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Nash Equilibria for linear quadratic discrete-time
dynamic games via iterative and data-driven

algorithms
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Abstract— Determining feedback Nash equilibrium solu-
tions of nonzero-sum dynamic games is generally chal-
lenging. In this paper, we propose four different iterative
algorithms to find Nash equilibrium strategies for discrete-
time linear quadratic games. The strategy update laws
are based on the solution of either Lyapunov or Riccati
equations for each player. Local convergence criteria are
discussed. Motivated by the fact that in many practical
scenarios each player in the game may have access to
different (incomplete) information, we also introduce purely
data-driven implementations of the algorithms. This allows
the players to reach a Nash equilibrium solution of the
game via scheduled experiments and without knowledge of
each other’s performance criteria or of the system dynam-
ics. The efficacy of the presented algorithms is illustrated
via numerical examples and a practical example involving
human-robot interaction.

Index Terms— Game theory, Linear systems, Optimisa-
tion algorithms, Data-driven methods

I. INTRODUCTION

DYNAMIC game theory, also referred to as differential
game theory in the continuous-time case, provides pow-

erful tools to model dynamic interactions between strategic
decision makers [1]. Due to its flexibility in capturing a variety
of potentially competitive scenarios, it has, for example, found
applications in economics [2], military strategy [3], politics [4]
and ecology [5]. While different solution concepts exist, the
so-called Nash equilibrium solutions are naturally of interest
in noncoopertive settings [6]. At a Nash equilibrium, no
decision maker - referred to as player - has an incentive to
unilaterally deviate from its equilibrium strategy, since such
an action would result in a higher cost for the deviating
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Studi di Roma “Tor Vegata”, Via del Politecnico 1, 00133, Roma, Italy
(e-mail:andrea.monti@uniroma2.it)

M. Sassano is with the Dipartimento di Ingegneria Civile ed
Ingegneria Informatica (DICII), Università degli Studi di Roma
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player. Nash equilibrium solutions, and in particular those
characterised by feedback strategies, have been extensively
studied in the literature, see e.g. [1], [7], [8], [9], [10],
[11]. However, the set of coupled equations associated with
feedback Nash equilibrium solutions is generally difficult
to solve, even for games characterised by a quadratic cost
and linear time-invariant (LTI) dynamics [6]. Consequently,
approaches based on approximate or numerical solutions are
of interest. Approximate Nash equilibrium solution concepts
have been considered in [12], [13]. Iterative solution schemes
to solve the coupled equations associated with Nash equilib-
rium strategies of (continuous-time) differential games have
been suggested in [11], [14], [15], [16]. Most algorithms
are presented without a proof of convergence or convergence
guarantees are limited to the special case in which there exists
a unique feedback Nash equilibrium. Note that in general the
number of feedback Nash equilibria can range from zero to
infinity [11]. In the discrete-time case, peculiar challenges and
difficulties arise compared to the continuous-time counterpart,
due to additional mixed product terms of the decision variables
appearing in the coupled algebraic equations associated with
linear quadratic (LQ) dynamic games [17]. While the literature
in the context of iterative solution methods focuses mainly
on the continuous-time setting, methods in the discrete-time
setting include [18] for finite-horizon games and [19], [20] in
the context of reinforcement learning, with similar limitations
on convergence guarantees as in the continuous-time case. In
[21] a policy iteration algorithm is provided with conditions
ensuring convergence to a Nash equilibrium.
Focusing on discrete-time LQ dynamic games, in the first part
of this paper, we propose four algorithms - which, to the
best of our knowledge, have not previously appeared in the
literature - to find a Nash equilibrium solution of the game.
The presented iterative schemes rely on solutions of uncoupled
either Lyapunov or Riccati equations to update the actions of
each player. The first two can be interpreted as policy iteration
algorithms and the latter two as value iteration algorithms.
Criteria for local convergence of the algorithms to a Nash
equilibrium solution are discussed. More precisely, conditions
are provided under which a set of Nash equilibrium strategies
of the LQ dynamic game, which may admit several of such
equilibrium solutions with different outcomes, constitutes a
locally asymptotically stable (LAS) equilibrium of the iterative
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schemes.
In the context of dynamic games it is important to specify

the information available to each player. In the “classical”
game formulation, each player has full knowledge of all
system parameters and the performance criteria of all players
[6]. However, in many settings, different and incomplete
information may be available to each player. Algorithms to
determine Nash equilibrium solutions for games with unknown
system dynamics have been proposed in [22], [23], [24] for the
continuous-time case and [19], [20], [21] for the discrete-time
case. In a competitive environment, the assumption that each
player knows in advance the objective (performance criterion)
of all the other players is hardly motivated. Examples in-
clude distributed control systems [25], cyber-physical systems
[26] or human-robot systems [27]. In [28] a reinforcement
learning algorithm for graphical games, in which only local
information is available to each agent, is introduced. Inverse
dynamic games [29], on the other hand, focus on learning
the performance criteria of all players from “expert data”
corresponding to a solution of the game. In [30], a special
class of LQ dynamic games with asymmetric information
structure is considered, in which one player only knows its
own performance objective, but not the functions the other
players are aiming to optimise. A direct data-driven method
(based on non-expert data) extending the results in [31] is
proposed to overcome this lack of information and determine
the Nash equilibrium strategy for the uninformed player. The
method additionally allows to account for the system dynamics
being unknown to the player lacking cost information.
In the second part of this paper, we focus on games with
incomplete information, in the sense that each player only
knows its own objective function, but not the objectives of
all other players. We show that in the context of the iterative
algorithms presented in the first part of this paper, data can
be used in a similar way as in [30] to determine Nash
equilibrium strategies even in the event that all players have
limited information available to them. We demonstrate that the
players can jointly converge to a Nash equilibrium solution
by scheduling experiments and taking turns to collect finite
data sequences of the state and their own input only. More
precisely, during each update interval allocated to each player,
the strategies implemented by the other players are fixed at
their current guesses. As a result, the (partially closed-loop)
system dynamics perceived by the updating player include the
strategies of the other players and are hence (at least partially)
unknown. This is overcome by representing or recovering
the dynamics using data. Hence, the presented algorithms are
also applicable to games in which the system dynamics are
unknown.

Preliminary results regarding the proposed methods have
been presented in [32] although limited to the setting of scalar
dynamics. In this paper we extend the results to general linear
systems, while also providing a more detailed and insightful
analysis and discussion of the proposed algorithms. We also
consider the application of the algorithms to a practical exam-
ple involving human-robot interaction.

The remainder of this paper is organised as follows. In
Section II, we recall some preliminaries related to LQ dynamic

games and data-driven control and formalise the considered
problems. In Section III, we propose and analyse iterative
algorithms to find Nash equilibria in the presence of complete
model and cost information. The results are demonstrated
on two illustrative numerical examples. In Section IV, we
introduce data-driven implementations of the algorithms that
are applicable when cost and/or model information is missing.
The efficacy of the results presented in this paper is then
illustrated via a practically relevant example involving human-
robot interaction in Section V. Finally, some concluding
remarks are provided in Section VI.

Notation: The set of real numbers is denoted by R, the set of
natural numbers by N and N\{0} by N>0. Given a matrix A,
its vectorisation is denoted by vec(A), its transpose by A⊤,
and its induced 2-norm by ∥A∥. Given a square matrix B, B ≻
0 (B ⪰ 0) denotes that B is positive definite (positive semi-
definite), and Tr(B) denotes its trace. The spectral radius of B
is denoted by ρ(B). The set of square positive definite matrices
is denoted by S+. Given a positive semi-definite matrix M
the notation ∥x∥2M describes the weighted semi-norm x⊤Mx.
Given a matrix C of full row rank, C† denotes its right inverse.
The n × n identity matrix is indicated by In. Given a signal
z : N→ Rσ the sequence {z(k), . . . , z(k+T )} is denoted by
z[k,k+T ] with k, T ∈ N. Given a vector v, the diagonal matrix
with the elements of v on its diagonal is denoted by diag(v).

