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Abstract— Kernel-based methods have been success-
fully introduced in system identification to estimate the im-
pulse response of a linear system. Adopting the Bayesian
viewpoint, the impulse response is modeled as a zero mean
Gaussian process whose covariance function (kernel) is
estimated from the data. The most popular kernels used
in system identification are the tuned-correlated (TC), the
diagonal-correlated (DC) and the stable spline (SS) kernel.
TC and DC kernels admit a closed form factorization of
the inverse. The SS kernel induces more smoothness than
TC and DC on the estimated impulse response, however,
the aforementioned property does not hold in this case.
In this paper we propose a second-order extension of the
TC and DC kernel which induces more smoothness than
TC and DC, respectively, on the impulse response and a
generalized-correlated kernel which incorporates the TC
and DC kernels and their second order extensions. More-
over, these generalizations admit a closed form factoriza-
tion of the inverse and thus they allow to design efficient
algorithms for the search of the optimal kernel hyperparam-
eters. We also show how to use this idea to develop higher
oder extensions. Interestingly, these new kernels belong
to the family of the so called exponentially convex local
stationary kernels: such a property allows to immediately
analyze the frequency properties induced on the estimated
impulse response by these kernels.

Index Terms— Covariance extension; Gaussian process;
kernel methods; maximum entropy; system identification.

I. INTRODUCTION

Linear system identification problems are traditionally ad-
dressed by using Prediction Error Methods (PEM), see [1],
[2]. Here, the best model is chosen over a fixed parametric
model class (e.g. ARMAX, OE, Box-Jenkins). This approach,
however, has two issues: first, the parametrization of the
predictor is nonlinear which implies that the minimization of
the squared prediction error leads to a non-convex optimization
problem; second, we have to face a model selection problem
(i.e. order selection) which is usually performed by AIC and
BIC criteria [3], [4].

Regularized kernel-based methods have been recently pro-
posed in system identification in order to overcome the
aforementioned limitations, see [5]–[7]. Here, we search the
candidate model, described via the predictor impulse response,
in an infinite dimensional nonparametric model class with the
help of a penalty term. Adopting the Bayesian viewpoint, this
is a Gaussian process regression problem [8]: the impulse
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response is modeled as a Gaussian process with zero mean
and with a suitable covariance function, also called kernel
[9]. The latter encodes the a priori knowledge about the
predictor impulse response. For instance, the impulse response
should be absolutely integrable, i.e. the corresponding system
is Bounded Input Bounded Output (BIBO) stable, and with a
certain degree of smoothness.

The most popular kernels are the tuned-correlated (TC),
the diagonal-correlated (DC), and the stable-spline (SS), see
[5], [6]. All these kernels encode the BIBO stability property.
Regarding the smoothness, SS is the one inducing more
smoothness on the impulse response. These kernels depend
on few hyperparameters that are learnt from the data by
minimizing the so called negative log-marginal likelihood.
This task is computationally expensive especially in the case
we want to estimate high dimensional models, e.g. the case of
dynamic networks, see [10]–[14].

To reduce the computational complexity different strategies
have been proposed, see [15]–[18]. In particular, if the kernel
matrix admits a closed form expression for Cholesky factor of
its inverse matrix (ant thus also its determinant), then the eval-
uation of the marginal likelihood can be done efficiently [18].
While it is possible to derive these closed form expressions
for TC and DC, see [19], [20], this is not possible for SS. It
is worth noting that an efficient algorithm for the SS kernel
has been proposed in [17]. The latter, however, can be used
only in the case that the input of the system has a prescribed
structure, e.g. it cannot be used in the case we collect the data
of a system which is in a feedback configuration. It is worth
noting that many other kernel design extensions have been
proposed, see for instance [21]–[26], however none of them
provides a procedure to construct a kernel with both a degree
of smoothness comparable with SS and a structure leading to
an efficient algorithm for the negative log-marginal likelihood
minimization.

The aim of this paper is to introduce a second-order gener-
alization of the TC and DC kernel exploiting the filter-based
approach proposed in [27]. These extensions induce more
smoothness than TC and DC, respectively. We also introduce a
generalized-correlated kernel which incorporates the DC, TC
kernels and their second order extensions. Moreover, we show
that they admit a closed form expression for the Cholesky of
its inverse matrix. It is worth noting that SS is the second-
order extension of the TC kernel derived in the continuous
time, [28]. In contrast, the extension that we propose here is
derived in the discrete time. The derivation of the proposed
discrete time version, however, is conceptually different from
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the one in the continuous time: this extension is not obtained
applying a change of coordinates to the cubic spline kernel.
Numerical experiments showed that the new second-oder TC
kernel represents an attractive alternative to SS because it leads
to an estimation algorithm which outperforms the one using
SS (even in the case that the computation of the Cholesky
factorization of the kernel exploits the fact that SS is extended
2-semiseparable) in terms of computational time, while the
second-order TC and SS are similar in terms of estimation
performance. This idea can be also used to higher order
extensions and also to generalize the high frequency kernel
proposed in [29]. Interestingly, all these new kernels are
exponentially convex local stationary (ECLS), [21], [23]. Such
a property allows to easily understand the frequency properties
of their stationary parts.

The outline of the paper is as follows. In Section II we
briefly review the kernel-based PEM method as well as the
TC, DC and SS kernels. Section III introduces the second-
order extension for the TC kernel, while Section IV the one
for the DC kernel. In Section V we introduce the generalized-
correlation kernel. In Section VI we derive the closed form
expressions for these kernels. In Section VII we extend this
idea to higher order generalizations. In Section VIII we show
that these kernels are ECLS and we analyze the stationary
part of these kernels in the frequency domain. In Section IX
we provide an interpretation of the proposed kernels using a
system theory perspective. Finally, we draw the conclusions
in Section X.

Notation. ST , with T ≤ ∞, denotes the cone of positive
definite symmetric matrices of dimension T × T . Infinite
dimensional matrices, i.e. matrices having an infinite number
of columns and/or rows, are denoted using the calligraphic
font, e.g. K, while finite dimensional ones are denoted using
the normal font, e.g. K. Given F ∈ Rp×∞ and G ∈ R∞×m,
the product FG is understood as a p×m matrix whose entries
are limits of infinite sequences [30]. Given K ∈ ST , [K]t,s
denotes the entry of K in position (t, s), while [K]:,t and
[K]t,: denotes the t-th column and row, respectively, of K.
Given K ∈ ST , ‖v‖K−1 denotes the weighted Euclidean norm
of v with weight K−1; the Euclidean norm of v is denoted
by ‖v‖. Given v ∈ RT , Tpl(v) denotes the lower triangular
T ×T Toeplitz matrix whose first column is given by v, while
diag(v) denotes the diagonal matrix whose main diagonal is
v.

