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Abstract—There has been much recent progress in time series fore-
casting and estimation of system matrices of linear dynamical sys-
tems (LDS). We present an approach to both problems based on an
asymptotically convergent hierarchy of convexifications of a certain non-
convex operator-valued problem, which is known as non-commutative
polynomial optimization (NCPOP). We present promising computational
results, including a comparison with methods implemented in Matlab
System Identification Toolbox.

I. INTRODUCTION

We consider the identification of vector autoregressive processes
with hidden components from time series of observations, which is
a key problem in system identification [32]. Its applications range
from the identification of parameters in epidemiological models [3]
and reconstruction of reaction pathways in other biomedical appli-
cations [10], to identification of models of quantum systems [5, 6].
Beyond this, one encounters either partially observable processes or
questions of causality [44, 14] in almost any application domain.
In the “prediction-error” approach to forecasting [32], it allows the
estimation of subsequent observations in a time series.

To state the problem formally, let us define a linear dynamic system
(G,F, V,W ) as in [58].

ϕt = Gϕt−1 + ωt,

Yt = F ′ϕt + νt,
(1)

where ϕt ∈ Rn×1 is the hidden state, Yt ∈ Rm×1 is the observed
output (measurements, observations), G ∈ Rn×n and F ∈ Rn×m

are system matrices, and {ωt, νt}t∈N are normally distributed process
and observation noises with zero mean and covariance of W and V
respectively. The transpose of F is denoted as F ′. Learning (or proper
learning) refers to identifying the quadruple (G,F, V,W ) given
the output {Yt}t∈N. We assume that the linear dynamical system
(G,F, V,W ) is observable [38], i.e., its observability matrix [58] has
full rank. Note that a minimal representation is necessarily observable
and controllable, cf. Theorem 4.1 in [49], so the assumption is not
too strong.

There are three complications. First, the dimension n of the hidden
state ϕt is not known, in general. Although [43] have shown that
a lower-dimensional model can approximate a higher-dimensional
one rather well, in many cases, it is hard to choose n in practice.
Second, the corresponding optimization problem is non-convex, and
guarantees of global convergence have been available only for certain
special cases. Finally, the operators-valued optimization problem is
non-commutative, and hence much work on general-purpose com-
mutative non-convex optimization is not applicable without making
assumptions [5, cf.] on the dimension of the hidden state.

Here, we aim to develop a method for proper learning of LDS that
could also estimate the dimension of the hidden state and that would
do so with guarantees of global convergence to the best possible
estimate, given the observations. This would promote explainability
beyond what forecasting methods without global convergence guar-
antees allow for. In particular, our contributions are:

• We cast learning of a linear dynamical system with an unknown
dimension of the hidden state as a non-commutative polynomial
optimization problem (NCPOP). This also makes it possible to
utilize prior information as shape constraints in the NCPOP.

• We show how to use Navascules-Pironio-Acin (NPA) hierarchy
[37] of convexifications of the NCPOP to obtain bounds and
guarantees of global convergence. The runtime is independent
of the (unknown) dimension of the hidden state.

• In two well-established small examples of [30, 18, 26], our
approach outperforms standard subspace and least squares
methods, as implemented in MatlabTM System Identification
ToolboxTM.

II. BACKGROUND

First, we set our work in the context of related work. Next, we
provide a brief overview of non-commutative polynomial optimiza-
tion, pioneered by [41] and nicely surveyed by [8], which is our
key technical tool. Prior to introducing our own results, we introduce
some common notation, following [58].

A. Related Work in System Identification and Control

There is a long history of research within system identification
[32]. In forecasting under LDS assumptions (improper learning of
LDS), a considerable progress has been made in the analysis of
predictions for the expectation of the next measurement using auto-
regressive (AR) processes in Statistics and Machine Learning. In [2],
first guarantees were presented for auto-regressive moving-average
(ARMA) processes. In [30], these results were extended to a subset of
autoregressive integrated moving average (ARIMA) processes. [26]
have shown that up to an arbitrarily small error given in advance,
AR(s) will perform as well as any Kalman filter on any bounded
sequence. This has been extended by [52] to Kalman filtering with
logarithmic regret.

