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Minimal Constraint Violation Probability in Model Predictive Control for
Linear Systems

Michael Fink, Tim Brüdigam, Dirk Wollherr, and Marion Leibold

Abstract— Handling uncertainty in model predictive control
comes with various challenges, especially when considering state
constraints under uncertainty. Most methods focus on either the
conservative approach of robustly accounting for uncertainty or
allowing a small probability of constraint violation. In this work, we
propose a linear model predictive control approach that minimizes
the probability that linear state constraints are violated in the pres-
ence of additive uncertainty. This is achieved by first determining
a set of inputs that minimize the probability of constraint violation.
Then, this resulting set is used to define admissible inputs for the
optimal control problem. Recursive feasibility is guaranteed and
input-to-state stability is proved under assumptions. Numerical
results illustrate the benefits of the proposed model predictive
control approach.

Index Terms— predictive control, recursive feasibility,
input-to-state stability, robust model predictive control
(RMPC), stochastic model predictive control (SMPC)

I. INTRODUCTION

Considering uncertainty presents a major challenge in the control
of safety-critical systems. Depending on the application, uncertainty
ranges from noise and disturbances to model and parameter inaccu-
racy. For example, the control of automated vehicles needs to account
for sensor noise, disturbances such as wind, or unknown future
behavior of other vehicles that are close enough to be considered
for safety. Ideally, the control of such safety-critical systems realizes
minimal risk in the presence of uncertainty.

A prominent method for the control of safety-critical systems is
Model Predictive Control (MPC), due to its ability to consider input
and state constraints to satisfy safety requirements [1]. In general
MPC requires a model of the system to solve an optimal control
problem in each time step.

When uncertainty is present, constraints are handled in a robust
way by Robust Model Predictive Control (RMPC) [2]. Initially known
bounds on the uncertainty allow for a guarantee on stability and
recursive feasibility. Nevertheless, robustly accounting for uncertainty
comes with issues. If the uncertainty bound was initially not estimated
large enough, all guarantees are lost. If uncertainty bounds are chosen
too large, potentially to account for rare worst-case events, RMPC
becomes highly conservative.

Overcoming conservatism is addressed by Stochastic Model Pre-
dictive Control (SMPC) [3], [4]. In SMPC, constraints subject to
uncertainty are handled as chance constraints. A chance constraint
requires that the constraint is satisfied to a certain level, based on a
chosen risk parameter, representing the acceptable risk. While a low-
risk parameter results in a high probability of constraint violation,
performance is improved, as rare uncertainty realizations are ne-
glected. Again, multiple issues arise. Similar to RMPC, wrong initial
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assumptions for the uncertainty cause feasibility issues. Furthermore,
SMPC does not penalize the allowed constraint violation, e.g. the
constraint violation probability is not considered in the cost function.

When developing MPC for safety-critical systems, a small proba-
bility of constraint violation may be tolerated. It is nevertheless funda-
mental to achieve the minimum probability of constraint violation. In
addition, recursive feasibility and stability of the closed-loop system
dynamics are essential. Also dealing with variations in the uncertainty
as well as in the constraints has to be considered.

Whereas RMPC and SMPC partially consider these requirements,
both methods are impractical for safety-critical systems due to the
above-mentioned issues, e.g., uncertainty bounds must be known in
advance or recursive feasibility is not guaranteed in every situation.
These considerations resulted in the development of MPC with
constraint violation probability minimization (CVPM) [5], [6].

A. Related Work

While there exist different approaches to RMPC, the main ideas
are similar: robustly handling constraints, accounting for worst-case
uncertainty realizations. An overview of RMPC approaches is given
in [1, Ch. 3] and a summary of early works in [7]. The most
prominent RMPC approaches are min-max MPC [8], considering
maximal uncertainties, and tube-based MPC [9], [10], which defines
a tube around the nominal state trajectory to tighten constraints
appropriately. While RMPC was used to control safety-critical sys-
tems, e.g., a robotic manipulator [11] or an automated vehicle
[12], [13], solutions are generally conservative, as no knowledge
about the disturbance distribution is taken into account. Additionally,
changing uncertainty bounds or distributions, as well as changing
constraints cause a loss of properties, e.g., recursive feasibility or
require intensive recomputation.

SMPC employs chance constraints, i.e., the probability of violating
a constraint is bounded by a risk parameter. Chance constraints are
difficult to handle in general as their evaluation requires computing
multivariate integrals. Therefore, approaches to reformulating these
probabilistic constraints into deterministic (potentially approximated)
constraints are proposed: For Gaussian uncertainties and linear
constraints, the chance constraints can be analytically reformulated
[4]. Gaussian distributions are suitable to describe certain types of
uncertainty, e.g., noise, while often safety-critical systems require
considering other distributions. For this case, sampling-based SMPC
approaches are suitable. Particle-based SMPC [14] approximates the
chance constraint by ensuring that only a small number of samples
leads to constraint violations. In Scenario Model Predictive Control
(SCMPC) [15], based on [16], the number of required samples is
computed depending on a risk parameter. Then, for all sampled
scenarios, the constraints must be satisfied. A major issue with
sampling-based SMPC is that guarantees on recursive feasibility are
difficult to obtain. A combination of RMPC and SMPC is considered
in [17], [18], where robust constraints are employed on the short-term
horizon and chance constraints are used for long-term predictions.
This approach improves performance compared to RMPC while still
employing short-term robust constraints; however, proofs of recursive
feasibility and stability are challenging.
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The SMPC approaches, introduced in the previous paragraph, con-
sider open-loop chance constraints, i.e., chance constraint satisfaction
is only required in the optimal control problem for the open-loop
prediction. Though, recursive feasibility can only be guaranteed if
closed-loop constraint satisfaction is considered [19]. An alterna-
tive method to guarantee recursive feasibility is proposed in [20],
proposing an additional constraint on the predicted state of the first
prediction step, making recursive feasibility challenging in SMPC.