II. KERNEL-BASED PEM METHOD

Consider the model

y(t) =

∞∑
k=1

g(k)u(t− k) + e(t), t = 1 . . . N (1)

where y(t), u(t), g(t) and e(t) denote the output, the input,
the impulse response of the model and a zero-mean white
Gaussian noise with variance σ2, respectively. We can rewrite
model (1) as

y = Ag + e

where y = [ y(1) . . . y(N) ]> ∈ RN , e is defined likewise,
AN×∞ is the regression matrix whose entries depends on u(t)

with t = 1 . . . N , g = [ g(1) g(2) . . . ]> ∈ R∞. We want
to estimate the impulse response g given the measurements
{y(t), u(t)}Nt=1. Such a problem is ill-posed because we have
a finite number of measurements while g contains infinite
parameters. The latter can be made well-posed assuming that
g ∼ N (0, λK(η)) where K(η) ∈ S∞ is the kernel function and
η is the vector of hyperparameters characterizing the kernel;
in this way, the minimum variance estimator of g is:

ĝ = argmin
g∈R∞

‖y −Ag‖2 +
σ2

λ
‖g‖2K(η)−1 (2)

where ĝ belongs to the reproducing kernel Hilbert space
(RKHS) with kernel function K(η) and norm ‖·‖K(η)−1 ; λ > 0
denotes the regularization parameter. It is worth noting that the
above problem admits a closed form solution. Moreover, K(η)
encodes the a priori information that we have on the impulse
response.

The aforementioned problem can be formulated as a finite
dimensional problem. Indeed, g can be truncated, obtaining a
finite impulse response of length T ; the corresponding kernel
matrix K(η) ∈ ST is defined as [K(η)]t,s = [K(η)]t,s for
t, s = 1 . . . T and the regression matrix A ∈ RN×T is given by
the first T columns of A. Such a truncation, with T sufficiently
large, introduces a negligible bias, because g decays to zero.
The so called hyperparameters λ and η are estimated by
minimizing numerically the negative log-marginal likelihood

`(y;λ, η) := log det(λAK(η)A> + σ2I)

+ y>(λAK(η)A> + σ2I)−1y. (3)

In what follows, we will drop the dependence on η for kernels
in order to ease the notation.

A. Diagonal and correlated kernels: an overview
We briefly review the most popular kernels used in system

identification, see [6] for a more complete overview. The sim-
plest kernel is diagonal and encodes the a priori information
that g should decay to zero exponentially:

KDI = diag(β, β2, . . . , βt, . . .) (4)

where η = β and 0 < β < 1. Indeed, the penalty term ‖g‖2K−1
DI

is the squared norm of the weighted impulse response

h = [h1 h2 . . . ht . . . ]
>, ht = β−t/2gt

which amplifies in an exponential way the coefficients gt as
t increases. The tuned-correlated (TC, also called first-order
stable spline) kernel embeds also the a priori information that
g is smooth:

[KTC ]t,s = βmax(t,s) (5)

where η = β and 0 < β < 1. The smoothness property can
be justified as follows. It is well known that

KTC = (1− β)(FDFT )−1

where

F = Tpl(1,−1, 0, . . .)

D = diag(β−1, β−2, . . . , β−t, . . .);
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then, F> is the prefiltering operator, see [27], performing the
first order difference of g and thus the penalty term in (2)
penalizes impulses responses for which the weighted norm of
the first oder difference of g is large

‖g‖2K−1
TC

= (1− β)−1‖F>g‖2D

= (1− β)−1
∞∑
t=1

β−t(gt − gt+1)2.

The diagonal-correlated (DC) kernel is defined as

[KDC ]t,s = α|t−s|βmax(t,s) (6)

where 0 < β < 1, −β−1/2 < α < β−1/2 and η = [α β ]>.
It is worth noting that we are taking a definition which is
not standard, the standard one is [KDC ]t,s = ρ|t−s|β

t+s
2 and

ρ = αβ1/2, because the former highlights the following limits:

lim
α→0
KDC = KDI , lim

α→1
KDC = KTC (7)

that is the DC kernel connects the DI and TC kernel. Indeed,
it is not difficult to see that

KDC = (1− αβ)(FαDFTα )−1

with

Fα = Tpl(1,−α, 0, . . .). (8)

In plain words, α tunes the behavior of the prefiltering
operator: F>α behaves as the identity operator for α close to
zero, while it behaves as the first order difference operator for
α close to one. As a consequence the DC kernel allows to
tune the degree of smoothness of g.

All these kernels admit a closed form factorization of the
inverse and determinant which is an appealing feature for min-
imizing numerically (3). Moreover, their inverses are banded
matrices: K−1

DI is diagonal, K−1
TC and K−1

DC are tridiagonal.
The stable spline (SS, also called second-order stable spline)

kernel induces more smoothness than TC:

[KSS ]t,s =
γt+sγmax(t,s)

2
− γ3 max(t,s)

6
(9)

where η = γ and 0 < γ < 1. However, it does not admit
a closed form factorization of the inverse and determinant.
Moreover, since the SS kernel cannot be interpreted as the
maximum entropy solution of a covariance extension problem
similar to the one in [20] (see also Section VI-A), its inverse
is not banded. Finally, a kernel with the aforementioned
properties which tunes the degree of smoothness and connects
TC with SS does not exist.

III. SECOND-ORDER TC KERNEL

In this section we derive a new kernel, hereafter called TC2,
which induces more smoothness than TC and represents an
alternative to SS. In order to induce more smoothness it is
sufficient to take the penalty term as the weighted norm of
the second order difference of g:

‖g‖2K−1
TC2

= (1− β)−3‖(FT )2g‖2D,
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Fig. 1. Ten realizations of g ∼ N (0, λKTC2) with β = 0.8 and
λ = ‖KTC2‖−1.

thus

KTC2 := (1− β)3(F2D(F>)2)−1

where η = β and 0 < β < 1. Figure 1 shows ten realizations
of g using the TC2 kernel with β = 0.8. We can notice that
the degree of smoothness is similar to the one with KSS .

Proposition 3.1: The inverse of KTC2 is a pentadiagonal
matrix, that is [(KTC2)−1]t,s = 0 for any |t− s| > 3.

Proof: The statement is a particular instance of Proposi-
tion 7.1, see Section VII. �

Throughout the paper we will use the following result.
Lemma 3.1 ( [31]): Consider a real infinite lower triangular

Toeplitz matrix, defined by the sequence {ak, k ≥ 0} as
follows

X = Tpl(a0, a1, a2, . . .).

If a0 6= 0, X is invertible and the inverse matrix Y = X−1 is
also a lower triangular Toeplitz matrix with elements {bk, k ≥
0} given by the following formula

b0 =
1

a0
, bk = − 1

a0

k−1∑
j=0

ak−jbj for k ≥ 1.

Proposition 3.2: KTC2 admits the following closed form
expression:

[KTC2]t,s = 2βmax(t,s)+1 + (1− β)(1 + |t− s|)βmax(t,s).
(10)

Proof: First, F is a lower triangular Toeplitz matrix which
is invertible because the main diagonal is composed by strictly
positive elements. Therefore, by Lemma 3.1 we have

F−2 = Tpl(1, 2, . . . , t, . . .).