II. PROBLEM STATEMENTS AND PRELIMINARIES

Consider a discrete-time system influenced by the control
actions of N ∈ N>0 players and described by the difference
equation

x(k + 1) = Ax(k) +

N∑
j=1

Bjuj(k), (1)

for k ∈ N, where x(k) ∈ Rn denotes the state of the system
and uj(k) ∈ Rmj denotes the control input of the j-th player,
for j = 1, . . . , N , and A and Bj , j = 1, . . . , N , denote
constant matrices of appropriate dimension. Let u−j denote
the set of control inputs of all players except player j, namely

u−j(k) = {u1(k), . . . , uj−1(k), uj+1(k), . . . , uN (k)},

for all k ∈ N, j = 1, . . . , N . Consider the cost functional

Jj(x(0), uj(·), u−j(·)) =
∞∑
k=0

(
∥x(k)∥2Qj

+

N∑
l=1

∥ul(k)∥2Rjl

)
,

(2)
associated with player j, for j = 1, . . . , N , where Qj = Q⊤

j ⪰
0, Rjl = R⊤

jl ⪰ 0 and Rjj = R⊤
jj ≻ 0, for l = 1, . . . , N ,

l ̸= j. Consider the multi-player optimisation problem in
which each player seeks to minimise, via its control input,
its associated cost functional. Then, the dynamics (1) and cost
functionals (2), for j = 1, . . . , N , constitute an LQ dynamic
game. In this paper, we focus on so-called feedback Nash-
equilibrium solutions of the dynamic game, as recalled in the
following definition (see e.g. [1]).
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Definition 1. (Feedback Nash equilibrium) Consider the dy-
namic game defined by the system (1) and the cost function-
als (2), for j = 1, . . . , N . An admissible1 set of strategies
{u⋆

j , u
⋆
−j} constitutes a feedback Nash equilibrium solution

of the game if the inequalities

Jj(x(0), u
⋆
j (·), u⋆

−j(·)) ≤ Jj(x(0), uj(·), u⋆
−j(·)), (3)

hold for all admissible {uj , u
⋆
−j} and for j = 1, . . . , N .

It can be shown, via the Dynamic Programming principle
[33], that the LQ dynamic game defined by the dynamics (1)
and the cost functionals (2), for j = 1, . . . , N , admits linear
state-feedback strategies of the form

uj(k) = Kjx(k),

for Kj ∈ Rmj×n and j = 1, . . . , N , as Nash equilibrium
strategies if and only if there exist K⋆

j and P ⋆
j = P ⋆

j
⊤ ⪰ 0 ∈

Rn×n, such that

ρ

A+

N∑
j=1

BjK
⋆
j

 < 1, (4)

satisfying2

P ⋆
j = Qj +

N∑
l=1

K⋆
l
⊤RjlK

⋆
l

+

(
A+

N∑
l=1

BlK
⋆
l

)⊤

P ⋆
j

(
A+

N∑
l=1

BlK
⋆
l

)
, (5)

for j = 1, . . . , N , and

M

K
⋆
1

...
K⋆

N

 = −

B
⊤
1 P ⋆

1
...

B⊤
NP ⋆

N

A, (6)

where

M =

R11 +B⊤
1 P ⋆

1B1 . . . B⊤
1 P ⋆

1BN

...
. . .

...
B⊤

NP ⋆
NB1 . . . RNN +B⊤

NP ⋆
NBN

 . (7)

Hence, provided a solution of (5)-(7), j = 1, . . . , N , such that
(4) holds, can be obtained, the corresponding set of strategies

uj(k) = K⋆
j x(k) , (8)

for j = 1, . . . , N , constitutes a feedback Nash equilibrium
solution of the game.
Remark 1. The conditions (4)-(7) show that feedback Nash
equilibria of LQ discrete-time dynamic games are charac-
terised by the stabilising solutions of a set of coupled algebraic
equations. Note that if the players’ performance criteria are
such that

∑N
j=1 Qj ≻ 0, then any solution to (5)-(7) which is

such that
∑N

j=1 Pj ≻ 0, is stabilising, i.e. such that (4) holds.

1A set of feedback strategies {uj , u−j} is said to be admissible if it belongs
to the subset of state-feedback control laws that render the zero equilibrium
of system (1) asymptotically stable.

2See e.g. [34], similar conditions can also be found in [1, Section 6.2.3]
and [35, Sec. 6.7.2].

Remark 2. It is interesting to put the conditions (5)-(7) into
perspective with respect to their continuous-time counterpart.
In the continuous-time case (see e.g. [11, Chapter 8] for more
details), feedback Nash equilibrium solutions to an N -player
LQ differential game are characterised by the solution of N
coupled algebraic Riccati equations. The feedback equilibrium
strategy of player j, K⋆

j , depends explicitly only on the
solution P ⋆

j of the j-th equation, for j = 1, . . . , N . The
dependency on the strategies of the other players l = 1, . . . , N ,
l ̸= j, is instead only implicit through the coupling of the
N equations. In the discrete-time case, on the other hand, it
is evident in (6) (by inspecting the structure of (7)) that the
feedback equilibrium strategy of player j explicitly depends
on all P ⋆

l , l = 1, . . . , N . Furthermore, combining (5) and
(6) and eliminating one set of variables (either K⋆

j or P ⋆
j for

j = 1, . . . , N ) results in N coupled algebraic equations, which
are not quadratic in the decision variables unlike the (Riccati)
matrix equations arising in differential games and (discrete-
or continuous-time) infinite-horizon linear quadratic optimal
control. It is worth observing that the two differences men-
tioned above render the iterative and data-driven computation
of solutions to the equations (5)-(7) more challenging than the
continuous-time setting.

As discussed in Remark 2, solving (5)-(7) and thereby
determining Nash equilibrium solutions of the game (1), (2),
for j = 1, . . . , N , is generally challenging. In the following
sections, we propose and discuss four algorithms to find
feedback Nash equilibrium solutions of LQ dynamic games
iteratively, with the objective of solving, at each step of the
iterations, matrix equations of reduced complexity with respect
to (5)-(7). We further introduce a data-driven implementation
of the algorithms, which allows to account for missing (or
partial) information about the system dynamics and the cost
parameters by using measured data. The addressed problems
are formally stated in the following subsection.

A. Problem statements

Consider the problem of iteratively determining a set of
feedback Nash equilibrium strategies for an LQ discrete-time
dynamic game, as formalised in the following statement.

Problem 1. Consider the dynamic game defined by the sys-
tem (1) and the cost functionals (2), for j = 1, . . . , N . Given
an initial guess K

(0)
j , for j = 1, . . . , N , iteratively determine

gains K⋆
j , for j = 1, . . . , N , such that the corresponding set of

feedback strategies (8), for j = 1, . . . , N , constitutes a Nash
equilibrium solution of the dynamic game.

In Section III we provide four iterative algorithms which
address Problem 1, thus allowing us to find an admissible set of
linear feedback strategies that constitutes a Nash equilibrium
solution of the game, provided the system dynamics (1) and
cost functionals (2), j = 1, . . . , N , are known, and analyse
local convergence of the algorithms. However, dynamic games
can be used to model a variety of scenarios in which it is
likely that each player has access to different and typically
partial information. Motivated by this, we also consider a data-
driven version of Problem 1. Namely, we consider the problem
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in which each player only has information regarding its own
cost, but not about the cost functionals associated with all
other players, and may not know the system matrices A and
Bj , for j = 1, . . . , N . To address this, we present methods to
iteratively determine Nash equilibrium strategies using input
and state data from sequential experiments, as formalised in
the following statement.

Problem 2. Consider the dynamic game defined by the
system (1) and the cost functionals (2), for j = 1, . . . , N . Let
the cost matrices Qw and Rwg , for g = 1, . . . , N , associated
with players w, for w = 1, . . . , N , w ̸= j, and the system
matrices A, Bl, for l = 1, . . . , N , be unknown3 to player
j, for j = 1, . . . , N . Suppose that the players are able to
schedule experiments and recursively collect finite-length data
sequences of the state x and their own input uj to update their
estimated strategy gains Kj . Then, given an initial guess K(0)

j ,
for j = 1, ..., N , iteratively determine a Nash equilibrium
solution of the game.

It is worth mentioning that an algorithmic solution to Prob-
lem 2 possesses a feature that has recently become particularly
desirable in modern applications, especially for problems
involving a large number of players. Namely, in solving
Problem 2, a Nash equilibrium is obtained based solely on
the partial information available to each player. Apart from the
preliminary agreement on scheduling sequential experiments
on the basis of certain identification labels associated to each
player, the computation of the Nash equilibrium strategies is
therefore distributed, in the sense that each player solves only
its own matrix equation, by relying only on measured input-
state data, even if the equation in principle belongs to a system
of coupled matrix equations. This appealing feature is a result
of the coupling being captured by the collected input-state
data, and may lead to a reduction of the overall computational
complexity in practice.

In the following subsection we recall some well-known
results related to data-driven control, which are instrumental
for the solutions of Problem 2 proposed in Section IV.

B. Preliminaries on data-driven control

For illustrative purposes, consider an LTI system influenced
by the control action u(k) ∈ Rm of a single player, described
by the dynamics

x(k + 1) = Āx(k) + B̄u(k). (9)

Suppose Ā and B̄ are unknown and assume T -length data
sequences of the input ud,[k0,k0+T−1] and the corresponding
state response xd,[k0,k0+T ] can be collected via an open-loop
experiment or simulation. The subscript d indicates measured
data samples, whereas the subscript [k0, kf ] indicates the time
interval over which the data sequences are collected. The

3Note that the presented results are applicable and relevant if the system
dynamics are known and only the cost of the other players is unknown. To
consider the most general case we also treat the system dynamics as unknown.

collected data sequences are used to construct the matrices

U− =
[
ud(k0) . . . ud(k0 + T − 1)

]
,

X− =
[
xd(k0) . . . xd(k0 + T − 1)

]
,

X+ =
[
xd(k0 + 1) . . . xd(k0 + T )

]
.