Another stream of work within improper learning focuses on sub-
space methods [23, 38] and spectral methods [18, 17]. [50, 51] pre-
sented the present-best guarantees for traditional sub-space methods.
[48] utilize regularizations to improve sample complexity. Within
spectral methods, [18] and [17] have considered learning LDS
with input, employing certain eigenvalue-decay estimates of Hankel
matrices in the analyses of an auto-regressive process in a dimension
increasing over time. We stress that none of these approaches to
improper learning are “prediction-error”: They do not estimate the
system matrices.

In proper learning of LDS, many state-of-the-art approaches con-
sider the least squares method, despite complications encountered
in unstable systems [12]. [47] have provided non-trivial guarantees
for the ordinary least squares (OLS) estimator in the case of stable
G and there being no hidden component, i.e., F ′ being an identity
and Yt = ϕt. Surprisingly, they have also shown that more unstable
linear systems are easier to estimate than less unstable ones, in
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some sense. [46] extended the results to allow for a certain pre-
filtering procedure. [42, 43] extended the results to cover stable,
marginally stable, and explosive regimes. [39] provide a finite-horizon
analysis of the Ho-Kalman algorithm. Most recently, [4] provided a
detailed analysis of the use of the method of moments in learning
linear dynamical systems, which could be seen as a polynomial-time
algorithm for learning a LDS from a trajectory of polynomial length
up to a polynomial error. Our work could be seen as a continuation
of the work on the least squares method, with guarantees of global
convergence.

B. Non-Commutative Polynomial Optimization

Our key technical tool is non-commutative polynomial optimiza-
tion, first introduced by [41]. Here, we provide a brief summary of
their results, and refer to [8] for a book-length introduction. NCPOP
is an operator-valued optimization problem with a standard form in
(2):

P ∗ = min
(H, X, ψ)

⟨ψ, p(X)ψ⟩

s.t. qi(X) ≽ 0,i = 1, . . . ,m,

⟨ψ,ψ⟩ = 1,

(2)

where X = (X1, . . . , Xn) is a tuple of bounded operators on
a Hilbert space H. In contrast to traditional scalar-valued, vector-
valued, or matrix-valued optimization techniques, the dimension of
variables X is unknown a priori. Let [X,X†] denotes these 2n oper-
ators, with the †-algebra being conjugate transpose. The normalized
vector ψ, i.e., ∥ψ∥2 = 1 is also defined on H with the inner product
⟨ψ,ψ⟩ = 1. p(X) and qi(X) are polynomials and qi(X) ≽ 0
denotes that the operator qi(X) is positive semidefinite. Polynomials
p(X) and qi(X) of degrees deg(p) and deg(qi), respectively, can
be written as:

p(X) =
∑

|ω|≤deg(p)

pωω, qi(X) =
∑

|µ|≤deg(qi)

qi,µµ, (3)

where i = 1, . . . ,m. Monomials ω, µ, u and ν in following text
are products of powers of variables from [X,X†]. The degree of a
monomial, denoted by |ω|, refers to the sum of the exponents of
all operators in the monomial ω. Let Wk denote the collection of
all monomials whose degrees |ω| ≤ k, or less than infinity if not
specified. Following [1], we can define the moments on field R or C,
with a feasible solution (H, X, ψ) of problem (2):

yω = ⟨ψ, ω ψ⟩, (4)

for all ω ∈ W and y1 = ⟨ψ,ψ⟩ = 1. Given a degree k, the moments
whose degrees are less or equal to k form a sequence y = (yω)|ω|≤2k.
We call k as the moment order. With a finite set of moments y of
moment order k, we can define a corresponding kth-order moment
matrix Mk(y):

Mk(y)(ν, ω) = yν†ω = ⟨ψ, ν† ω ψ⟩, (5)

for any |ν|, |ω| ≤ k and the localizing matrix Mki(qiy):

Mki(qiy)(ν, ω) =
∑

|µ|≤deg(qi)

qi,µyν†µω (6)

