the set XMPC .
Moreover, since

∥x∗0|k − x̄∞∥2Q + ∥u∗0|k − ū∞∥2R ≥ λmin(Q)∥x̂k − x̄∞∥2

there exists constants c = λmin(Q) and c2 ≥ 0 and a K-
function γ̃ such that

Vk+1 − Vk ≤ −c∥x̂k − x̄∞∥2 + γ̃(∥χk − χ̂k∥) + c2 (50)

In view of (43)-(48)-(50), Vk is an ISpS-Lyapunov function
[15]. Then the closed-loop system (13)-(20)-(29) is ISpS with
respect to the observer estimation error χ− χ̂.

Part 3b: To prove convergence, first note that if dk → d̄∞
for k → ∞, the observer estimation error χ− χ̂ converges to
0 in view of Theorem 2. Then, in view of (44), terms δx̄k,
δūk, δc̄k and δh̄k converge to 0 for k → ∞.

The bounds on Vk and on Vk+1 − Vk are now studied for
k → ∞.

Consider the upper bound of Vk. If dk → d̄∞ and y0k → y0∞
for k → ∞, in view of observer convergence, ∥x̄k − x̄∞∥ → 0
for k → ∞. Then there exist k̄ ∈ Z≥0 such that ∥x̄k − x̄∞∥ ≤
µ
2 for all k ≥ k̄. Hence, for k ≥ k̄, only cases 1 and 2 of the
upper bound can appear. Then

Vk ≤ b ∥x̂k − x̄∞∥2 + β(k) (51)

where β(k) → 0 for k → ∞ for the convergence of δx̄k, δūk,
δc̄k and δh̄k.

Consider the bound on Vk+1−Vk of Equation (49). γ(k) →
0 for k → ∞ in view of the convergence of the observer
estimation error and of δx̄k, δūk, δc̄k and δh̄k.

Then for k ≥ k̄ the Lyapunov function Vk is such that

a ∥x̂k − x̄∞∥2 ≤ Vk ≤ b ∥x̂k − x̄∞∥2 + β(k) (52a)

Vk+1 − Vk ≤ −c ∥x̂k − x̄∞∥2 + γ(k) (52b)

for some a, b, c > 0, with β(k) → 0 and γ(k) → 0 for k → ∞.
The fact that limk→∞ ∥ψk − ψ∞∥ = 0 follows from (52),

observer convergence proven in Theorem 2 and (24).

REFERENCES

[1] J. B. Rawlings, D. Q. Mayne, and M. M. Diehl, Model Predictive
Control: Theory, Computation, and Design. Santa Barbara, California:
Nob Hill Publishing, 2019.
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