(10)

Assumption 1. The matrix
[
X−
U−

]
has full row rank.

If Assumption 1 holds, then the data matrices (10) can be
used to design controllers for the unknown system (9), either
by identifying Ā and B̄ and using any classical control design
method (indirect method) or directly from the data bypassing
any explicit identification step (direct method).

1) Indirect method: Following [31, Theorem 1] the open-
loop system (9) can equivalently be represented as

x(k + 1) =
[
Ā B̄

] [x(k)
u(k)

]
= X+

[
X−
U−

]† [
x(k)
u(k)

]
, (11)

involving the pseudo-inverse of the collected input-state data.
This is a system identification-type result, related to dynamic
mode decomposition.

2) Direct method: In [31, Theorem 2] it has been shown
that (10) can be used to elegantly represent and design state-
feedback controllers of the form u(k) = Kx(k) for the
system (9) directly using data. Namely, a data-based repre-
sentation of the closed-loop system is given by

x(k + 1) = (Ā+ B̄K)x(k) = X+Gx(k), (12)

with G ∈ RT×n satisfying[
In
K

]
=

[
X−
U−

]
G. (13)

Using this system representation, G becomes the decision
variable for control design, i.e. G can be designed such that
system (9) in closed loop with

u(k) = U−Gx(k), (14)

satisfies certain control objectives.
In Section IV we address Problem 2 by combining these indi-
rect and direct data-driven methods with the Nash equilibrium
finding algorithms (i.e. solutions of Problem 1) introduced in
the following section.

III. ITERATIVE ALGORITHMS FOR NASH-EQUILIBRIA

Consider the dynamic game defined by the dynamics (1) and
the cost functionals (2), for j = 1, . . . , N . Typically, finding
Nash equilibrium strategies of the form (8), i.e. determining
K⋆

j and P ⋆
j , for j = 1, . . . , N , which satisfy (4)-(7), is

not a straightforward task. In this section, we propose four
different algorithms to determine a solution K⋆

j , P ⋆
j , starting

from an initial guess K(0)
j , by iteratively updating the solution

guesses K
(i)
j , P

(i)
j , for j = 1, . . . , N and i ∈ N. The first

two algorithms, the so-called “Lyapunov iterations”, involve
update laws based on the solution of Lyapunov equations,
the latter two, referred to as “Riccati iterations”, are based
on the solution of Riccati equations. Each type of algorithm
is proposed in a synchronous as well as in an asynchronous
fashion, as detailed below and illustrated in Figure 1.
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Asynchronous
update

{K(i)
1 , . . . ,K

(i)
N }

{K(i+1)
1 ,K

(i)
2 , . . . ,K

(i)
N }

...

{K(i+1)
1 , . . . ,K

(i+1)
j ,K

(i)
j+1 . . . ,K

(i)
N }

...

{K(i+1)
1 , . . . ,K

(i+1)
N }

Synchronous
update

{K(i)
1 , . . . ,K

(i)
N }

{K(i+1)
1 , . . . ,K

(i+1)
N }

player 1 update

player j update

player N update

all players
update
similtaneously

Fig. 1: Illustration of the synchronous and asynchronous
strategy update types.

1) Synchronous updates: The strategy update of player j
at iteration (i + 1) is defined on the premise that the actions
of all other players remain fixed at feedback strategies with
the gains corresponding to the previous iteration step (i),
i.e. ul(k) = K

(i)
l x(k), for l = 1, . . . , N , l ̸= j. Hence,

the system dynamics perceived by player j at iteration (i)

are x(k + 1) = Â
(i)
s,jx(k) + Bjuj(k), with Â

(i)
s,j = A +∑N

l=1,l ̸=j BlK
(i−1)
l , and the cost functional of player j be-

comes Jj (x(0), uj) =
∑∞

k=0

(
∥x(k)∥

Q̂
(i)
s,j

+ ∥uj∥Rjj

)
, with

Q̂
(i)
s,j = Qj +

∑N
l=1,l ̸=j K

(i−1)
l

⊤
RjlK

(i−1)
l .

2) Asynchronous updates: The strategy update of player j
at iteration (i + 1) takes into account the updates of players
w = 1, . . . , j − 1 at the same iteration. Hence, player j treats
the strategies of players w fixed at uw(k) = K

(i+1)
w x(k), for

w = 1, . . . , j− 1 and players l fixed at ul(k) = K
(i)
l x(k), for

l = j + 1, . . . , N . The system dynamics perceived by player
j at iteration (i) are thus x(k + 1) = Â

(i)
a,jx(k) + Bjuj(k),

with Â
(i)
a,j = A +

∑j−1
w=1 BwK

(i)
w +

∑N
l=j+1 BlK

(i−1)
l , and

the cost functional of player j becomes Jj (x(0), uj) =∑∞
k=0

(
∥x(k)∥

Q̂
(i)
a,j

+ ∥uj∥Rjj

)
, with Q̂

(i)
a,j = Qj +∑j−1

w=1 K
(i)
w

⊤
RjwK

(i)
w +

∑N
l=j+1 K

(i−1)
l

⊤
RjlK

(i−1)
l .

To streamline the presentation, let Â(i)
σ,j and Q̂

(i)
σ,j denote the

dynamic matrix and state cost weight, respectively, associated
with a generic update rule, where σ = s denotes the syn-
chronous update and σ = a denotes the asynchronous update.
Moreover, we use the generic notation defined in Appendix I
to analyse convergence of the presented algorithms. To this
end, consider the following statement introducing conditions
related to the solution of the set of coupled matrix equations
(5)-(7).

Lemma 1. Let {K⋆
1 , . . . ,K

⋆
N}, satisfying (5)-(7), j =

1, . . . , N , for some {P ⋆
1 , . . . , P

⋆
N}, be the set of gains

corresponding to any feedback Nash equilibrium solu-
tion of the game (1), (2), j = 1, . . . , N . Let z⋆ =[
vec(K⋆

1 )
⊤ . . . vec(K⋆

N )⊤
]⊤

. The vector z⋆ is such that
L(z⋆) = 0, with L(z⋆) =

[
L⊤
1 . . . L⊤

N

]⊤
, and

Lj = vec
(
RjjK

⋆
j

)
−

(
(A+

N∑
l=1

BlK
⋆
l )

⊤ ⊗B⊤
j

)

×

(
(A+

N∑
l=1

BlK
⋆
l )

⊤ ⊗ (A+

N∑
l=1

BlK
⋆
l )

⊤ − In2

)−1

× vec

(
Qj +

N∑
l=1

K⋆
l
⊤RjlK

⋆
l

)
, (15)

for j = 1, . . . , N . Conversely, any {K⋆
1 , . . . ,K

⋆
N} satisfying

(15), j = 1, . . . , N , and (4) is a set of feedback gains
corresponding to a Nash equilibrium solution of the game (1),
(2), j = 1, . . . , N .

Proof. The entries of the mapping L given in (15) are derived
from the vectorisation of (5), as well as the vectorisation of
a single row block of (6), (7) and by eliminating vec

(
P ⋆
j

)
.

Hence, any K⋆
j , j = 1, . . . , N satisfying (5)-(7) satisfies

(15), j = 1, . . . , N . Note that by Definition 1, the gains
{K⋆

1 , . . . ,K
⋆
N} are such that the corresponding state-feedback

laws render the zero equilibrium asymptotically stable. Hence,
for fixed K⋆

j , j = 1, . . . , N , (5) has a unique solution P ⋆
j , j =

1, . . . , N . Moreover, vectorisation is a linear transformation.
Hence, conversely, any K⋆

j , j = 1, . . . , N , such that (4)
holds and satisfying (15) satisfy (5)-(7) for some P ⋆

j , for
j = 1, . . . , N .

