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Second-Order Mirror Descent: Convergence in Games Beyond
Averaging and Discounting

Bolin Gao and Lacra Pavel

Abstract— In this paper, we propose a second-order extension
of the continuous-time game-theoretic mirror descent (MD) dy-
namics, referred to as MD2, which provably converges to mere
(but not necessarily strict) variationally stable states (VSS) with-
out using common auxiliary techniques such as time-averaging
or discounting. We show that MD2 enjoys no-regret as well as
an exponential rate of convergence towards strong VSS upon a
slight modification. MD2 can also be used to derive many novel
continuous-time primal-space dynamics. We then use stochastic
approximation techniques to provide a convergence guarantee of
discrete-time MD2 with noisy observations towards interior mere
VSS. Selected simulations are provided to illustrate our results.

I. INTRODUCTION

A central problem of multi-agent online learning is the design
of adaptive policies which a set of subscribing agents (or players)
can utilize to arrive at a desired collective outcome. These adaptive
policies can typically be viewed as the following iterative process:
an information processing step, whereby game-relevant information
is made available to the player and then collected for processing,
followed by a decision step, whereby the processed information is
converted into the next strategy. A unified mathematical codification
of this two-step process that emerged in recent years is referred to
as mirror descent, first studied by [3] and subsequently by [4]–[11]
in the context of optimization.

For games, mirror descent is often analyzed as a set of ordinary
differential equations (ODEs), referred to as the continuous-time
mirror descent dynamics (MD), which can be seen as the multi-agent
extension of [3, p. 87]. MD is also referred to as dual averaging (DA)
in continuous games [1], [19] and Follow-the-Regularized-Leader
(FTRL) or exponential learning in finite games [18], [20], [21]. The
core appeal of MD lies in its flexibility in adapting to a wide variety of
problem settings as well as its rich theoretical properties. In particular,
MD is known to converge to the Nash equilibrium (NE) in terms of
its generated strategies under a trio of strict assumptions:

(i) the game is strictly monotone, i.e., the pseudo-gradient of the
game is a strictly monotone operator [50]. The class of strictly
monotone games captures games that admit strictly concave
potential functions, as well as saddle-point problems with strictly
convex, strictly concave saddle functions, a special case of
diagonally strict concavity of [51].

(ii) the NE is strictly variationally stable (in the sense of [1]). The
class of games with a strictly variationally stable NE (also known
as strictly variationally stable games [17]) contains the class of
strictly monotone games, as well as strictly coherent saddle point
problems [46].

(iii) the NE is strict [14], which coincides with a locally strictly
variationally stable NE in finite games [1].

Despite these theoretical guarantees, the applicability of MD and
its variants remains limited, as many games found in practice do
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not conveniently exhibit these strict properties. In other words, MD
does not converge in many games, most notably in zero-sum (ZS)
finite games that feature a unique interior NE [21]. [12] showed
that no two-player ZS finite game is strictly monotone. Furthermore,
strictness is also intimately related to the uniqueness of the game
equilibrium. For instance, a strictly monotone game admits a unique
NE [50]. In practice, however, many games exhibit a convex set of
equilibria as opposed to a unique one. This means strictness imposes
serious constraints on the problem parameters or types. Moreover,
many dynamics or algorithms that are directly derived from MD
(through discretization or otherwise) share similar limitations in that
some type of strictness needs to be assumed to ensure convergence,
e.g., [1], [2], [16]–[20], [22].

To achieve convergence beyond strictness in a continuous-time
setup, the existing literature typically relies on two primary ap-
proaches: averaging and discounting. The first method utilizes the
time-averaged (ergodic) strategies generated by MD as opposed to
the actual strategies [18]. However, this approach has two drawbacks.
Firstly, the players need to combine their time-averaged strategies
in order to recover the NE, which is unrealistic in non-cooperative
settings. Secondly, time-averaging could fail outside of ZS games
[57]. Another method is via a discounting procedure [15], [27], [28],
which is conceptually related to the weight decay method of [41].
Discounting can be seen as a regularization technique that makes use
of a strictly convex function to offset poor game properties, such
as the lack of strict monotonicity. However, in general, discounting
cannot yield exact convergence [15], [27], [28]. Since averaging and
discounting represent two of the most widely studied method for
improving the convergence properties of continuous-time MD, yet at
the same time both have been met with challenges, therefore it is
natural for us to set our sights on alternative approaches.

Contributions: In this work, in a game-theoretic setup, we propose
a second-order variant of the continuous-time MD (the first-order of
which was studied in [4], [5], [18]–[21]), which we refer to as MD2.
Second-order means that the set of ODEs is second-order in time,
thus MD2 can be seen as a dual-space formulation of the heavy-ball
method [32] and is closely related to the class of nth order discounted
game dynamics of [27], adapted here in a more general game
setting. Like MD, we show that MD2 satisfies the basic assumption
of no-regret. However, unlike MD, MD2 converges without using
averaging even when the NE is not strictly variationally stable.
Moreover, unlike the discounted MD [28], which partially overcomes
the convergence issue of MD at the cost of inexact convergence, MD2
converges exactly. Exact convergence via a primal-space, second-
order pseudo-gradient-type dynamics has been achieved in (merely)
monotone games [26]. We provide a dual-space generalization of
this result, beyond the monotone game setting, into the case where
the equilibria are merely variationally stable. Furthermore, MD2 can
exactly recover the unconstrained, primal-space dynamics of [26]
in the full-information case. Finally, we use our continuous-time
convergence results to guide the proof of convergence of a discrete-
time MD2. In gist, we show that higher-order dynamics can converge
towards Nash solutions with more general stability properties.

