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On the connection between costate and the
annihilator of the Hamiltonian vector field

in optimal control problems
M. Sassano, Senior Member IEEE

Abstract— Within the framework of finite-horizon opti-
mal control problems involving nonlinear, input-affine dy-
namics, a connection between the costate variable and
generating functions of the annihilating codistribution of
the underlying Hamiltonian vector field is established. It
is shown that the inverse mapping of any collection of n
such generating functions coincides, for any time and for
a certain constant vector, with the costate of the optimal
process. In particular, the corresponding constant vector
is determined by solving a parameterized boundary value
problem in the state space of the original plant alone, rather
than in the extended state/costate space of the Hamiltonian
dynamics.

Index Terms— Finite-horizon optimal control; nonlinear
systems; Hamiltonian systems; Annihilating codistribution.

I. INTRODUCTION

A particularly desirable objective of any control system
consists in ensuring that the state of the plant is steered from
a generic initial configuration to a specific value in a safe and
optimal fashion, according to a certain performance (or cost)
criterion, see e.g. [1]. The above control task can be naturally
formulated as an infinite-horizon optimal control problem
[2], provided that the time interval allocated to complete
the transferring of the state between distinct end-points is
sufficiently long compared to the time scales of the plant.
On the contrary, whenever the primary attention is focused
on completing the assigned control task within a prescribed
horizon, fixed a priori, rather than on reaching a specific
configuration at the end of such an interval, the structure of
the solution to such a seemingly similar problem becomes
significantly different from a mathematical point of view, being
for instance intrinsically dependent on the elapsed time, i.e.
time-varying [1, Sec. 5.1].

Despite the above-mentioned difference between finite-
horizon and infinite-horizon optimal control, the two problems
in fact share common approaches towards the characterization
of the underlying solutions. These strategies can be further
categorized according to methods that are inspired by the so-
called Dynamic Programming (DP), see e.g. [3], and those
that are based on Pontryagin’s Minimum (or Maximum)
Principle (PMP) [4]. In the setting of finite-horizon problems,
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strategies inspired by DP characterize the optimal feedback
in terms of the solution to a certain quadratic, time-varying
partial differential equation (PDE), i.e. the so-called Hamilton-
Jacobi-Bellman (HJB) equation [1]. The latter in particular
yields necessary and sufficient conditions for optimality and
permits the characterization of the optimal solution, as well
as of the optimal cost, for any initial condition in the state
space. Methods based on the PMP provide, unless additional
assumptions hold, only necessary conditions for optimality.
As a consequence such strategies are typically employed
in practice merely to identify candidate optimal solutions
(extremals). Moreover, the computation of the optimal con-
trol law is based on the knowledge of the specific initial
configuration of the plant, hence essentially leading to open-
loop strategies. Nonetheless, despite the above drawbacks,
the widespread use of such strategies is essentially motivated
by the simplicity of the underlying conditions, provided in
terms of ordinary differential equations (instead of PDEs) that
should be satisfied by the optimal process together with an
auxiliary variable (costate). In fact the design can be recast in
terms of a (two-point) boundary value problem (BVP) for a
certain nonlinear system. Considering the relevant role played
by optimal control formulations in practical applications, it is
not surprising that numerous elegant and efficient techniques
have been envisioned to address such BVPs. These methods
rely either on a transcription of the underlying continuous-
time optimal control problem into a nonlinear programming
problem (NLP) or on the construction of a sequence of initial
value problems with an iterative refinement of the guess of the
initial condition, see e.g. [5], [6], [7] for more discussions.

A. Contribution of the paper

The aim of this manuscript consists in discussing how
knowledge of first integrals can be used to compute optimal
control laws. Within the framework of finite-horizon optimal
control, recalled in Section II, the main contribution of the
manuscript consists in establishing a connection between the
costate variable and the first integrals of the underlying
Hamiltonian vector field, which are functions of the state
and the costate variables. First, it is shown in Section III
that the time evolution of the optimal costate coincides, for
any time, with the inverse mapping of any collection of n
independent first integrals in which the second argument is
replaced by a constant vector. The latter depends on the initial
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condition of the plant and is computed, via a fixed-point
characterization, by solving a (parameterized) BVP formulated
in the original coordinates of the state alone, rather than in the
extended state/costate space. The property is established via a
preliminary nonlinear change of coordinates in such a way that
the optimal costate is constant over time in the transformed
coordinates. It is further shown in Section V that, in the Linear
Quadratic (LQ) setting, the result can be equivalently achieved
via a linear, although necessarily time-varying, change of
coordinates. In a different context (i.e. zero-sum differential
games) and limited to LQ problems, a similar intuition has
been explored in [8]. Despite the particularly elegant charac-
terization in [8], restricting the attention to linear, time-varying
change of coordinates prevented the unveiling of much deeper
connections between first integrals and the optimal costate.

Furthermore, it is shown that knowledge of a closed-form
expression for the mapping between the initial condition of
the plant and the corresponding constant vector permits the
computation of the underlying value function via a line integral
instead of solving a quadratic, time-varying PDE. Despite
the remarkably long history of research in optimal control
it appears that such strong connections between two relevant
objects related to Hamiltonian systems, namely optimal costate
and first integrals, have not been observed hitherto.

Finally, it is discussed in Section IV how these abstract
properties may pave the way to envision computationally
efficient strategies to determine optimal control laws, which
rely on premises significantly different from shooting methods
based on the Hamiltonian dynamics. Indeed, apart from the
above-mentioned dimensional reduction of the required BVP,
it is shown that, by hinging on the proposed constructions, the
dynamics for which the BVP must be solved naturally inherits
the stability properties of the original plant, differently from
the case in which the Hamiltonian dynamics are employed.

B. Notation
Given a function h : Rn → R, the notation ∇xh(x)

describes the column vector of partial derivatives of the
function h, while dh(x) defines the gradient. Moreover, if
f : Rn → Rn is a vector-valued function, the notation
∇xf(x) describes its Jacobian matrix. The subscript in ∇x· is
neglected whenever the argument is clear from the context.
The set Cκ(Rn) contains the functions defined over Rn
with continuous derivatives up to order κ. For a function h
and a vector field f , the Lie derivative Lfh is defined as
Lfh := dh f . For two vector fields f1 and f2 the Lie bracket
[f1, f2] is defined as [f1, f2] := (∇f2)f1 − (∇f1)f2. Given
a matrix M ∈ Rn×n, σ(M) denotes the spectrum of M .
Provided M is symmetric, M ≻ 0 (M ⪰ 0) specifies that
M is positive (semi-)definite. Given an ordinary differential
equation ẋ = f(x; η), x(t0) = x0, parameterized with respect
to η ∈ Rq , the flow φ(t, t0, x0; η) denotes the mapping
that satisfies φ(t0, t0, x0; η) = x0 and ∂

∂tφ(t, t0, x0; η) =
f(φ(t, t0, x0; η); η), for all t ≥ t0.

II. PRELIMINARIES AND PROBLEM STATEMENT

The objective of this section is to recall a few standard
definitions and results concerning the optimal control problem

for nonlinear systems over a finite horizon. To this end,
consider nonlinear, input-affine dynamics described by

ẋ = f(x) + g(x)u , x(t0) = x0 , (1)

where x : R → Rn denotes the state of the plant and u : R →
Rm denotes the input. Suppose that the system possesses an
equilibrium at the origin, i.e. f(0) = 0. Given a control input
u ∈ C0([t0, tf ]), defined over an interval [t0, tf ] ⊂ R fixed a
priori, the performance of (1) driven by u is evaluated via the
cost functional J : C0([t0, tf ]) → R defined by

J(u(·)) = 1

2

∫ tf

t0

(ℓ(x(τ)) + ∥u(τ)∥2R) dτ +m(x(tf )) , (2)

with R = R⊤ ≻ 0. The running cost on the state variable is
described by the function ℓ : Rn → R⩾0, ℓ(0) = 0, whereas
the terminal cost is defined by the function m : Rn → R⩾0,
m(0) = 0. The value of the functional J is parameterized
with respect to the initial condition x0 in (1). Furthermore, in
the following it is implicitly assumed that the vector field f :
Rn → Rn, the matrix-valued function g : Rn → Rn×m and
the functions ℓ and m are sufficiently smooth. The statement
below formulates the optimal control problem considered here.

