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Abstract—A nonlinear multivariable control scheme for linear
time-invariant plants is presented that is capable of rejecting
unmatched disturbances which are sufficiently often differen-
tiable. It is based on the Youla parametrization in state space.
Robust exact sliding-mode differentiators are employed for
the realization of improper Youla parameters. Implementation
complexity is optimized by minimizing the total number of
required differentiator states. The resulting closed loop is shown
to be input-to-state stable with respect to arbitrary bounded
disturbances. Simulations and experimental results from a four-
tank system corroborate the results.

Index Terms—Sliding mode control; Linear systems; Differen-
tiation; Robust control

I. INTRODUCTION

Robust control of multivariable systems is an important
and active area of research. One way to design such robust
controllers is via sliding-mode control, see e.g. [1], [2]. For
multivariable systems, in particular, several such approaches
rely on the differentiation of outputs or output errors obtained
from linear observers [3], [4]. When this differentiation is
performed using the robust exact sliding-mode differentiator
[5], exact reconstruction and full rejection of a wide class of
disturbances can, in theory, be achieved.

Several differentiator-based sliding-mode approaches are
found in [4], [6], [3], [7]. Thereof, [6], [7] study exact state
and disturbance reconstruction by means of differentiation.
In particular, [6] solves the problem by means of a minimal
number of differentiations, while [7] designs an observer that
requires no differentiability assumptions for the disturbance.
The corresponding control design problem—stabilizing the
plant and rejecting the disturbance by using the reconstructed
information—is solved in [4], [3]. All of those approaches as-
sume the disturbance to be matched, however, i.e., to act on the
system in the same channel as the control signal. Unmatched
disturbances are considered in [8], [9], [10]. However, all of
these approaches require system transformations and, apart
from [9], also impose additional restrictions on the transformed
system such as strong observability.

The present paper presents a new, unified approach for
output regulation based on sliding-mode disturbance recon-
struction and rejection. The approach is based on the Youla
parametrization [11] of stabilizing controllers. Starting from
an ideal, but improper linear Youla parameter, a sliding-mode
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based realization of that parameter is developed. The resulting
nonlinear Youla parameter is shown to yield an input-to-state
stable closed loop, which can completely reject disturbances
that are sufficiently often differentiable.

The main contribution of the present approach is a novel
approach to solve the exact output regulation problem in the
presence of unmatched disturbances by combining the Youla
parametrization with sliding mode differentiators. In particu-
lar, unmatched disturbances are automatically translated—in
the context of the considered output regulation problem—to
differentiability requirements for the disturbance. Compared
to [9], the approach avoids separate, explicit disturbance
reconstruction and cancellation by handling both problems in a
combined way, and does not need subspace decompositions or
involved system transformations. Rather, it requires only trans-
fer function manipulations which are straighforward to apply.
Moreover, it is proven that the proposed approach minimizes
the cumulative differentiator order1, i.e., the total number of
derivatives of scalar signals that need to be calculated during
the implementation. In the context of the control problem,
this improves on the results of [6], where the total number of
vector-valued differentiations is minimized but, as pointed out
in Remark 1 therein, fewer differentiations may sometimes be
sufficient for some components of the vector.

The combination of Youla parametrization and sliding-mode
control has only scarcely been studied in literature, see [12],
[13], [14] for some of the few occurences. In [12], a Youla
parametrization of a sliding-mode controller is presented.
However, the resulting disturbance rejection performance is
equivalent to that of the linear controller. In [13], a sliding-
mode controller is added to a two degree-of-freedom control
scheme, similar to the one considered in the present paper,
but only first-order sliding-mode control is used. The use of a
sliding mode observer is suggested as one possibility to obtain
the states in [14], where the Youla parametrization is also
used to obtain a stabilizing controller. However, none of these
contributions provide a technique to achieve full disturbance
rejection using robust exact sliding-mode based differentiation,
as it is done in the present paper by means of a minimum
number of differentiators.

Section II introduces the considered problem and briefly
recapitulates the state-space form of the Youla parametrization
presented in [15], [16]. Section III first uses linear techniques
to design an ideal Youla parameter that, however, can not
be realized as a linear state-space model. Then, a realization
for this parameter is shown using a minimal number of

1A control scheme using m differentiators with orders k1, . . . , km is
understood to have a cumulative differentiator order of

∑m
i=1 ki.
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sliding-mode based robust exact differentiators. Section IV
proves input-to-state stability of the closed loop and states
requirements for the disturbance signal that guarantee full
disturbance rejection. An academic example in Section V,
as well as a simulation example and experimental results
in Section VI show the practical viability of the proposed
approach. Section VII provides concluding remarks and gives
a brief outlook.