SMPC is mostly applied to applications where constraint violations
are not critical, e.g., energy control in buildings [21], [22] or hybrid
electrical vehicles [23], [24]. SMPC for safety-critical systems mostly
focused on automated vehicles [25]–[28].

However, safety of SMPC is only specifically addressed in few
works. In [29], failsafe trajectory planning is used to guarantee safety
in case of infeasible SMPC optimal control problems. A different idea
is presented in [30], where a least-intrusive trajectory is found if a
collision is inevitable.

All previously described SMPC approaches are unable to provide
recursive feasibility or stability guarantees once unexpected changes
arise, potentially due to time-varying uncertainties or time-varying
constraints. While slack variables can be introduced or alternative
problems can be solved [31], [32] to regain feasibility, the optimiza-
tion does not necessarily provide the safest possible solution. This
issue is addressed in [5] for a collision avoidance scenario. There, the
probability of violating a collision avoidance norm constraint in the
first prediction step is minimized with CVPM-MPC. An extension of
CVPM-MPC where the norm constraint is taken into account for
more than one prediction step is presented in [6]. Unlike multi-
objective MPC [33], [34], in CVPM-MPC, safety is not part of
an objective trade-off, but safety is maximized first before other
objectives are considered. However, the approach in [5] and [6]
is designed particularly for obstacle avoidance, i.e., the approach
is limited to norm constraints, and only uncertainty affecting the
obstacle dynamics is considered.

In summary, previous MPC approaches only cover parts of the
requirements for safety-critical systems. The major challenge, reason-
ably minimizing constraint violation probabilities for general linear
systems, is still an open problem.

B. Contribution and Structure

In this work, we propose an MPC algorithm that minimizes the
probability of constraint violation. This is achieved by guarantee-
ing constraint satisfaction whenever possible and ensuring minimal
constraint violation probability whenever constraint satisfaction is
not possible. We generalize, extend, and simplify the results of the
CVPM-MPC method from [5] and [6]. In particular, we now replace
norm constraints by general linear constraints.

We investigate the requirements for recursive feasibility and stabil-
ity. We show that no additional assumptions are needed for recursive
feasibility because there are no bounds on the maximum allowed
constraint violation probability. Furthermore, we propose additional
rather strong assumptions for proving input-to-state stability (ISS).
Finally, the practical consequences of relaxing these assumption are
discussed.

The remaining parts are structured as follows. Section II intro-
duces the problem. The CVPM-MPC method for linear systems
and constraints is derived in Section III, followed by details on the
properties in Section IV. A numerical example is shown in Section V,
demonstrating the benefits of applying CVPM-MPC to safety-critical
systems. A discussion and conclusive remarks are given in Section VI
and Section VII, respectively.

C. Notation
Norms are denoted by ||.||. We define ||a||2A = a>Aa. An

augmented vector is denoted by a = [a1, · · · ,ai]>. We denote
linear transformations of sets by A◦B = {Ab | b ∈ B} and B◦A =
{b | Ab ∈ B}. The Cartesian product of the set A and B is A×B =
{[a, b] | a ∈ A, b ∈ B}. The n-ary Cartesian power of a set A is de-
noted byAn =

{
[a1, · · · ,ai]

∣∣ ai ∈ A ∀i ∈ I1,n
}

. The Minkowski
sum of two sets is denoted A⊕B = {a+ b | a ∈ A, b ∈ B} and the
Pontryagin difference is given by A	B = {c | c+ b ∈ A, ∀b ∈ B}.
A state at time step t is denoted by xt. Within an MPC optimal
control problem, the state at prediction step k is denoted by xk+t,
where the notation xk+t|t explicitly denotes that the prediction xk+t

was obtained at time step t. A function γ : Rn → R≥0 is of class K
if it is strictly increasing and γ(0) = 0. A function α : Rn → R≥0 is
of class K∞ if α ∈ K and lims→∞ α(s) =∞. An asterisk denotes
the optimal value, i.e., u∗ is the optimal solution.

II. PROBLEM SETUP

In the following, we first introduce the system dynamics and define
properties of the uncertainty. Then, the MPC problem statement is
introduced, including constraints for which violation probability must
be minimized.

A. System Dynamics
We consider the linear, discrete-time dynamical control system

xt+1 = Axt +But +Gwt (1)

with state xt ∈ Rnx and input ut ∈ Rnu at time step t, as well
as the bounded uncertainty wt ∈ W ⊆ Rnx , where A,B have
appropriate dimensions, G ∈ Rnx×nx is not singular.

Assumption 1: The uncertainty wt is a truncated Gaussian uncer-
tainty with wt ∼ N (0,Σw), covariance matrix Σw , and bounded
by the polytope W .

In the following, MPC requires to predict the state trajectory. Based
on the initial state xt, we denote the augmented system dynamics,
delivering predictions xt+1,xt+2, ...,xt+N , by

x = Axt +Bu+Gw (2)

where x =

xt+1

:
xt+N

 , u =

 ut

:
ut+N−1

 , w =

 wt

:
wt+N−1

 (3)

and A, B, and G defined as in [35].