Related Works: This paper incorporates several ideas from the
variational stability, higher-order dynamics, and stochastic (semi-
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bandit) Nash-seeking literature. The concept of a variationally stable
state (VSS) has roots in evolutionary game theory, and it is motivated
by and analogous to that of an evolutionarily stable state (ESS)
[37]. Namely, an ESS is a locally strict VSS for games with one
or more populations of agents, also known as population games
(similarly, a global ESS or GESS is a globally strict VSS) [12]. Many
evolutionary game dynamics such as the replicator and projection
dynamics have been shown to converge towards NEs of strictly
stable games, which are GESS [2], [12]. In contrast to ESS, VSS
is defined for the more general class of continuous games [1]. The
literature on strict VSS seeking without structural property such as
strict monotonicity is relatively recent [1], [16], [17], [19], [20]. [19]
showed that DA converges towards a globally strict VSS. [16], [17]
studied online gradient descent (discrete MD with projection map)
where the feedback is received asynchronously between agents.

In contrast to a strict VSS, the class of mere VSS is motivated by
the more general notion of a neurally stable state (NSS) and global
NSS (GNSS) [38]. Comparatively speaking, the set of literature that
deals with convergence towards a mere VSS is fewer, especially in
the absence of structural assumptions such as the game being merely
monotone (also known as stable game [12]). In a population game
setup, [12] showed that the best response, integrable excess payoff
and impartial pairwise comparison dynamics converge globally to
the set of NEs in (merely) stable games, which are GNSS. With
a few exceptions such as [46], the current set of literature on
the (non-ergodic) convergence towards a mere VSS outside of a
finite/population game setup typically also assumes monotonicity of
the game [24], [26], [58]. In contrast to the above references, in this
work we generalize the convergence behavior of MD to non-strict
NE (i.e., a mere VSS) without any structural assumption, through
the use of higher-order augmentation.

Higher-order dynamics was pioneered by Polyak in [32], whose
algorithm later became widely known as the heavy-ball method (HB)
[32]. HB was recognized as an analogue of a second-order ODE
upon its inception and has since been heavily investigated in the
optimization literature [39] and arguably forms the backbone of
deep learning, where non-convexity and local minima dominate [40].
Inspired by [32], the authors of [34] studied a second-order dynamics
for continuous concave games, which can be seen as a second-
order extension of the projection dynamics of [36] and showed
that their dynamics converge whenever there exists a Lipschitz and
bounded potential function. In a finite game setup, [33] studied nth-
order variant of exponential learning [18], whereby the payoff is
processed via successive integration, and showed that these higher-
order learning schemes can achieve faster rate of elimination of
iteratively dominated solutions and convergence towards strict NE.
An important connection between higher-order dynamics and the
stability of a NE was established by [35], which showed that
the addition of an anticipatory process to first-order gradient-play
and replicator dynamics can result in local convergence towards
an interior (non-strict) NE, despite the dynamics themselves being
uncoupled. For continuous-time equilibrium seeking via a higher-
order augmentation in the dual-space, the closest work related to
ours is the second-order discounted exponential learning scheme in
[27], which overcomes the problem with non-convergence towards
interior NE of [33] at the cost of inexact convergence. It was found
empirically in [27] that such higher-order augmentation improves the
convergence property of its first-order counterpart and converges in
non-strictly monotone games where the first-order fails. We improve
[27] by generalizing these results from finite games to continuous
games and go beyond a monotone game setup while simultaneously
achieving exact convergence. Exact convergence (also known as
last iterate convergence) via a primal-space, second-order pseudo-

gradient dynamics was achieved in merely monotone games [26],
which we also generalize, by stripping away monotonicity assump-
tions and showing that MD2 encapsulates the dynamics of [26] as a
special case.

In the discrete-time, semi-bandit setup, whereby each player re-
ceives a (possibly) noise-corrupted version of the pseudo-gradient,
the closest work related to ours is [1]. [1] studied the first-order MD,
known as DA therein, and showed that under imperfect gradient setup,
DA converges to a globally variationally stable NE under diminishing
step-sizes and its ergodic average converges to the set of NE in 2-
player ZS games. Several variations to DA have been studied in the
semi-bandit literature, whereby their convergence is towards either
strict (strong) VSS or strict NE. For instance, in finite games, [23]
studied a Hedge-variant of exponential weight algorithm (HEDGE)
and provided convergence when the NE is strongly VS with respect
to the L1 norm. In a similar setup, [15] studied a discounted
variant of HEDGE for potential games. A similar analysis was also
performed by [22] for FTRL in finite games. [25] provided several
primal-space algorithms for merely monotone games. [46] studied the
optimistic MD algorithm, which converges in coherent games, i.e.,
two-player games that possess mere VSS. Compared to optimistic
MD, discrete-time MD2 only requires one mirror projection instead
of two prox projections. Furthermore, optimistic MD cannot converge
in the presence of noise [46] unless the game is strictly coherent (a
stronger assumption), whereas the discrete-time MD2 can converge
under noisy conditions.