Problem 1. Consider the dynamics (1) and fix x0 ∈ Rn. The
finite-horizon optimal control problem consists in determining
a control input u⋆(t), t ∈ [t0, tf ] such that J(u⋆) < J(u)
for all u ∈ C0([t0, tf ]), namely with the property that the
functional (2) is minimized along the trajectories of (1). ◦

A precise characterization of the existence and regularity
properties of the solution to Problem 1, which constitutes a
challenging task per se and which has attracted significant
attention in the literature (see, e.g. [9]), is beyond the scope of
this manuscript. Therefore, the following assumption is stated
to set the framework for the results below. To provide a concise
notation define the matrix-valued function S : Rn → Rn×n
according to S(x) := g(x)R−1g(x)⊤ for all x ∈ Rn.

Assumption 1. There exists a unique solution V ⋆ : [t0, tf ]×
Rn → R>0, V ⋆ ∈ C2([t0, tf ]×Rn), of the Hamilton-Jacobi-
Bellman (HJB) partial differential equation −∇tV =

1

2
ℓ(x) +∇xV

⊤f(x)− 1

2
∇xV

⊤S(x)∇xV

V (tf , x) = m(x) ,
(3)

for all t ∈ [t0, tf ] and all x ∈ Rn. ◦

The requirements of Assumption 1, which may be relaxed
to hold locally in a neighborhood of the origin, ensure the
existence of a unique optimal solution to Problem 1, which is
obtained in terms of the feedback control law [10, Sec. 4.2]

u⋆(t) = −R−1g(x⋆(t))⊤∇xV (t, x⋆(t)) . (4)

However, the closed-form computation of the value function
V ⋆ is typically not viable in practice. To circumvent the latter
issue, an alternative trajectory-based approach, hence more
akin to the formulation of Problem 1, is provided by the theory
developed by Pontryagin to tackle the problem in the spirit
of Calculus of Variations [1]. Towards this end, consider the
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auxiliary variable λ : R → Rn and define the (minimized)
Hamiltonian function H : Rn × Rn → R described by

H(x, λ) = min
u

{
λ⊤(f(x) + g(x)u) +

1

2
ℓ(x) +

1

2
∥u∥2R

}
= λ⊤f(x) +

1

2
ℓ(x)− 1

2
λ⊤S(x)λ .

(5)

PMP yields necessary conditions for optimality in terms of the
solution to the BVP described by (see [4])[

ẋ

λ̇

]
=

[
∇λH(x, λ)

−∇xH(x, λ)

]
:= fH(χ) (6)

with χ = (x, λ), together with the split conditions

x(0) = x0 , λ(tf ) = ∇xm(x(tf )) . (7)

Assumption 2. Fix x0 ∈ Rn. There exists a unique solution
to the boundary value problem (6), (7) in [t0, tf ]. ◦

By the so-called sensitivity conditions in optimal control
(see, e.g. [9, Ch. 12]) it follows that the unique solution
to the boundary value problem (6), (7) satisfies λ⋆(t) =
∇xV

⋆(t, x⋆(t)) for all t ∈ [t0, tf ]. Furthermore, by combining
Assumptions 1 and 2, one has that the unique extremal
satisfying the necessary conditions (6), (7) indeed yields the
optimal solution in terms of u⋆(t) = −R−1g(x⋆(t))⊤λ⋆(t).
Finally, since the analysis of the following sections is based on
the construction of the annihilating codistribution of fH, the
following definitions are briefly recalled from [11, Sec. 1.3].

Definition 1. Given a collection of vector fields f1, ..., fd,
a distribution ∆ is a mapping that assigns to each point
x ∈ Rn a vector space, i.e. a subspace of Rn, defined
as ∆(x) = span{f1(x), ..., fd(x)}. The dimension of the
distribution corresponds to the dimension of the subspace
∆(x) at x. ∆ is non-singular if there exist a neighborhood
U and an integer d such that dim(∆(x)) = d for all x ∈ U . ◦

Definition 2. A codistribution C is a mapping that assigns to
each point x ∈ Rn a dual vector space, i.e. a subspace of
(Rn)⋆, defined as C(x) = span{ω1(x), ..., ωd(x)}, with ωi(x)
describing a covector field. Given a non-singular distribution
∆ of dimension d, the annihilator is a codistribution C :=
∆⊥ = span{ω1, ..., ωn−d} with the property that ωi(x)f(x) =
0, for i = 1, ..., n− d and for all f ∈ ∆. ◦

Among the set of annihilators of a given distribution ∆,
one of particular interest is a codistribution that is spanned
by gradients only, namely such that there exist independent
functions ϕ1, ... ϕn−d, with ϕi : Rn → R, such that
∆⊥ = span{dϕ1, ..., dϕn−d}. Whenever such functions exist,
the distribution is said to be (locally) completely integrable.

Definition 3. A distribution ∆ is said to be involutive if
[f, g] ∈ ∆ for any pair of vector fields f ∈ ∆, g ∈ ∆. ◦

By Frobenius Theorem (see, e.g., [11, Thm. 1.4.1]) a non-
singular distribution is completely integrable if and only if it is
involutive. Thus, building on Definitions 1-3 and on Frobenius
Theorem, the following property1 holds: any one-dimensional

1Such a property is obtained also as a straightforward consequence of the
so-called flow-box or straightening out Theorem, see e.g. [12, Thm. 1].

distribution ∆(x) = span{f(x)} ⊂ Rn, i.e. consisting of a
single vector field, always admits n−1 independent functions
ϕi with the property that dϕi(x)f(x) = 0, in a neighborhood
of any point such that f(x) is different from zero. The property
is derived by recalling that [f, f ] = 0 for any f , hence ∆ =
{f} is involutive (see [11, Rmk. 1.3.8]). The assumption below
requires, therefore, that the optimal process χ⋆ = (x⋆, λ⋆)
evolves sufficiently away from the origin of Rn×Rn, in such
a way that the underlying vector field remains non-singular.

Assumption 3. Fix x0 ∈ Rn. There exists δ > 0 such that
mint∈[t0,tf ] ∥χ⋆(t)∥ > δ. ◦

III. ON THE RELATION BETWEEN THE ANNIHILATING
CODISTRIBUTION AND OPTIMAL COSTATE

Since fH is a vector field mapping the state into the
tangent space subset of R2n, hence it can be interpreted as
a one-dimensional distribution, by Frobenius Theorem the
latter vector field always admits, away from the equilibrium
point at the origin, an annihilating codistribution of dimension
2n − 1. Therefore there exist 2n − 1 independent functions
ψi(x, λ) with the property that2 dψifH = 0. Consider a
non-empty set Ω ⊂ Rn × Rn, the projection of which on
the x-space contains a given initial condition x0, and let
Ξ = {ψi}i=1,...,2n−1 denote a set of independent generating
functions whose gradients span the annihilator of fH, namely
f⊥H = span{dψ1, ..., dψ2n−1} for all (x, λ) ∈ Ω. The following
statement clarifies the role of the functions in Ξ towards
the computation of the optimal solution to Problem 1, by
suggesting how first integrals of the Hamiltonian dynamics
can be used to construct optimal control laws.

Theorem 1. Consider the nonlinear system (1) together with
the cost functional (2) and fix x0 ∈ Rn. Suppose that
Assumptions 1 - 3 hold. Consider any selection of n functions
in Ξ with the property that ψ(x, λ) := [ψi1 , ..., ψin ]

⊤ is such
that ∇λψ is non-singular in Ω0 ⊆ Ω. Then, for all the optimal
processes (x⋆, λ⋆) that remain in Ω0 for all t ∈ [t0, tf ] the
optimal solution is equivalently described by3

u⋆(t) = −R−1g(x⋆(t))⊤ψ−1(x⋆(t), ψ(ξ,∇xm(ξ))) (8)

where the constant vector ξ ∈ Rn is such that

ξ = φz(tf , t0, x0; ξ) , (9)

with φz(t, t0, x0; ξ) denoting the flow of the (reduced) system

ż = f(z)− S(z)ψ−1(z, ψ(ξ,∇xm(ξ)), z(0) = x0 , (10)

parameterized with respect to ξ. ⋄

Remark 1. A few observations about Theorem 1 are in order
before the formal proof. First, note that the condition (9)

2It is worth observing that such a property can be put into perspective
with respect to the geometric properties of Hamiltonian vector fields by
recalling that dψifH = {ψi,H}, where {·, ·} denotes the Poisson bracket.
The interested reader is referred to [13] where an elegant characterization of
such properties is discussed in the setting of infinite-horizon optimal control.