B. Model Predictive Control
MPC is applied to control system (1). In MPC, an optimal control

problem is repeatedly solved on a finite horizon N , where state and
input constraints are considered and only the first entry of the optimal
input trajectory is applied. The prediction steps are denoted by index
k. The MPC cost function is given by

J(xt,u) =

N−1∑
k=0

(
||xt+k||2Q + ||ut+k||2R

)
+ ||xt+N ||2Qf

(4)

with weighting matrices Q, R and terminal weighting matrix Qf,
where xt is known and xt+k denotes the mean of xt+k.

Furthermore, the set of admissible input sequences u is given as the
bounded polytopic set UN , which contains the origin. The polytopic
set X ⊂ Rnx allows to formalize state constraints for all states in a
prediction horizon of length N .

Assumption 2: The constraint set X is closed, bounded, and con-
tains the origin.
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The constraint set X may be expressed in augmented form by

x ∈ X = XN−1 ×Xf. (5)

A terminal constraint xN ∈ Xf ⊆ X is introduced for the state xN .
The set Xf is defined later as part of the stability analysis.

C. Problem Statement

Both, RMPC and SMPC, do not provide adequate solutions if
the probability of violating constraint (5) must be minimized. This
problem may be formulated as

min
u∈UN

Pr (x /∈ X ) . (6)

Given this constraint violation probability minimization, we now
specify the problem to be addressed in this work.

Problem 1: The optimal control problem of each MPC iteration
corresponding to time t is

min
u∈UN

J(xt,u) (7a)

s.t u = arg min
u∈UN

Pr (x /∈ X ) . (7b)

In the following section, an MPC method is derived that provides
a strategy to solve Problem 1.

III. METHOD

Here, we first present the CVPM-MPC method in Section III-A
and then details on the probability optimization required for CVPM-
MPC in Section III-B. Major properties of the CVPM-MPC method
are discussed in Section IV.

A. CVPM-MPC

The general idea of CVPM-MPC is to solve an MPC optimal
control problem where only those inputs are allowed that enable min-
imal constraint violation probability. Therefore, a set is defined that
includes all inputs that minimize the constraint violation probability.

Definition 1 (Optimal CVPM Input Set): The optimal CVPM in-
put set Ucvpm consists of admissible input sequences u that minimize
the constraint violation probability Pr (x /∈ X ).

Determining Ucvpm uses two cases, depending on whether an input
sequence u exists that guarantees constraint satisfaction or not.

Definition 2 (CVPM Safe Case): In the safe case, at least one
admissible input sequence u exists that guarantees constraint sat-
isfaction, i.e.,

∃ u ∈ UN s.t. Pr (x /∈ X ) = 0. (8)
Definition 3 (CVPM Probabilistic Case): In the probabilistic

case, no input sequence u exists that guarantees constraint
satisfaction, i.e.,

Pr (x /∈ X ) > 0 ∀ u ∈ UN . (9)
At each MPC iteration, it is determined whether the safe case is

feasible, i.e. it is evaluated if the set of possible input sequences is not
empty. If not, the probabilistic case is applied. In the following, for
both cases separately, it is addressed how the set Ucvpm is obtained.

1) Safe Case: Here the set Ucvpm is

Ucvpm = UN ∩
(
X 	

(
G ◦WN

)
⊕ {−Axt}

)
◦B, (10)

which is the intersection of the admissible input set UN and the set
of input sequences that guarantee constraint satisfaction of (5). The
set {−Axt} is a singleton that takes into account the current state
xt and the set Ucvpm is determined with algorithms from [35].

The intersection (10) does not only deliver the set of admissible
inputs, it also allows to check if the safe case applies: if Ucvpm is non-
empty, an input sequence u exists guaranteeing that the constraint (5)
is satisfied.

Based on the previous result, it is possible to obtain a set of feasible
initial states XcaseS (for the current MPC iteration) for which the safe
case is applicable. This set is given by

XcaseS =
(
X 	

(
G ◦WN

)
⊕
(

(−B) ◦ UN
))
◦A, (11)

which is obtained analog to (10). We make the following assumption
to ensure that XcaseS is non-empty.

Assumption 3: The disturbances are small enough and propagated
disturbances alone never exceed state constraints, i.e., G◦WN ⊂ X .
This assumption is straight-forward to satisfy when the system matrix
A is stable and motivates the following assumption.

Assumption 4: The system matrix A is stable, i.e. the eigenvalues
of A are within the unit circle.

Remark 1: Note that even if the system is unstable, the assumption
on A can still be fulfilled by using a feedback controller for
prestabilization. Then the sets X and U have to be redefined taking
into account the prestabilization, such as in [36].

2) Probabilistic Case: For the safe case, Ucvpm collects those
input trajectories that guarantee constraint satisfaction. However, if
such an input trajectory does not exist, at least minimal constraint
violation probability can be ensured. Therefore, for the probabilistic
case, Ucvpm collects input trajectories u∗ that result in minimal
constraint violation probability.