=
∑

|µ|≤deg(qi)

qi,µ⟨ψ, ν† µ ω ψ⟩,

for any |ν|, |ω| ≤ ki, where ki = k−⌈deg(qi)/2⌉, and i = 1, . . . ,m.
If (H, X, ψ) is feasible, one can utilize the Sums of Squares

theorem of [19] and [35] to derive semidefinite programming (SDP)
relaxations. In particular, we can obtain a kth-order SDP relaxation
of the non-commutative polynomial optimization problem (2) by

choosing a moment order k that satisfies the condition of 2k ≥
max{deg(p), deg(qi)}. In the Navascules-Pironio-Acin (NPA) hier-
archy [37], the SDP relaxation of moment order k, has the following
form:

P k = min
y = (yω)|ω|≤2k

∑
|ω|≤d

pωyω

s.t. Mk(y) ≽ 0,

Mki(qiy) ≽ 0,i = 1, . . . ,m,

y1 = 1.

(7)

Notice that there are variants [57, 56, 54] that exploit the sparsity
and significantly reduce the computational burden.

Let us define the quadratic module, following [41]. Let Q =
{qi, i = 1, . . . ,m} be the set of polynomials determining the
constraints. The positivity domain SQ of Q are n-tuples of bounded
operators X = (X1, . . . , Xn) on a Hilbert space H making all
qi(X) positive semidefinite. The quadratic module MQ is the set of∑

i f
†
i fi +

∑
i

∑
j g

†
ijqigij where fi and gij are polynomials from

the same ring. As in [41], we assume:

Assumption 1 (Archimedean). Quadratic module MQ of (2) is
Archimedean, i.e., there exists a real constant C such that C2 −
(X†

1X1 + · · ·+X†
2nX2n) ∈ MQ.

If the Archimedean assumption is satisfied, Pironio et al. [41] have
shown that limk→∞ P k = P ∗ and how to use the so-called rank-loop
condition [41] to detect global optimality. We refer to an extended
version online [60] for further details.

C. Minimizer Extraction and Gelfand-Naimark-Segal Construction

Notice that the solution of the SDP relaxation makes it possible
to read out the value of the objective function ⟨ψ, p(X)ψ⟩ of (2)
easily, by looking up the correct entries of the moment matrix
(5). To extract the optimizer with this objective-function value, one
may utilize a variant of the singular-value decomposition of the
moment matrix pioneered by [20], which can be construed [25] as
the Gelfand–Naimark–Segal (GNS) construction [15, 45, 11]. (The
GNS construction essentially produces a *-representation from a
positive linear functional of a C*-algebra on a Hilbert space. Under
the Archimedean assumption, this method could be applied to non-
commutative polynomials, which are not C*-algebras otherwise. We
refer to an extended version online [60] for further details.) These
SVD-based approaches do not require the rank-loop condition to be
satisfied, as is well explained in Section 2.2 of [25]. Once global
optimality is detected (cf. the previous section), it is possible to
extract the global optimum (H∗, X∗, ψ∗) from the solution of the
SDP relaxation of (2) by Gram decomposition; cf. Theorem 2 in [41].

III. THE MAIN RESULT

Given a trajectory of observations Y1,...,Yt−1, loss is a one-step
error function at time t that compares an estimate ft with the
actual observation Yt. Within the least squares estimator, we aim
to minimize the sum of quadratic loss functions, i.e.,

min
ft,t≥1

∑
t≥1

∥Yt − ft∥2, (8)

where the estimates ft, t ≥ 1 are decision variables. The properties of
the optimal least squares estimate are well understood: it is consistent,
cf. Mann and Wald [34] and Ljung [31], and has favorable sample
complexity, cf. Theorem 4.2 of Campi and Weyer [9] in the general
case, and to Jedra and Proutiere [22] for the latest result parameterized
by the size of a certain epsilon net. We stress, however, that it has not
been understood how to solve the non-convex optimization problem,
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in general, outside of some special cases [16] and recent, concurrent
work of [4]. In contrast to [16], we focus on a method achieving
global convergence under mild assumptions, and specifically without
assuming the dimension of the hidden state is known.