3The notation ψ−1 describes the (partial) inverse with respect to λ, i.e. a
mapping with the property that λ = ψ−1(x, ψ(x, λ)) = ψ−1(z, ψ(z, λ)) =
ψ−1(z, p), provided x = z and p = ψ(x, λ).
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entails that the optimal solution of Problem 1 can be de-
termined in two steps, by solving first (i) a linear time-
invariant PDE (to compute the set Ξ of annihilating functions)
and subsequently (ii) a BVP of dimension n, instead of 2n
as for (6), (7), with respect to a vector field parameterized
via ξ. Furthermore, the functions in Ξ do not vary with x0
in Ω0, hence the solution to step (i) above should not be
repeated for different initial conditions. Conversely, to put the
complexity of the computations involved in Theorem 1 into
perspective, it is worth observing that an implementation via
(numerical) integration of (6), (7) or via the direct solution of
(3) would instead hinge upon a BVP of dimension 2n or on
a quadratic, time-varying PDE, respectively. In addition, the
explicit knowledge of the solution of the BVP of dimension
2n for a certain x0 does not provide any insight on the
solution for a different initial condition and hence it should be
repeated. Finally, note that (9) may be interpreted as the task of
computing a fixed point of the mapping ξ 7→ φz(tf , t0, x0; ξ).
The latter intuition is exploited below (see Section IV-B) to
suggest numerically appealing strategies for its solution. ▲

Proof of Theorem 1: To begin with define the change of
coordinates for the Hamiltonian dynamics (6) described by

z = x p = ψ(x, λ) (11)

and note that, by the assumption on non-singularity of the
Jacobian matrix ∇λψ, the mapping (x, λ) 7→ (x, ψ(x, λ))
constitutes a local diffeomorphism in the neighborhood of any
point in Ω0 (see [11, Prop. 1.2.3]). Since the components
ψi, i = 1, ..., n, of the mapping ψ belong to Ξ, hence
the corresponding gradients belong to f⊥H, one has that, by
construction, dψi fH = 0 in Ω for i = 1, ..., n. Therefore,
in the transformed coordinates, the Hamiltonian dynamics (6)
becomes[

ż

ṗ

]
=

[
ẋ

∇χψ fH

]
=

[
f(z)− S(z)ψ−1(z, p)

0

]
(12)

together with the split boundary conditions

z(0) =x0 , (13a)

p(tf ) =ψ(z(tf ),∇zm(z(tf ))) . (13b)

Note that (11) does not constitute a canonical change of
coordinates, hence, as expected, the Hamiltonian structure is
not preserved in the transformed coordinates. Nonetheless,
by inspecting the second block equation of (12) it follows
immediately that the variable p(t) is constant over time in the
interval t ∈ [t0, tf ], and, hence, by (13b), is equal to

p(t) = ψ(z(tf ),∇zm(z(tf ))) , (14)

for all t ∈ [t0, tf ]. Replacing (14) into the first block equation
of (12), the latter then coincides with (10) where the final state
z(tf ) (appearing on the right-hand side of (14)) is described
in terms of a generic constant vector ξ ∈ Rn. The proof is
then concluded by observing that, in order to be consistent
with (14), and hence with the resulting dynamics in (10), the
constant vector ξ := z(tf ) must be precisely characterized by
the condition (9). □

Remark 2. The structure of the control law (8) implies that
the annihilating codistribution of the underlying Hamiltonian
dynamics yields the optimal solution of Problem 1 in terms
of a (parameterized) state feedback, similarly to techniques
inspired by DP [14], [9], whose characterization is however
formulated in terms of a BVP without the need for solving
any PDE, similarly to methods based on PMP [4]. ▲

The following statement establishes a connection between
(the inverse mapping of) any collection of n generating
functions of the annihilator of the Hamiltonian dynamics (6)
and the time history of the optimal costate. More precisely, it
is shown that the latter coincides for any time with the former
provided the second argument is replaced by a suitably defined
constant vector.

Corollary 1. Suppose that the hypotheses of Theorem 1 hold.
Then there exists a constant vector v ∈ Rn with the property
that

λ⋆(t) = ψ−1(x⋆(t), v) (15)

for all t ∈ [t0, tf ], where λ⋆ denotes the optimal costate. ⋄

Proof: The claim follows immediately from the construc-
tions discussed in the proof of Theorem 1 and by uniqueness of
the optimal process. In fact, by considering the inverse change
of coordinates it follows that

λ⋆(t) = ψ−1(x⋆(t), p⋆(t))

= ψ−1(x⋆(t), ψ(ξ,∇xm(ξ))) ,
(16)

for all t ∈ [t0, tf ], with ξ satisfying the condition (9). The
conclusion then follows by letting v := ψ(ξ,∇xm(ξ)). □

Remark 3. A combination of the intuitions behind Theorem 1
and Corollary 1 permits the derivation of straightforward
algebraic conditions that relate the optimal initialization of
the costate variable, i.e. λ⋆(t0), and the vector ξ in (9). In
fact, by construction of the change of coordinates, it follows
that p⋆(t0) = ψ(x0, λ

⋆(t0)). Therefore, since p⋆ is constant
in [t0, tf ] hence p⋆(tf ) = ψ(ξ,∇xm(ξ)) = p⋆(t0), the vector
ξ is obtained, for fixed (x0, λ

⋆(t0)), by solving the system of
algebraic equations

ψ(x0, λ
⋆(t0)) = ψ(ξ,∇xm(ξ)) , (17)

for all x0 ∈ Ω and t0 ∈ R. ▲

Remark 4. By further reconciling the conclusions of Corol-
lary 1 with the sensitivity conditions arising in optimal control
theory, it follows that the composition of the annihilator of the
Hamiltonian vector field with its inverse function yields the
sensitivity of the optimal cost, namely

∇xV
⋆(t0, x0) = ψ−1(x0, ·) ◦ ψ(ξ,∇xm(ξ)) , (18)

provided ξ satisfies (9). It is worth observing that, differently
from the left-hand side, the right-hand side of (18) does not
depend explicitly on the initial time, which is encoded in the
value of ξ that solves (9). ▲

The structure of (18) implicitly suggests that the annihilating
codistribution of the Hamiltonian dynamics is strictly related
also to the value function of Problem 1. However, such a direct
computation is viable only if the overall dependence of the
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right-hand side of (18) on the initial condition x0 is captured:
this includes the fact that the value of ξ depends, in turn, on the
specific selection of x0, as it appears by inspecting (9). This
intuition is summarized in the following statement, in which
the concise notation ψ̄(ξ) := ψ(ξ,∇xm(ξ)) is employed.

Corollary 2. Suppose that the hypotheses of Theorem 1
hold. In addition, let µ : Rn → Rn be such that µ(x) =
φz(tf , t0, x;µ(x)) for all x ∈ Ω0. Define the function

ν(x) =

∫ 1

0

⟨ψ−1(h, ψ̄(µ(h))|h=x0+s(x−x0)), x−x0⟩ds . (19)

Then, the value function satisfies V ⋆(t0, x) = ν(x)−ν(0), for
all x ∈ Ω0. ⋄

Proof: Provided the fixed-point condition (9) is satisfied
for all x0 ∈ Ω, as prescribed by the definition of the function
µ, it follows by (18) that the gradient of the optimal value
function V ⋆(t0, x), for fixed t0 and for all x ∈ Ω0, coincides
with ψ−1(x, ψ̄(µ(x))). Furthermore, note that ∇xν(x) =
ψ−1(x, ψ̄(µ(x))), by construction, and that V ⋆(t0, 0) = 0, by
the definition of Problem 1 for all t0 (by time-invariance of
the involved functions). Thus one has that ν(x)− ν(0) yields
the optimal value function V ⋆(t0, x) of Problem 1 in Ω0. □

The statement of Corollary 2 entails that the value function
may be equivalently computed by solving a linear, time-
invariant PDE (to determine first integrals) and a line integral,
rather than by solving a quadratic, time-varying PDE. The
claims of Theorem 1 and Corollaries 1 and 2 are illustrated
below via a numerical example involving a linear system and
a quadratic cost functional, for which the constructions can be
easily carried out. In more general settings the computations
may, in fact, be obstructed by cumbersome notation and com-
putational issues. These relevant aspects are instead addressed
in Section IV-A.