The safe case is applied if the current state is in XcaseS and results
in zero constraint violation probability. Thus for all other states, i.e.,
xt /∈ XcaseS, the probability of constraint violation is non-zero. To
minimize the probability of violating x ∈ XN , we transform the
problem to minimize the probability of violating x ∈ XN

caseS

u∗ =arg min
u∈UN

Pr
(
x /∈ XN

caseS

)
. (12)

The set X \ XcaseS contains all states in X that are not initial
states for the safe case, where all predicted states remains in X . A
trajectory will leave X eventually if its initial state is in X \ XcaseS.
Therefore, trajectories with states in X \ XcaseS result in a high
constraint violation probability. In contrast, XcaseS \ X contains all
states that are not in X , but the predicted trajectory remains in X and
results in a zero probability of constraint violation in the subsequent
MPC iterations. Changing the probability optimization from (7b)
to (12) does, therefore, not significantly change u∗. However, this
adjustment makes it possible to prove stability (see Section IV-B).
Once u∗ is obtained, we set:

Ucvpm = {u∗}. (13)

3) CVPM-MPC Formulation: The CVPM-MPC optimal control
problem is

u∗ = arg min
u∈Ucvpm

J(xt,u) (14)

with Ucvpm according to (10) or (13). The closed-loop system,
compare (1), is then given by

xt+1 = Axt +Bu∗t +Gwt (15)

where u∗t is the first element of the optimal trajectory u∗ obtained
at time step t.

Remark 2: Solving (14) requires two steps: first, a set Ucvpm is
calculated, and then, this set is used as a constraint for the MPC
controller. Thus, CVPM can also serve as preprocessing for other
controllers.
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B. Probability Optimization in the Probabilistic Case
In the probabilistic case, the input trajectory u∗ with minimal

constraint violation probability, is solution of the optimization prob-
lem (12). In general, neither analytic solution nor exact numerical
solution of Pr

(
x /∈ XN

caseS

)
is possible. Therefore, we propose

two approximations. In the first approximation, the probabilities are
computed using a sampling-based approach, which allows to increase
the accuracy as the number of samples increases. However, this
computation is time-consuming and not suitable for fast real-time
systems. Therefore, the second method does not approximate the
probability but modifies the problem to find the input sequence u.

In the following, we prepare both approximations. We assume,
the probability distribution in the safe case has a truncated support.
This ensures existence of trajectories with a zero probability of
constraint violation. However, in the probabilistic case, this leads to
a vanishing gradient in the optimization. Therefore, we approximate
the truncated Gaussian of Assumption 1 by the corresponding non-
truncated Gaussian wt ∼ N (0,Σw). The mean x̄ of the state
trajectory x is x̄ = Axt +Bu and the covariance matrix is given
as Σx = diag (Σx, ..,Σx) , where Σx is the steady-state solution
of the uncertainty propagation

Σx = AΣxA
> +GΣwG

>. (16)

Given the mean and the covariance matrix for the state sequence x
with a particular input sequence u, we obtain

x ∼ N
(
x̄,Σx

)
= N

(
Axt +Bu,Σx

)
, (17)

proving that the state trajectory is subject to a Gaussian distribution.
1) Sampling-Based Probability Optimization: A numerical

Monte Carlo sampling approach is employed to determine the proba-
bility of violating constraints. From the distribution (17), Ns samples
of state sequences are drawn. The number of samples that are an
element of the set X is denoted as NX . It follows that the constraint
violation probability is approximately

Pr (x /∈ X ) ≈ 1−
NX
Ns

. (18)

The minimization of the constraint violation probability is approxi-
mated with a numeric optimization of (18). In each step within the
optimization, (18) must be determined for a given input sequence u
resulting in a huge computational burden.

2) Probability Optimization approximated as Quadratic Pro-
gram: We propose an approximation in the following to speed up
the computation. For the probabilistic case, the input sequence u∗ is
defined as the solution to the optimization problem (12) with

Pr
(
x /∈ XN

caseS

)
= 1− c

∫
XN

caseS

e

(
− 1

2 (x̄−ξ)>Σ−1
x (x̄−ξ)

)
dξ, (19)

where c =
(

(2π)nxN det Σx
)−1

. As (19) is a non-convex cost
for the optimization problem, we approximate it. In the probabilistic
case, the mean state sequence x̄ is not in XN

caseS, otherwise the safe
case is applied. Therefore, we assume that the distribution function
(17) is nearly constant over the set XcaseS. We then approximate the
integral in (19) by a multiplication of the probability density function
for the states in (17) and the volume of the polytope VP(XN

caseS) ,
yielding

Pr
(
x /∈ XN

caseS

)
≈ 1−c e

(
− 1

2 (x̄−ξ)>Σ−1
x (x̄−ξ)

)
VP(XN

caseS). (20)

The probability density function is evaluated at a point ξ ∈ XN
caseS

within the polytope. The variable ξ is then included in the optimiza-
tion, yielding a similar structure as the MPC cost function. Later,

this structure is essential for the proof of stability. The volume of
the polytope VP(XcaseS) does not change if u is varied. We need to
minimize Pr

(
x /∈ XN

caseS

)
, thus it is sufficient to solve the quadratic

optimization problem

u∗ =arg min
u∈UN, ξ∈XN

caseS

(
x̄− ξ

)>
Σ̃−1
x

(
x̄− ξ

)
(21a)

s.t. x̄ = Axt +Bu. (21b)

The matrix Σ̃x is an adapted version of Σx and is defined later when
stability is discussed. The solution of (21) leads to state sequences in
the direction of small eigenvalues of Σ̃−1

x , which result in the fastest
decrease of the probability of constraint violation.

IV. PROPERTIES

A. Recursive Feasibility

Recursive feasibility is a fundamental property for MPC algo-
rithms. In each MPC time step, an optimal control problem has to be
solved, and it needs to be ensured that the optimal control problem
is feasible at time step t+ 1 if it is feasible at time step t.

Definition 4 (Recursive Feasibility): An MPC optimal control
problem is recursively feasible if it holds that Ut 6= ∅ → Ut+1 6= ∅
for all t ∈ N0 where Ut is the set of admissible inputs at time step t.