Moreover,

[F−2]>:,t = [ 0 . . . 0 1︸︷︷︸
t-th element

2 3 . . . ].

Therefore,

[KTC2]t,s = (1− β)3[(F−2)>D−1F−2]t,s

= (1− β)3[F−2]>:,tD−1[F−2]:,s

=

∞∑
k=max(t,s)

βk(k − t+ 1)(k − s+ 1).
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Finally, it is not difficult to see that the above series converges
to (10) by exploiting the identity

∞∑
k=0

βk =
1

1− β
. (11)

�

It is worth noting that the SS kernel is also a second-
order generalization of the TC kernel. Indeed, TC and SS
are obtained by applying a “stable” coordinate change to the
first and second order, respectively, spline kernel [5]. That
extension has been derived in the continuous time domain,
while the one proposed here has been derived in the discrete
time domain.

IV. SECOND-ORDER DC KERNEL

The aim of this section is to introduce a new kernel,
hereafter called DC2, which connects the TC and TC2 kernels.
The unique difference between TC and TC2 is the prefiltering
operator acting on g. Thus, the DC2 kernel should perform a
transition from F to F2. One possible way is to take

F2,α := (1− α)F + αF2 (12)

with 0 ≤ α ≤ 1 and thus we obtain

KDC2 := κ(F2,αDF>2,α)−1 (13)

with κ = (1 − β)(1 − αβ)(1 − α2β). In this case we have
η = [α β ]> with 0 < β < 1. From the above definition it
follows that

lim
α→0
KDC2 = KTC , lim

α→1
KDC2 = KTC2. (14)

Figure 2 shows a realization of the impulse response as a func-
tion of α using (13); as expected, the degree of smoothness
increases as α increases.

Remark 1: It is worth noting that one could consider other
transitions, e.g.

F2,α = Tpl(1,−1− α2, α, 0, . . .)

F2,α = ((1− α)F−1 + αF−2)−1.

However, as we will see, (12) is the unique definition which
guarantees that KDC2 admits a closed form expression and
is the maximum entropy solution of a matrix completion
problem.

Proposition 4.1: The inverse of KDC2 is a pentadiagonal
matrix, that is [(KDC2)−1]t,s = 0 for any |t− s| > 3.

Proof: The proof is similar to the one of Proposition 3.1.
�

Proposition 4.2: For 0 ≤ α < 1, KDC2 admits the follow-
ing closed form expression:

[KDC2]t,s =
βmax(t,s)(1− (1− β)α|t−s|+1)− α2βmax(t,s)+1

1− α .

(15)
Proof: First, we notice that

F2,α = ((1− α)I + αF)F = FαF

where Fα has been defined in (8); I is the identity matrix
of infinite dimension. The main diagonal of F and Fα is
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Fig. 2. One realization of g ∼ N (0, λKDC2) for different values of
α. Here, λ = ‖KDC2‖−1.

composed by strictly positive elements and thus their inverse
exist. By Lemma 3.1, we have

F−1 = Tpl(1, 1, . . .)

F−1
α = Tpl(1, α, α2, . . .).

Therefore,

F−1
2,α =

1

1− α
Tpl(1− α, 1− α2, 1− α3, . . .).

Finally,

[KDC2]t,s = κ[F−1
2,α]>:,tD[F−1

2,α]:,s

= κ

∞∑
k=max(t,s)

βk
1− αk−t+1

1− α
1− αk−s+1

1− α

where the above series converges to right hand side of (15).
The latter fact can be easily proved by using Identity (11). �

V. GENERALIZED-CORRELATED KERNEL

In view of (7) and (14) we can define a general kernel,
hereafter called generalized-correlated (GC) kernel, that incor-
porates the DI, DC, TC, DC2 and TC2 kernels. Let KDI(β),
KDC(α, β), KTC(β), KDC2(α, β) and KTC2(β) be the ker-
nels defined in (4), (6), (5), (15) and (10), respectively, where
we made explicit their dependence on the hyperparameters
0 < α < 1 and 0 < β < 1. Then, we define as GC kernel

KGC(γ, β) =


KDI(β), γ = 0
KDC(γ, β), 0 < γ < 1
KTC(β), γ = 1
KDC2(γ − 1, β), 1 < γ < 2
KTC2(β), γ = 2.

(16)

where γ characterizes the smoothness of the impulse response
over a wide range. It is worth noting that KGC is a continuous
function with respect to γ and β, but not differentiable.

It is worth noting that the GC kernels leads to an estimator
with less bias and more variance than the one using DI, DC,
TC, DC2 or TC2. Accordingly, the GC kernel provides a
different bias-variance tradeoff which is better than the one
of the other kernels in some specific situations as shown
in the next two Monte Carlo studies. The first Monte Carlo
study is composed by 200 experiments. In each experiment we
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Fig. 3. Top panel. Ten realizations of the impulse response in the
first Monte Carlo study. Bottom panel. Ten realizations of the impulse
response in the second Monte Carlo study.

generate the impulse response g with practical length T = 50
as follows:

gt =

10∑
k=1

ak cos(bkt+ ck)

where its parameters are drawn as follows: ak ∈ U([0.2, 0.9]),
bk ∈ U([10−6π, 10−1π]) and ck ∈ U([0, π]). Figure 3 (top)
shows ten realizations drawn from such process. Then, we
generate the input of length N = 500 using the MATLAB
function idinput.m as a realization drawn from a Gaussian
noise with band [0, 0.6]. Then, we feed the corresponding sys-
tem (1) with it obtaining the dataset DN := {y(t), u(t)}Nt=1.
Here, σ2 is chosen in such a way that the signal to noise ratio
is equal to two. Then, we estimate the impulse response using
the following estimators:
• ĝDI is the estimator in (2) using the diagonal kernel (4);
• ĝDC is the estimator in (2) using the DC kernel (6);
• ĝTC is the estimator in (2) using the TC kernel (5);
• ĝD2 is the estimator in (2) using the DC2 kernel (15);
• ĝT2 is the estimator in (2) using the TC2 kernel (10);
• ĝSS is the estimator in (2) using the SS kernel (9);
• ĝGC is the estimator in (2) using the GC kernel (16).

The hyperparameters of the kernels used in the aforementioned
estimators are estimated by minimizing numerically the nega-
tive log-marginal likelihood in (3). Finally, for each estimator
we compute the impulse response fit

FIT = 100

(
1− ‖g − ĝ‖
‖g − ḡ‖

)
(17)

where ḡ =
∑T
k=1 g(k) and ĝ is the corresponding estimator.

Clearly, the more FIT is close to 100, the better the estimator
performance is. Figure 4 (top) shows the boxplot of FIT for
the estimators over the 200 experiments: D2, T2, SS and GC
are the best estimators, while DI is the worst one. In plain
words, the best estimators are the ones that are able to induce
a sufficient degree of smoothness on the impulse response.