Example 1. Consider a LQ optimal control problem described
by the dynamics

ẋ = u x(0) = x0 , (20)

together with the cost functional

J(u) =
1

2

∫ 1

0

(x(t)2 + u(t)2)dt , (21)

hence as in (2) with ℓ(x) = x2, R = 1 and m ≡ 0. In this
setting the optimal solution can be immediately determined
by relying on the knowledge, for instance, of the eigenvalues
and eigenvectors of the underlying Hamiltonian matrix, which
allow to construct the solution to the corresponding Differen-
tial Riccati Equation (DRE), see e.g. [1]. More precisely, the
optimal solution is u⋆(t) = −P (t)x(t), for t ∈ [0, 1], with

P (t) =
(
1− e−2(1−t)

)(
1 + e−2(1−t)

)−1

(22)

solution of −Ṗ = 1 − P 2, P (1) = 0, and associated also
to the value function according to V ⋆(t, x) = (1/2)x2P (t).
Consider instead the dynamics (6), which becomes[

ẋ

λ̇

]
=

[
−λ
−x

]
(23)

together with the boundary conditions x(0) = x0, λ(1) =
0. The function ψ(x, λ) = x2 − λ2 yields the annihilator of
the (linear) vector field in (23). Thus the associated inverse
function is defined as ψ−1(z, p) = ±

√
z2 − p depending on

the sign of λ. Therefore, according to Theorem 1, since the
variable p(t) is constant in the interval [0, 1] and equal to

p(t) = ψ(z(1), 0) = z(1)2 =: ξ2 , (24)

the reduced system (10) becomes

ż = ∓
√
z2 − ξ2 , z(0) = x0 . (25)

By separation of variables the scalar equation (25) yields(
z(t) +

√
z(t)2 − ξ2

x0 +
√
x20 − ξ2

)±1

= et

for all t ∈ [0, 1], which, by solving at t = 1 and z(1) = ξ with
respect to ξ, satisfies the fixed-point condition (9) by selecting

µ(x0) =
2ex0
e2 + 1

. (26)

Therefore, by Theorem 1 and Corollary 1 it follows that
the optimal costate variable λ⋆(t), t ∈ [0, 1], is equivalently
described in terms of z(t) and µ(x0) as

λ⋆(t) = P (t)x⋆(t) = ±
√

(z⋆(t))2 − µ(x0)2 ,

where z⋆(t) solves (25) with ξ = µ(x0). Furthermore, the
optimal value function V ⋆(0, x) and the integral (19), namely

ν(x)− ν(0) =
x2

2

√
(e2 + 1)2 + 4e2

(e2 + 1)2
,

coincide for all x ∈ R. △

Apart from specially structured classes of optimal control
problems, the solution of (6), (7) can be seldom computed in
closed form. As anticipated in Section I, shooting methods aim
at providing an accurate estimate of the underlying solution.
More precisely, the split boundary conditions (7) are satisfied
by iterating on (suitably updated) guesses of the corresponding
initial condition for the costate variable λ(t0), so that the
terminal condition eventually holds. Thus, the initial guess for
λ(t0) plays a crucial role towards numerical reliability of such
methods. In this respect, the property that the origin is an
unstable equilibrium point for (6), provided rather standard
assumptions hold (see also Section V below), renders the
majority of shooting methods troublesome, if not impossible,
to implement in practice whenever the difference tf − t0 is
large. Within this framework, the following formal statement
and numerical simulation illustrate an advantageous feature of
the fixed-point condition (9) compared to classic methods.

Proposition 1. Consider the reduced system (10) and sup-
pose that σ(∇zf(z)|z=0) ⊂ C−. Moreover, let G0(ξ) :=
∇z(S(z)ψ

−1(z, ψ̄(ξ)))|z=0 and suppose that G0(0) = 0. Then
there exists ε ∈ R>0 with the property that, for all ξ such that
∥ξ∥ < ε, z = 0 is locally exponentially stable (LES) for
system (10). ◦
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Proof: By isolating the linear terms with respect to z in the
vector field of system (10), the latter can be written as

ż = A0z + f̃(z)−G0(ξ)z − G̃(ξ, z)

= (A0 −G0(ξ))z + f̃(z)− G̃(ξ, z) ,
(27)

with A0 := ∇zf(z)|z=0, where f̃ : Rn → Rn and G̃ : Rn ×
Rn → Rn contain higher-order terms with respect to z. Since
A0 is Hurwitz by assumption, and hence σ(A0−G0(0)) ⊂ C−,
the claim follows immediately by continuity of the mapping
G0 with respect to ξ and of the eigenvalues of a matrix with
respect to variations in its entries. □

Remark 5. The statement of Proposition 1 entails that, for suf-
ficiently small initial conditions x0 and provided the original
system (1) possesses a LES equilibrium point at the origin, it
is always possible to initialize an iterative strategy designed
to converge to the correct ξ (such as the one proposed in
Section IV-B) by means of a selection of ξ0 that ensures
a numerically meaningful terminal condition z(tf ) even for
arbitrarily large tf . Intuitively, the stability properties of the
underlying plant are inherited by the system employed in
the shooting method, and hence the accuracy of the initial
guess of the vector ξ is not crucial. This is profoundly
different from what happens in general with the (full-order)
Hamiltonian dynamics (6) in which, even for arbitrarily small
initial conditions for the state, the (random) selection of λ(t0)
gives rise with probability one to a trajectory that diverges
for large terminal times. In fact, the set of initial guesses for
λ(t0) that are associated to bounded trajectories of (6) is of
zero measure, whereas the selection of an ill-conditioned λ(t0)
is generic. This aspect is illustrated in Example 2 below. ▲

Remark 6. The emphasis of Proposition 1 is on the property
of rendering the set of well-conditioned initial guesses for
the choice of ξ an open set, rather than a zero-measure one.
Conversely, the fact that the former set is centered at the origin
is not particularly relevant. As a consequence, the assumptions
on G0 may be partially relaxed by requiring instead that there
exists ξ̂ ∈ Rn such that A0 − G0(ξ̂) is Hurwitz. Then the
conclusions of Proposition 1 would hold for all ξ such that
∥ξ − ξ̂∥ < ε, for some positive ε. ▲

Example 2. Consider the LQ problem described by[
ẋ1

ẋ2

]
=

[
−x1 + x2

−0.5x2 + u

]
(28)

initialized at x0 = [1, 0.5]⊤, together with the cost functional

J(u) =

∫ tf

0

u(t)2dt+
1

2
x1(tf )

2 . (29)

It can be shown that the functions

ψ1(x, λ) =

√
λ1

2λ1 + λ2
, ψ2(x, λ) =

√
λ1(3x2 + 2λ1 + 3λ2) ,

(30)

well-defined in the positive orthant of the state/costate space,
are independent functions such that span{dψ1, dψ2} ⊂ f⊥H,

0 1 2 3 4 5 6

0

1

2

0 1 2 3 4 5 6

0

1

2

0 1 2 3 4 5 6

0

1

2

Fig. 1. Time histories of the Hamiltonian dynamics (31) initialized at
λ(0) = λ⋆

x0
+ δλ (dashed lines) and of the reduced dynamics (10)

with ξ as above (solid lines) for several terminal times, i.e. tf = 2 (top
graph), tf = 4 (middle graph) and tf = 6 (bottom graph).

where the (linear) vector field fH is defined as

fH :=


−x1 + x2

−0.5x2 − λ2

λ1

−λ1 + 0.5λ2

 . (31)

It is straightforward to notice that the latter vector field
possesses an unstable equilibrium point at the origin. The
objective of the following numerical simulation consists in
assessing the influence of the value of the terminal time
tf towards the implementation of a shooting method either
directly for (31) or for (10) with (28) and (30). To this end,
suppose that the dynamics described by (31) are forward
integrated from the initial condition x(0) = x0 and λ(0) =
λ⋆x0

+ δλ, where λ⋆x0
denotes the optimal initialization of the

costate for the given x0 and δλ is a (small) perturbation.
To perform a fair comparison, the value of ξ employed
to forward propagate the dynamics (10) is instead selected
according to (17) with respect to λ(0), namely by solving
ψ(x0, λ

⋆
x0

+ δλ) = ψ(ξ,∇m(ξ)). Note that the structure of
the terminal cost in (29) implies that ∇m(ξ) = [ξ1, 0]

⊤.
In the following numerical simulations, the perturbation from
the nominal value is selected as δλ = [0.02, −0.01]⊤. The
graphs of Figure 1 depict the time histories of the Hamiltonian
dynamics described by (31) initialized at λ(0) = λ⋆x0

+ δλ
(dashed lines) and of the reduced dynamics (10) with ξ as
above (solid lines) for several terminal times, i.e. tf = 2 (top
graph), tf = 4 (middle graph) and tf = 6 (bottom graph).
The latter graph, in particular, illustrates the fact that forward
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integration of the Hamiltonian dynamics (6) yields numerically
troublesome results for large tf (∥λ(6) − ∇xm(x(6))∥ =
15.83), whereas the forward integration of (10) may still
provide meaningful values (∥z(6)−ξ∥ = 0.42). This feature is
employed in Section IV-B to define a hybrid mechanism that
converges to the fixed point µ(x0). △

IV. DISCUSSION ON CONSTRUCTIVE ASPECTS

While providing an alternative characterization of the op-
timal solution in terms of a reduced system, the statement
of Theorem 1 involves constructive steps that may appear as
stumbling blocks in practice. The two daunting requirements
are the computation of the annihilator of the Hamiltonian vec-
tor field, which is guaranteed to exist by Frobenius Theorem,
and of the constant vector ξ that satisfies the condition (9).
This latter step in fact must be typically accomplished without
the knowledge of a closed-form expression of the flow φz .
These aspects are addressed in the two following subsections,
respectively. It is worth mentioning that the purpose of the
results in this section is to suggest possible approaches to
tackle such constructive challenges. Nonetheless, further re-
finements or alternative approaches, some of which are hinted
to in Section VI, might be envisioned.