Recursive feasibility is fulfilled in CVPM per construction, because
if the safe case is infeasible, the probabilistic case is applied that
will always deliver a solution. In the following, we prove recursive
feasibility of the safe case, i.e., once the safe case is applicable,
XcaseS is invariant under CVPM-MPC. For this purpose, the following
assumption is required, which defines the terminal set in (5).

Assumption 5: The terminal set Xf ⊆ X is chosen as a robust
control invariant set [35] and fulfills

A ◦ Xf ⊕ANG ◦W ⊆ Xf ⊕ (−B) ◦ U . (22)
Remark 3: Ass. 5 yields candidates for the terminal set Xf by

extending the standard notion for a robust invariant set A ◦ Xf ⊆
Xf 	 G ◦ W ⊕ (−B) ◦ U [35], such that disturbances propagated
over the horizon N are included, i.e. it is a robust control invariant
set where the set of disturbances is ANG ◦W .

Lemma 1: If Assumption 5 holds, then for all xt ∈ XcaseS there
exists an input ut such that the state at the next time step is also in
the set XcaseS, i.e., XcaseS is robust control invariant.

Proof: The proof is given in Appendix I.
Based on Lemma 1, we can now formulate the following theorem

on recursive feasibility.
Theorem 1: The safe case is recursively feasible.
Remark 4: In a practical situation, a terminal set, not satisfying

Assumption 5 is also possible, This would imply that XcaseS is not
robust control invariant and thus the recursive feasibility guarantee in
the safe case is lost. Nevertheless, still a solution with possibly non
zero probability of constraint violation can be found.

B. Stability

We show that both the safe case and the probabilistic case ensure
input-to-state stability, proving that the CVPM-MPC method is input-
to-state stable (ISS). We start with the definition of an ISS Lyapunov
function.

Definition 5 (ISS Lyapunov Function [37]): Consider a continu-
ous function V : Xrpi → R and the functions α1, α2, α3 ∈ K∞,
γ ∈ K. Then, V is an ISS Lyapunov function for a system
xt+1 = f(xt,wt), where f is continuous, with a robust positively
invariant set Xrpi if α1, α2, α3, γ exist, for all k ≥ 0 and xt ∈ Xrpi,
such that
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α1(||xt||) ≤ V (xt) ≤ α2(||xt||) (23a)

V (f(xt,wt))− V (xt) ≤ −α3(||xt||) + γ(||wt||). (23b)
Lemma 2 (Sufficient ISS Condition [37]): The origin of system

xt+1 = f(xt,wt) where f is continuous is ISS if an ISS Lyapunov
function according to Definition 5 exists.

The following assumption is required.
Assumption 6: The weighting matrices of the stage cost are posi-

tive definite and symmetric, i.e., Q = Q> � 0 and R = R> � 0.
The terminal cost weighting matrix Qf is a solution of the discrete-
time algebraic Riccati equation.

Based on the robust control invariance of XcaseS it can be shown
that the origin is ISS for the safe case.

Lemma 3: Let Assumptions 2, 4, 5 and 6 hold. Then, for
xt ∈ XcaseS, the origin of the closed-loop system (15) is ISS.

Proof: The proof is given in Appendix II.
Consecutively applying the safe case yields same behavior as

robust MPC. If the safe case is not applicable, i.e., xt /∈ XcaseS,
it needs to be ensured that the system is still ISS. For the inverse
covariance matrix of the last predicted state xN , the solution S of
the discrete-time algebraic Riccati equation is used, i.e.,

(A−BK)>S(A−BK) + Σ−1
x = S (24)

where K is a control gain such that xt ∈ XcaseS ⇒ xt+1 ∈ XcaseS.
It follows that

Σ̃−1
x = diag

(
Σ−1
x , · · · ,Σ−1

x ,S
)

(25)

describes the adapted inverse of the covariance matrix.
Lemma 4: Let Assumptions 4 and 6 hold. For xt /∈ XcaseS, the

origin of the error dynamics of the error between the closed-loop
system (15) and the optimization variable ξ ∈ XcaseS is ISS using
the method from Section III-B.2.

Proof: The proof is given in Appendix III.
Based on Lemma 3 and Lemma 4, we can now formulate the

stability theorem for CVPM-MPC.
Theorem 2: Let Assumptions 2, 4, 5 and 6 hold. The origin of the

closed-loop system (15), controlled by CVPM-MPC, is ISS.
Proof: From Lemma 4 we conclude that the state converges to

the set XcaseS. Based on Lemma 3 the origin of system (15) is ISS
for xt ∈ XcaseS. Finally, the origin is ISS for all xt ∈ Rnx .

C. Extension to Time-Variant Constraints
We have assumed that the state constraint set X and the disturbance

setW are time-invariant. However, the method can also handle time-
variant X and W during runtime without preprocessing. We discuss
two different situations here. First, we discuss stability when the sets
X andW change for a short time, and second, when the sets change
permanently.

1) Short-term change: A change of the sets X orW for one time
step, i.e., an unexpected large disturbance, may lead to a violation
of Assumptions 2 and 5, and thus invalidate the stability guarantee
in the safe case. A violation of Assumption 3 leads to XcaseS = ∅
and, therefore, the probabilistic case is applied. Although recursive
feasibility is preserved, stability of the origin can no longer be
ensured. As the temporary change subsides, all assumptions are again
satisfied, resulting in stability.

2) Permanent change: It can be shown that, under Assump-
tions 2, 3, and 5, also a permanent change of the sets X andW does
not affect the stability of the system.