A. Lyapunov iterations
In this subsection we introduce iterative algorithms to com-

pute Nash equilibrium strategies for the discrete-time LQ game
(1), (2), j = 1, . . . , N , via the solution of a sequence of Lya-
punov equations. Consider the following iterative update law,
defined with respect to the unified notation for synchronous
(σ = s) and asynchronous (σ = a) algorithms introduced
above,

0 = Q̂
(i+1)
σ,j +

(
K

(i)
j

)⊤
RjjK

(i)
j − P

(i+1)
j

+
(
Â

(i+1)
σ,j +BjK

(i)
j

)⊤
P

(i+1)
j

(
Â

(i+1)
σ,j +BjK

(i)
j

)
,

(16a)

K
(i+1)
j = −

(
Rjj +B⊤

j P
(i+1)
j Bj

)−1

B⊤
j P

(i+1)
j Â

(i+1)
σ,j ,

(16b)

for j = 1, . . . , N , i ∈ N. Note that (16a) is a Lyapunov
equation, whereas (16b) simply assigns a value to Kj at
each step. In the following statement we provide conditions
for local asymptotic convergence of the update law (16), for
j = 1, . . . , N , to a solution {K⋆

1 , . . . ,K
⋆
N}, {P ⋆

1 , . . . , P
⋆
N} of

(4)-(7), j = 1, . . . , N .
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Proposition 1. Consider Problem 1 and let {K⋆
1 , . . . ,K

⋆
N},

satisfying (4)-(7), j = 1, . . . , N , for some {P ⋆
1 , . . . , P

⋆
N},

be the set of gains corresponding to any Nash equi-
librium solution of the game. Consider the iterative
update law (16), for j = 1, . . . , N . Let z(i) =[
vec
(
K

(i)
1

)⊤
. . . vec

(
K

(i)
N

)⊤]⊤
and F (z(i), z(i+1)) =[

F⊤
1 . . . F⊤

N

]⊤
, with

Fj = vec
(
RjjK

(i+1)
j

)
−
(
(Â

(i+1)
σ,j +BjK

(i+1)
j )⊤ ⊗B⊤

j

)
×
(
(Â

(i+1)
σ,j +BjK

(i)
j )⊤ ⊗ (Â

(i+1)
σ,j +BjK

(i)
j )⊤ − In2

)−1

× vec

(
Q̂

(i+1)
σ,j +K

(i)
j

⊤
RjjK

(i)
j

)
, (17)

for j = 1, ..., N . Suppose that
i. the eigenvalues λl, l = 1, . . . , p, p ≤ n of(

Â
(i+1)
σ,j +BjK

(i)
j

)
are such that λlλq ̸= 1 for all l =

1, . . . , p, q = 1, . . . , p and j = 1, . . . , N ;
ii. the matrix H = −M−1

n Mc is Schur, where Mn and Mc

are constructed as in (26a) and (26b) (see Appendix I)
with respect to F with entries Fj as defined by (17).

Then {K⋆
1 , . . . ,K

⋆
N} is a LAS equilibrium of the synchronous

(σ = s) or asynchronous (σ = a) Lyapunov iterations
algorithm (16), for j = 1, . . . , N .

Proof. Note that the entries of the mapping F given in (17),
are derived from the vectorisation of the (matrix) differ-
ence equations (16), for j = 1, . . . , N , and by eliminating
vec
(
P

(i+1)
j

)
. Hence, any K

(i)
j , K

(i+1)
j , j = 1, . . . , N ,

satisfying (16) satisfy (17), for j = 1, . . . , N . Condition i.
ensures that there exists a unique solution P

(i+1)
j to (16a)

[36]. Hence, since vectorisation is a linear transformation,
any K

(i)
j , K(i+1)

j , j = 1, . . . , N , satisfying (17) satisfy (16),
for j = 1, . . . , N . Note that 0 = F (z(i+1), z(i)) and 0 =
F (z⋆, z⋆). With this notation in place, LAS follows directly
from Lemma 1 and Lemma 3.

The statement of Proposition 1 ensures the existence of a
non-empty basin of attraction with respect to the discrete-
time nonlinear system (16) for all Nash equilibrium strategies
that satisfy certain conditions. Note that the conditions in
Proposition 1 cannot in fact be verified a priori since the
conditions in item i. depend on the strategy updates and the
conditions in item ii. depend on the knowledge of the Nash
equilibrium solution sought for.

Remark 3. The synchronous version of the Lyapunov iterations
(16) can be interpreted as a discrete-time, N-player equivalent
of the algorithm presented in [14]. Note that due to the
additional product terms of the decision variables arising
in (6)-(7) compared to the continuous-time case, different
interpretations of the discrete-time synchronous Lyapunov
iterations are possible. In an alternative version to the one we
present, the j-th player updates P

(i+1)
j using (16a), however,

(6) (in place of (16b)), suitably interpreted within the iterative
framework, is used to compute the update of K

(i+1)
j for all

j simultaneously. This implies that P
(i+1)
j is first computed

for all j = 1, . . . , N , and then used to compute K
(i+1)
j for

j = 1, . . . , N , which is inherently a centralised approach.
This version has been presented in [19, Algorithm 1] for
the two-player case. Note that in contrast to the version
presented herein, the scheme in [19, Algorithm 1] requires the
invertibility of a matrix similar to M in (7) (with P ⋆

j replaced
with P

(i+1)
j , j = 1, . . . , N ). Another similar algorithm has

been presented in [21, Algorithm 1]. While the update law of
this algorithm is equivalent to (16) with σ = s, the algorithm
in [21] is also implemented in a centralised fashion, namely,
P

(i+1)
j is first computed for all j = 1, . . . , N , and then

used to compute K
(i+1)
j for j = 1, . . . , N . In contrast, in

the version presented herein, the j-th player updates P
(i+1)
j

and K
(i+1)
j together by solving (16) and the updates of the

different players happen sequentially. This choice is motivated
by that it allows a data-driven implementation as discussed
in Section IV in which each player updates its strategy in a
distributed fashion.

B. Riccati iterations

In this subsection we introduce iterative algorithms to
compute Nash equilibrium strategies for the discrete-time LQ
game (1), (2), j = 1, . . . , N , via the solution of a sequence of
independent Riccati equations. Namely, each player j solves
a linear quadratic regulator (LQR) problem at each iteration
to update its feedback gain Kj , for j = 1, . . . , N , minimising
its own cost functional (2) subject to the dynamics (1), with
the actions of the other players l = 1, . . . , N , l ̸= j, fixed at
feedback strategies (which do not necessarily correspond to a
Nash equilibrium solution of the game). Namely, consider the
iterative update law given by the stabilising solution of the set
of algebraic equations

0 = Q̂
(i+1)
σ,j +K

(i+1)
j

⊤
RjjK

(i+1)
j − P

(i+1)
j

+
(
Â

(i+1)
σ,j +BjK

(i+1)
j

)⊤
P

(i+1)
j

(
Â

(i+1)
σ,j +BjK

(i+1)
j

)
,

(18a)

K
(i+1)
j = −

(
Rjj +B⊤

j P
(i+1)
j Bj

)−1

B⊤
j P

(i+1)
j Â

(i+1)
σ,j ,

(18b)
for j = 1, . . . , N , i ∈ N. As in Section III-A, we discuss
two update scenarios: a synchronous one (σ = s) and an
asynchronous one (σ = a). Note that (18a) is a Riccati
equation, whereas (18b) relates K

(i+1)
j and P

(i+1)
j . In the

following statement we provide conditions for local asymptotic
convergence of the update law (18), for j = 1, . . . , N , to a
solution {K⋆

1 , . . . ,K
⋆
N}, {P ⋆

1 , . . . , P
⋆
N} of (4)-(7), for j =

1, . . . , N .

Proposition 2. Consider Problem 1 and let {K⋆
1 , . . . ,K

⋆
N},

satisfying (4)-(7), j = 1, . . . , N , for some {P ⋆
1 , . . . , P

⋆
N}, be

the set of gains corresponding to any Nash equilibrium solu-
tion of the game. Consider the iterative update law (18), for

j = 1, . . . , N . Let z(i) =
[
vec(K

(i)
1 )⊤ . . . vec(K

(i)
N )⊤

]⊤
and F (z(i), z(i+1)) =

[
F⊤
1 . . . F⊤

N

]⊤
, with
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Fj = vec
(
RjjK

(i+1)
j

)
−
(
(Â

(i+1)
σ,j +BjK

(i+1)
j )⊤ ⊗B⊤

j

)
×
(
(Â

(i+1)
σ,j +BjK

(i+1)
j )⊤ ⊗ (Â

(i+1)
σ,j +BjK

(i+1)
j )⊤ − In2

)−1

× vec

(
Q̂

(i+1)
σ,j +K

(i+1)
j

⊤
RjjK

(i+1)
j

)
, (19)

for j = 1, . . . , N . If the matrix H = −M−1
n Mc is Schur,

where Mn and Mc are constructed as in (26a) and (26b)
(see Appendix I) with respect to F with entries Fj as defined
by (19), then {K⋆

1 , . . . ,K
⋆
N} is a LAS equilibrium of the

synchronous (σ = s) or asynchronous (σ = a) Riccati
iterations algorithm (18), for j = 1, . . . , N .

Proof. Note that the entries of the mapping F given in (19),
are derived from the vectorisation of the (matrix) differ-
ence equations (18), for j = 1, . . . , N , and by eliminating
vec(P

(i+1)
j ). Hence, any K

(i)
j , K(i+1)

j , j = 1, . . . , N , satisfy-
ing (18) satisfy (19), for j = 1, . . . , N . By construction, the
strategy updates are such that the zero equilibrium of x(k +

1) =
(
Â

(i+1)
σ,j +BjK

(i+1)
j

)
x(k) is stable. Thus, for fixed

K
(i)
j , K

(i+1)
j , j = 1, . . . , N , there exists a unique solution

P
(i+1)
j to (18a). Hence, since vectorisation is a linear trans-

formation, any K
(i)
j , K

(i+1)
j , j = 1, . . . , N , satisfying (19)

satisfy (18), for j = 1, . . . , N . Note that 0 = F
(
z(i+1), z(i)

)
and 0 = F (z⋆, z⋆). With this notation in place, LAS follows
directly from Lemma 1 and Lemma 3.