Organization: We provide the background materials in Section II.
Section III reviews several basic properties of the first-order MD. We
discuss the convergence properties of MD2 in Section IV and provide
the rate of convergence as well as regret minimization guarantee in
Section V. We derive associated primal-space dynamics in Section VI.
Section VII discusses MD2 in discrete-time with noisy observations.
Simulations are presented in Section VIII. Section IX presents our
conclusions. For readability, all proofs are relegated to Section X. A
table of main notations used in this paper (Table 1) is provided in
the Appendix.

II. BACKGROUND

The following material for convexity and duality are drawn from
[48], [62]. Those for game theory are drawn from [49], [50], [59].

A. Sets and Vectors
Given a convex set C ⊆ Rn, the (relative) interior of the

set is denoted as (rint(C)) int(C). rint(C) coincides with int(C)
whenever int(C) is non-empty. The closure of a set C is denoted
as cl(C). We denote the non-negative orthant of Rn as Rn≥0, and
the positive orthant as Rn>0. A column vector in Rn is denoted as
x = (x1, . . . , xn) =

[
x1, . . . , xn

]>. 1 and 0 denote the column
vector all ones and all zeros. In×n and On×n denote the n×n identity
and zero matrices. Subscript is omitted when the dimensionality is
unambiguous. Suppose n is a natural number, then [n] := {1, . . . , n}.

B. Convex Functions and Duality
Let M = Rn be endowed with norm ‖ · ‖ and dot product 〈·, ·〉.

An extended real-valued function is a function f that maps from M
to [−∞,∞]. The (effective) domain of f is dom(f) = {x ∈ M :
f(x) < ∞}. A function f : M → [−∞,∞] is proper if f(x) 6=
−∞, ∀x and there exists at least one x ∈M such that f(x) <∞; f
is closed if its epigraph is closed. A function f :M→ [−∞,∞] is
supercoercive if lim‖x‖→∞ f(x)/‖x‖ → ∞. The indicator function
over C is denoted by δC . The normal cone of C is defined as, NC(x) =
{v ∈ Rn|v>(y−x) ≤ 0, ∀y ∈ C}. The tangent cone of a non-empty
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convex set C at x ∈ C is TC(x) =
⋃
λ∈R>0

λ(C − x) and equals ∅
for all x /∈ C. Id denotes the identity function.

Recall that πC(x) = argminy∈C‖y− x‖
2
2 is the Euclidean projec-

tion of x onto C, where we refer to πC as the Euclidean projector.
Let ∂f(x) denote a the set of subgradients of f at x and ∇f(x) the
gradient of f at x. For differentiation on the boundary of a closed
set C, in lieu of the subgradient, we can also assume f is defined
and differentiable on an open set containing C. Given f , the function
f? :M?→ [−∞,∞] defined by f?(z) = supx∈M

[
x>z−f(x)

]
, is

called the conjugate function of f , where M? is the dual space of
M, endowed with the dual norm ‖ · ‖?. f? is closed and convex
if f is proper. By the conjugate subgradient theorem [48], suppose
f : Rn → (−∞,+∞] is proper, closed and convex and f? is
its Fenchel conjugate, then for any x, z ∈ Rn, x>z = f(x) +
f?(z) ⇐⇒ z ∈ ∂f(x) ⇐⇒ x ∈ ∂f?(z). The Bregman divergence
of a proper, closed, convex function f is Df : dom(f)×dom(∂f)→
R, Df (x, y) = f(x)−f(y)−g>(x−y), g ∈ ∂f(y). Given a vector-
valued function F , the Jacobian of F is denoted as JF .

C. N-Player Concave Games
Let G = (N , {Ωp}p∈N , {Up}p∈N ) be a game, where N =
{1, . . . , N} is the set of players, Ωp ⊆ Rnp is the set of player
p’s strategies (actions). We denote the strategy (action) set of player
p’s opponents as Ω−p ⊆

∏
q∈N ,q 6=p R

nq . We denote the set of all
the players strategies as Ω =

∏
p∈N Ωp ⊆

∏
p∈N Rnp = Rn, n =∑

p∈N np. We refer to Up : Ω → R, x 7→ Up(x) as player p’s
real-valued payoff function, where x = (xp)p∈N ∈ Ω is the action
profile of all players, and xp ∈ Ωp is the action of player p. We also
denote x as x = (xp;x−p) where x−p ∈ Ω−p is the action profile
of all players except p. For differentiability purposes, we make the
implicit assumption that there exists some open set, on which Up is
defined and continuously differentiable, such that it contains Ω.