To meet Assumption 5, a precomputed terminal set Xf can be
utilized, which is computed for an initially large disturbance set W .
If the disturbance set changes during runtime, the assumptions still
hold. A suitable choice for Xf is a minimal robust invariant set. This,

due to Xf ⊆ X , enables to choose the state constraint set X rather
small.

V. NUMERICAL EXAMPLE

In the following, we discuss recursive feasibility and stability of the
proposed method in simulation studies and demonstrate the capability
of CVPM-MPC to handle time-variant uncertainty bounds.

A. Simulation Setup

We consider a discrete-time linear system. The system matrix, input
matrix, and disturbance matrix are given by

A =

[
0.99 -0.02
0.21 0.92

]
,B =

[
0.30
0.06

]
,G =

[
0.02 0.00
0.01 0.19

]
. (26)

The model describes a DC-DC converter, see [38], where the state
x1 stands for the current in a coil and the state x2 is the voltage
of a capacitor. The goal is to stabilize a voltage of 3.3 V, yielding
the reference xref =

[
1.06 3.30

]>, and uref = 0.28. The method
is adapted such that the reference state is stabilized. The input is
the duty cycle of a transistor, thus U = {u | 0 ≤ u ≤ 1} . In the
simulation, modeled and unmodeled disturbances are considered. The
support of the modeled disturbance is

W =
{

[w1, w2]>
∣∣∣ −0.2 ≤ w1 ≤ 0.2,−0.2 ≤ w2 ≤ 0.2

}
(27)

with covariance matrix Σw = diag(0.2, 0.2). The time-invariant
state constraint set is chosen as

X =
{

[x1, x2]>
∣∣∣ 0 ≤ x1 ≤ 2, 2.8 ≤ x2 ≤ 3.8

}
. (28)

Note that state constraints, uncertainty, and system matrix satisfy
Assumptions 1, 2 and 4.

The MPC employs a horizon of N = 10 with sampling time
∆t = 0.1 and the weighting matrices are chosen as Q = diag(1, 5),
and R = 1. The terminal cost Qf is determined according to
Assumption 6. The computation of the polyhedra Ucvpm and XcaseS
is done with the MPT3 toolbox [39].

B. Comparison of Probability Minimization Methods

The minimum of the constraint violation probability (12) is
challenging to compute. Therefore, two methods to approximate
the probability are introduced. First, in Section III-B.1, a numeric
computation of the probability using a Monte Carlo method, and
in Section III-B.2, an approximation of the probability utilizing a
quadratic program.
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Fig. 1: Comparison of probability minimization methods; Left: tra-
jectory of Monte Carlo Integration (red), Quadratic Program approx-
imation (blue, Sec. III-B.2); Right: constraint violation probability

As shown on the left in Figure 1, the trajectories that result from
applying both methods are almost identical. The initial value is not in
X leading to a high probability of constraint violation. Applying the
proposed method leads to a convergence to the set X and a decrease
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in the constraint violation probability. On the right side in Figure 1,
the constraint violation probability for the approach from Section III-
B.2 is given. Initially the constraint violation probability is almost 1
and the minimization allows to approach the set XcaseS. We observe
that the probabilistic case can deal with otherwise infeasible initial
states and find a trajectory that converges to XcaseS.

The average computation time for one step of the approximation
introduced in Section III-B.2 is 60 ms on a standard computer while
the average computation time of one step of the sampling method
is 4 min on a computer with an Intel Xeon E5-2630. The sampling-
based approach uses Ns = 105 randomly generated samples in each
iteration distributed according to (17).

C. Performance with Modeled and Unmodeled Disturbances

The following simulation shows convergence to a reference when
starting with a non-zero constraint violation probability. At time step
t = 50, an unmodeled disturbance affects the system for one time
step, which is handled by the CVPM-MPC method. An unmodeled
disturbance may be interpreted as an increase ofW for one time step
or as wt /∈ W . Figure 2 illustrates the simulation results.
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Fig. 2: Simulation of CVPM-MPC with an unmodeled disturbance:
Left: convergence to the set X ; Right: convergence to the set X
after unmodeled disturbance. (green: safe case; red: probabilistic case;
bright marker: current state)

The set X is indicated by the blue box. The set XcaseS is marked
in yellow. If the system state is in XcaseS, the safe case is applicable.
The initial state does not allow zero constraint violation probability
in the next step, i.e., x0 /∈ XcaseS; therefore, the probabilistic case is
required, indicated by the red dot in Figure 2.

Applying the CVPM-MPC procedure for the probabilistic case
moves the system state into the set XcaseS, as seen on the left side
in Figure 2. In XcaseS the control input is determined based on the
safe case, as indicated by the green dots since it is possible to reach
X in the next step. The subsequent steps with the safe case move
the system state towards the origin. Not that in this simulation,
mostly the probabilistic case is active whereas in application the
standard situation is applying the safe case and only switching to
the probabilistic case when unexpected disturbances occur.

At time step t = 50, an unmodeled disturbance occurs, which
moves the system state outside of XcaseS, as illustrated on the right
side in Figure 2. Note that input-to-state stability is not guaranteed in
this step as the uncertainty bound increased which violates Assump-
tion 1. Similar to the initial simulation state, the probabilistic case
is required because it is not possible to reach the constraint set X
in the next step. By switching from the safe case to the probabilistic
case, recursive feasibility is maintained. Afterwards, the CVPM-MPC
method steers the system state back to XcaseS.