Notation: Matrices and vectors are written as boldface
uppercase and boldface lowercase letters, respectively. For
scalar y and p ≥ 0, the abbreviations byep = |y|p sign(y)
and bye0 = sign(y) are used; when applied to vectors, these
operations are understood to be applied component-wise. The
Laplace transform and its inverse are denoted by L and L−1,
respectively. Typically, the variable s is added as an argument
to signify either the Laplace transform of a vector-valued
signal, such as y(s), or a transfer function matrix, such as
Q(s). When writing dynamic systems, ẋ denotes the time
derivative of x, and time dependence is typically omitted
wherever it is clear from context.

II. PROBLEM STATEMENT

Consider a linear time invariant plant

ẋ = Ax + Bu + Fw, y = Cx (1)

with state x ∈ Rn, control input u ∈ Rl, disturbance
w ∈ Rp, output y ∈ Rm, and constant parameter matrices
A,B,C,F. It is assumed that l ≥ m ≥ p holds, and that the
matrices B,C,F have maximal rank. Moreover, the plant is
assumed to be minimum phase with respect to u and y, and
strongly detectable with respect to w and y. More formally,
the following assumption is made:

Assumption 1: The plant parameters A ∈ Rn×n, B ∈ Rn×l,
C ∈ Rm×n, F ∈ Rn×p with l ≥ m ≥ p satisfy

rank

[
A− λI B

C 0

]
= n+m, rank

[
A− λI F

C 0

]
= n+ p

(2)
for all λ ∈ C≥0.

For this plant, consider an observer-based state-feedback
controller of the form

˙̂x = Ax̂ + Bu + L(y −Cx̂) (3a)
u = −Kx̂ (3b)

with constant K and L designed such that A − BK and
A − LC are Hurwitz matrices. Starting from this controller,
all controllers that stabilize the (unperturbed) plant may be
obtained by means of the so-called Youla parametrization [15],
[16]. In state space, this parametrization is obtained by filtering
the observer innovation ỹ = y −Cx̂ and adding the filter’s
output ũ to the control input. The parametrized controller is
given by

˙̂x = Ax̂ + Bu + Lỹ, (4a)
ỹ = −Cx̂ + y, (4b)
u = −Kx̂ + ũ, (4c)

and the Youla parameter is the system that computes ũ from
ỹ. A block diagram of the parametrized controller is shown

˙̂x = Ax̂+Bu+ Lỹ

u = −Kx̂+ ũ

ỹ = −Cx̂+ y

Youla
parameter

u y

ỹ ũ

ỹ ũ

Fig. 1. Structure of the parametrized controller (4)

in Fig. 1. It is worth pointing out that the controller (4)
with a linear Youla parameter may be represented by a linear
fractional transform (LFT) in frequency domain, cf. e.g. [17].
It is well-known that, by appropriate choice of the Youla
parameter, different optimal controllers may be obtained.

The goal of this paper is to use sliding-mode techniques for
realizing an ideal Youla parameter which permits complete
rejection of the disturbance.

III. DESIGN OF YOULA PARAMETER

The design is divided in two steps. First, an ideal linear
Youla parameter is computed. Then, sliding-mode techniques
and robust exact differentiation are used to approximate its
behavior. Stability and disturbance rejection properties of the
closed loop are afterwards derived in the next section.

A. Ideal Youla Parameter

For the first step, assume that ũ(s) = Q(s)ỹ(s) holds
in Laplace domain with some transfer-function matrix Q(s).
Introducing the observer error x̃ = x − x̂, the closed-loop
system with input ũ and output ỹ may be written as

ẋ = (A−BK)x + BKx̃ + Bũ + Fw, (5a)
˙̃x = (A− LC)x̃ + Fw, (5b)
ỹ = Cx̃. (5c)

Transforming into Laplace domain, with initial conditions
x(0) = x̃(0) = 0, yields

(sI−A + BK)x(s) =
(
BK + BQ(s)C

)
x̃(s) + Fw(s),

(sI−A + LC)x̃(s) = Fw(s), (6)

and by solving for x̃(s) and x(s), the transfer relation between
disturbance w and output y = Cx is obtained as

y(s) = C(sI−A + BK)−1

·
[(

BK + BQ(s)C
)
(sI−A + LC)−1 + I

]
Fw(s),

=
[
G1(s)Q(s)G2(s) + G3(s) + G1(s)G4(s)

]
w(s)

(7)

with

G1(s) = C(sI−A + BK)−1B, (8a)

G2(s) = C(sI−A + LC)−1F, (8b)

G3(s) = C(sI−A + BK)−1F, (8c)

G4(s) = K(sI−A + LC)−1F. (8d)
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The construction of an ideal Youla parameter that achieves
complete disturbance rejection is based on the following
auxiliary lemma.