When the dimension of the hidden state is not known, we need
operator-valued variables mt to model the state evolution, and some
additional scalar-valued variables. We denote the process noise and
the observation noise at time t by ωt and νt, respectively. We also
denote as such the decision variables corresponding to the estimates
thereof, if there is no risk of confusion. If we add the sum of the
squares of ωt and the sum of the squares of νt as regularizers to the
objective function with sufficiently large multipliers and minimize the
resulting objective, we should reach a feasible solution with respect
to the system matrices with the process noise ωt and observation
noise νt being close to zero.

Overall, such a formulation has the form in Equations (9) subject
to (10–11). The inputs are Yt, t ≥ 1, i.e., the time series of the
actual measurements, of a time window T thereof, and multipliers
c1, c2. Decision variables are system matrices G, F ; noisy estimates
ft, realizations ωt, νt of noise, for t ≥ 1; and state estimates mt, for
t ≥ 0, which include the initial state m0. We minimize the objective
function:

min
ft,mt,G,F,ωt,νt

∑
t≥1

∥Yt − ft∥2 + c1
∑
t≥1

ν2t + c2
∑
t≥1

ω2
t (9)

for a 2-norm ∥ ·∥ over the feasible set given by constraints for t ≥ 1:

mt = Gmt−1 + ωt (10)

ft = F ′mt + νt. (11)

We call the term F ′mt noise-free estimates, which are regarded as
our simulated/ predicted outputs. Equations (9) subject to (10–11)
give us the least squares model. We can now apply the techniques
of non-commutative polynomial optimization to the model so as to
recover the system matrices of the underlying linear system.

Theorem 2. For any observable linear system (G,F, V,W ), for any
length T of a time window, and any error ϵ > 0, under Assumption
1, there is a convex optimization problem whose objective function
value is at most ϵ away from (9) subject to (10–11). Furthermore, an
estimate of (G,F, V,W ) can be extracted from the solution of the
same convex optimization problem.

Proof. First, we need to show the existence of a sequence of convex
optimization problems, whose objective function approaches the
optimum of the non-commutative polynomial optimization problem.
As explained in Section II-B above, [41] show that there is a
sequence of natural semidefinite-programming relaxations of (2). The
convergence of the sequence of their objective-function values is
shown by Theorem 1 of [41], which requires Assumption 1. The
translation of a problem involving multiple scalar- and operator-
valued variables ft,mt, G, F, ωt, νt in (9–11) to (H, X, ψ) of (2),
also known as the product-of-cones construction, is somewhat tedious,
but routine and implemented in multiple software packages [59, 55,
e.g.]. Second, we need to show that extraction of an estimate of
(G,F, V,W ) from the SDP relaxation of order k(ϵ) in the series
is possible. There, one utilizes the Gelfand–Naimark–Segal (GNS)
construction [15, 45], as explained in Section 2.2 of [25] or in Section
II-C above. Notice that [29, cf.] the estimate of (G,F, V,W ) may
have a higher error than ϵ.

This reasoning can be applied to more complicated formulations,
involving shape constraints. For instance, in quantum systems [5],
density operators are Hermitian and this constraint can be added to
the least squares formulation.

Crucially for the practical applicability of the method, one should
like to exploit the sparsity in the NCPOP (9–11). Notice that one can
decompose the problem (9–11) into t subsets of variables involving
ft,mt−1,mt, G, F, ωt, νt, which satisfy the so-called running inter-
section property [55]. We refer to [24] for a seminal paper on trace
optimization exploiting correlative sparsity, and to [55] for the variant
exploiting term sparsity. We also present a brief summary online [60].

Also, note that the extraction of the minimizer using the GNS
procedure, as explained in Section II-C above, is stable to errors in
the moment matrix, for any NCPOP, including the pre-processing
above. See Theorem 4.1 in [25]. That is: it suffices to solve the SDP
relaxation with a fixed error, in order to extract the minimizer.

One can also utilize a wide array of reduction techniques on the
resulting SDP relaxations. Notable examples include facial reduction
[7, 40] and exploiting sparsity [13]. Clearly, these can be applied to
any SDPs, irrespective of the non-commutative nature of the original
problem, but can also introduce [27] numerical issues. We refer to
[33] for an up-to-date discussion.