A. Approximate annihilator via Newton’s method

The constructions discussed in this section yield a system-
atic way of computing a set of functions that approximate,
with an arbitrary degree of accuracy in a neighborhood of a
given state, the generating functions of the annihilator of the
Hamiltonian vector field fH without the need for solving any
differential or algebraic equation. To this end, fix (x0, λ0) ∈
Rn × Rn, different from the origin, and suppose, without
loss of generality (as explained in the footnote below), that
f2nH (x0, λ0) ̸= 0, where fiH denotes the i-th component of fH.

Assumption 4. The components fiH, i = 1, ..., 2n, are real
analytic functions in a neighborhood of (x0, λ0). ◦

Assumption 4, although required to prove the following
statement, may be relaxed in practice by accepting also suf-
ficiently smooth vector fields. To provide a concise statement
of the following result, define the matrix4 M ∈ R2n×2n as

M =


0 0 . . . 0 1
0 0 . . . 1 0
... . .

. ...
0 1 . . . 0 0
0 0 . . . 0 0

 . (32)

Lemma 1. Fix χ0 = (x0, λ0) and suppose that Assumption 4
holds. Define s ∈ R2n and

hr1(s1, ..., s2n) =

r1∑
k=1

LkfHχ(χ0 +Ms)
sk1
k !
. (33)

4Whenever the last component of the vector field fH is equal to zero at
(x0, λ0), the structure of the matrix M should be modified accordingly with
the row of zeros corresponding to a non-zero element of fH.

Let π0(χ) = χ0, consider the iterations

πj+1 = πj +∇hr1(πj)−1 (χ− hr1(πj)) (34)

j = 0, 1, ..., r2 − 1, and define the functions ψ̃i(x, λ), i =
1, ..., 2n− 1, as[
ψ̃1 . . . ψ̃2n−1

]⊤
:=
[
0(2n−1)×1 I2n−1

]
πr2(x, λ) .

(35)
Then for any ε > 0 there exist r⋆1 ∈ N, r⋆2 ∈ N and a non-
empty neighborhood of χ0 such that, for all i = 1, ..., 2n− 1,∥∥∥dψ̃i fH(χ)

∥∥∥ < ε ,

for all r1 > r⋆1 , r2 > r⋆2 . ⋄

Remark 7. To streamline the proof of Lemma 1 it is worth
preliminary recalling the arguments of the (constructive) proof
of Frobenius Theorem in [11, Thm. 1.4.1], on which the
former relies. The latter in particular shows that the annihilator
of a distribution ∆(x) = span{f1(x), ..., fϱ(x)} ⊂ Rn, of
dimension ϱ around a certain state x̄ ∈ Rn, can be determined
by first completing the distribution with auxiliary vector fields
such that rank [∆(x̄) fn−ϱ(x̄) . . . fn(x̄)] = n. Then one
should compute the flows φfi(si, x̄) of all the vector fields in
∆ as well as those of fn−ϱ, ..., fn. Then, defining the function
Ψ(s) = φf1(s1, ·)◦ ....◦φfn(sn, x̄) as the composition of such
flows it is shown in [11, Thm. 1.4.1] that the gradients of the
last n−ϱ functions in the inverse mapping x 7→ Ψ−1(x) span
the annihilating codistribution ∆⊥. ▲

Proof of Lemma 1: The proof of the claim follows from
the premises discussed in Remark 7. To begin with the (one-
dimensional) distribution defined by the vector field fH is
complemented by the trivial selection of the vector fields

f2 =


0
...
0
1
0

 , f3 =


0
...
1
0
0

 , ... , f2n =


1
...
0
0
0

 .
The flows of the above vector fields can be then immediately
computed and are such that φf2(s2, ·) ◦ ... ◦ φf2n(s2n, χ0) =
χ0 +Ms. Then the proof is concluded by relying, first, on
the approximation of the flow φfH(s1, χ0 +Ms), needed to
construct the mapping Ψ(s) introduced in Remark 7 and which
is an analytic function of time s1 by Assumption 4, via the
corresponding Taylor expansion of order r1, see (33) for the
definition of hr1 , and subsequently on the approximation of
the inverse mapping via Newton’s iterations, see (34). □

Remark 8. As a consequence of the constructions discussed
in the statement of Lemma 1 it follows that a change of
coordinates based on ψ̃i in (35) in place of ψi (namely
defining p̃ = ψ̃(x, λ)) is such that the dynamics of the trans-
formed costate variable can be (locally) uniformly bounded as
∥ ˙̃p(t)∥ < ε̃, for any ε̃ > 0 and all t ∈ [t0, tf ]. A similar bound,
which may be arbitrarily tuned, is then inherited also by the
computation of the fixed-point condition (9), and hence on the
optimal solution. The approximation stems from considering
that also p̃(t) is constant in [t0, tf ] while tackling (9). ▲
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Fig. 2. Graph of dψ̃ fH obtained by approximating the flow of the
Hamiltonian dynamics via (33) with r1 = 4 and for two different values
of r2, namely r2 = 1 (light gray) and r2 = 3 (dark gray).

Example 3. Consider Hamiltonian dynamics described by[
ẋ

λ̇

]
=

[
x2 − λ

−x− 2xλ

]
(36)

and fix (x0, λ0) = (1, 0). Figure 2 depicts dψ̃ fH obtained by
approximating the flow of the Hamiltonian dynamics via (33)
with r1 = 4 and for two different values of r2, namely r2 = 1
(light gray) and r2 = 3 (dark gray). The quadratic convergence
properties of the algorithm, inherited by Newton’s method, can
be appreciated from Figure 2, in which the dark gray surface
is almost flat in the desired neighborhood. △

B. Fixed-point condition via sensitivity equations
The objective of this section is to propose a computational

approach for determining the value of ξ that satisfies the
fixed-point condition (9). More precisely this is achieved by
combining a rather standard approach for computing the partial
derivative of the flow of a differential equation with respect to
a parameter appearing in the vector field (sensitivity) with the
framework introduced for the analysis and control of hybrid
systems. A comprehensive review about the latter class of
systems is beyond the scope of this paper (see [15] for detailed
discussions). It appears that (9) can be satisfied by minimizing
the (static) cost ζ 7→ Tx0

(ζ), T : Rn → R, defined as

Tx0
(ζ) = ∥ζ − φz(tf , t0, x0; ζ)∥2 . (37)

The latter task can be, in turn, accomplished by a standard
gradient descent method, provided one is able of (numerically)
evaluating the flow and its derivative with respect to ζ, as
discussed in the following result. To provide a concise state-
ment, define F (z, ζ) := f(z)−S(z)ψ−1(z, ψ(ζ,∇xm(ζ)) and
recall (see [15]) that solutions to hybrid dynamical systems
are parameterized with respect to two distinct time variables
(t, k), capturing the elapsed continuous time and the number
of occurred discrete-time events, respectively.