Proposition 1: Suppose that Assumption 1 holds and that
the matrices A − BK and A − LC are Hurwitz. Then, the
transfer function matrices G1(s) and G2(s) defined in (8)
have a stable (but not necessarily proper) left-inverse G−1

1 (s)
and right-inverse G−1

2 (s), respectively.
Proof: It is sufficient to show that the matrices G1(s)

or G2(s) are left- or right-invertible, respectively, for every
s ∈ C≥0, which implies that their inverses have no poles in
the right complex half-plane. This is now shown for G2(s); the
proof for G1(s) is analogous after transposition. Fix λ ∈ C≥0

and suppose to the contrary that G2(λ) ∈ Cm×p is not right-
invertible. Then, there exists a vector q ∈ Cp such that

G2(λ)q = C(λI−A + LC)−1Fq = 0 (9)

Denote v = (λI −A + LC)−1Fq, and note that v is well-
defined because A− LC is Hurwitz. Then, since Cv = 0,

0 = Fq− (λI−A + LC)v = (A− λI)v + Fq (10)

which implies [
A− λI F

C 0

] [
v
q

]
= 0. (11)

This contradicts Assumption 1, which requires this matrix to
have full column rank for all λ ∈ C≥0.

As a consequence of this lemma, an ideal Youla parameter
that nullifies the influence of the disturbance on the output
may be computed as

Q(s) = −
[
G4(s) + G1(s)−1G3(s)

]
G2(s)−1. (12)

This transfer function matrix is improper, because the numer-
ator degree of its entries generally exceeds the degree of the
denominator. In general, it may be written as

Q(s) = H(s) + J(s) (13)

where H(s) is a biproper transfer-function matrix and J(s) is
a polynomial matrix of dimension l ×m.

B. Sliding-Mode Based Realization
The part H(s) may be realized by means of a linear state-

space model using standard techniques, see, e.g. [18]. In order
to realize the transfer behavior of the polynomial matrix J(s),
a sliding-mode based differentiation approach is proposed.

To that end, J(s) is written as

J(s) = J0 + J1s+ J2s
2 + . . .+ Jks

k, (14)

where Jj (j = 1, . . . , k) are constant coefficient matrices and
k denotes the highest degree of the polynomials occuring
in J(s). Performing an inverse Laplace transform of the
expression J(s)ỹ(s) yields in time-domain

L−1(J(s)ỹ(s)) = J0ỹ + J1
dỹ

dt
+ . . .+ Jk

dkỹ

dtk
. (15)

This expression suggests that up to k derivatives of each of
the m outputs need to be computed. A naive implementation
would therefore require m parallel k-th order differentiators,
i.e., a cumulative differentiator order of m · k.

C. Minimization of Cumulative Differentiator Order
The following approach minimizes the cumulative order

of the required differentiators. To achieve this, linear com-
binations of ỹ are first determined, which are then fed to
differentiators of varying orders. These linear combinations
and the required differentiator orders are determined by the
following algorithm: For each j = k, k− 1, . . . , 0 in descend-
ing order, compute orthogonal rectangular matrices Pj , Vj

and invertible diagonal matrices Σj according to the following
steps:

1) Define

J̃j = Jj − Jj

k∑
r=j+1

VrV
T
r , (16)

i.e., orthogonally decompose Jj into components paral-
lel and orthogonal to Vj+1,Vj+2, . . . ,Vk as

Jj = J̃j + JjVj+1V
T
j+1 + . . .+ JjVkV

T
k . (17)

2) Perform a singular value decomposition of J̃j to obtain
Pj ∈ Rl×αj , Vj ∈ Rm×αj , and Σj ∈ Rαj×αj
according to

J̃j = PjΣjV
T
j , (18)

where αj is the number of non-zero singular values, i.e.,
αj = rank J̃j . Note that Vj , Pj , and Σj may be empty
(zero-column) matrices if all singular values are zero; in
this case, step three can be skipped for this value of j.

3) Unless j = 0, apply a sliding-mode based differentiator
of order j to the expression VT

j ỹ, i.e.,

ζ̇j,0 = κj,0
⌊
VT
j ỹ − ζj,0

⌉ j
j+1 + ζj,1

ζ̇j,1 = κj,1
⌊
VT
j ỹ − ζj,0

⌉ j−1
j+1 + ζj,2

...