DI DC TC D2 T2 SS GC

0

20

40

60

80

100

DI DC TC D2 T2 SS GC

0

20

40

60

80

100

Fig. 4. Impulse response fit in the first (top) and second (bottom) Monte
Carlo study composed by 200 experiments.

The second Monte Carlo study is likewise to the previous
one, but bk ∈ U([0.6π, 0.7π]). In this case, the realizations
of the process gt are less smooth than before, see Figure 3
(bottom). Figure 4 (bottom) shows the boxplot of FIT for the
estimators: DI, DC and GC are the best estimators, while T2
and SS are the worst ones. We conclude that if the estimators
using DI, TC, DC, TC2, DC2 are with too much bias, then it
is better to use GC.

VI. EFFICIENT IMPLEMENTATION TO ESTIMATE THE
HYPERPARAMETERS

The minimization of (3) is typically performed through the
nonlinear optimization solver fmincon.m of Matlab. Thus,
the crucial aspect is to consider an efficient algorithm to
evaluate (3). We show that the proposed kernels are suitable
for this aim. Recall that K ∈ ST denotes the finite dimensional
kernel corresponding to K and defined as

[K]t,s = [K]t,s, t, s = 1 . . . T.

If K−1 admits a closed form expression of its Cholesky
factor, then the negative log-marginal likelihood in (3) can
be evaluated efficiently as follows, see [20]:

r2

σ2
+ (N − T ) log σ2 + log det(λK) + 2 log detR1 (18)

where L is the Cholesky factor of K−1 = LLT and R1 is
given by the QR factorization[

Rd1 Rd2

σ
√
λ−1L> 0

]
= QR = Q

[
R1 R2

0 r

]
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where Q ∈ R2T+1×T+1, R1 ∈ RT×T , R2 ∈ RT and r ∈
R. Moreover, Rd1 and Rd2 is given by the QR factorization
[A y ] = Qd[Rd1 Rd2 ] which can be computed “offline”
before to start the optimization task. In what follows we show
that TC2, DC2 and GC admit a closed form expression for L
and thus also log det(λK).

Proposition 6.1: The inverse of KTC2 ∈ ST admits the
following decomposition

K−1
TC2 = (1− β)−3F 2

TDT (F 2
T )>

where

FT = Tpl(1,−1, 0, . . . 0) ∈ RT×T

DT =

[
D1,T 0

0 BT

]
D1,T = diag(β−1, β−2, . . . βT−2)

BT = (1− β)β−T
[
β + β2 2β2

2β2 1− 3β + 4β2

]
.

Thus, K−1
TC2 is a pentadiagonal matrix.

Proof: Consider

X := (1− β)3(F 2
T D̃T (F 2

T )>)−1

where

D̃T = diag(β−1, β−2 . . . , β−T ). (19)

It is not difficult to see that

F−2
T = Tpl(1, 2, . . . , T ).

Thus, by arguments similar to ones used in the proof of
Proposition 3.2, we have

[X]t,s = (1− β)3
T∑

k=max(t,s)

βk(k − t+ 1)(k − s+ 1).

Without loss of generality, we assume that t ≥ s; hence,

[X]t,s = (1− β)3
T∑
k=t

βk(k − t+ 1)(k − s+ 1).

= (2β + (1− β)(1 + t− s))βt + η(t, s)

where

η(t, s) = (1− β)(βT+2(T − t+ 1)(T − s+ 3)

− βT+1(T − t+ 2)(T − s+ 2))

+ 2βT+2((T − t+ 1)β − (T − t+ 2))

and we have exploited the fact that
T∑
k=0

βk =
1− βT+1

1− β
.

Notice that

[KTC2]t,s = [X]t,s − η(t, s)

and we can rewrite η in the shorthand way

η(t, s) = γ1t+ γ1s+ γ2ts+ γ3 (20)

where γk’s are constants not depending on t and s. On the
other hand, if we take

Y : = (1− β)3(F 2
T∆−1(F 2

T )>)−1

= (1− β)3(F−2
T )>∆F−2

T ,

with

∆ =


0 . . . 0 . . . 0
...

. . .
...

...
... 0 z y
0 . . . 0 y x

 , (21)

then it is not difficult to see that

[Y ]t,s =(1− β)3[−(T (x+ 2y + z) + x+ y)(t+ s)

+ (x+ 2y + z)ts+ 2T (x+ y) + x].

By taking into account (20), we can impose that x, y, z obey
the conditions

γ1 = −(1− β)3(T (x+ 2y + z) + x+ y)

γ2 = (1− β)3(x+ 2y + z)

γ3 = (1− β)3[2T (x+ y) + x].

In this way, η(t, s) = [Y ]t,s. With this choice, we have

KTC2 = X − Y = (1− β)3(F−2
T )>(D̃−1

T −∆)(F−2
T )

= (1− β)3(F 2
T (D̃−1

T −∆)−1(F 2
T )>)−1

where it is not difficult to see that (D̃−1
T − ∆)−1 coincides

with DT . Finally, the fact that K−1
TC2 is pentadiagonal follows

from Proposition 7.2, see Section VII. �

Proposition 6.2: The inverse of KDC2 ∈ ST admits the
following decomposition

K−1
DC2 = κ−1F2,α,TDTF

>
2,α,T

where

F2,α,T = (1− α)FT + αF 2
T

DT =

[
D1,T 0

0 BT

]
D1,T = diag(β−1, β−2, . . . βT−2)

BT = (1− αβ)β−T

×
[
β(1 + αβ) αβ2(1 + α)
αβ2(1 + α) (1− β − α2β)(1− αβ) + 2α2β2

]
.

Thus, K−1
DC2 is a pentadiagonal matrix.

Proof: Consider

X := κ(F2,α,T D̃TF
>
2,α,T )−1

where D̃T has been defined in (19). Notice that F2,α,T =
Fα,TFT where

Fα,T = Tpl(1,−α, 0 . . . , 0) ∈ RT×T

and

F−1
α,T = Tpl(1, α2, . . . , αT )

F−1
2,α,T = F−1

T F−1
α,T

=
1

1− α
Tpl(1− α, 1− α2, . . . , 1− αT ).
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Without loss of generality, we assume that t ≥ s, then it is
not difficult to see that

[X]t,s = [(F−1
T )>(F−1

α,T )>D̃−1
T F−1

α,TF
−1
T ]t,s

=
1

(1− α)2

T∑
k=t

βk(1− αk−t+1)(1− αk−s+1)

= [KDC2]t,s + η(t, s)

where

η(t, s) = γ1α
−t + γ1α

−s + γ2α
−(t+s) + γ3 (22)

and γk’s are constants not depending on t and s. On the other
hand, if we take

Y : = κ(F2,α,T∆−1F>2,α,T )−1 = κ(F−1
2,α,T )>∆F−1

2α,T

where ∆ is defined as in (21), then it is not difficult to see
that

[Y ]t,s =κ[−αT (z + y + αx+ αy)(α−t + α−s)

+ α2T (z + 2αy + α2x)α−(t+s) + (z + 2y + x)].