The statement of Proposition 2 ensures the existence of a
non-empty basin of attraction with respect to the discrete-time
nonlinear system (18) for all Nash equilibrium strategies that
satisfy the stated conditions. As in the case of the Lyapunov
iterations, the conditions that ensure local convergence in
Proposition 2 cannot be verified a priori since they depend
on the knowledge of the Nash equilibrium solution sought
for. Differently from several iterative schemes in the literature
(e.g. [14], [19], [20], [37]), the iterations (18), j = 1, . . . , N ,
do not require the initial guess K

(0)
j , for j = 1, . . . , N , to

be stabilising to converge to a stabilising solution of (5)-(7),
j = 1, . . . , N . Note that in the asynchronous case (σ = a) no
initial guess K

(0)
1 is needed for player 1.

Remark 4. The asynchronous version of the Riccati iterations
(18) is the discrete-time and N -player equivalent to [16,
Algorithm 4.7]. The result therein is provided without any
(a priori or a posteriori) certificate of convergence.

C. Discussion and examples
The conditions in Propositions 1 and 2 ensure that the Lya-

punov iterations (16) and Riccati iterations (18), respectively,
are locally asymptotically convergent to a Nash equilibrium.
However, no comment has been made so far regarding the re-
cursive feasibility of the update laws and stability properties of
the system (1) in closed loop with the current strategy guesses
of players j = 1, . . . , N . These properties are particularly
relevant if the strategy updates are implemented online, as is
the case in the data-driven versions of the algorithms, which
are introduced in Section IV. In the following we address these
important points, before providing two illustrative numerical

examples, which include a comparison with the alternative
approach presented in [19, Algorithm 1].

1) Recursive feasibility: The Lyapunov updates (16) are
feasible at iteration (i + 1) if there exists a unique solution
P

(i+1)
j to (16a). Such a solution exists if condition i. of

Proposition 1 holds [36].
On the other hand, the Riccati updates (18) are feasible at

iteration (i + 1) if (18) admits a unique stabilising solution

K
(i+1)
j , P (i+1)

j = P
(i+1)
j

⊤
⪰ 0. Such a solution exists (recall

that by definition Rjj ≻ 0, Qj ⪰ 0, and let Q̂
(i+1)
σ,j =

C
(i+1)
σ,j

⊤
C

(i+1)
σ,j ) if (see, e.g., [38])

(RI 1) The pair
(
Â

(i+1)
σ,j , Bj

)
is stabilisable for j = 1, . . . , N .

(RI 2) The pair
(
Â

(i+1)
σ,j , C

(i+1)
σ,j

)
is detectable for j =

1, . . . , N .
Note that the condition (RI 2) is always satisfied, for j =
1, . . . , N , if Qj ≻ 0, or if Rjl ≻ 0 for all l and the pair
(A,Qj) is observable. These stronger conditions are more
easily verified than (RI 2), as they do not depend on strategy
guesses and can be checked a priori.
In the case of the asynchronous Riccati iterations (18), σ = a,
condition (RI 1) is always satisfied if the pair (A,Bj), for
j = 1, . . . , N , is stabilisable. Hence, if this is the case and
condition (RI 2) holds, then the asynchronous Riccati iterations
are guaranteed to be recursively feasible.

2) Stability: Consider system (1) in closed loop with the
players’ current strategy guesses at iteration (i). In the case
of synchronous updates this results in the dynamics x(k +

1) =
(
A+

∑N
j=1 BjK

(i)
j

)
x(k) = A

(i)
cl,sx(k). In the case

of asynchronous updates this results in the dynamics x(k +

1) =
(
Â

(i)
a,j +BjK

(i)
j

)
x(k) = A

(i)
cl,a,jx(k) after the update

of player j, for j = 1, . . . , N , since the players update their
strategy sequentially, as illustrated in Figure 1.

Consider first the (synchronous or asynchronous) Lyapunov
iterations. If there exists P

(i+1)
j ∈ S+ satisfying (16a), with

σ = s for any j = 1, . . . , N and for all i ∈ N, it follows that
the recursive strategy updates obtained via the synchronous
Lyapunov iterations are stabilising, namely ρ

(
A

(i)
cl,s

)
< 1, for

all i ∈ N. Similarly, if there exists P
(i+1)
j ∈ S+ satisfying

(16a) with σ = a for all j = 1, . . . , N , and for all i ∈ N,
it follows that the recursive strategy updates obtained via
the asynchronous Lyapunov iterations are stabilising, namely
ρ
(
A

(i)
cl,a,j

)
< 1, for j = 1, . . . , N , for all i ∈ N.

Consider now the Riccati iterations. By construction, (18)
ensures that ρ

(
Â

(i+1)
σ,j +BjK

(i+1)
j

)
< 1 at iteration (i + 1)

for player j. However, in the case of synchronous updates
(σ = s) this does not provide any guarantees for A

(i+1)
cl,s . For

the asynchronous Riccati iterations, on the other hand, this
ensures that ρ

(
A

(i+1)
cl,a,j

)
< 1 after the update of player j.

Hence, if (18) (with σ = a) is feasible for all j = 1, . . . , N
and for all i ∈ N, then the recursive strategy updates obtained
via the asynchronous Riccati iterations are stabilising.
Remark 5. In practice, it is desirable for the initial guess of the
matrices K

(0)
j , for j = 1, . . . , N , for the Lyapunov iterations
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P ⋆
1 P ⋆

2 K⋆
1 K⋆

2

NE 1 2.0066 29.1606 -0.4771 -2.1339
NE 2 0.9197 44.4309 -0.2138 -3.1793
NE 3 7.9681 1.4540 -1.8084 -0.1016

TABLE I: Values corresponding to the three feedback Nash
equilibria of the considered game.

(16) to be such that the resulting closed-loop system is asymp-
totically stable to search for a positive semi-definite solution to
the Lyapunov equation (16a). Albeit involving the solution of
more complex algebraic equations at each iteration, the Riccati
iterations (18) admit general (non-stabilising) initial guesses of
the matrices K

(0)
j , for j = 1, . . . , N .

Remark 6. Note that in the context of reinforcement learning
(see e.g. [38], [39]), the Lyapunov iterations (both synchronous
and asynchronous) can be interpreted as a policy iteration
algorithm, with (16a) representing the policy evaluation step
and (16b) the policy update. The (synchronous and asyn-
chronous) Riccati iterations, on the other hand, can be in-
terpreted as value iteration algorithms, since the update law
involving the solution of a Riccati equation corresponds to
minimising the value function for each player characterised
by Pj , j = 1, . . . , N , at each update step. The specific nature
of this minimisation problem makes it possible to formulate
the update law in terms of the gains Kj , j = 1, . . . , N ,
characterising the control strategies (policies) analogous to the
policy iteration algorithms.

To illustrate the efficacy of the proposed algorithms, con-
sider the scalar numerical example described by system (1),
with N = 2, A = 1.0947, B1 = 0.10254, B2 = 0.045934,
and the cost functionals (2), j = 1, 2, with Q1 = 0.11112,
Q2 = 0.25806, R11 = 0.40872, R22 = 0.5949, R12 = R21 =
0. For the given system and cost parameters, there exist three
stabilising solutions to (5)-(7). The corresponding values of
P ⋆
j and K⋆

j , for j = 1, 2, are reported in Table I. Figure 2
shows the update histories for the four proposed algorithms
starting from initial guess K

(0)
1 = −1, K

(0)
2 = −2. All

four algorithms converge to NE 3. The Lyapunov iterations
converge to maxj

(∥∥∥K(i+1)
j −K

(i)
j

∥∥∥) ≤ 10−5 within 15

iterations (synchronous) and 10 iterations (asynchronous),
whereas the Riccati iterations take 19 iterations (synchronous)
and 11 iterations (asynchronous). Note that in both cases the
asynchronous update converges faster than the synchronous
update. Figure 3 gives an insight into the regions of attraction
of the three Nash equilibrium solutions. It is worth noting that
NE 1 is not attractive for any of the algorithms and that there
are significant differences in the regions of attraction for NE
2 and NE 3 between the four algorithms. Apart from a few
exceptions, the Lyapunov iterations require a stabilising initial
guess to converge to a (stabilising) Nash equilibrium solution,
whereas the Riccati iterations do not require a stabilising
initial guess. In fact, for the considered example and range
of initial conditions the asynchronous Riccati iterations always
converge to either NE 3 or NE 2, with the regions of attraction
separated by the line K2 = K⋆

2 (NE 1). For the synchronous
Riccati iterations on the other hand, an interesting behaviour

0 5 10 15 20

-2

-1

0

0 5 10 15 20

-3

-2

-1

Fig. 2: Update history of the Lyapunov iterations (16) (dark
blue lines) and the Riccati iterations (18) (black lines). Both
the synchronous (solid lines) and the asynchronous (dotted

lines) versions are shown. The Nash equilibrium strategies in
Table I are highlighted in blue (NE 1), green (NE 2) and red

(NE 3).