Assumption 1. For all p ∈ N , Ωp is a non-empty, closed,
convex, subset of Rnp . Up(xp;x−p) is (jointly) continuous in x =
(xp;x−p). Up(xp;x−p) is concave and continuously differentiable
(C1) in xp for all x−p ∈ Ω−p.

Under Assumption 1, we refer to G as a (continuous) concave
game. Given x−p ∈ Ωp, each agent p ∈ N aims to find the solution
of the following optimization problem,

maximize
xp

Up(xp;x−p) subject to xp ∈ Ωp. (1)

A profile x? = (xp?)p∈N is a Nash equilibrium (NE) if,

Up(xp
?
;x−p

?
) ≥ Up(xp;x−p

?
), ∀xp ∈ Ωp,∀p ∈ N . (2)

At a NE, no player can increase its payoff by unilateral deviation.

Remark 1. Under Assumption 1, existence of a NE is guaranteed for
bounded Ωp [49, Theorem 4.4]. When Ωp is closed but not bounded,
the existence of a NE is guaranteed under the additional assumption
that −Up is coercive in xp, that is, lim‖xp‖→∞−Up(xp;x−p) =

+∞, for all x−p ∈ Ω−p, p ∈ N [49, Corollary 4.2]. A NE is said
to be strict when the inequality in (2) is strict [14].

A useful characterization of a NE of a concave game G is given
in terms of the pseudo-gradient [51], which is defined as,

U : Ω→ Rn, U(x) = (Up(x))p∈N , (3)

where Up(x) = ∇xpUp(xp;x−p) is the partial-gradient. By [50,
Proposition 1.4.2], x? ∈ Ω is a NE iff,

(x− x?)>U(x?) ≤ 0, ∀x ∈ Ω. (4)

Equivalently, x? is a solution of the Stampacchia variational inequal-
ity VI(Ω,−U), [50]. Following [2], we say that a NE is globally

strict if the inequality of (4) is held strictly for all x? 6= x.

D. Monotonicity
A general class of games in which many dynamics are guaranteed

to converge is the class of monotone games, also known as stable
games [12], [13] or dissipative games [44]. We contrast some known
definitions associated with monotone games in the literature.

Definition 1. The game G is,
(i) η-strongly monotone if (U(x)−U(x′))>(x−x′)≤−η‖x−x′‖22,
∀x, x′∈Ω, for some η>0.

(ii) strictly monotone if (U(x)−U(x′))>(x−x′)<0, ∀x ∈ Ω\{x′},
with equality if and only if x = x′.

(iii) (merely) monotone if (U(x)−U(x′))>(x−x′) ≤ 0, ∀x, x′ ∈ Ω.
(iv) µ-weakly monotone if (U(x)−U(x′))>(x−x′) ≤ µ‖x−x′‖22,
∀x, x′∈Ω, for some µ>0.

Strongly and strictly monotone games have been extensively inves-
tigated in the literature, at least dating from [51]. Merely monotone
games have been studied in [12], [24]–[28], [58]. Weakly monotone
games were considered in [27], [30], [43]. When U is C1, there exists
a natural characterization in terms of definiteness of its Jacobian [50,
p. 155, Prop. 2.3.2]. Note that strictly monotone games can have at
most one NE, whereas NEs can form a non-singleton convex set in
merely monotone games [50].

E. Variational Stablility
Although many classical examples of games satisfy monotonicity

properties [12], these conditions may not hold in more complex
scenarios. A recent line of research has started to relax monotonicity
notions from a game to that of an equilibrium via the notion of a
variationally stable (VS) equilibrium or state [1].

Definition 2. A Nash equilibrium x? ∈ Ω is,
(i) η-strongly VS if U(x)>(x−x?) ≤ −η‖x−x?‖22, ∀x ∈ Ω, for

some η>0.
(ii) strictly VS if U(x)>(x−x?) ≤ 0, ∀x ∈ Ω, with equality if and

only if x = x?.
(iii) (merely) VS if U(x)>(x− x?) ≤ 0, ∀x ∈ Ω.
(iv) µ-weakly VS if U(x)>(x − x?) ≤ µ‖x − x?‖22, ∀x ∈ Ω, for

some µ>0.
If a condition (i) - (iv) hold on D ⊂ Ω, then the associated definition
is said to hold locally. Otherwise the definition is said to hold
globally.

Remark 2. We refer to x? as a globally strong/strict/mere/weak
variationally stable state (VSS) if it satisfies one of the corre-
sponding VS notions in Definition 2 on all of Ω; x? is a locally
strong/strict/mere/weak VSS otherwise. For practical reasons, we will
informally refer µ-weak VSS with a small µ as a nearly mere VSS,
i.e., a weak VSS within a small distance away from becoming a mere
VSS.

Globally mere VSS are the solutions to Minty variational inequality
[50]. In a population game context, the set of globally mere VSS is
called GNSS and (the unique) globally strict VSS is called GESS
[2], [12], [13]. Strict VSS was extended to a local/global set-wise
definition in [1]. [16] introduced a slight variation of strict VSS
called λ-VS. [47] studied a local version of strict VSS under the
name locally asymptotically stable differential NE, which requires
twice continuous-differentiability of the payoff functions. Strong VSS
(Definition 2(i)) was also studied in [1]. [23] studied a variant of the
strong VSS with L1 norm.