ζ̇j,j−1 = κj,j−1

⌊
VT
j ỹ − ζj,0

⌉ 1
j+1 + ζj,j

ζ̇j,j = κj,j
⌊
VT
j ỹ − ζj,0

⌉0
(19)

with constant parameters κj,0, . . . , κj,j and component-
wise application of the operator b·ep to obtain in finite
time the derivatives

ζj,1 =
dVT

j ỹ

dt
, . . . , ζj,j =

djVT
j ỹ

dtj
. (20)

Note that (19) contributes j rank Vj = jαj to the
cumulative differentiator order.

Remark 1: For SISO plants, i.e., l = m = p = 1, the
algorithm yields Vk = 1, while Vk−1, . . . ,V0 are empty.

Remark 2: It is worth to remark that in step 3), instead of
the differentiator (19), a robust exact filtering differentiator as
proposed in [19] may also be used to obtain the time deriva-
tives ζj,1, . . . , ζj,j . Doing so may improve the differentiation
accuracy in the presence of random measurement noise in
practice.

By following the steps of the algorithm, it is obvious that
the expression Jj

dj ỹ
dtj may be computed as

Jj
djỹ

dtj
= PjΣj

djVT
j ỹ

dtj
+

k∑
r=j+1

JjVr
djVT

r ỹ

dtj
(21)
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from the outputs of the resulting differentiators. Further insight
into the algorithm and a simplification of this expression is
obtained using the following lemma, which shows that the
algorithm yields an orthogonal decomposition of the vector
space Rm of the signal ỹ.

Lemma 1: Consider orthogonal matrices Vj ∈ Rm×αj as
obtained using the presented algorithm, with αj = rank Vj

for j = 0, . . . , k. Then, the columns of the matrix

M =
[
V0 V1 V2 . . . Vk

]
(22)

are orthogonal, i.e., MTM = I.
Remark 3: This lemma shows that the sum

∑k
j=1 αj cannot

exceed k. If it is equal to k, then M is invertible; otherwise,
if it is less than k, then parts of the signal ỹ, which lie in the
nullspace of M, are not needed to realize J(s).

Remark 4: Using this lemma and relation (16), one straight-
forwardly obtains that

JjVj =
(
J̃j + Jj

k∑
r=j+1

VrV
T
r

)
Vj = J̃jVj = PjΣj (23)

Hence, (21) may be rewritten more concisely as

Jj
djỹ

dtj
=

k∑
r=j

JjVrζr,j . (24)

Proof: Since all Vj are orthogonal matrices by construc-
tion, it suffices to prove the following statement: for all j and
all q > j, VT

j Vq = 0. The proof is done by induction over
j, starting with j = k, in which case the statement is trivially
true.

Suppose that the statement is true for all j ≥ i, i.e.,
VT
j Vq = 0 for all q > j ≥ i. To see that it is then also

true for j = i− 1, note that for all q > i− 1 one has

k∑
r=i

VrV
T
r Vq =

q∑
r=i

VrV
T
r Vq +

k∑
r=q+1

Vr(V
T
q Vr)

T = Vq.

(25)
Consequently, (16) and (18) yield

0 = J̃i−1Vq = Pi−1Σi−1V
T
i−1Vq, (26)

which implies VT
i−1Vq = 0, because Pi−1Σi−1 has full

column rank.
Let now (Λ,Π,Γ,Θ) be a minimal state-space representation
of the transfer function matrix H(s). The realized Youla
parameter is then obtained from (15) and (24) as

ż = Λz + Πỹ (27a)

ũ = Γz + (Θ + J0)ỹ +

k∑
j=1

k∑
r=j

JjVrζr,j (27b)

Fig. 2 depicts a block diagram representation of this system.
The following theorem shows that the presented realization

(27) of the ideal Youla parameter (12) minimizes the cumula-
tive differentiator order.

Theorem 1: Consider the realization of J(s) obtained using
the presented algorithm in the form of matrices Pj ∈ Rl×αj ,
Vj ∈ Rm×αj , and Σj ∈ Rαj×αj , with αj = rank Vj for j =

H(s)

VT
0

VT
1

VT
2

...

VT
k

1st order
RED

2nd order
RED

kth order
RED

ζ0,0

...

ζ1,0

ζ1,1

ζ2,0

ζ2,1

ζ2,2

ζk,0

ζk,k

J1V1

J0V1

J0V0

J0V2

J1V2

J2V2

J0Vk
...

JkVk

+

ũỹ

...