Proposition 2. Suppose that the hypotheses of Theorem 1
hold. Consider the hybrid system with state (τ, ζ, z,S) ∈ R×
Rn × Rn × Rn×n described by the flow dynamics

τ̇ = 1 , (38a)

ζ̇ = 0 , (38b)
ż = F (z, ζ) , (38c)

Ṡ = (∇zF (z, ζ))S +∇ζF (z, ζ) (38d)

jump dynamics

τ+ = 0 , (39a)

ζ+ = ζ − γ(I − S)⊤(ζ − z) , (39b)
z+ = x0 , (39c)
S+ = 0 (39d)

and with flow and jump sets described by C := {(τ, ζ, z,S) :
τ ⩽ tf} and D := {(τ, ζ, z,S) : τ ⩾ tf}, respec-
tively. Then there exist a non-empty set U and a piece-
wise constant function γ(t, k) such that limt+k→∞ ∥ζ(t, k)−
µ(x0)∥ = 0, along all the trajectories of (38), (39) for all
(τ(0, 0), ζ(0, 0), z(0, 0),S(0, 0)) ∈ U . ⋄

Proof: The claims of Proposition 2 are obtained as a
consequence of a gradient-descent method with variable step
size. In fact note that the dynamics (38d) is such that S(t, k) =
∇ζφz(t, t0, x0; ζ) for any t. Therefore, the right-hand side of
the jump dynamics (39b) coincides with a standard gradient
based update ζ+ = ζ − γ(∇ζTx0)

⊤. □

The above strategy represents essentially a shooting method
with two main differences with respect to classic implemen-
tations: first, it requires to “shoot” for the selection of the
parameter ξ in (10) to satisfy (9); second, the iterations are
formulated within the framework of hybrid systems. The prac-
tical implementation of the strategy suggested in Proposition 2
is briefly summarized by the schematic algorithm below and
subsequently illustrated by the case study in Example 4.

Algorithm 1.
Parameters: ri ∈ N, i = 1, 2, ε > 0

Input: (x0, λ0) ∈ Rn × Rn

(1) Let π0 = (x0, λ0)
(2) For j = 0 to r2
(3) πj+1 = πj +∇hr1(πj)−1 (χ− hr1(πj))

(4) with hr1 defined in (33)

(5) Let
[
ψ̃1 . . . ψ̃2n−1

]⊤
=
[
0(2n−1)×1 I2n−1

]
πr2

(6) If ∃{i1, ..., in} ⊂ {1, ..., 2n− 1} such that
(7) rank(∇λ[ψ̃i1 ...ψ̃in ]|(x0,λ0)) = n

(8) set ψ̃ = [ψ̃i1 ...ψ̃in ]
⊤ and Go to step (10)

(9) Else STOP
(10) Compute ψ̃−1(x, p)
(11) Let (38)-(39) evolve with ψ̃−1 in F until
(12) Tx0

(ζ(ktf , k − 1)) =: Tx0
(ζ[k]) < ε

(13) Set u(t) for t ∈ [t0, tf ] as

(14) u(t) = −R−1g(x(t))⊤ψ̃−1(x(t), ψ̃(ζ[k],∇xm(ζ[k])))
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Fig. 3. Time history of the logarithm of the cost function Tx0(ζ) along
the trajectories of the system (38), (39) initialized at ζ(0, 0) = [1, 1]⊤,
z(0, 0) = x0 and S(0, 0) = 02×2.

Algorithm 1 provides a systematic strategy to translate
the abstract properties discussed in Section III into a de-
sign strategy in practice. Nonetheless, it may be possible
to replace a few steps therein with alternative approaches.
More precisely, the role of steps (1)-(5) could be played by
any method that computes first integrals of the Hamiltonian
dynamics (see, e.g. the use of algebraic geometry arguments
in Example 5), whereas the objective of the steps (11)-(12)
could be equivalently achieved by any shooting method on
the reduced dynamics (10) with respect to the parameter ξ.

Example 4. Consider a nonlinear system described by[
ẋ1

ẋ2

]
=

[
f1(x2)

u

]
, (40)

initialized at x(0) = x0, together with the cost functional

J(u(·)) = 1

2

∫ 1

0

∥u(t)∥2dt+ 1

2
∥x(1)∥2 , (41)

hence as in (2) with ℓ(x) ≡ 0, R = 1 and m(x) = (1/2)∥x∥2.
The corresponding Hamiltonian dynamics are described by

ẋ1

ẋ2

λ̇1

λ̇2

 =


f1(x2)

−λ2
0

− df1
dx2

(x2)λ1

 , (42)

with the boundary conditions x(0) = x0 and λ(1) = x(1). It
can be shown that the functions

ψ1(x, λ) = λ1, ψ2(x, λ) = f1(x2)λ1 −
λ22
2

(43)

constitute a pair of independent functions the gradients of
which belong to the annihilating codistribution of the vector
field in (42). Figure 3 depicts the time history of the cost
function Tx0

(ζ), in semi-logarithmic scale, along the trajecto-
ries of the system (38), (39) with f1(x2) = x32 initialized at

0 0.2 0.4 0.6 0.8 1

-2

-1.5

-1

-0.5

0

0.5

1

Fig. 4. Time histories of the state of (10) in the case of Example 5,
together with the corresponding value of ξ⋆ (dashed lines).

ζ(0, 0) = [1, 1]⊤, z(0, 0) = x0 = [5, 3]⊤ and S(0, 0) = 02×2.
The value of ξ that satisfies (9) is therefore obtained as
ξ⋆ = [6.6894, 0.1918]⊤ and the optimal costate is[
λ⋆1(t)

λ⋆2(t)

]
=

[
ξ⋆1√

2((z⋆2(t))
3ξ⋆1 − (ξ⋆2)

3ξ⋆1 − (1/2)(ξ⋆2)
2)

]
.

△

C. Numerical simulations
The objective of this section is to corroborate the theoretical

findings of the previous sections by means of two numerical
simulations. In both cases the claims of Theorem 1 are
compared with the optimal solution of the underlying problem,
numerically computed via the command bvp in Matlab®,
which permits the solution to the corresponding nonlinear
BVP. In Example 5 the Hamiltonian dynamics admit a closed-
form expression of the annihilator, whereas the subsequent
example is employed to discuss the use of approximate first
integrals whenever these cannot be determined.

Example 5. Consider a nonlinear system described by ẋ1

ẋ2

ẋ3

 =

 −x1 − 2x3 − u

x21 + x2 + 2x1x3 + x23

x3 + u

 , (44)

initialized at x(0) = x0, together with the cost functional

J(u(·)) = 1

2

∫ 1

0

∥u(t)∥2dt+ 1

2
∥x(1)∥2 . (45)

The corresponding Hamiltonian dynamics are described by

ẋ1

ẋ2

ẋ3

λ̇1

λ̇2

λ̇3


=



−x1 − 2x3 − λ1 + λ3

x21 + x2 + 2x1x3 + x23

x3 + λ1 − λ3

λ1 − 2x1λ2 − 2x3λ2

−λ2
2λ1 − λ3 − 2x1λ2 − 2x3λ2


, (46)
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ψ−1(x, p) =


p3

(
x21
3

+
2

3
x1x3 +

x23
3

+ x2

)
+

2p2(x1 + x3)

3(x21 + 2x1x3 + x23 + 3x2)

p2
x21 + 2x1x3 + x23 + 3x2

p3

(
x21
3

+
2

3
x1x3 +

x23
3

+ x2

)
+

−3p1 + 2p2(x1 + x3)

3(x21 + 2x1x3 + x23 + 3x2)


(48)

with the boundary conditions x(0) = x0 and λ(1) = x(1). By
relying on the notion of semi-invariant of a nonlinear system
and by borrowing techniques from algebraic geometry (see
[16] for more details), it can be shown that (46) admits

ψ(x, λ) =


(λ1 − λ3)(x

2
1 + 2x1x3 + x23 + 3x2)

λ2(x
2
1 + 2x1x3 + x23 + 3x2)

3λ1 − 2λ2(x1 + x3)

x21 + 2x1x3 + x23 + 3x2

 (47)

as a collection of n = 3 generating functions for the annihi-
lating codistribution, yielding the inverse mapping ψ−1(x, p)
in (48) (at the top of the page). Fix x0 = [1, −1, −2]⊤.
Thus, by replacing the closed-form expressions of ψ and
ψ−1, defined in (47) and (48), respectively, into (10), the
fixed point ξ⋆ is computed via (38), (39), yielding ξ⋆ =
[0.5269, −1.8573, −0.8948]⊤. Figure 4 shows the time his-
tories of the reduced system (10) (solid lines) together with
the components of ξ⋆ (dashed lines). By letting z⋆ denote the
solution to (10) with ξ = ξ⋆, it is verified that the optimal
costate variable λ⋆, numerically computed via bvp, indeed
satisfies λ⋆(t) = ψ−1(z⋆(t), p)|p=ψ(ξ⋆,ξ⋆) (since ∇xm(x) =
x) for all t ∈ [0, 1], with ψ in (47) and ψ−1 in (48). △