By taking into account (22), we can impose that x, y, z obey
the conditions

γ1 = −καT (z + y + αx+ αy)

γ2 = κα2T (z + 2αy + α2x)

γ3 = κ(z + 2y + x).

In this way, η(t, s) = [Y ]t,s. With this choice, we have

KDC2 = X − Y = κ(F−1
2,α,T )>(D̃−1

T −∆)F−1
2,α,T

= κ(F2,α,T (D̃−1
T −∆)−1F>2,α,T )−1

where it is not difficult to see that (D̃−1
T − ∆)−1 coincides

with DT . Finally, the fact that K−1
DC2 is pentadiagonal follows

by Proposition 7.4 in Section VII. �

By Proposition 6.1 and 6.2 we have following corollaries.

Corollary 6.1: Let L denote the Cholesky factor of K−1
TC2,

then

[L]t,s =



1√
(1−β)3βt

, 1 ≤ t = s ≤ T − 2

−2√
(1−β)3βt−1

, 2 ≤ t = s+ 1 ≤ T − 1

1√
(1−β)3βt−2

, 3 ≤ t = s+ 2 ≤ T
√
β−T+1(1+β)

1−β , t = s = T − 1

−2
√
β−T+1

(1−β)
√

1+β
, t = s+ 1 = T√

β−T

1+β , t = s = T

0, otherwise.

Moreover,

detKTC2 = β
T (T+1)

2 (1− β)3T−4.

Corollary 6.2: Let L denote the Cholesky factor of K−1
DC2,

then

[L]t,s =



1√
κβt

, 1 ≤ t = s ≤ T − 2

−(1+α)√
κβt−1

, 2 ≤ t = s+ 1 ≤ T − 1

α√
κβt−2

, 3 ≤ t = s+ 2 ≤ T√
(1+αβ)β−T+1

(1−β)(1−α2β) , t = s = T − 1

−(1+α)
√
β−T+1√

(1+αβ)(1−β)(1−α2β)
, t = s+ 1 = T√

β−T

1+αβ , t = s = T

0, otherwise.

Moreover,

detKDC2 = β
T (T+1)

2 (1− αβ)T−2(1− β)T−1(1− α2β)T−1.
In view of the above properties, we have

log det(λKTC2) = T log λ+
T (T + 1)

2
log β

+ (3T − 4) log(1− β)

log det(λKDC2) = T log λ+
T (T + 1)

2
log β

+ (T − 2) log(1− αβ) + (T − 1) log(1− β)

+ (T − 1) log(1− α2β).

In view of the above corollaries and since K−1
DI , K−1

DC ,
K−1
TC admit a closed form expression for the Cholesky factor,

see [20], then it follows that the Cholesky factor of K−1
GC

admits a closed form expression. Moreover, the Cholesky
factor L of K−1

TC2, K−1
DC2 and K−1

GC is a lower triangular
and pentadiagonal matrix. Therefore, the construction of L
requires the computation of 3(T − 1) elements. Hence, the
computational complexity for the computation of L is O(T ).
It is worth noting that the most efficient way to compute
the Cholesky factor of KSS is to exploit the fact that the
SS kernel is extended 2-semiseparable: first it is required to
compute the generators of KSS , say U,W ∈ RT×2; the latter
can be computed through [32, Algorithm 4.2]; finally, LSS =
tril(UWT ) where tril(UWT ) denotes the lower triangular
part of UWT . The computational complexity of the resulting
algorithm is O(T 2). Accordingly, the computation of the
Cholesky factor of K−1

TC2 is more efficient that the computation
of the Cholesky factor of KSS . Figure 5 confirms this analysis:
it shows the average time (over 5000 runs) needed to compute
the Cholesky factors of KSS (blue line) and K−1

TC2 (red line)
for different sizes T of the kernel matrices. As a consequence,
the minimization of the log-marginal likelihood using TC2 and
GC can be efficiently performed by means of the previous
algorithm equipped with the closed form expressions. In order
to test it, we consider a Monte Carlo study composed by
50 experiments where the models and the data are generated
likewise to the first Monte Carlo study of Section V, but
ak ∈ U [0.2, 0.9995] and N = 5000. We consider the following
algorithms to estimate the impulse response:
• T2 is the algorithm in [20], i.e. the one explained before,

to compute ĝT2 which exploits the fact that TC2 admits
the closed form expression for L and log det(λK);

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3337056

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



8 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

1000 2000 3000 4000 5000 6000 7000

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

SS

TC2

Fig. 5. Average computational time (in seconds) for different values of
T ∈ [500, 7500] to compute the Cholesky factor of KSS (blue line)
and the Cholesky factor of K−1

TC2 (red line).

• GC is the algorithm in [20], i.e. the one explained before,
to compute ĝGC which exploits the fact that GC admits
the closed form expression for L and log det(λK);

• SS is the algorithm in [18] to compute ĝSS which exploits
the fact that the Cholesky factor, say LSS , of KSS can
be computed efficiently through [32, Algorithm 4.2]; it
is worth noting this algorithm neither computes L−1

SS nor
K−1
SS .

In all the above algorithms fmincon.m is used with the
default options with the exception of the maximum number
of function evaluations and the maximum number of itera-
tions which were set equal to 100000 and 10000. For any
experiment we measure the computational time (in seconds)
of these algorithms through the functions tic and toc in
Matlab. The simulation is performed with MatlabR2021a and
run on a MacBook Air with operating system macOS Big
Sur, 3.2GHz Apple M1 processor and 8GB 4266 LPDDR4
memory. Figure 6 shows the average computational time for
the three algorithms using as practical length T = 1000, T =
1500, T = 2000 (right panel) and the corresponding impulse
response fit (17) (left panel). While the performance of the
estimators is similar, T2 exhibits the best computational time
and SS the worst one. It is worth noting that the computational
time of GC is worse than the one of T2 because in the
former we have to optimize three hyperparameters (i.e. λ, γ
and β) while in the latter only two (i.e. λ and β). Finally,
for the SS kernel we also considered the algorithm proposed
in [20] where the Cholesky factor of KSS is computed by
[32, Algorithm 4.2]: the computational time was worse than
the one of SS. In order to have an additional assessment
between SS and T2, which is independent from the number of
iterations executed by the fmincon routine, we have considered
an additional Monte Carlo study composed by 50 trials with
N = 5000 and T fixed. In each trial we generate randomly
A, y, σ2, λ and η. Then, we compute the execution time to

1000 1500 2000
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130
140
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SS T2 GC
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80

90

100

SS T2 GC

70

80

90

100

SS T2 GC

70

80

90

100

Fig. 6. Left panels. Impulse response fit for T = 1000 (top),
T = 1500 (middle) and T = 2000 (bottom). Right panel. Average
computational time (in seconds) for T = 1000, 1500, 2000.