It can be seen that any NE of the strongly/strictly/merely/weak
monotone game is a strong/strict/mere/weak VSS. In particular, the
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non-empty set of NE coincides with the set of mere VSS for merely
monotone concave games [2, Theorem 2]. When int(Ω) 6= ∅ and x?

is an interior NE, i.e., U(x?) = 0, the condition for VS recovers the
condition associated with monotone at x′ = x?. Hence VS can be
seen as a type of point-wise monotonicity and it is known to have
a second-order characterization similar to that for monotone games,
but specifically at the NE, see [1].

Recall that a NE x? is interior if it lies in the interior of Ω, that
is, x? ∈ rint(Ω). Throughout this work, we make the following
assumption.

Assumption 2. G admits an interior mere VSS.

F. Second-Order Characterization of VSS
In practice, outside of monotone games, it is often difficult to verify

that a NE is a particular type of VSS directly through Definition 2.
A more common approach to characterize the VSS conditions of a
solution is by looking at the symmetric game Jacobian whenever the
pseudo-gradient U is C1, which is given by,

JU (x) :=
1

2
(JU (x) + J>U (x)), x ∈ Ω. (5)

The matrix JU (x) ∈ Rn×n is symmetric and thus guaranteed to
have real eigenvalues, which makes it amenable to analysis.

We now provide several sufficient conditions for verifying whether
a VSS x? is strict, mere or weak. This is performed by checking the
definiteness of JU (x) or JU (x?). Our condition for strict VSS is the
same as that in [1]. Before proceeding, we say that the (symmetric)
game Jacobian JU (x) ∈ Rn×n (5) is negative definite on TΩ(x) if,

y> JU (x)y < 0, ∀x ∈ Ω, ∀y ∈ TΩ(x), y 6= 0, (6)

and negative semi-definite on TΩ(x) if the preceding inequality is
non-strict. We use the shorthand notations JU (x) ≺ O and JU (x) �
O respectively. For µ > 0, JU (x)− µI ≺ O is written as JU (x) �
µI . Similar conventions for when x = x?.

Proposition 1. Let x? ∈ Ω be a NE of G. Suppose U is continuously
differentiable, and,
(i) JU (x) ≺ O on TΩ(x),∀x ∈ Ω, then x? is globally strictly VS

and isolated.
(ii) JU (x) � O on TΩ(x),∀x ∈ Ω, then x? is globally merely VS.
(iii) JU (x) � µI on TΩ(x), ∀x ∈ Ω, then x? is globally µ-weakly

VS.
Suppose instead,
(i’) JU (x?) ≺ O on TΩ(x?), then x? is locally strictly VS and

isolated.
(ii’) JU (x?) � O on TΩ(x?), then x? is locally merely VS.
(iii’) JU (x?) � µI on TΩ(x?), then x? is locally µ-weakly VS.

Remark 3. These conditions can be verified by calculating the
maximum eigenvalue of JU (x) (resp. JU (x?)), where λmax(JU (x))
(resp. λmax(JU (x?))) denotes the (real) eigenvalue with the largest
magnitude associated with an eigenvector in TΩ(x) (resp. TΩ(x?)).
When JU (x) (resp. JU (x?)) is symmetric, then analysis can be
performed directly on JU without resorting to calculating JU .

Remark 4. Note that, even if x? is shown to be µ-weak through
Proposition 1(iii) or (iii’), it does not preclude the possibility that x?

could in fact be strict or mere due to the looseness of the bound in
the proof of Proposition 1. Furthermore, unlike strict VSS, mere VSS
need not be isolated. The next examples illustrate various notions of
variational stability.

Example 1. (Monotone game with a mere VSS) Every NE of
a merely monotone game is globally mere VSS. Perhaps the sim-
plest example of a merely monotone game is the so-called bilinear

saddle point problem, whereby, suppose we have a saddle function,
f(x1, x2) = x1x2, xp ∈ R for which we want to minimize in x1

and maximize in x2. We can cast this saddle point problem as a
game by utilizing two payoff functions U1(x1;x2) = −x1x2 and
U2(x2;x1) = x1x2. This game has a pseudo-gradient of U(x) =
(−x2, x1) and a game Jacobian JU (x) = O. By Proposition 1(ii),
the unique interior NE x? = (0, 0) is the globally mere VSS.
Example 2. (Non-monotone potential game with a mere VSS) This
example shows that the mere monotonicity enjoyed by Example 1
can be destroyed by the addition of another player, even when all
the player’s payoff functions remain linear in its own argument.
Considered a three-player game, whereby,

Up(xp;x−p) = −xp
∏
q 6=p x

q, p ∈ {1, 2, 3}, (7)

and each xp ∈ [−1, 1], i.e., Ω = [−1, 1]3. For this game, the
pseudo-gradient is U(x) = −(x2x3, x1x3, x1x2) which shows that
there exists an interior NE at x? = (0, 0, 0). The Jacobian, which is
symmetric, is,