Example 6. Consider a nonlinear system in strict feedback
form described by ẋ1

ẋ2

ẋ3

 =

 x2 +ϖ1(x1)

x2 +ϖ2(x1, x2)

u

 =: f(x) + bu , (49)

b = [0, 0, 1]⊤, with ϖ1(x1) = −x51 and ϖ2(x1, x2) = x21x
2
2,

together with the cost functional

J(u(·)) = 1

2

∫ tf

0

∥u(t)∥2dt+ 1

2
∥x(tf )∥2 , (50)

i.e. as in (45) although with tf = 4.5. Letting x0 =
[0.5, 0.2, −0.2]⊤, the (numerically computed) optimal process
(x⋆, λ⋆) corresponds to the trajectory of the Hamiltonian
dynamics, naturally associated to (49), (50), initialized at
λ⋆(0) = [0.0230, 0.0866, 0.0132]⊤. Since the generating
functions of the annihilator of the Hamiltonian dynamics
cannot be easily computed, these are instead approximated
by postulating the structure of such functions according to
ψai (x, λ) = ai1x1+a

i
2x2+a

i
3x3+a

i
4λi+a

i
5x

2
1+a

i
6x

2
2+a

i
7x

2
3, for

i = 1, 2, 3. Given a prescribed point (x0, λ0) ∈ R3×R3 and by
relying on ideas similar to those underlying the expansion (33),
the coefficients aij , i = 1, ..., 3, j = 1, ..., 7, are determined
with the property that ψai (x0, λ0) ̸= 0 while

dk

dtk
ψai (x(t), λ(t))

∣∣∣
t=0

= 0 ,

k = 1, ..., 6, namely, the first six time derivatives with
respect to t of the composite function ψai (x(t), λ(t)) are
zeroed at (x0, λ0). This ensures that the function ψai (x, λ)
remains sufficiently small in a neighborhood of (x0, λ0) and
in the direction of the flow of the underlying Hamiltonian
dynamics. The above strategy leads to the mapping ψa in
(51) (overleaf), obtained by selecting (x0, λ0) with λ0 =
[0.05, 0.09, −0.04]⊤, which approximates λ⋆(0). The effect
of such an approximation is then assessed according to the
following strategy. The mapping ψa in (51) and its inverse
ψa,−1 with respect to λ, which is immediately computed since
ψa is linear in λ, are employed to construct (approximate)
reduced dynamics (10), i.e.

ż = f(z)− bb⊤ψa,−1(z, ψa(ξ, ξ)) , (52)

z(0) = x0, with f and b defined in (49). Then a measure of
the approximation is provided by ea := ∥z(tf ) − x⋆(tf )∥2,
where z(tf ) denotes the solution of (52) with ξ = x⋆(tf ) at
t = tf = 4.5, while x⋆(tf ) denotes the terminal value of the
(numerically computed) optimal state. In fact, with knowledge
of the exact expression of ψ one obtains ea = 0. Figure 5
depicts the time histories of the state of (52) (solid lines), with
ξ = x⋆(tf ), together with the terminal values of the optimal
state x⋆(tf ) (dashed lines). Furthermore a sensitivity analysis
is reported in Figure 6, which shows the values of ea obtained
by fixing λ0,1 = 0.05 and by letting λ0,2 and λ0,3 vary. △

V. REVISITING THE LQR PROBLEM

The results discussed in the previous sections are specialized
here to the setting of linear dynamics and quadratic cost
functionals, which constitute the Linear Quadratic Regulator
(LQR) problem. Towards this end, consider a linear time-
invariant (LTI) system described by the equations

ẋ = Ax+Bu , x(t0) = x0 (53)

together with the quadratic cost functional

J(u(·)) = 1

2

∫ tf

t0

(
∥x(t)∥2Q + ∥u(t)∥2R

)
dt+

1

2
∥x(tf )∥2M ,

(54)
with Q = Q⊤ ⪰ 0, R = R⊤ ≻ 0 and M = M⊤ ⪰ 0.
The corresponding Hamiltonian dynamics (6) are linear and
described by

[
ẋ

λ̇

]
=

[
A −S̄
−Q −A⊤

][
x

λ

]
:= H

[
x

λ

]
(55)
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ψa(x, λ) =

 −0.9048x1 − 1.1998x2 − 1.5559x3 + 2.5755λ1 + 0.6410x21 + 1.2556x22 + 3.5477x23

1.3025x1 + 2.2693x2 + 3.4895x3 + 2.3223λ2 − 0.8738x21 − 3.9525x22 − 3.4913x23

0.2668x1 − 1.9733x2 − 1.0869x3 + 1.9935λ3 + 0.1389x21 + 2.4154x22 + 2.3074x23

 (51)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 5. Time histories of the state of (52) (solid lines), with ξ selected as
x⋆(tf ), together with the terminal values of the optimal state x⋆(tf )
(dashed lines).

with S̄ := BR−1B⊤ ⪰ 0. In the rest of this section, the
following rather standard structural assumption is considered.

Assumption 5. The pairs (A,B) and (A,C) are reachable
and observable, respectively. ◦

As a consequence of the requirements of Assumption 5,
the Hamiltonian matrix H in (55) possesses a split spectrum,
namely having n eigenvalues with positive real part and n
eigenvalues with negative real part. Therefore, the underlying
linear system (55) is unstable. In the case of LTI systems, such
as the Hamiltonian system (55), the generating functions for
the corresponding annihilator are related to the eigenstructure
of the matrix H . For illustrative purposes, suppose that the
matrix H is diagonalizable. Then the system (55) admits 2n−1
generating function of the annihilator of the form

ψi(x, λ) =
(v⊤i χ)

a1

(v⊤1 χ)
ai
, (56)

with χ = (x, λ), where the vector vi and the scalar ai ∈ C
denote the i - th eigenvector and eigenvalue, respectively, of
the matrix H⊤, namely left eigenvectors of the matrix H .

Remark 9. The nonlinear structure of (56) (i.e. rational func-
tions of the state) is not surprising. In fact, recall that the
desired consequence of determining such generating func-
tions and performing the corresponding change of coordinates
would be to zero certain components of the vector field. In
the linear setting and limiting the search to linear change
of coordinates (hence preserving linearity in the transformed
coordinates), the latter structure would correspond to obtaining

Fig. 6. Graph of ea in Example 6 obtained by fixing λ0,1 = 0.05 and
by letting λ0,2 and λ0,3 vary.

zero eigenvalues. However, since time-invariant linear changes
of coordinates preserve the eigenvalues of the original system,
it follows that the above objective could not be achieved
by such a transformation. Nonetheless, it is worth observing
that instead, by relying on the property of linearity of the
underlying dynamical systems, a result identical to Theorem 1
can be equivalently obtained by the use of a time-varying
linear change of coordinates. The latter in fact may replace the
(nonlinear) change of coordinates induced by the annihilating
codistribution. ▲

To this end, let Πx =
[
I 0

]
∈ Rn×2n and Πλ =[

0 I
]
∈ Rn×2n denote the projection matrices on the state

and costate space, respectively.

Proposition 3. Consider the LTI system (53) together with
the quadratic cost functional (54) and fix x0 ∈ Rn. Define

Y (t) = Πλe
H(tf−t) =:

[
Y1(t) Y2(t)

]
(57)

and suppose that Y2(t) is invertible in [t0, tf ]. Let X(t) ∈
Rn×n satisfy

Ẋ(t) = AX(t)−X(t)Ã(t) , X(t0) = I , (58)

with Ã(t) = A+ S̄Y2(t)
−1Y1(t). Then the reduced boundary

value problem (9), (10) becomes z(tf ) = ξ with

ż(t) = Az(t)−X(t)S̄Y2(t)
−1MX(tf )

−1ξ , (59)

for all t ∈ [t0, tf ] and z(t0) = x0. ⋄

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3293720

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



12

Proof: Define the time-varying matrix T : R → R2n×2n as

T (t) =

[
X(t) 0

Y1(t) Y2(t)

]
. (60)

Consider then the change of coordinates described by[
z

p

]
= T (t)

[
x

λ

]
,

which is such that the transformed dynamics become[
ż

ṗ

]
= (Ṫ (t) + T (t)H)T (t)−1

[
z

p

]
.