Fig. 2. Sliding-mode based realization of the ideal Youla parameter using
robust exact differentiators (REDs) with minimal cumulative order

1, . . . , k. Then, the cumulative differentiator order is given by∑k
j=1 jαj and it is minimal among all possible differentiator-

based realizations of J(s).
Proof: The expression for the cumulative differentiator

order follows from the fact that the j-th differentiator has input
dimension αj and differentiator order j. It remains to be shown
that this cumulative order is minimal. Let r ∈ [0, k] be an
arbitrary integer and v ∈ Rαr be an arbitrary vector. Consider
the signal ỹ(t) = Vrvt

r; the corresponding output of J(s) at
t = 0 is given by(

J0ỹ + . . .+ Jk
dkỹ

dtk

)∣∣∣∣
t=0

= JrVrv = PrΣrv (28)

Due to the orthogonality of the matrices Vj shown in
Lemma 1, all differentiator inputs except the signal VT

r ỹ(t) =
vtr are zero. Hence, the structure of the other differentiators
has no influence on the present output, and it suffices to show
that neither the signal dimension αr nor the order r of the
differentiator for VT

r ỹ can be reduced without altering the
obtained output signal.

To see this, suppose to the contrary that another correct
realization requires a derivative of order r only for a signal of
reduced dimension, i.e., for MVT

r ỹ with some M ∈ Rc×αj ,
c < αj . This implies existence of a non-zero vector v such
that Mv = 0. Then, for the considered structure of ỹ(t), the
differentiator input MVT

r ỹ(t) = Mvtr and hence also its
output are zero for all t. The output PrΣrv in (28), however,
is non-zero for all non-zero v, because PrΣr by construction
has full column rank. This contradiction proves minimality of
the cumulative differentiator order for r-th order differentiation
of the signal VT

r ỹ and, since r is arbitrary, for the entire
realization.

IV. STABILITY CONSIDERATIONS

In the following, two stability properties of the closed
loop are proven. First, input-to-state stability with respect to
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arbitrary, bounded disturbances is shown. Subject to some
additional differentiability requirements for the disturbance,
full disturbance rejection at the output, i.e., asymptotic con-
vergence of the output to zero, is then proven.

A. Input-to-State Stability

The following theorem shows that, by appropriately tuning
the differentiators in order to achieve finite-time stability of
differentiation errors, the closed loop is input-to-state stable
with respect to the disturbance w.

Theorem 2: Suppose that Assumption 1 holds and that the
matrices A − BK and A − LC are Hurwitz. Consider the
closed loop obtained by the interconnection of the plant (1),
observer-based state-feedback controller (4), and the realiza-
tion (19), (27) of the ideal Youla parameter (12). Then, for
any given positive parameter values of κj,j (j = 0, . . . , k)
there exist further positive parameters κj,r (j = 0, . . . , k;
r = 0, . . . , j − 1) for the differentiators, such that the closed
loop with disturbance input w is input-to-state stable.

Remark 5: If Lj is a Lipschitz constant of the j-th derivative
of the respective signal to be differentiated, i.e., if∥∥∥∥∥dj+1VT

j ỹ(t)

dtj+1

∥∥∥∥∥
∞

≤ Lj , (29)

holds for all t, then a common choice for κj,j is 1.1Lj ; for
the selection of the other parameters, cf. [5], [20].

Proof: Looking at (5), one can see that the observer error
dynamics (5b)–(5c) with input w and output ỹ is input-to-
state stable (ISS), because A− LC is Hurwitz. Furthermore,
the dynamics of the plant state (5a) with inputs x̃, ũ and w
are ISS, since A−BK is Hurwitz. Thus, it suffices to show
that the realization of the Youla parameter with input ỹ and
output ũ is input-to-state stable. Input-to-state stability of the
overall closed-loop system then follows from the fact that it
is a cascade interconnection of input-to-state stable systems.

The realization of the transfer function matrix H(s) is
ISS due to the stable invertability of G1 and G2. The
only remaining dynamics are the differentiators (19), whose
inputs are linear combinations of the observer output error
ỹ. According to [20, Proposition 2], these also are ISS for
appropriate gains κj,r (j = 0, . . . , k; r = 0, . . . , j). Due to
the homogeneity property of the differentiator, these gains
can always be rescaled such that all κj,j have desired values
without altering the stability properties.

B. Disturbance Rejection

Similar to [4], the presented sliding-mode based realization
of an ideal Youla parameter permits to suppress a certain
class of disturbances. The class of disturbances, which can be
rejected, is defined by certain differentiability requirements.
The following theorem provides conditions, which guarantee
asymptotic stability of the closed loop despite the disturbance.

Theorem 3: Suppose that Assumption 1 holds, that the
matrices A−BK and A−LC are Hurwitz, and let W ≥ 0.
Consider the controller obtained by the interconnection of the
observer-based state-feedback controller (4) and the realization

(19), (27) of the ideal Youla parameter (12). Then, there exist
parameters κj,r (j = 0, . . . , k; r = 0, . . . , j−1), such that the
output y(t) tends to zero, i.e., limt→∞ y(t) = 0, whenever the
disturbance w is such that ‖w(t)‖∞ ≤W for all t, and that for
all integers j, r with 1 ≤ j ≤ r ≤ k the linear combinations
of the disturbance w given by

ψr,j = VT
r C(A− LC)j−1Fw (30)

are r − j + 1 times differentiable and that all derivatives also
are uniformly bounded with respect to time with bound W .