VI. DISCUSSION

In contrast to the CVPM-MPC method presented in [5] and [6], the
CVPM-MPC approach proposed in this work is more general. Here,
we consider general linear constraints for a system with additive

uncertainty, whereas [5], [6] are motivated by a vehicle collision
avoidance scenario utilizing two dynamics and norm constraints. The
proposed approach significantly extends the possible applications to
all linear or linearized systems where constraints are linear or where
constraints may be linearized. The stability of the origin with general
linear constraints is achieved with a robust control invariant set of
initial states for the safe case and Assumption 5 on the terminal
constraint.

In Section IV-B, stability is discussed. As seen in the simulation
example, the CVPM-MPC method is capable of remaining feasible
even in the presence of unmodeled disturbances, but at the cost of
a constraint violation probability close to 1. The stability results
may not hold in case of unmodeled disturbances, as a bounded
uncertainty is assumed in the proofs (Assumption 1). The proposed
method, however, allows updating the assumed uncertainty bound and
state constraint. Therefore, the stability proof becomes valid again
for an updated set W or X as long as Assumptions 2, 3, and 5
hold. If the uncertainty bound is not known initially, a conservative
guess may be chosen and then the bound may be tightened over
time, based on recorded data. The potential short loss of a stability
guarantee is acceptable, however, as the main focus of this work is the
minimization of constraint violation probability. Note that recursive
feasibility remains guaranteed even for unmodeled disturbances.

If only SMPC is applied to the scenario shown in Fig. 2, an
8 % chance of violating the x1 < 2 constraint is observed, while
CVPM avoids constraint violation robustly. In contrast to SMPC, the
probabilistic case does not optimize a control objective but focuses
only on the constraint by minimizing the probability of constraint
violation. Only when the measured state, which is initial value for
the prediction, is in XcaseS, the control objective is again taken into
account. We assume to have applications where the safe case is
active almost all the time while the the probabilistic case tackles
rare problems with safety and is active if initial values are not safe or
unmodeled disturbances disturbances occur. In contrast to RMPC, we
consider the disturbance set W as a tuning parameter. Conservative
assumptions with large W results in conservative policies, whereas
a small W leads to a more optimistic but also more risky behavior.

VII. CONCLUSION

The proposed CVPM-MPC method provides an MPC approach
that combines the advantages of robust and stochastic MPC. The
ability of CVPM-MPC to cope with time-variant constraints and
uncertainty bounds provides a significant benefit for safety-critical
systems. Recursive feasibility is guaranteed and stability is ensured
under assumptions on the state constraint and disturbance support.

CVPM-MPC is suitable for linear and linearized systems, enabling
the use in applications such as quadcopter control or automated
vehicles. Furthermore, the proposed CVPM-MPC method may be
extended to consider probabilistic constraints and robust state con-
straints simultaneously. This extension would allow practitioners to
employ robust constraints where possible and necessary as well as
probabilistic CVPM constraints if suitable.

Whereas robust methods guarantee safety for predictable events,
unpredictable environmental changes are not covered. This is espe-
cially complex if ethical concerns are relevant for applications, e.g.,
how autonomous systems should behave if collision avoidance cannot
be guaranteed. CVPM-MPC provides a novel way to handle such
scenarios and ethical issues.

APPENDIX I
PROOF OF LEMMA 1

In this section, we use the following notation. The input sequence
ut obtained at time step t until prediction step t+N − 1 yields the
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state sequence xt, where these sequences are defined as

ut = (ut|t, ...,ut+N−1|t) and xt = (xt+1|t, ...,xt+N |t). (29)

The initial state for the state sequence is given as xt|t = xt.
Predictions made at time step t+ 1 are denoted

xt+1|t+1 = Axt|t +But|t +Gwt = xt+1|t +Gwt, (30)

depending on the uncertainty wt at time step t. Optimal trajectories
for the states and inputs are denoted by u∗t and x∗t .

Proof: We first show that a subsequent state sequence is in the
zero violation set X 	

(
G ◦WN

)
if the previous state sequence is

also in the zero violation set.
Let the predicted state sequence (xt+1|t...xt+N |t), based on the

initial state xt ∈ XcaseS, be in X 	
(
G ◦WN

)
. It follows that

xt+i|t ∈ X 	A
i−1G ◦W 	Ai−2G ◦W 	 ...	G ◦W. (31)

Then, the subsequent state sequence intial state
xt+1|t+1 = xt+1|t +Gwt is affected by the disturbance wt.
All states in the candidate state sequence are affected by the
propagation of the disturbance yielding

xt+2|t+1

:
xt+N |t+1

xt+N+1|t+1

 =


xt+2|t

:
xt+N |t

Axt+N |t +Bu

+


AG

:

AN−1G

ANG

wt. (32)

For a disturbance wt ∈ W the t+ i-th state xt+i|t+1 is in

X 	Ai−1G ◦W 	 ...	G ◦W ⊕Ai−1G ◦W (33a)

=X 	Ai−2G ◦W 	 ...	G ◦W ∀i ∈ I2,N . (33b)

Next, we show that the terminal state does not leave the terminal set.
The state xt+N |t is in the terminal set Xf. Based on Assumption 5,
it follows that an input u exists such that the terminal state of the
subsequent sequence is also in the terminal set, i.e., xt+N+1|t+1 ∈
Xf. To conclude, the subsequent state sequence (32) is always in the
zero violation set X 	

(
G ◦WN

)
.

Since XcaseS includes all states where a prediction
xt ∈ X 	

(
G ◦WN

)
exists and the subsequent prediction

xt+1 affected by a disturbance wt ∈ W is in the same set, we
conclude that XcaseS is a robust control invariant set.