JU (x) = −

 0 x3 x2

x3 0 x1

x2 x1 0

 ,
hence this game is non-monotone in general and in fact possesses a
non-convex and non-concave potential function P (x) = −x1x2x3,
i.e., ∇P = U . Since JU (x?) = O is negative semi-definite, hence
by Proposition 1(ii’), x? is locally merely VS. Note that if we restrict
the strategy set to Ω = [0, 1]3 instead, every NE x? ∈ {x ∈ Ω|xp =
xq = 0, p, q ∈ N , p 6= q} is a globally mere VSS, as U(x)>(x −
x?) = −3x1x2x3 ≤ 0, ∀x ∈ [0, 1]3.
Example 3. (RPS with non-negative payoff for ties) Consider a
two-player Rock-Paper-Scissors (RPS) game with A and B being the
payoff matrices for player 1 and 2 respectively,

A =

 ς −l w
w ς −l
−l w ς

 ,B = A>, (8)

where l ,w ≥ 0 are the values associated with a loss or a win and
ς ∈ R is the payoff of a tie. The strategy set associated with this
game is the simplex Ωp = {xp ∈ Rnp |

∑np
i=1 x

p
i = 1, xpi ≥ 0}. The

pseudo-gradient (as known as payoff vector [12], [13]) and the game
Jacobian are as follows,

U(x) =

[
O A
A O

] [
x1

x2

]
JU (x) =

1

2

[
O A + A>

A + A> O

]
. (9)

To simplify our analysis, consider an example where l = 0. In this
game, x? = (xp?)p∈N , x

p? = (1/3, 1/3, 1/3) is the unique interior
NE for any ς ∈ [0, w), w > 0. The eigenvalues of JU (x) on TΩ(x)
are {−(ς + w),±(ς − w/2),±(ς − w/2)}, hence this game is µ-
weakly merely monotone with µ = ς−w/2 whenever ς ∈ (w/2,w).
When ς = w/2, the game is merely monotone (Definition 1). Taken
together, this means for ς ∈ (w/2,w), x? is a unique, locally µ-weak
VSS where µ = ς − w/2, whereas for ς = w/2, x? is a unique,
globally mere VSS. Finally, note that when l = w = ς = 0 (and
hence both A,B are zero matrices), every strategy is globally merely
VS and forms a convex set (the strategy set itself).

III. REVIEW OF FIRST-ORDER MD DYNAMICS

We now describe the dynamic process that a group of agents
utilizes in order to arrive at one of the equilibrium notions discussed
in previous sections. One such general model is the mirror descent
(MD) dynamics. Intuitively, the family of MD dynamics ascribes an
abstract behavior model to each player, which states that, upon receiv-
ing the partial-gradient of its payoff function, each player processes
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the partial-gradient information (typically via an aggregation), then
converts the processed information into the next strategy. This process
can be described by the following set of ODEs [18]–[21],

żp = γ∇xpUp(xp;x−p) = γUp(x), xp = Cpε (zp), (MD)

where zp is referred to as score or dual variable, γ > 0 is a rate
parameter, and Cpε : Rnp → Ωp is referred to as the mirror map,

Cpε (zp) = argmaxyp∈Ωp

[
yp
>
zp − εϑp(yp)

]
, ε > 0. (10)

Here, ϑp : Rnp → R ∪ {∞} is assumed to be a closed, proper
and (at least) strictly convex function, referred to as a regularizer,
where dom(ϑp) is assumed be a non-empty, closed and convex set,
which agrees with the strategy set Ωp, ε > 0 is referred to as
the regularization constant. The regularizer often satisfies one of the
following distinct assumptions that ensure the existence of a unique
solution of MD and (10):

Assumption 3. ϑp :Rnp→R∪{∞} is closed, proper, convex, with
dom(ϑp) = Ωp non-empty, closed and convex. In addition, ϑp is,
(i) Legendre (i.e., strictly convex, steep, int(dom(ϑp)) 6= ∅) and
supercoercive, or (ii) ρ-strongly convex, ρ > 0.

We note that for ϑp to be steep, it means that ‖∇ϑp(xpk)‖? →
+∞, ‖ · ‖? is the dual norm, whenever {xpk}

∞
k=1 is a sequence in

rint(dom(ϑp)) = rint(Ωp) converging to a point in the (relative)
boundary. Let ψpε

? be the convex conjugate of ψpε , ψpε := εϑp. Then
by Lemma 3 and Lemma 2 (in the Appendix), under Assumption 3,
Cpε = ∇ψpε

?. When ϑp is steep, Cpε maps from Rnp to all values in
Ωp except those at the boundary; Cpε could map to boundary points
otherwise. We refer to Cpε as the mirror map induced by ψpε and
Legendre or strongly-induced (by ψpε ) when ϑp satisfies Assumption
2(i) or (ii). Note that the notions of Legendre and strongly convex
need not be dichotomous. It is possible for a Cpε to be both Legendre
and strongly-induced. The following examples capture the three types
of mirror maps that are extensively used in the literature [4], [5], [15],
[17]–[21], [27], [28].