Proof: Since (A − LC) is Hurwitz and w is uniformly
bounded, also x̃ is uniformly bounded due to (5b). Then, the
(r + 1)-th time derivative of the input VT

r ỹ to the r-th (and
thus r-th order) differentiator, as depicted in Fig. 2,

dr+1VT
r ỹ

dtr+1
= VT

r (A− LC)r+1x̃ +

r∑
j=1

dr−j+1ψr,j
dtr−j+1

, (31)

exists and is also uniformly bounded. Hence, given a uniform
bound W ≥ 0, there exist parameters κj,r > 0 such that all
differentiator errors converge to zero in finite time.

Consider now any closed-loop trajectory and let T be a
corresponding upper bound for the convergence times of all
differentiators. Then, in the state-space realization (27),

J0ỹ+

k∑
j=1

k∑
r=j

JjVrζr,j = J0ỹ+J1
dỹ

dt
+ . . .+Jk

dkỹ

dtk
(32)

holds for t ≥ T by construction. As a consequence, the closed
loop behaves like a linear, time-invariant system for t ≥ T and
the trajectory can be split into two additive components, which
are denoted by the indices (·)(1) and (·)(2) in the following.
Let the splitting be performed such that w(2) = w − w(1)

is differentiable, x̃(2)(T ) = 0 holds, and, moreover, that w(2)

and all its derivatives up to order k−2 vanish at t = T whereas
w(1) and all derivatives of the signals ψ(1)

r,j defined in (30) up
to order r − j tend to zero for t→∞.

For the first trajectory, the vanishing w(1) and the Hurwitz
property of A − LC in (5b) allow to conclude that also
limt→∞ x̃(1)(t) = 0. Furthermore, all derivatives of ỹ(1)

that are relevant in computing ũ(1) vanish by virtue of the
vanishing ψ(1)

r,j and a similar computation as in (31), and hence
also limt→∞ ũ(1)(t) = 0. Consequently, limt→∞ x(1)(t) = 0
follows from (5a) and the fact that A−BK is Hurwitz. For
the second trajectory, the vanishing initial condition x̃(2)(T )
along with differentiability and vanishing derivatives of w(2)

at t = T imply that ỹ(2) and its derivatives up to order k− 1
exist and are zero at t = T . Computing the Laplace transform
of (32) for2 t ≥ T hence yields J(s)ỹ(2)(s). Therefore,

ũ(2)(s) = Q(s)ỹ(2)(s) (33)

holds in Laplace domain with the ideal Youla parameter Q(s)
and consequently y(2)(s) = 0 is obtained by design, which
implies y(2)(t) = 0 for t ≥ T . The claim now follows from
the fact that, for t ≥ T , y(t) = y(1)(t) + y(2)(t) holds, and
y(1)(t) tends to zero whereas y(2)(t) is equal to zero.

2The Laplace transform of a signal f(t) for t ≥ T is understood to be
computed as

∫∞
T f(t)e−s(t−T ) dt.
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Fig. 3. Schematic of the considered four-tank system.

V. ACADEMIC SISO EXAMPLE

As a simple illustrative example, consider the SISO plant

ẋ1 = x2 + cw, ẋ2 = u+ w, y = x1 + x2 (34)

wherein c ≥ 0 is a known constant. Design the parametrized
observer-based state-feedback controller as

˙̂x1 = x̂2 + `1ỹ, ỹ = −x̂1 − x̂2 + y, (35a)
˙̂x2 = u+ `2ỹ, u = −k1x̂1 − k2x̂2 + ũ. (35b)

From (12)-(13), the polynomial J(s) = −s−(`1 +`2 +k2−1)

and transfer function H(s) = (k2−k1−1)(`1−1)
s+1 are obtained.