(a) (b)

(c) (d)

Fig. 3: Regions of the K1-K2 space starting from which the
synchronous Lyapunov iterations (a), asynchronous

Lyapunov iterations (b), synchronous Riccati iterations (c)
and asynchronous Riccati iterations (d) converge to NE 1
(blue), NE 2 (green) and NE 3 (red). The yellow regions

highlight initial conditions for which the synchronous Riccati
iterations converge to a limit cycle. The grey regions

highlight initial conditions that do not converge to any of the
three equilibria or a limit cycle.

is observed for initial conditions in the regions highlighted in
yellow, for which the algorithm converges to a limit cycle with
K1 corresponding to NE 3 and K2 corresponding to NE 2 and
vice versa, as shown in Figure 4.

Next, consider the numerical example used in [21], [28],
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0 5 10 15 20

-4

-2

0 5 10 15 20

-4

-2

Fig. 4: Update history of the synchronous Riccati iterations
(18), σ = s, with initial conditions K

(0)
1 = K

(0)
2 = −4. The

Nash equilibrium strategies in Table I are highlighted in blue
(NE 1), green (NE 2) and red (NE 3).

Algorithm [19, Alg. 1] (16), (16), (18), (18),
σ = s σ = a σ = s σ = a

Iterations 12 30 11 31 10

TABLE II: Number of iterations until convergence for the
different Nash equilibrium-finding algorithms.

namely, consider the game defined by the dynamics (1) with

N = 4, A =

[
0.995 0.09983
−0.09983 0.995

]
, B1 =

[
0.2047
0.08984

]
,

B2 =

[
0.2147
0.2895

]
, B3 =

[
0.2097
0.1897

]
, B4 =

[
0.2
0.1

]
and the cost

functionals (2), for j = 1, . . . , 4 with Q11 = Q22 = Q33 =
Q44 = I2, R11 = R22 = R33 = R44 = R12 = R14 =
R23 = R31 = 1 and R13 = R21 = R24 = R32 = R34 =
R41 = R42 = R43 = 0. Consider the initial guess K

(0)
1 =[

−2.2570 1.1761
]
, K

(0)
2 =

[
1.1629 −2.5437

]
, K

(0)
3 =[

−0.5465 −0.6844
]

and K
(0)
4 =

[
−1.9842 0.9127

]
as in

[21]. The four algorithms presented in Sections III-A and
III-B are compared to [19, Algorithm 1] (extended to the
N-player case). Note that the synchronous Lyapunov iter-
ations (16), σ = s, are equivalent to [21, Algorithm 1].
All five algorithms converge to K⋆

1 =
[
−0.6918 0.1601

]
,

K⋆
2 =

[
0.0052 −0.6095

]
, K⋆

3 =
[
−0.3953 −0.1560

]
and K⋆

4 =
[
−0.4239 0.0442

]
, which satisfy (4)-(7),

j = 1, . . . , 4, with P ⋆
1 =

[
5.6345 −2.6678
−2.6678 4.2977

]
, P ⋆

2 =[
4.3227 −2.1610
−2.1610 4.2364

]
, P ⋆

3 =

[
4.8907 −1.9054
−1.9054 3.2167

]
and

P ⋆
4 =

[
3.8844 −1.7237
−1.7237 3.0592

]
. The number of iterations

taken by the algorithms until the convergence criterion
maxj

(∥∥∥K(i+1)
j −K

(i)
j

∥∥∥) ≤ 10−5 is reached is reported in
Table II.

IV. DATA-DRIVEN ITERATIVE ALGORITHMS

In this section, we introduce a data-driven implementation
of the asynchronous versions of the algorithms presented in
Section III. This enables the players to iteratively converge
to a Nash equilibrium solution of a game despite having only

limited information regarding the opponents’ performance cri-
teria and system dynamics. For ease of exposition we consider
the following assumption throughout this section.

Assumption 2. The cost functional (2), which player j, j =
1, . . . , N , aims to minimise, is such that Rjl = 0, for l =
1, . . . , N , l ̸= j.

However, the data-driven results can be extended to include
cost cross-terms Rjl ̸= 0 in a straightforward manner by
following analogous steps, at the cost of more cumbersome
notation and the requirement to collect additional data of a
performance variable, as detailed in [30]. In accordance with
the definition of Problem 2, further consider the following
assumptions.

Assumption 3. Each player j knows the pair (Qj , Rjj)
corresponding to its own cost functional, but not the cost
weights (Ql, Rll), for l = 1, . . . , N , l ̸= j corresponding
to the functionals the other players are aiming to minimise.
Moreover, the system matrices A, Bj , for j = 1, . . . , N , are
assumed to be unknown to all players.

Assumption 4. The signals x(k) and uj(k), are available
for measurement for player j, j = 1, . . . , N . The players
are able and willing to schedule experiments, taking turns
to recursively collect sequences of data. During its turn to
update from K

(i)
j to K

(i+1)
j , player j collects4 the state-

response x
d,[k0,k0+T

(i+1)
j ]

to the sequence of exploring inputs
u
j,d,[k0,k0+T

(i+1)
j −1]

, assuming all other players, l = 1, . . . , N ,
l ̸= j, stick to a constant state-feedback strategy corresponding
to their current guess of the Nash equilibrium strategy (i.e. at
iteration (i + 1), uw(k) = K

(i+1)
w x(k), for w = 1, . . . , j − 1

and ul(k) = K
(i)
l x(k), for l = j + 1, . . . , N , for k =

k0, . . . , k0 + T
(i+1)
j − 1).

The scheduling of data collection and strategy updates de-
scribed in Assumption 4 is illustrated in Figure 5 for the two-
player case, i.e. N = 2.

u1,d(·) K
(1)
1 x(·) u1,d(·)

K
(0)
2 x(·) u2,d(·) K

(1)
2 x(·)

Fig. 5: Illustration of the experiment scheduling with two
players. The yellow blocks represent phases in which a

player gives “exploring inputs” to excite the system dynamics
and collects data, while the blue blocks represent the phases

in which a player applies a constant feedback action.
Strategy updates are illustrated by the red vertical lines.

Remark 7. Due to lack of knowledge regarding the cost
function weights of the other players, player j does not have

4The subscripts indicate the sequences correspond to data measured by the
j-th player at iteration (i), over the interval [k0, kf ], with kf = k0 + T

(i)
j

or kf = k0 + T
(i)
j − 1 as appropriate, where T

(i)
j is the length of the

experiment.
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enough information to solve (5)-(7), for j = 1, . . . , N , nor to
apply the model-based algorithms introduced in Section III.
If Assumption 4 holds, the strategies of the other players are
fixed at state-feedback strategies, and the dynamics perceived
by player j when updating its strategy guess from iteration
(i) to (i + 1) are hence x(k + 1) = Â

(i+1)
a,j x(k) + Bjuj(k),

with Â
(i+1)
a,j as defined in Section III. That is, the current

guesses of the Nash equilibrium strategies for all other players
l, l = 1, . . . , N , l ̸= j, which depend on their cost function
weights Ql, Rll, and are unknown to player j, are encapsulated
in the dynamics matrix Â

(i+1)
a,j . The lack of knowledge is

overcome in this section by recovering or representing the
perceived dynamics using data. This approach also allows to
account for lack of knowledge of the system dynamics. To
address the most general case, we hence consider A, Bj , for
j = 1, . . . , N unknown, as specified in Assumption 3. Note,
however, that the presented results are equally relevant if the
system parameters are known.

In the following subsections, we discuss the data-driven
implementations of the Lyapunov iterations and the Riccati
iterations, by using the indirect method and the direct method
introduced in Section II, respectively. To this end, consider at
each iteration (i) the matrices X−, X+ as defined in (10) with
T = T

(i)
j and the matrix

Uj− =
[
uj,d(k0) . . . uj,d(k0 + T

(i)
j − 1)

]
, (20)

concatenating the exploring inputs of player j, and the corre-
sponding assumption (equivalent to Assumption 1).

Assumption 5. The matrix
[
X−
Uj−

]
has full row rank.

Remark 8. We focus our attention on the asynchronous
versions of the algorithms, since it seems natural in prac-
tice for each player to update its strategy immediately after
collecting data, rather than waiting for all players to finish
their experiments. However, the synchronous versions can be
implemented using data following analogous steps.

A. Data-driven asynchronous Lyapunov iterations

Towards the design of a data-based version of the itera-
tions (16), let B̄j and Āj denote the estimates of the values
Bj and Â

(·)
a,j , respectively.

Proposition 3. Consider the game defined by the dynam-
ics (1) and the cost functionals (2), for j = 1, . . . , N .
Let Assumption 2, Assumption 3 and Assumption 4 hold,
and suppose the collected input-state data is such that the
matrices X−, X+ and Uj− as defined in (10) and (20) satisfy
Assumption 5. Then, if the conditions stated in Proposition 1
hold for {K⋆

1 , . . . ,K
⋆
N}, Algorithm 1 solves Problem 2.