IV. NUMERICAL ILLUSTRATIONS

Let us now present the implementation of the approach using
the techniques of non-commutative polynomial optimization [41, 8]
and to compare the results with traditional system identification
methods. Our implementation is available online 1. We present our
experimental settings in more detail online [60].

A. The general setting

a) Our formulation and solvers: For our formulation, we use
Equations (9) subject to (10–11), where we need to specify the values
of c1 and c2. To generate the SDP relaxation of this formulation as
in (7), we need to specify the moment order k. Because the degrees
of objective (9) and constraints in (10–11) are all less than or equal
to 2, the moment order k within the respective hierarchy can start
from k = 1.

In our implementation, we use a globally convergent Navascués-
Pironio-Acín (NPA) hierarchy [41] of SDP relaxations, as utilized in
the proof of Theorem 2, and its sparsity-exploiting variant, known
as the non-commutative variant of the term-sparsity exploiting mo-
ment/SOS (TSSOS) hierarchy [57, 56, 55]. (See [60] for a summary.)
The SDP of a given moment order within the NPA hierarchy is
constructed using ncpol2sdpa 1.12.22 of Wittek [59]. The SDP
of a given moment order within the non-commutative variant of the
TSSOS hirarchy is constructed using the nctssos3 of Wang et al.
[55]. Both SDP relaxations are then solved by mosek 9.2 [36].

b) Baselines: We compare our method against leading methods
for estimating state-space models, as implemented in MathWorksTM

MatlabTM System Identification ToolboxTM. Specifically, we test
against a combination of least squares algorithms implemented in
routine ssest (“least squares auto”), subspace methods of [38]
implemented in routine n4sid (“subspace auto”), and a subspace
identification method of [21] with an ARX-based algorithm to
compute the weighting, again utilized via n4sid (“ssarx”).

To parameterize the three baselines, we need to specify the
dimension d of the estimated state-space model. We would set d = n
directly or alternatively, iterate from 1 to the highest number allowed
in the toolbox when the underlying system is unknown, e.g., in real-
world stock-market data. Then, we need to specify the error to be
minimized in the loss function during estimation. In fairness to the

1https://github.com/Quan-Zhou/Proper-Learning-of-LDS
2https://github.com/peterwittek/ncpol2sdpa
3https://github.com/wangjie212/NCTSSOS
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baselines, we use the one-step ahead prediction error when comparing
prediction performance and simulation error between measured and
simulated outputs when comparing simulation performance.

c) The performance index: To measure the goodness of fit
between the ground truth {Yt}Tt=1 (actual measurements) and the
noise-free simulated/ predicted outputs {F ′mt}Tt=1, using different
system identification methods, we introduce the normalized root mean
squared error (nrmse) fitness value:

nrmse :=

(
1− ∥Y − F ′m∥2

∥Y −mean(Y )∥2

)
× 100%, (12)

where Y and F ′m are the vectors consisting of the sequence {Yt}Tt=1

and {F ′mt}Tt=1 respectively. A higher nrmse fitness value indicates
better simulation or prediction performance.

B. Experiments on the example of Hazan et al.

Experiments in Sections IV-B–IV-C utilize synthetic time series
of T observations generated using LDS of the form in (1), with the
tuple (G,F, V,W ) and the initial hidden state ϕ0 detailed next. We
use the dimension n to indicate that the time series of observations
were generated using n× n system matrices, while we use operator-
valued variables to estimate these. The standard deviations of process
noise and observation noise W,V are chosen from 0.1, 0.2, . . . , 0.9.
Note that W is an n × n matrix in general, while we consider the
spherical case of W = 0.1 × In, where In is the n-dimensional
identity matrix, which we denote by W = 0.1.

In our first experiment, we explore the statistical performance of
feasible solutions of the SDP relaxation using the example of Hazan
et al. [18, 26]. We performed one experiment on each combination
of standard deviations of process W and observation noise V from
the discrete set 0.1, 0.2, . . . , 0.9, i.e., 81 runs in total.