Example 4. Let Ωp = Rnp , ϑp(xp) = 1
2ε‖x

p‖22, hence it satisfies
Assumption 3(i), (ii). In this case, Cpε = Id and it is both Legendre
and strongly-induced.

Example 5. Let Ωp = {xp ∈ Rnp |
∑np
i=1 x

p
i = 1, xpi ≥ 0} (the

unit simplex), ϑp(xp) =
∑np
i=1 x

p
i
>

log(xpi ), where we assume
0 log(0) = 0. ϑp can be shown to be 1-strongly convex in ‖ · ‖2
(or ‖ · ‖1), steep, hence it satisfies Assumption 3(ii). Cpε (zp) =
(exp(ε−1zpi )(

∑np
j=1 exp(ε−1zpj ))−1)i∈[np] is the softmax function.

Example 6. Let Ωp ⊂ Rnp be a non-empty, convex, compact set,
assume ϑp(xp) = 1

2‖x
p‖22, hence ϑp satisfies Assumption 3(ii) and

is non-steep. Here, Cpε = πΩp is the Euclidean projection onto Ωp.

We can represent MD in a more compact stacked notation,

ż = γU(x), x = Cε(z), (11)

where x = (xp)p∈N , z = (zp)p∈N , Cε = (Cpε )p∈N , U =
(Up)p∈N . Observe that at rest, MD (11) satisfies,

0 = U(x), x = Cε(z), z ∈ C−1
ε (x), (12)

where x = (xp)p∈N , z = (zp)p∈N are the rest points of MD and
C−1
ε = ((Cpε )−1)p∈N = (∂ψpε )p∈N is the inverse (or the pre-

image) of Cε. The rest condition (12) implies that x is an interior NE.
Hence if a trajectory z(t) of MD comes to a rest, x(t) = Cε(z(t))
converges to an interior NE. We note that the uniqueness of x does
not imply the uniqueness of z unless Cε is Legendre-induced (for
which Cε is one-to-one; this follows from Legendre theorem [52]).
Hence, in general, the convergence of MD is to a set and not to

an equilibrium and z(t) may continue to evolve even after x(t) has
reached an equilibrium. Note that rest points are not the only game
relevant solutions for which MD may converge to. As pointed out in
[18], there are non-rest points that occur on the boundary of Ω that
are asymptotically stable under MD. The following lemma broadly
summarizes the key convergence properties of MD (refer to [18], [19]
for proofs).

Lemma 1. Let G be a concave game with a globally strict VSS x?.
Suppose that all players choose strategies according to MD (11). Let
x(t) = (xp(t))p∈N = Cε(z(t)) be generated by (11) and Cε =
(Cpε )p∈N be induced by ψpε := εϑp. For any γ, ε > 0 and any
x(0) = Cε(z(0)) ∈ Ω, z(0) ∈ Rn,

(i) suppose ϑp satisfies Assumption 3(i), ∀p, then x(t) = Cε(z(t))
converges to x?, whenever x? is interior.

(ii) suppose Ωp is compact and ϑp satisfies Assumption 3(ii), ∀p,
then x(t) = Cε(z(t)) converges to x?.

In general, MD does not converge beyond strict VSS, i.e., a mere
VSS. This poses considerable limitations in practice, for instance,
mere VSS are commonly found in ZS games. [12], [13] showed that
every ZS finite game is merely (but not strictly) monotone, hence all
of its NEs are mere (non-strict) VSS. A standard method to overcome
non-convergence to the NE in ZS games is to calculate a time-
averaged (ergodic) trajectory xavg(t) = t−1 ∫ t

0 x(τ)dτ in tandem
with MD, that is,

ż = γU(x), x = Cε(z), xavg(t) = t−1
∫ t

0
x(τ)dτ, (MDA)

for which the time-averaged strategy xavg has been shown in many
contexts to converge, e.g., [18]. The main critique of using MDA
is that the actual strategies do not arrive at the NE in the long-
run, thereby making it unsuitable for on-line equilibrium seeking in
the absence of a central planner or coordination between players.
Furthermore, averaging may fail to converge outside of ZS games
[57], which makes this approach vulnerable to parameter perturbation.

Another method for overcoming non-convergence is through dis-
counting, which was studied in [28],

ż = γ(−z + U(x)), x = Cε(z), (DMD)

where DMD stands for discounted mirror descent. Compared to MD,
an extra −z term is inserted in the ż system, which translates into an
exponential weighted decay (or discounting) term in the closed-form
solution z(t). DMD has a connection with the so-called weight decay
method in the machine learning literature [41], as z ∈ C−1

ε (x) can
be shown to be equivalent to a (usually non-Euclidean) regularization
term, which directly interacts with the monotonicity property of U .
While it is known that DMD could converge exactly in subclasses of
finite games that exhibit symmetric interior NEs, whereby Cε is also
chosen to enforce symmetry (see [27]), in general, it cannot converge
exactly to a NE, which also means that it cannot converge exactly
to a VSS. This directs our attention to alternatives methods, such as
higher-order augmentation of game dynamics [27], [33]–[35].