According to Remark 1, V0 is not present and V1 = 1.
Theorem 3 requires w to be differentiable only once regardless
of whether the disturbance is matched or unmatched. The
Youla parameter, finally, is given by the first-order differentia-
tor realizing J(s) and the linear system realizing H(s) as

ζ̇2,0 = κ2,0 bỹ − ζ2,0e
1
2 + ζ2,1, (36a)

ζ̇2,1 = κ2,1 bỹ − ζ2,0e0 (36b)
ż = −z + (k2 − k1 − 1)(`1 − 1)ỹ (36c)
ũ = −(`1 + `2 + k2 − 1)ζ2,0 − ζ2,1 + z. (36d)

VI. APPLICATION TO MULTIVARIABLE FOUR-TANK
SYSTEM

The interacting four-tank system, see e.g., [21] which is
shown schematically in Fig. 3 is used to demonstrate the ap-
plication of the proposed sliding mode based control approach.
The system consists of four tanks which are arranged as shown
in the illustration. Each tank has a rectangular bottom surface
of area Aν , ν = 1, . . . , 4 and there is a drain on the bottom.
The area of the drain and the hight of the drain socket differs
from tank to tank and is denoted by aν and h̃ν , respectively.
The tanks are arranged so that water flows from the upper tank
into the tank directly below and from the lower tanks into a
collecting reservoir. Two pumps are used to pump water from
the collecting reservoir back to the tanks. In particular, each

TABLE I
SYSTEM PARAMETERS.

Parameter Description Value Unit

a1 drain area 0.67 cm2

a2 drain area 0.74 cm2

a3 drain area 0.26 cm2

a4 drain area 0.32 cm2

Aν tank bottom surface area 69.68 cm2

h̃1, h̃3 socket height 10.1 cm
h̃2, h̃4 socket height 8.1 cm
k1 control gain 0.3622 cm3/(Vs)
k2 control gain 0.3190 cm3/(Vs)
γ1, γ2 flow ratio 0.7 -

λ̄1 nominal operating point 31.75 cm
λ̄2 nominal operating point 25.73 cm
λ̄3 nominal operating point 23.62 cm
λ̄4 nominal operating point 16.47 cm
v̄1,v̄4 nominal operating point 6 V

pump delivers water to a lower and the opposing upper tank.
The ratio of the volumetric flow rate between the lower and
the corresponding upper tank can be adjusted by a valve. The
ratio is denoted by γµ with γµ ∈ [0, 1] and µ = 1, 2 in the
following. The opening width of the drain of each tank can in
principle also be adjusted via valves.

The control goal is to regulate the levels in the lower two
tanks. As control inputs the voltages applied to the two pumps
are considered. In this regard, the system features two inputs
and two outputs. The filling level in each tank, excluding
the socket height, can be measured with a sampling time of
0.01 seconds. MATLAB/Simulink is used to implement and
deploy the algorithm to the control hardware. It is noteworthy,
that in the experiment the minimum pump voltage was limited
in order to ensure that the hoses to the upper two tanks are
always filled with water and thus avoid transport delays.

Using the proposed approach a controller is designed based
on a mathematical system model in the following. The system
dynamics are modeled by the sixth order nonlinear system

dλ1

dt
= − a1

A1

√
2gλ1 +

a3

A1

√
2gλ3 +

γ1

A1
q1, (37a)

dλ2

dt
= − a2

A2

√
2gλ2 +

a4

A2

√
2gλ4 +

γ2

A2
q2, (37b)

dλ3

dt
= − a3

A3

√
2gλ3 +

(1− γ2)

A3
q2 −

1

A3
w1, (37c)

dλ4

dt
= − a4

A4

√
2gλ4 +

(1− γ1)

A4
q1 −

1

A4
w2, (37d)

τ
dω1

dt
= −ω1 + v1, q1 = k1ω1, h1 = λ1 − h̃1 (37e)

τ
dω2

dt
= −ω2 + v2, q2 = k2ω2, h2 = λ2 − h̃2 (37f)

see, [22]. Therein the state variables λν , represent the total
filling level of each tank, i.e., including the socket (see Fig. 3),
qµ are the inlet flow rates and g is the gravity constant.
The dynamics of the pump are modeled by a first order lag
with time constant τ and gain kµ where the state variable
ωµ represents the pump speed. The pump supply voltage is
denoted by vµ. The variables w1 and w2 in (37c), (37d)
denote unknown external disturbances, i.e., unknown inflows
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and outflows into the upper two tanks. The system outputs
hµ are the filling levels of the lower two tanks minus the
heights of the outlet sockets h̃µ. The system parameters are
summarized in Table I.