500 1000 1500 2000 2500 3000

1

2

3
SS

T2

Fig. 7. Average computational time (in seconds) to evaluate the
negative log-likelihood for different values of T .

evaluate the likelihood for SS and T2 using these parameters.
The execution time does not include the preliminary one-time
operations (e.g. the computation of Rd1 and Rd2 for T2).
Figure 7 shows the average computational time (in seconds)
for different values of T . Still, T2 is more efficient than SS
in terms of computational time. We also tried different values
of N ≥ T and still we have found similar results.

All these numerical experiments showed that TC2 makes
more efficient the minimization of the negative log-marginal
likelihood than SS, while the corresponding estimators exhibit
a similar performance.

Remark 2: Although, we showed empirically that T2 is
more efficient than SS, it is also worth noting both these two
algorithms exhibits the same asymptotic cost to evaluate the
likelihood which is equal to O(T 3). In addition, the compu-
tational efficiency of the algorithms is heavily dependent on
the particular set-up and implementation. For instance, all the
experiments have been performed without the use of code writ-
ten in C or C++; the use of it can improve the performance of
both the algorithms, however further investigation is required
in order to draw some conclusion.

Remark 3: The fact that the inverse kernel matrix is pen-
tadiagonal can be also used to compute efficiently (2) in the
case that T � N through the alternating direction method of
multipliers (ADMM) proposed in [33]. Indeed, although that
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paper considers the case of tridiagonal inverse kernel matrices
(e.g. TC and DC kernels) that idea holds also for banded
inverse kernel matrices and the computational flops do not
change.

A. Maximum Entropy interpretation

Proposition 6.1 and Proposition 6.2 are also important to
show that the kernel matrices KTC2 ∈ ST and KDC2 ∈ ST ,
with T ≥ 4, are the maximum entropy solution of a matrix
completion problem of the following form.

Problem 1 (Band extension problem): Given m ∈ N and
ct,s, with |t − s| ≤ m, find the covariance matrix Σ ∈ ST
of a zero mean Gaussian random vector such that

[Σ]t,s = ct,s, |t− s| ≤ m.
Such an interpretation is important because, as pointed out
by Dempster in [34], see also [35]–[38], “the principle of
seeking maximum entropy is a principle of seeking maxi-
mum simplicity of explanation”. Accordingly, these kernels
represent the simplest way of embedding in the prior the fact
that the impulse response describes a BIBO stable system and
with certain degree of smoothness. Recall that the maximum
entropy solution (or extension) of the above problem is defined
as

maxΣ∈ST log det Σ

subject to [Σ]t,s = ct,s, |t− s| ≤ m. (23)

The following statements can be proved using arguments

similar to the ones in [20].
Theorem 6.1: Consider Problem 1 with m = 2 and

ct,s = 2βmax(t,s)+1 + (1− β)(1 + |t− s|)βmax(t,s), (24)

with |t−s| ≤ 2. Then, the maximun entropy extension solution
to (23) is KTC2.

Theorem 6.2: Consider Problem 1 with m = 2 and

ct,s =
βmax(t,s)(1− (1− β)α|t−s|+1)− α2βmax(t,s)+1

1− α
,

(25)

with |t−s| ≤ 2. Then, the maximun entropy extension solution
to (23) is KDC2.

Accordingly, these two theorems tell us that given the
covariance lags up to the second order (24) and (25) of the im-
pulse response, then KTC2 and KDC2, respectively, describe
the correlation function of the process that best represents
the current state of knowledge about the impulse response.
Moreover, unlike the TC and DC kernels, the previous property
also involves the second order covariance lags of the impulse
response.

VII. HIGHER-ORDER EXTENSIONS

Drawing inspiration from Section III we can define the TC
kernel of order δ ∈ N as

KTCδ = κδ(FδD(Fδ)>)−1 (26)
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0.5
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0.4

0.6
TC4
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0.2

0.4

0.6
TC6

Fig. 8. Ten realizations of g ∼ N (0, λKTCδ) with β = 0.8, δ =
3, 4, 5, 6 and λ = ‖KTCδ‖−1.

where κδ is a suitable normalization constant. Here, η = β
with 0 < β < 1. Figure 8 shows ten realizations of g using
the TCδ kernel with β = 0.8 and for different values of δ. As
expected, the larger δ is the more smoothness is induced on
g.

Proposition 7.1: The inverse of KTCδ is a banded matrix
of bandwidth δ, that is [K−1

TCδ]t,s = 0 for any |t− s| > δ.

Proof: We prove the claim by induction. First, for δ =
1 we have that TCδ is the standard TC and its inverse is
tridiagonal, i.e. the claim holds. Assume that K−1

TCδ−1 is a
banded matrix of bandwidth δ − 1. Then,

K−1
TCδ =

κδ−1

κδ
FK−1

TCδ−1F
>.

Notice that F = I − S where S is the lower shift matrix and
I the identity matrix, both infinite dimensional. Hence,

K−1
TCδ = κδ−1κ

−1
δ [K−1

TCδ−1

+ SK−1
TCδ−1S

> −K−1
TCδ−1S

> − SK−1
TCδ−1]. (27)

It is well known that premultiplying a matrix A by a lower shift
matrix results in the elements of A being shifted downward
by one position, with zeroes appearing in the top row. Thus,
in view of (27), we have that SK−1

TCδ−1S> is a band matrix
with bandwidth δ−1, while K−1

TCδ−1S>+SK−1
TCδ−1 and thus

KTCδ−1 are band matrices with bandwidth δ. �

Also in this case one could try to find the closed form
expression for KTCδ , however its derivation is not straightfor-
ward from the case δ = 2. On the other hand, we can define the
corresponding finite dimensional kernel matrix KTCδ ∈ ST as

[KTCδ]t,s = [KTCδ]t,s, t, s = 1 . . . T.

Proposition 7.2: The finite dimensional kernel KTCδ ad-
mits the following decomposition:

K−1
TCδ = κ−1

δ F δTDT (F δT )>
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where

DT =

[
D1,T 0

0 BT

]
D1,T = diag(β−1, β−2, . . . βT−δ),

and BT is a δ×δ matrix. Thus, K−1
TCδ is banded of bandwidth

δ.
Proof: Let V(j) ∈ R∞×T denote a matrix whose first j−1

columns coincide with the null sequence and the remaining
ones do not, thus V(T+1) is the null matrix. We use ∼ to denote
the equivalence relation X ∼ Y which means that X ∈ R∞×T
and Y ∈ R∞×T have the first columns (in the same number)
equal to the null sequence and the other ones do not. Thus, the
latter induces a splitting of R∞×T through the corresponding
equivalence classes [V(j)] = {X ∈ R∞×T s.t. X ∼ V(j)}
with 1 ≤ j ≤ T + 1. In what follows, in order to ease the
exposition (and thus with some abuse of notation) we use
the symbol = instead of ∼ in all the (submatrix) relations
involving V(j), with j = 1 . . . T + 1.