Figure 1 illustrates the nrmse values of the 81 runs of our method in
different combinations of standard deviations of process noise W and
observation noise V (upper), and another 81 experiments in different
combinations of c1 and c2 (lower). In the upper subplot of Figure 1,
we consider: n = 2, G =

(
0.9 0.2
0.1 0.1

)
, F ′ =

(
1 0.8

)
, the starting

point ϕ′
0 =

(
1 1
)
, and T = 20. In the lower subplot of Figure 1,

we have the same settings as in the upper one, except for W =
V = 0.5 and the parameters c1, c2 being chosen from 10−4, . . . , 1.
It seems clear the highest nrmse is to be observed for the standard
deviation of both process and observation noises close to 0.5. While
this may seem puzzling at first, notice that higher standard deviations
of noise make it possible to approximate the observations by an auto-
regressive process with low regression depth [26, Theorem 2]. The
observed behavior is therefore in line with previous results [26, e.g.,
Figure 3].

C. Comparisons against the baselines

Next, we investigate the simulation performance of our method
in comparison with other system identification methods, for varying
LDS used to generate the time series. Our method and the three
baselines described in Section IV-A are run 30 times for each choice
of the standard deviations of the noise, with all methods using the
same time series.

Figure 2 illustrates the results, with methods distinguished by
colors: blue for “least squares auto”, purple for “subspace auto”,
pink for “ssarx”, and yellow for our method. The upper subplot
presents the mean (solid lines) and mean ± one standard deviations
(dashed lines) of nrmse as standard deviation of both process noise
and observation noise (“noise std”) increasing in lockstep from 0.1
to 0.9. The underlying system is the same as in the upper subplot of
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Fig. 1: Upper: The nrmse fitness values (12) of 81 experiments of
our method at different combinations of noise standard deviations of
process noise W and observation noise V and Lower: at different
combinations of parameters c1 and c2. Both use the data generated
from systems in (1). Lighter colors indicate higher nrmse and thus
better simulation performance.

Figure 1, except for W = V = 0.1, 0.2, . . . , 0.9. The middle subplot
is similar, except the time series are generated by systems of a higher
differential order:

ϕt = Gϕt−1 + ωt

Yt = F ′
1ϕt + F ′

2(ϕt − ϕt−1) + νt,
(13)

and the formulation of our method is changed accordingly. In the
lower subplot of Figure 2, we consider the mean (solid dots) and
mean ± one standard deviations (vertical error bars) of nrmse at
different dimensions n = 2, 3, 4 of the underlying system (1).

As Figure 2 suggests, the nrmse values of our method on this
example are almost 100%, while other methods rarely reach 50%
despite the fact that the dimensions used by the baselines are the true
dimensions of the underlying system (d = n). (We will use “least
squares auto”, which seems to work best within the other methods,
in the following experiment on stock-market data.) Additionally, our
method shows better stability; the gap between the yellow dashed
lines in the upper or middle subplot, which suggests the width of
two standard deviations, is relatively small.

D. Experiments with stock-market data

Our approach to proper learning of LDS could also be used
in a “prediction-error” method for improper learning of LDS, i.e.,
forecasting its next observation (output, measurement). As such, it
can be applied to any time series. To exhibit this, we consider
real-world stock-market data first used in [30]. In particular, we
predict the evolution of the stock price from the 21st period to the
121st period, where each prediction is based on the 20 immediately
preceding observations (T = 20). For our method, we use the same
formulation (9) subject to (10)-(11), but with the variable F ′ removed.
For comparison, the combination of least squares algorithms “least
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Fig. 2: The nrmse fitness values (12) of our method compared to
the leading system identification methods implemented in MatlabTM

System Identification ToolboxTM. Upper & middle: the mean (solid
lines) and mean ± one standard deviations (dashed lines) of nrmse
as standard deviation of both process noise and observation noise
increasing in lockstep from 0.1 to 0.9. The time series used for
simulation are generated from systems in (1) (upper) and higher
differential order systems in (13) (middle), with the dimensions
n of both systems being 2. Lower: the mean (solid dots) and
mean ± one standard deviations (vertical error bars) of nrmse at
different dimensions n of the underlying systems in (1). Higher nrmse
indicates better simulation performance.

squares auto” is used again. Since we are using the stock-market data,
the dimension n of the underlying system is unknown. Hence, the
dimensions d of the “least squares auto” are iterated from 1 to 4,
wherein 4 is the highest setting allowed in the toolbox for 20-period
observations.