In the following, the proposed control approach is applied
to regulate the levels h1 and h2. To that end, the nonlinear
system (37) is linearized about the nominal operating point
λν = λ̄ν , vµ = v̄µ from Table I with wµ = 0 . The resulting
linear time invariant model is in the form (1) with parameters

A =



− 1
T1

0 A3

A1T3
0 γ1

A1
0

0 − 1
T2

0 A4

A2T4
0 γ2

A2

0 0 − 1
T3

0 0 (1−γ2)
A3

0 0 0 − 1
T4

(1−γ1)
A4

0

0 0 0 0 − 1
τ 0

0 0 0 0 0 − 1
τ


,

B =


0 0
0 0
0 0
0 0
k1
τ 0

0 k2
τ

 , F =



0 0
0 0
− 1
A3

0

0 − 1
A4

0 0
0 0

 , C =



1 0
0 1
0 0
0 0
0 0
0 0
0 0



T

(38)

where Tν = Aν
aν

√
2λ̄ν
g . It is noteworthy, that for (γ1 +γ2) > 1

the linear system is minimum phase, see, e.g., [22].
The state feedback controller

K =

[
1.046 0.015 0.068 0.045 0.460 0.015
0.003 0.975 0.061 0.093 0.015 0.394

]
(39)

as well as the observer gains

L =

[
0.485 0.001 0.047 0.013 0.025 0
0.001 0.474 0.010 0.048 0 0.022

]T

(40)

are computed using the LQR approach. With this particular
parameters, the polynomial matrix J(s) in (13) takes the
form (14) with

J0 =

[
−4.085 −0.015
0.021 −4.260

]
, J1 =

[
−9.818 −0.015
0.021 −10.840

]
,

J2 =

[
−7.888 0

0 −8.957

]
. (41)

Following Remark 2, the transfer behavior of J(s) is realized
using the differentiator toolbox presented in [23] which imple-
ments the robust exact filtering differentiator published in [19].
The differentiator order is two, the filtering order is set to one
and the differentiator gains are κ2,2 = 0.015, κ2,1 = 0.172,
κ2,0 = 0.735 and κ2,−1 = 1.4. The differentiators are
discretized using the approach discussed in [24]. The toolbox
enables the real-time implementation of the differentiator at
the used control hardware.

The performance of the controller is evaluated in a first
step in simulation. For this purpose, the controller is applied
to the non-linear model (37). The simulation is carried out
in MATLAB/Simulink. The discretization step size is set to
0.01 seconds. Note that this corresponds to the sampling time
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Fig. 4. Simulation results. As can be seen in the uppermost graph, the
controller ensures accurate tracking of the setpoint despite the disturbances
w1(t) = 5 sin(0.12t) + 20 sin(0.7t) + 3 and w2(t) = 4 sin(0.15t) +
10 sin(0.4t) + 5.

in the real system. The simulation results are presented in
Fig. 4. The upper graph shows the evolution of the levels in the
two lower tanks (red and blue solid lines) as well as the desired
level (black dashed lines). The graph in the middle shows the
evolution of the filling level in the upper two tanks. The pump
supply voltages are plotted in the graph on the bottom. It can
be seen from the upper plot that the controller is capable of
driving the filling level of the two lower tanks to the desired
value despite the non-vanishing disturbances, which, in this
simulation is selected as w1(t) = 5 sin(0.12t)+20 sin(0.7t)+3
and w2(t) = 4 sin(0.15t) + 10 sin(0.4t) + 5. The filling level
in the upper two tanks show an oscillating behavior which is
due to the disturbances w1, w2 (graph in the middle). Also the
control signals show an oscillating behavior after the transient
phases as it counteracts the effect of the disturbance. Note that
in this simulation no noise is considered in order to emphasize
the disturbance rejection properties of the proposed controller,
i.e. to demonstrate the asymptotic convergence in the presence
of the disturbances of the filling level in the lower two tanks
to the desired filling level.

The controller is applied with the same settings to the real
system. The results are shown in Fig. 5, where the arrangement
of the plots is the same as in Fig. 4. Also in the experiment, the
controller ensures accurate tracking of the same set-point as in
the simulation. In the real experiment, the robustness against
measurement noise is also apparent. Furthermore, controller
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Fig. 5. Experimental results. The same controller as used in simulation is
applied to the experimental setup. It can be seen, that it ensures accurate
setpoint tracking.

windup is avoided, since the proposed approach inherently
possesses the observer based based anti-windup property, see
[25] for details.

VII. CONCLUSION AND OUTLOOK

By designing a sliding-mode based Youla parameter, a
unified approach for differentiation-based disturbance cancel-
lation for multivariable plants was developed. Apart from
stabilizability, the only requirements for applying it are strong
detectability of the plant with respect to the disturbance and
asymptotic stability of the zero dynamics of the plant’s output.
In particular, the approach also handles unmatched distur-
bances and, subject to certain differentiability requirements,
can fully cancel their influence on the output. Moreover, it
is proven that the approach minimizes the implementation
complexity in the sense that the cumulative differentiator order
of the required sliding-mode differentiators is minimized. The
application to a multivariable four tank system demonstrated
the proposed approach’s efficiacy both in simulations and
experiments. In the future, the influence of additional effects
such as parametric or multiplicative uncertainties in the plant
model may be investigated.
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