First, notice that F = I−S and FT = IT −S where S and
S denote, respectively, the infinite and finite dimensional lower
shift matrix. Recall that postmultiplying V(j), with 1 ≤ j ≤ T ,
by S results in the columns of V(j) being shifted left by one
position with a null sequence appearing in the last column
position, thus

V(j)FT = V(j−1); (28)

premultiplying V(j−1), with 1 ≤ j ≤ T , by S results in the
rows of V(j−1) being shifted downward by one position with
a null row vector appearing in the first top row, thus

V(j−1) = FV(j−1). (29)

Combining (28)-(29), we obtain

V(j)FT = FV(j−1)

and thus

F−1V(j)FT = V(j−1), 1 ≤ j ≤ T. (30)

Then, we have

F−1

[
IT
V(j)

]
FT =

[
IT

O + F−1V(j)FT

]
(31)

where O ∈ R∞×T is a matrix whose last column is a sequence
of ones, while the other columns are null sequencess, i.e. O =
V(T−1). Accordingly, by (30)-(31) we have

F−1

[
IT
V(j)

]
FT =

[
IT
V(j−1)

]
, 1 ≤ j ≤ T + 1. (32)

Notice that

KTCδ =
[
IT 0

]
KTCδ

[
IT
0

]
= κδ

[
IT 0

]
(F−δ)>D−1F−δ

[
IT
0

]
.

Consider

Y : = (F δT )>KTCδF
δ
T

= κδW>δ D−1Wδ
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Fig. 9. One realization of g ∼ N (0, λKDC3) for different values of
α. Here, β = 0.8 and λ = ‖KDC3‖−1.

where

Wδ = F−δ
[
F δT
0

]
= F−δ

[
F δT
V(T+1)

]
.

Then, it remains to prove that Y = κδD
−1
T . Indeed,

Wδ = F−(δ−1)F−1

[
IT
V(T+1)

]
FTF

δ−1
T

= F−(δ−1)

[
IT
V(T )

]
F δ−1
T

= . . . =

[
IT

V(T+1−δ)

]
where we exploited (32). Thus,

Y = κδ
[
IT (V(T+1−δ))>

]
D−1

[
IT

V(T+1−δ)

]
= κδ

[
IT (V(T+1−δ))>

] [ D−1
1,T 0

0 D̃−1

] [
IT

V(T+1−δ)

]
= κδ(D

−1
1,T + (V(T+1−δ))>D̃−1V(T+1−δ)) = κδD

−1
T

where D̃ = diag(βT−δ−1, βT−δ−2, . . .). �

It remains to design the DC kernel of oder δ connecting
KTCδ−1 and KTCδ . Drawing inspiration from Section IV we
define it as

KDCδ = κδ(Fδ,αDF>δ,α)−1 (33)

where

Fδ,α := (1− α)Fδ−1 + αFδ

and κδ is the normalization constant. Here, η = [β α ]> with
0 < β < 1 and 0 ≤ α ≤ 1. In Figure 9 we show a realization
of the impulse response using (33) with δ = 3 as a function
of α; as expected, the degree of smoothness increases as α
increases.

Proposition 7.3: The inverse of KDCδ is a banded matrix
of bandwidth δ, that is [K−1

DCδ]t,s = 0 for any |t− s| > δ.
Proof: First, for δ = 1 KDCδ is the standard DC kernel

whose inverse is tridiagonal, i.e. the statement holds. Finally,
notice that

Fδ,α := F((1− α)Fδ−2 + αFδ−1) = FFδ−1,α,
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thus

K−1
DCδ = κδ−1κ

−1
δ FK

−1
DCδ−1F

>.

Accordingly, the remaining part of the proof is similar to the
one of Proposition 7.1. �

Also in this case the finite dimensional kernel KDCδ ∈ ST
is defined as

[KDCδ]t,s = [KDCδ]t,s, t, s = 1 . . . T.

Proposition 7.4: The finite dimensional kernel KDCδ ad-
mits the following decomposition:

K−1
DCδ = κδFδ,α,TDT (Fδ,α,T )>

where

Fδ,α,T = (1− α)F δ−1
T + αF δT

DT =

[
D1,T 0

0 BT

]
D1,T = diag(β−1, β−2, . . . βT−δ)

and BT is a δ×δ matrix; Thus, K−1
DCδ is banded of bandwidth

δ.
Proof: The proof is similar to the one of Proposition 7.2.

�

Finally, this extension can be applied also to the high-
frequency (HF) kernel, see [29]:

[KHF ]t,s = (−1)|t−s|βmax(t,s) = (−1)|t−s|[KTC ]t,s

where 0 < β < 1. We define the high frequency kernel of
oder δ ∈ N as

[KHFδ]t,s = (−1)|t−s|[KTCδ]t,s.

Moreover, we can define the high frequency diagonal-
correlated (HC) kernel connecting HFδ − 1 and HFδ as

[KHC ]t,s = (−1)|t−s|[KDCδ]t,s.

It is straightforward to see that K−1
HFδ and K−1

HCδ are banded of
bandwidth δ, as well as their finite dimensional matrices K−1

HFδ

and K−1
HCδ . It is possible to find the closed form expression for

the Cholesky factor and the determinant of K−1
HF2 and K−1

HC2.
Finally, KHF2 and KHC2 are, respectively, the maximum
entropy solution of a band extension problem similar to the
ones introduced in Section VI.

VIII. FREQUENCY ANALYSIS

An amplitude modulated kernel locally stationary (AMLS)
kernel is a particular type of exponentially convex local
stationary (ECLS) kernel K ∈ S∞ and it admits the following
decomposition

[K]t,s = β
t+s
2 [W]t,s (34)

where W ∈ S∞ is a stationary kernel, i.e. the covariance
function of a stationary process and thus [W]t,s = [W]t+k,s+k
for any k ∈ N. Recall that TC, DC and SS are ECLS kernels.

It is straightforward to see that TC2 and DC2 are ECLS kernel
whose stationary parts are, respectively,

[WTC2]t,s = 2β
|t−s|

2 +1 + (1− β)(1 + |t− s|)β
|t−s|

2

[WDC2]t,s =
β
|t−s|

2 (1− (1− β)α|t−s|+1)− α2β
|t−s|

2 +1

1− α
.

Theorem 8.1: TCδ and DCδ kernels with δ > 2 are ECLS,
that is

KTCδ = β
t+s
2 [WTCδ]t,s, KDCδ = β

t+s
2 [WDCδ]t,s

where WTCδ and WDCδ are stationary kernels.
Proof: We only prove the claim for TCδ because the one

for DCδ is similar. By (26), we have that

KTCδ = κδX>D−1X (35)

where X = F−δ = (F−1)δ . Since F is lower triangular,
Toeplitz and invertible, then by Lemma 3.1 we know that
F−1 is lower triangular and Toeplitz. Accordingly, X is lower
triangular and Toeplitz because it is given by a product of
lower triangular and Toeplitz matrices. Hence, let

X = Tpl(x1, x2, x3, . . .).