APPENDIX II
PROOF OF LEMMA 3

We start with preparations for the proof. The optimal input
u∗t (xt) is obtained by solving the MPC optimal control problem
(14). Based on (4), we abbreviate the stage cost and the terminal
cost by l(xt,ut) = ||xt||2Q + ||ut||2R, and Vf(xt) = ||xt||2Qf

. In the
following, the notation introduced in (29) is used.

Proof: For xt|t ∈ XcaseS with Assumption 5, XcaseS is robust
control invariant according to Lemma 1. We define the Lyapunov
function V (xt|t) = J(xt|t,u

∗
k) based on the cost (4) with the

optimal feedback law u∗k(xt) obtained according to (14) where
Ucvpm is from the the safe case. As V is continuous, positive definite,
and radially unbounded based on Assumption 6, α1, α2 ∈ K∞
exist such that (23a) is fulfilled [40]. Additionally, V is Lipschitz
continuous on XcaseS as V only consists of quadratic terms and XcaseS
is bounded.

Next, we prove the descent property (23b). Based on
u∗t =

(
u∗t|t, ...,u

∗
t+N−1|t

)
we obtain

V (xt|t)= l
(
xt|t,u

∗
t|t

)
+ q

(
x∗t+1|t

)
(34)

where q
(
x∗t+1|t

)
=
∑N−1

k=1 l
(
x∗t+k|t,u

∗
t+k|t

)
+Vf(x

∗
t+N |t) sum-

marizes the total cost starting at x∗t+1|t, which is used similarly in
[41]. For t + 1 with u∗t+1 the optimal cost is J(xt+1|t+1,u

∗
k+1)

and with the non-optimal input sequence (u∗t+1|t, ...,u
∗
t+N−1|t, ũ),

we obtain due to optimality an input ũ satisfying Assumption 6

V (xt+1|t+1)≤
N∑

k=1

l
(
xt+k|t+1,u

∗
t+k|t

)
+ Vf(xt+N+1|t+1) (35a)

= q
(
xt+1|t+1

)
(35b)

where q
(
xt+1|t+1

)
= q

(
x∗t+1|t +Gwt

)
according to (30). Note

that at t + 1 the optimal input at prediction step k is u∗t+k|t+1,
based on xt+k|t+1, whereas u∗t+k|t, obtained at t, is not optimal as
xt+1|t+1 was affected by wt. With (34) and (35) we obtain

V (xt+1|t+1)− V (xt|t) (36a)

≤ q
(
xt+1|t+1

)
− l
(
xt|t,u

∗
t|t

)
− q

(
x∗t+1|t

)
. (36b)

The term q(·) is Lipschitz continuous due to Assumption 6 and the
boundedness of XcaseS and U , resulting in∥∥∥q (x∗t+1|t +Gwt

)
− q

(
x∗t+1|t

)∥∥∥ ≤ Lq||Gwt|| (37)

with Lipschitz constant Lq . Given (36b) and (37),

V (xt+1|t+1)− V (xt|t)≤ −l
(
xt|t,u

∗
t|t

)
+ Lq||Gwt|| (38a)

≤ −α3(||xt|t||) + Lq||Gwt||. (38b)

It is straightforward that the previous procedure holds for any t ≥ 0.
Therefore, all requirements of Definition 5 are fulfilled, i.e., V is
an ISS Lyapunov function and the origin of system (15) is ISS if
xt|t ∈ XcaseS.

APPENDIX III
PROOF OF LEMMA 4

In the following, the notation introduced in (29) is used.
Proof: The optimal input is now determined in (21). We define the
error between a state sequence xk and the optimization variable ξ
in each time step t + k as et+k|t based on the initial value at time
t. The candidate Lyapunov function is

V ′(et|t) =

N−1∑
k=0

l′
(
e∗t+k|t

)
+ V ′f (e∗t+N |t) (39a)

= l′
(
e∗t|t

)
+ q′(e∗t+1|t) (39b)

with an optimal input sequence u∗k, values of ξ∗
k

and stage cost

l′
(
et+k|t

)
= ||et+k|t||2Σ−1

x
according to (21). The terminal cost is

defined as V ′f (et+N |t) = ‖et+N |t‖2S , based on (25). Since V ′ is
positive definite, radially unbounded, and Lipschitz continuous on
Rnx , (23a) holds.

Similar to Lemma 3, we define the total cost starting at et+1|t
as q′(et+1|t). For t + 1 the optimal cost is V ′(et+1|t+1) with the
optimal values u∗k+1 and ξ∗

k+1
. We apply a shifted non-optimal input

sequence (u∗t+1|t, ...,u
∗
t+N−1|t,Kx

∗
t+N−1|t), where the last input

is determined with the feedback matrix K. Similar for the error, the
shifted sequence (et+1|t, ..., et+N |t, (A+BK)et+N |t) is used. We
obtain an upper bound

V ′(et+1|t+1) ≤
N∑

k=1

l′
(
e∗t+k|t+1

)
+ V ′f (e∗t+N+1|t+) (40a)

= q′(e∗t+1|t+1), (40b)
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which can be summarized to q′(et+1|t+1) due to (25). Since q′ is
Lipschitz continuous on Rnx , the same arguments as in Lemma 3
yields

V ′(et+1|t+1)− V ′(et|t) ≤ −α3

(
||e∗t|t||

)
+ Lq′ ||Gwt||. (41)

It follows that for xt|t ∈ Rnx , which includes xt|t /∈ XcaseS, the
error et|t between (15) and the optimization variable ξ ∈ XN

caseS is
ISS.
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tionally efficient robust model predictive control framework for uncertain
nonlinear systems. IEEE Transactions on Automatic Control, 66(2):794–
801, 2021.
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