Similarly to the nonlinear setting, the objective of the change
of coordinates consists in transforming the state/costate system
(55) into dynamics of the form of[

ż

ṗ

]
=

[
A K(t)

0 0

][
z

p

]
=: Λd

[
z

p

]
(61)

where K : R → Rn×n must be determined, together with
T (t), such that Ṫ (t)+T (t)H = ΛdT (t). In fact, the structure
of (61) implies that ṗ = 0. By expanding the latter (matrix)
differential equation one obtains the conditions[

Ẋ 0

Ẏ1 Ẏ2

]
+

[
XA −XS̄

Y1A− Y2Q −Y1S̄ − Y2A
⊤

]
=

=

[
AX +KY1 KY2

0 0

]
,

(62)

in which the dependence on time of the time-varying matrices
has been removed for brevity. The second block-row equations
are satisfied via the selection of Yi(t), for all t ∈ [t0, tf ]
and i = 1, 2, as in (57). Since Y (tf ) = Πλ one has that
additionally p(tf ) = λ(tf ) = Mx(tf ) = MX(tf )

−1z(tf ).
The top-right block is instead dealt with by selecting K(t) =
−X(t)S̄Y −1

2 (t), which in turn implies that X(t) provided by
the initial value problem (58) satisfies the top-left block of
(62). Finally, by the structure of Λd achieved with the selection
of X , Y1 and Y2 as above, it follows that the state p is constant
over time in [t0, tf ] and equal to p(t) = MX(tf )

−1ξ, where
ξ ∈ Rn must verify a fixed-point condition ξ = z(tf ) with
z(tf ) denoting the solution of

ż(t) = Az(t) +K(t)p(t)X = Az(t)−X(t)S̄Y −1
2 (t)p(t)

= Az(t)−X(t)S̄Y −1
2 (t)MX−1(tf )ξ ,

(63)

at time t = tf , hence concluding the proof. □

Remark 10. Since Y (tf ) = Πλe
H(tf−t)|t=tf = [0, I] and

observing that Y2(t) is a continuous function of time, it follows
that the invertibility condition on Y2(t) holds for all t in the
interval [t0, tf ] provided tf is sufficiently small. ▲

The equations are significantly simplified whenever the
running cost does not impose any penalty on the state, which is
captured instead only by the terminal cost, i.e. when Q = 0 in
(54). The above intuition is discussed in the following result.

Proposition 4. Consider the LTI system (53) together with the
quadratic cost functional (54), with Q = 0, and fix x0 ∈ Rn.
Let G : R → Rn×n denote the controllability Gramian matrix
of (A,R−1/2B). Then the fixed-point condition described by
(59) and z(tf ) = ξ is satisfied by

ξ = µ(x0) := (I + G(tf )M)−1eA tfx0 , (64)

for all x0 ∈ Rn. ⋄

Proof: To begin with, in this case, by inspecting the dynam-
ics governing the evolution of Y1(t) and Y2(t) it can be noted
that they are satisfied by Y1 ≡ 0, Y2(t) = e−A

⊤(tf−t). Since
Y1 is identically equal to zero, the equation for X(t) becomes
time-invariant and described by Ẋ = AX − XA. The latter
is then solved by X(t) = eAtX0e

−At = eAte−At ≡ I , where
the boundary condition X(t0) = I has been used. Finally,
the matrix-valued function K reduces instead to K(t) =

−S̄eA⊤(tf−t). Therefore the transformed optimal costate is
equal to p(t) = Mz(tf ) = Mx(tf ) and the dynamics (59)
becomes ż = Az − S̄eA

⊤(tf−t)Mξ, z(0) = x0. The latter
requires that

ξ =eAtfx0 −
∫ tf

t0

eA(tf−τ)S̄eA
⊤(tf−τ)dτMξ

=eAtfx0 − G(tf )Mξ ,

(65)

where G(tf ) denotes the Gramian matrix evaluated at t = tf ,
which is positive definite by Assumption 5. Therefore, the
fixed-point condition can be immediately satisfied in closed
form by letting ξ = µ(x0) defined in (64). □

Remark 11. The result of Proposition 4 in essence recovers
the intuition behind the elegant constructions of [8] in the
setting of a class of LQ differential games (pursuit/evasion).
Therein, a time-varying change of coordinates is proposed to
remove the dependence of the underlying Hamiltonian function
on the state (which instead appears in the boundary condition)
with the byproduct of inducing a constant optimal costate.
The results of Section III may be then also interpreted as
the extension of ideas similar to those proposed in [8] to the
nonlinear setting via the notion of annihilating codistribution
of the Hamiltonian vector field. ▲

The section is then concluded by motivating the need for
the use of the annihilating codistribution, rather than a time-
varying change of coordinates, in the setting of nonlinear sys-
tems. Towards this end, the following statement first provides
an equivalent interpretation of the results of Proposition 4 and
of [8], although in the setting of optimal control rather than
differential game theory.

Proposition 5. Consider the LTI system (53) together with
the quadratic cost functional

Jr(u(·)) =
1

2

∫ tf

t0

∥u(t)∥2Rdt+
1

2
∥x(tf )∥2M . (66)

Then the optimal control problem defined by (53), (66) is
equivalently described by the time-varying, state-independent,
Hamiltonian function

H̃(λ, u, t) = λ⊤B̃(t)u+
1

2
u⊤Ru , (67)
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B̃(t) := M̃eA(tf−t)B, M̃⊤M̃ = M , the optimal costate of
which satisfies λ̇ = −∇zH̃ = 0 for t ∈ [t0, tf ]. ⋄

Proof: Define the transformed variable zL(t) =
M̃ΦA(tf , t)x(t) = M̃eA(tf−t)x(t), where M̃ is such
that M̃⊤M̃ = M . Clearly, the cost (66) becomes
Jr(u(·)) = (1/2)

∫ tf
t0

∥u(t)∥2R + (1/2)∥zL(tf )∥2. The
dynamics is instead described by

żL(t) = M̃∇tΦA(tf , t)x(t) + M̃ΦA(tf , t)ẋ(t)

= −M̃ΦA(tf , t)Ax(t) + M̃ΦA(tf , t)(Ax(t) +Bu(t))

= M̃ΦA(tf , t)u(t) = B̃(t)u(t)

from which the structure of H̃ in (67) follows immediately. □
The objective achieved by the auxiliary dynamics żL illus-

trates the obstruction that prevents the straightforward exten-
sion of the ideas in [8] to the nonlinear setting of (1), without
resorting to the notion of annihilating codistribution. To this
end, consider the latter system and suppose that a mapping
Λ : R×Rn → Rn is sought for to achieve a structure similar
to (67). By letting zN (t) = Λ(t, x(t)) it follows that

żN (t) = ∇tΛ(t, x(t)) +∇xΛ(t, x(t))ẋ(t)

= ∇tΛ(t, x(t)) +∇xΛ(t, x(t))(f(x(t)) + g(x(t))u(t))

= ∇xΛ(t, x(t))g(x(t))u(t) =: g̃(t, x(t))u(t)

provided ∇tΛ(t, x) + ∇xΛ(t, x)f(x) = 0 for all (t, x) ∈
[t0, tf ] × Rn, which is indeed described by time-varying
dynamics although still function of the original state x. The
latter dependence is inherited by the resulting transformed
Hamiltonian, thus preventing the straightforward extension of
[8] to the nonlinear setting.

VI. CONCLUSIONS AND FURTHER EXTENSIONS

Within the framework of finite-horizon optimal control
problems, it has been shown that the evolution of the costate
variable coincides, for any time, with the inverse mapping of
any collection of n independent first integrals of the underlying
Hamiltonian vector field. This is achieved by interpreting the
inverse mapping as a mapping of the original state and constant
vector, whose computation is formulated in terms of a BVP, in
place of the costate variable. Interestingly, the BVP is defined
in the original (state) coordinates, rather than in the (extended)
state/costate space as for the classic Hamiltonian dynamics.
Such abstract property is subsequently employed to propose
a systematic strategy to compute optimal control laws, which
is based upon premises significantly different from existing
methods. Nonetheless, since the constructions envisioned in
Section IV-A may become troublesome for higher-dimensional
systems, further extensions and refinements are needed. It may
be possible, for instance, to entirely circumvent the closed-
form constructions of Section IV-A by relying on functional
approximators (such as, e.g., neural networks) parameterized
in such a way that the required (partial) inversion remains
feasible.

Since the resulting conditions appear to be particularly
appealing from the computational point of view (considering,
for instance, the reduced dimension and the stability properties

of the BVP), it would be of interest to further extend similar
ideas to the context of differential games, in which indeed the
notion of open-loop Nash equilibrium is intimately related to
the evolution of certain state/costate dynamics for each player.
Moreover, a deeper understanding of the connections between
first integrals and optimal costate for large terminal times tf
(ideally in the limit for tf that tends to infinity) would widen
the range of applicability of the proposed characterization. For
similar purposes, it would be interesting to relax the regularity
properties of the involved functions and to generalize the
structure of the considered optimal control task, encompassing
for instance the case of constraints on the input.
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