Moreover,

[X ]t,: = [ 0 . . . 0 x1︸︷︷︸
t-th element

x2 x3 . . . ].

Taking into account (35), we have

[KTCδ]t,s = κδ[X ]t,:D−1[X ]>s,:

= κδ

∞∑
k=1

βmax(t,s)+k−1xkxk+|t−s|

= β
t+s
2 κδ

∞∑
k=1

β
|t−s|

2 +k−1xkxk+|t−s|︸ ︷︷ ︸
:=[WTCδ]t,s

(36)

where we have exploited the fact that max(t, s) = (t+s)/2+
|t−s|/2. It is straightforward to see thatWTCδ is a stationary
kernel. In view of (34) and (36), we conclude that TCδ is
ECLS. �

Although it is not immediate to derive the closed form
expression for WTCδ and WDCδ , we can compute them
numerically:

[WTCδ]t,s ≈ β−
t+s
2 [KTCδ]t,s

and likewise for DCδ. Clearly, the larger T is, the better the
approximation above is.

Therefore, it is interesting to compare the frequency content
in their stationary parts. In doing that, we recall that

[W ]t,s =
1

2π

∫ π

−π
φ(ϑ) cos(ϑ(t− s))dϑ

where φ(ϑ), with ϑ ∈ [0, 2π], is the power spectral density
of the (stationary) process. In order to compare SS with the
others we need to choose γ = 3

√
β in (9); in this way the latter

has the exponential part as in (34). Figure 10 shows the power
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Fig. 10. Power spectral density of the stationary part of TC, TCδ, with
δ = 2 . . . 6, and SS with β = 0.8. All those power spectral densities
are normalized to one in order to ease the comparison.
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Fig. 11. Power spectral density of the stationary part of HF and HFδ,
with δ = 2 . . . 4, with β = 0.8. All those power spectral densities are
normalized to one in order to ease the comparison.

spectral densities of the stationary part of TC, TCδ, with δ =
2 . . . 6 and SS: the higher TCδ is, the more statistical power
is concentrated for frequencies close to zero. The frequency
content of SS is more similar to the one of TC2 than the one of
TC. It is worth noting that we can plot also the power spectral
density corresponding to DCδ. The latter smoothly changes
from the one of TCδ−1, with α = 0, to the one of TCδ, with
α = 1.

Finally, also HFδ and HCδ are ECLS kernels. Figure 11
shows the power spectral density of the stationary part of
HF and HFδ for δ = 2 . . . 4. The higher δ is, the more the
statistical power is concentrated for frequencies close to π.

In order to understand the use of the TCδ kernel we consider
a Monte Carlo study composed by 200 experiments. In each
experiment the models and the data are generated likewise
to the first Monte Carlo study of Section V, but the input u
is a realization drawn from a Gaussian noise with band [0,
0.2]. We consider the following additional estimators for the
impulse response:
• ĝTCδ is the estimator in (2) using the TCδ kernel (26)

with δ = 2 . . . 6.
Figure 12 shows the boxplot of FIT for the estimators: the
higher δ is, the better the performance of the estimator is. In
view of the fact that the true impulse responses in this Monte
Carlo study are enough smooth, see Figure 3 (top), this study
suggests the following design guideline. The more smooth
the impulse response is expected, the higher the parameter
δ should be chosen. Similar conclusions hold for the DCδ

kernel.

IX. A SYSTEM THEORY PERSPECTIVE

Since TC2 and DC2 are AMLS kernels, then the Gaussian
proccess gt with kernel function KTC2 or KDC2 can be
understood as the output of linear time invariant (LTI) system,
[21]. Indeed, the stationary part of the TC2 kernel [WTC2]t,s
corresponds to a stationary stochastic process whose covari-
ance function is

r(t) := 2β
|t|
2 +1 + (1− β)(1 + |t|)β

|t|
2

and it is not difficult to see that the corresponding power
spectral density is

φ(ϑ) =
−γz + δ − γz−1

(z −
√
β)2(z−1 −

√
β)2

where γ =
√
β(1 − β)2 and δ = 2(1 − β)2. Then, by

Proposition 4 in [21], process gt with kernel TC2 can be
understood as the output of the state space model

x(t+ 1) = Ax(t) +Bu(t)

gt = Cx(t) +Du(t)

where u(t) =
√
β
t
w(t) is the input, w(t) is a zero-mean

normalized white Gaussian noise process, the initial state
x(0) ∼ N (0, Q) is independent from w(t) and Q is solution
to the algebraic equation Q = β−1(AQAT + BBT ). In this
case, it is not difficult to see that

A =
√
β

[ √
β 1

0
√
β

]
, B =

√
β

[
1
1

]
,

C =

√
γ

p

[
2
√
β − p 2

√
β − p− β +

√
βp

]
, D =

√
γ

p
(37)

where p = (1 −
√

1− β)/
√
β. It is worth noting that the

proposed kernel has the same state space dimension of the SS
kernel, however the eigenvalues of the state transition matrix
are different. In the TC2 kernel there is only one eigenvalue
whose index is two, while in the SS kernel there are two
different eigenvalues and their index is one.

In a similar way, it is possible to prove that if process gt is
characterized by kernel DC2, then its state space representation
is with

A =
√
β

[ √
β 0

0 α
√
β

]
, B =

√
β

[
1
1

]
,

C =
µ
√
β

1− α
[

1 −α2
]
, D = µ (38)

µ =
√

(1− α2β)(1− αβ)(1− β). In particular, the dimen-
sion of the state space realization is larger than the one of the
DC kernel.

X. CONCLUSIONS

We have introduced a second-order extension to TC and
DC kernels called TC2 and DC2, respectively. The latter
induce more smoothness than the former. This idea can be
also extended to higher-orders. We also have introduced a
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Fig. 12. Impulse response fit in the Monte Carlo study composed by 200 experiments.

generalized-correlated (GC) kernel which incorporates the DI,
DC, TC kernels, i.e. the most popular kernels in system iden-
tification, and the DC2 and TC2 kernels. We have derived the
closed form expression for the determinant and the Cholesky
factorization of the inverse matrix of TC2, DC2 and GC. The
log-likelihood calculation with the TC2 kernel is straightfor-
ward to implement efficiently in Matlab, and the asymptotic
complexity matches that of the same calculations with kernels
such as the TC and SS kernels. Numerical experiments showed
that TC2 and SS kernels produce similar performances for
estimating the impulse response, but the search of the optimal
hyperparameters through marginal likelihood is more efficient
(in terms of execution time) using TC2 than SS. The runtime
performance of these algorithms can be improved with the use
of code written in C or C++, however further investigation is
required in order to draw some conclusion. Finally, we have
also shown that these new kernels are exponentially convex
local stationary and thus it is possible to understand easily
their frequency properties.
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