Proof. If Assumptions 2, 4 and 5 hold, then it follows from
(11) that the pair (Āj , B̄j) identified in STEPS 19-23 of
Algorithm 1 coincides with the pair (Â(i+1)

a,j , Bj). Hence, STEP
24 and STEP 25 coincide with (16). Convergence to a Nash
equilibrium follows directly from Proposition 1.

Algorithm 1 - Data-driven Lyapunov iterations

1: Initialise: x(0) = x0, i = 0, k = 0, k0 = k, ε = 1

2: Specify: tolerance ε̄, stabilising K
(0)
l , for l = 1, . . . , N ,

and time horizon Tf

3: while ε > ε̄ do
4: for j = 1 to N do
5: Assume: uw(k) = K

(i+1)
w x(k), for w = 1, . . . , j−1,

and ul(k) = K
(i)
l x(k), for l = j + 1, . . . , N.

6: Data collection:
7: clear X−, X+, Uj−

8: while rank
([

X⊤
− U⊤

j−
]⊤)

< n+mj do
9: give exploring input uj,d(k)

10: measure xd(k)
11: X− =

[
xd(k0) . . . xd(k)

]
12: Uj− =

[
uj,d(k0) . . . uj,d(k)

]
13: k ← k + 1
14: end while
15: measure xd(k)
16: X+ =

[
xd(k0 + 1) . . . xd(k)

]
17: k0 ← k
18: Policy update:
19: if i = 0 then
20: compute

[
Āj B̄j

]
= X+(

[
X⊤

− U⊤
j−
]⊤

)†

21: else
22: compute Āj =

(
X+ − B̄jUj−

)
X†

−
23: end if
24:

P
(i+1)
j = Qj +

(
Ki

j

)⊤
RjjK

i
j

+
(
Āj + B̄jK

(i)
j

)⊤
P

(i+1)
j

(
Āj + B̄jK

(i)
j

)
25: K

(i+1)
j = −

(
Rjj + B̄⊤

j P
(i+1)
j B̄j

)−1

B̄⊤
j P

(i+1)
j Āj

26: let uj(k) = K
(i+1)
j x(k)

27: end for
28: i← i+ 1
29: ε← maxj

(∥∥∥K(i)
j −K

(i−1)
j

∥∥∥)
30: end while
31: K⋆

j = K
(i)
j , for j = 1, . . . , N

32: while k < Tf do
33: let uj(k) = K⋆

j x(k), for j = 1, . . . , N ,
34: k ← k + 1
35: end while

Remark 9. There exist multiple strategies to tackle the re-
quirement, in STEP 2 of Algorithm 1, for the preliminary
computation of a stabilising set of gains K

(0)
l , l = 1, . . . , N ,

in a data-driven framework. A feasible solution consists in
selecting arbitrary K

(0)
l = 0, for l = 1, . . . , N − 1, and

in letting player N, without loss of generality, perform, in
advance and only once as a preliminary initialisation, STEPS 5
to 25 of Algorithm 1. As a consequence, the computed K

(0)
N

has the property that ρ
(
ĀN + B̄NK

(0)
N

)
< 1, and hence the

overall selection of the initial control gains is (collectively)
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stabilising for the closed-loop system. Finally, note that STEPS
19-23 in Algorithm 1 could also be replaced with alternative
system identification techniques.

B. Data-driven asynchronous Riccati iterations

To formulate the data-driven equivalent to the Riccati it-
erations update law (18) using the direct method introduced
in Section II, recall the following result, which introduces a
method to design optimal controllers (for linear systems, with
the aim of minimising a quadratic cost function) directly using
data, without requiring knowledge of the system dynamics.

Lemma 2. [31, Theorem 4] Consider system (9) and assume
input-state data is available to form the matrices (10), such
that Assumption 1 holds. The optimal state-feedback control
gain K̄⋆, such that u(k) = K̄⋆x(k) minimises the cost
function

J(x(0), u(·)) =
∞∑
k=0

∥x(k)∥2Q̄ + ∥u(k)∥2R̄ (21)

with R̄ ≻ 0 and Q̄ ⪰ 0, is given by K̄⋆ = U−G
⋆, where G⋆ =

Y S−1, with Y and S a solution of the convex optimisation
problem

min
S, V, Y

(
Tr
(
Q̄S
)
+Tr (V )

)
s.t.

[
S − In X+Y
Y ⊤X⊤

+ S

]
⪰ 0, (22)[

V R̄
1
2U−Y

Y ⊤U⊤
− R̄

1
2 S

]
⪰ 0,

X−Y = S.

As a consequence of Lemma 2, solving the data-driven op-
timisation problem (22) is equivalent to solving the algebraic
Riccati equation(
Ā+ B̄K̄⋆

)⊤
P̄ ⋆
(
Ā+ B̄K̄⋆

)
− P̄ ⋆ + Q̄+ K̄⋆⊤R̄K̄⋆ = 0,

where
K̄⋆ = −

(
R̄+ B̄⊤P̄ ⋆B̄

)−1
B̄⊤P̄ ⋆Ā,

associated with the LQR problem defined by (21) subject to the
dynamics (9). Recalling that the update law (18) to iteratively
find a Nash equilibrium solution to the game (1), (2), i =
1, . . . , N , corresponds to solving an LQR problem for player
j with the strategies of the other players l, for l = 1, . . . , N ,
l ̸= j fixed, for j = 1, . . . , N , Lemma 2 enables a data-
driven equivalent of Proposition 2. By construction, Lemma 2
assumes P̄ ⋆ ≻ 0, hence we consider the following assumption.

Assumption 6. The coupled algebraic equations (5)-(7), asso-
ciated with the game (1), (2), admit positive definite solutions
P ⋆
j ≻ 0, for j = 1, . . . , N .

Proposition 4. Consider the game defined by the dynamics
(1) and the cost functionals (2), j = 1, . . . , N . Let Assump-
tion 2, Assumption 3, Assumption 4 and Assumption 6 hold,
and suppose the collected input-state data is such that the
matrices X−, X+ and Uj− as defined in (10) and (20) satisfy

Assumption 5. Then, if the conditions stated in Proposition 2
hold for {K⋆

1 , . . . ,K
⋆
N}, Algorithm 2 solves Problem 2.

Proof. If Assumptions 2, 4, 5 and 6 hold, then by Lemma 2,
STEP 9 and STEP 10 of Algorithm 2 are equivalent to (18).
Convergence to a Nash equilibrium follows directly from
Proposition 2.

Note that the right hand side of STEP 10 in Algorithm 2
does not explicitly depend on K

(i)
j or the strategies of the

other players. This dependency is given implicitly via the data
matrices X+, X− and Uj− used to solve (22), which are
repopulated for each player j at each iteration (i).

Algorithm 2 - Data-driven Riccati Iterations

1: Initialise: x(0) = x0, i = 0, k = 0, k0 = k, ε = 1

2: Specify: tolerance ε̄, K
(0)
l , for l = 2, . . . , N , and time

horizon Tf

3: while ε > ε̄ do
4: for j = 1 to N do
5: Assume: uw(k) = K

(i+1)
w x(k), for w = 1, . . . , j−1,

and ul(k) = K
(i)
l x(k), for l = j + 1, . . . , N.

6: Data collection:
7: follow steps 7 - 17 of Algorithm 1
8: Policy update:
9: solve (22) with Q̄ = Qj , R̄ = Rjj , U− = Uj−

for Y , S
10: K

(i+1)
j = Uj−Y S−1

11: let uj(k) = K
(i+1)
j x(k)

12: end for
13: i← i+ 1
14: ε← maxj

(∥∥∥K(i)
j −K

(i−1)
j

∥∥∥)
15: end while
16: K⋆

j = K
(i)
j , for j = 1, . . . , N

17: follow steps 32 - 35 of Algorithm 1

C. Discussion

In Subsections IV-A and IV-B we present data-driven im-
plementations of the asynchronous versions of the algorithms
presented in Section III. Note that an indirect data-driven
method is used for the Lyapunov iterations and a direct
data-driven method is used for the Riccati iterations. The
indirect (system identification) method can be readily applied
in combination with any model-based control technique and
is computationally cheaper for noise-free linear systems as
considered herein. In the given setting, the indirect data-driven
method further has the advantage that Bj , j = 1, . . . , N ,
only needs to be identified once (see STEPS 19-23 of Al-
gorithm 1). Thus, the indirect method allows to incorporate
available partial system knowledge in a more straightforward
way than the direct data-driven method, in which the closed-
loop dynamics are entirely represented using data. While the
indirect method could be used in combination with both the
Lyapunov iterations (16) and the Riccati iterations (18), it is
chosen here for the Lyaponov iterations only. This choice is
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motivated by the fact that the structure of the Riccati iterations
(18) allows to readily apply recent direct data-driven results
introduced in [31]. Such methods have potential for systems
for which system identification is difficult or involved [31].
Hence, the presented results may serve as a basis for future
work on games involving more complicated systems.