Figure 3 shows in the left subplot the results obtained by our
method (a yellow curve), and the “least squares auto” of varying
dimensions d = 1, 2, 3, 4 (four blue curves). The true stock price
“origin” is displayed by a dark curve. The percentages in the legend
correspond to nrmse values (12). Both from the nrmse and the shape
of these curves, we notice that “least squares auto” performs poorly
when the stock prices are volatile. This is highlighted in the right
subplot, which zooms in on the 66th-101st period.
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Fig. 3: Left: The time series of stock price (dark) for the 21st-
121st period used in [30], and the predicted outputs of our method
(yellow) compared against “least squares auto” (blue) implemented
in MatlabTM System Identification ToolboxTM. The dimension d of
“least squares auto” is iterated from 1 to the highest number of 4.
The percentages in legend are corresponding nrmse values of one-
step predictions. Right: a zoom-in for the 66th-101st period.
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Fig. 4: Left: The (solid or dashed) curves show the mean runtime
of the SDP relaxation of the baseline “least squares auto” (blue),
the TSSOS hierarchy (green) and the NPA hierarchy (yellow), at
different moment orders k or dimensions d. The mean ± one standard
deviation of runtime is displayed by shaded error bands. Upper-right:
The mean and mean ± one standard deviation of runtime of the SDP
relaxation of TSSOS hierarchy at moment order k = 1 and the “least
squares auto” with dimension d = 1. Lower-right: The red bars
display the sparsity of NPA hierarchy of the experiment on stock-
market data against the length of time window, by ratios of non-zero
coefficients out of all coefficients in the SDP relaxations

E. Runtime

Next, we consider the runtime of two implementations of solvers
for (9) subject to (10)-(11). The first implementation constructs the
SDP relaxation of NPA hierarchy via ncpol2sdpa 1.12.2 with
moment order k = 1. The second implementation constructs the non-
commutative variant of the TSSOS hierarchy via nctssos, with
moment order k = 1, 2. For comparison purposes, we include the
baseline “least squares auto” at dimensions d = 1, 2. We randomly
select a time series from the stock-market data, with the length of time
window T chosen from 5, 6, . . . , 30, and run these three methods
three times for each T .

Figure 4 illustrates the runtime of the SDP relaxations and the
baseline “least squares auto” as a function of the length of the time
window. These implemented methods are distinguished by colors:
blue for “least squares auto”, green for the non-commutative variant
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of the TSSOS hierarchy (“nctssos”), and yellow for the NPA hierarchy
(“npa”). The mean and mean ± one standard deviation of runtime
are displayed by (solid or dashed) curves and shaded error bands.
The upper-right subplot compares the runtime of our method with
“nctssos” at moment order k = 1 against “least squares auto” with
dimension d = 1. The red bars in the lower-right subplot display the
sparsity of NPA hierarchy of the experiment on stock-market data
against the length of time window, by ratios of non-zero coefficients
out of all coefficients in the SDP relaxations.

As in most primal-dual interior-point methods [53], runtime of
solving the relaxation to ϵ error is polynomial in its dimension
and logarithmic in 1/ϵ, but it should be noted that the dimension
of the relaxation grows fast in the length T of the time window
and the moment order k. It is clear that the runtime of solvers for
SDP relaxations within the non-commutative variant of the TSSOS
hierarchy exhibits a modest growth with the length of time window,
much slower than that of the plain-vanilla NPA hierarchy.

V. CONCLUSIONS

We have presented an alternative approach to the recovery of
hidden dynamic underlying a time series, without assumptions on the
dimension of the hidden state. For the first time in system identifi-
cation and machine learning, this approach utilizes non-commutative
polynomial programming (NCPOP), which has been recently devel-
oped within Mathematical Optimization [41, 59, 25, 55]. NCPOP
can accommodate a variety of other objectives and constraints [61,
e.g. in fairness]. This builds upon a long history of work on the
method of moments [1, 19] and its applications in Machine Learning
[28], as well as recent progress [33] in the scalability of semidefinite
programming.
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