A benefit of both presented data-driven algorithms is that
they are distributed in the sense that a Nash equilibrium is
obtained by each player solving only its own matrix equation
based on (limited) available information. No knowledge of the
cost parameters of the other players nor the system dynamics
is required. Apart from the scheduling of experiments, no
information exchange between the players is required, i.e.
player j does not know the strategy guesses of the other
players nor measure their inputs.

By capturing the actions of the other players in the dynamics
and replacing these with data, each player only updates its
own strategy and does not need to explicitly estimate the
strategies of the other players. Another benefit of this method
is that the computational complexity of the algorithms for
each player does not depend on the total number of players
in the game. Namely, at each iteration step (i) player j

collects T
(i)
j + 1 samples of the state response to its own

T
(i)
j exploring inputs, where T

(i)
j is such that Assumption 5

holds, which implies T
(i)
j ≥ n+mj . Hence, if the exploring

input signal is chosen well, only n +mj + 1 data points are
required per iteration. The total number of data points a player
needs to collect depends on the number of iterations until
convergence to the specified tolerance, which in turn depends
on the system and cost parameters of the specific problem
and the chosen initial conditions as illustrated in Section III-
C. In Algorithm 1 the update law at each iteration involves
the solution of two linear matrix equations for the system
identification step and the policy evaluation step, respectively.
The former is of dimension n×T (i)

j with n(n+mj) unknowns
if i = 0 and n2 unknowns if i > 0. The latter is of dimension
n × n with (n2 + n)/2 unknowns. In Algorithm 2, system
representation and policy update at each iteration are combined
(see STEPS 9 and 10) and involve the solution of a convex
programme with two linear matrix inequality constraints of
dimension 2n × 2n and (n + mj) × (n + mj) and a linear
equality constraint of dimension n×n with a total number of
T

(i)
j n+ (n2 + n)/2 + (m2

j +mj)/2 decision variables.
Finally, recall that Algorithm 1 is also applicable for games

for which Assumption 6 does not hold. However, Algorithm 2
allows a non-stabilising initial guess, which may be beneficial
(particularly in the context of unknown system dynamics).

V. PRACTICAL EXAMPLE: HUMAN-ROBOT INTERACTION

We illustrate the efficacy of Algorithms 1 and 2 via a prac-
tically motivated example involving human-robot interaction,
similar to the example considered in [27], [30]. Consider the
interaction dynamics of a contact robot, described by

ẋ =

[
0 1
0 −J−1

c Dc

]
x+

[
0

J−1
c

]
(u1 + u2) ,

with x =
[
xe − xt ve

]⊤
, where xe is the position of the

robot’s end effector, xt is the target position, ve is the end
effector speed and u1 and u2 are the force inputs of the
human and the robot, respectively. The inertia and damping
coefficients are chosen as Jc = 6 kg and Dc = −0.2 N/m
(as in [27]). The dynamics are discretised using zero-order
hold with time step ∆ = 0.1 s. However, for the purpose of
control design we consider the system dynamics as unknown.
The considered task involves arm reaching movements of
the human operator to guide the end effector from an initial
position to the target position, supported by the robot. This
may be relevant in a rehabilitation setting to train a patient
to perform reaching movements, or in a manufacturing setting
to support an operator in lifting heavy objects. As in [27],
[30] we model the human-robot interaction as a two player
dynamic game. This is inspired by evidence that human
behaviour in such interaction settings can be modelled as Nash
equilibrium strategies of a game [40]. Assume the human
operator is aiming to minimise a quadratic cost functional
(2), for j = 1 with Q1 = diag([15, 0.1]), R11 = 0.5 and
R12 = 0, whereas the robot is aiming to minimise (2), for
j = 2, with Q2 = diag([25, 0.1]), R21 = 0 and R22 = 0.1.
Note that each of the two players only has knowledge of its
own cost parameters, but not of those of the other player,
i.e. the human operator only knows Q1, R11, and the robot
only knows Q2, R22. In contrast to [30], the human operator’s
control action is not fixed, but both human and robot iteratively
update their strategies. To this end, the players take turns to
collect data. While the robot’s data collection experiments
last for n + m2 = 3 steps, i.e. 0.3 s, the human collects
data for 5 steps, i.e. 0.5 s. During its turn, each player gives
exploring force inputs sampled randomly from a uniform
distribution in the interval (−1 N, 1 N) to excite the system
while the other player sticks to its current strategy. The time
histories of the states and inputs (for both Algorithm 1 and
Algorithm 2) are shown in Figure 6 and Figure 7, respectively.
The chosen initial conditions are K

(0)
1 =

[
0 0

]
, K

(0)
2 =[

−0.97 −3.75
]

and x0 =
[
−0.3 0

]⊤
. The dotted grey

vertical lines indicate the start of each new experiment for
data collection. The solid grey vertical lines highlight the time
instance at which the algorithms have converged with tolerance
ε̄ = 10−5. Both Algorithm 1 and Algorithm 2 converge to
K⋆

1 =
[
−1.03 −0.51

]
, K⋆

2 =
[
−13.18 −12.39

]
, which

satisfy (5)-(7), for j = 1, 2, with

P ⋆
1 =

[
106.96 29.41
29.41 13.80

]
, P ⋆

2 =

[
224.10 88.55
88.55 78.42

]
.

For the remainder of the time horizon (Tf = 200, correspond-
ing to 20 s) the players follow their determined equilibrium
strategies K⋆

1 and K⋆
2 . Both algorithms converge to the spec-

ified tolerance in approximately 7 s, and despite the iterative
probing and strategy updates the considered reaching task is
completed successfully. At k = 100 (10 s) the target position
changes from xt = 0 to xt = −0.3, initiating a second arm
reaching movement back to the initial condition. The time
histories in Figures 6 and 7 show how the human and the
robot collaborate to achieve this second reaching movement
while following their Nash equilibrium strategies.
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Fig. 6: Time histories of the states using Algorithm 1 (dark
blue) and Algorithm 2 (black). The dashed blue and black

lines indicate the target values. The dotted grey lines indicate
the start of each new experiment, whereas the solid grey line

indicates the end of the scheduled experiments.

VI. CONCLUSIONS

Considering discrete-time LQ dynamic games, we propose
four iterative algorithms for finding feedback Nash equilibrium
strategies. The algorithms are based on update laws involving
the solution of uncoupled Lyapunov or Riccati equations. For
each type a synchronous (i.e. all players update their strategy
simultaneously) and an asynchronous (i.e. each player’s update
takes the previous players’ updates at the same iteration
step into account) version are presented. Local convergence
conditions are provided. In the second part of the paper, purely
data-driven implementations of the asynchronous algorithms
are introduced. This allows players to iteratively converge to
a Nash equilibrium by scheduling experiments. The approach
is distributed in the sense that each player only requires
information regarding its own cost functional, but not the cost
functionals of the other players nor the system dynamics. The
results are demonstrated on illustrative numerical examples
and on a practical example involving human-robot interaction.
Directions for future work include a more in-depth comparison
of the different algorithms for specific applications, as well as
studying what affects the regions of convergence and how to
strategically initialise the algorithms.

APPENDIX I
LOCAL STABILITY ANALYSIS

To streamline the presentation and analysis of the algorithms
presented in Section III, let us formulate the local stability
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Fig. 7: Time histories of the inputs using Algorithm 1 (dark
blue) and Algorithm 2 (black). The dotted grey lines indicate
the start of each new experiment, whereas the solid grey line

indicates the end of the scheduled experiments.

analysis for a generic equilibrium finding algorithm. To this
end, consider the problem of finding z⋆ ∈ Rp satisfying the
set of algebraic equations

0 = L(z⋆), (23)

for some L : Rp → Rp. Further, consider an iterative update
law for the solution guess z(i), i ∈ N, satisfying the implicit
relation

0 = F
(
z(i+1), z(i)

)
, (24)

with F : Rp × Rp → Rp differentiable and such that
0 = F (z⋆, z⋆). To analyse local convergence of the iterative
technique, consider the first order approximation of (24)
around the equilibrium z⋆, namely

0 = Mn

(
z(i+1) − z⋆

)
+Mc

(
z(i) − z⋆

)
, (25)

where

Mn =
∂F
(
z(i+1), z(i)

)
∂z(i+1)

∣∣∣∣∣
z⋆,z⋆

, (26a)

Mc =
∂F
(
z(i+1), z(i)

)
∂z(i)

∣∣∣∣∣
z⋆,z⋆

. (26b)

Letting δz(i) =
(
z(i) − z⋆

)
the dynamics of the iterative

update law satisfying (24) can be described by

δz(i+1) = Hδz(i), (27)

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3375249

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



14 IEEE TRANSACTION ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2024

in a neighbourhood of z⋆, with H = −M−1
n Mc, assuming the

matrix Mn is invertible.

Lemma 3. If H is Schur and z(0) lies in a neighbourhood
of z⋆, the iterative algorithm with update law satisfying (24)
asymptotically converges to the equilibrium z⋆ of (23).

Proof. The claim follows from Lyapunov’s indirect method.
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