IV. SECOND-ORDER MIRROR DESCENT DYNAMICS

We now propose the second-order mirror descent, which in terms
of each player p appears as,{

żp = γ(Up(x)−α(xp − ξp)), ξ̇p= β(xp−ξp),

xp = Cpε (zp),
(MD2)

and in stacked notation,

ż = γ(U(x)−α(x−ξ)), ξ̇ = β(x− ξ), x = Cε(z), (13)
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where x = (xp)p∈N , z = (zp)p∈N , ξ = (ξp)p∈N , Cε =
(Cpε )p∈N , U = (Up)p∈N . The rest point condition for MD2 is,

0 = U(x), 0 = x− ξ, x = Cε(z), z ∈ C−1
ε (x), (14)

which coincides with that of MD, i.e., x = x? is an interior NE.

Remark 5. (Intuitive Learning Interpretation of MD2) We can
explicitly write ξp(t) = (ξpi (t))i∈[np] as,

ξpi (t) = e−βtξpi (0) + β ∫ t0 e
−β(t−τ)xpi (τ)dτ, (15)

which represents an “exponential weighting” of the strategies. Hence,
we refer to ξ as the primal aggregate, and z can be referred as the dual
aggregate. We note that ξp resides in the unconstrained (ambient)
space Rnp containing the action set. Note that, whenever ξp(0) is
initialized in Ωp, then ξp(t) ∈ Ωp for all times. Furthermore, noting
that we can re-write żp subsystem in MD2 as żp = γ(Up(x)−
αβ−1ξ̇p). By assuming zpi (0) = 0, ∀i, p,

zpi (t) = γ(∫ t0 U
p
i (x(τ))dτ − αβ−1 ∫ t0 ξ̇

p
i (τ)dτ) (16)

= γ(∫ t0 U
p
i (x)dτ−αe−βt(β−1(1−eβt)ξpi (0)+∫ t0 e

βτxpi dτ)).

It can be seen, when t is small, the effects of ξpi (0) and xpi are at
their largest, so the presence of ξ̇ term takes into consideration the
uncertainty during the initial periods of play. Hence, the incorporation
of ξ̇ has an exploratory effect on the play, which can result in
strategies being played more conservatively, preventing the players
from immediately reaching a deadlock.

Remark 6. (Comparison with Existing Dynamics) The closest
dynamics related to MD2 is the higher-order exponentially discounted
dynamics (H-EXPD-RL) for finite games [27]. Specifically, when the
higher-order augmentation is taken to be a high-pass filter, we obtain,{

ż = γ(U(x)− z − α(x+ ξ)), ξ̇ = β(−x− ξ),
x = Cε(z).

(17)

(17) can be seen as the second-order extension of DMD. In [27] it
was observed that (17) is robust to a greater degree of parameter
perturbation in monotone games as compared to DMD.

Let’s now consider MD2 as a purely second-order ODE in the dual-
space. To simplify our calculations, we assume x(t) = Cε(z(t)) is
differentiable. By using MD2 and noting that ż= γ(U(x)−αβ−1ξ̇)),
taking a time derivative of ż and making the assumption that U and
Cε are C1, we have, z̈ = γ(JU (x)ẋ − αβ−1ξ̈), which, along with
ξ̈ = β(ẋ− ξ̇), x = Cε(z), ẋ = JCε(z) ż, ξ̇ = βα−1(U(x)−γ−1ż),
we obtain,

z̈ = γ
[
JU (Cε(z))JCε(z)− αJCε(z)− βγ

−1I
]
ż+γβU(x), (18)

or by using the chain-rule for Jacobian,{
z̈ = γ

[
JU◦Cε(z)− αJCε(z)− βγ

−1I
]
ż + γβU(x),

x = Cε(z),
(19)

where U ◦Cε := U(Cε). To the best of our knowledge, most of the
existing second-order continuous gradient-type dynamics (see [39]
and references therein) cannot recover MD2 due to the presence of
the Jacobian of Cε. This is because in the unconstrained, primal
setting (as studied in [26], [39]), Cε is the identity and hence,
JCε(z) = I ,∀z and its contribution is lumped together with βγ−1 I .

We proceed to demonstrate that the primal aggregate ξ contributes
to the convergence of MD2 beyond strict VSS and such convergence
depends on both the property of the regularizer as well as the
topological properties of the underlying strategy set.

Theorem 1. Let G be a concave game and assume that every

interior NE is globally merely VS. Suppose that all players choose
strategies according to MD2 (13). Let x = (xp(t))p∈N = Cε(z(t))
be generated by (13) and Cε = (Cpε )p∈N be induced by ψpε := εϑp.
Let x? denote an interior mere VSS (possibly from a set of them).
For any α, β, γ, ε > 0, x(0) = Cε(z(0)) ∈ Ω, z(0), ξ(0) ∈ Rn,

(i) suppose ϑp is twice-continuously differentiable (C2) and satisfies
Assumption 3(i), ∀p, then x(t) = Cε(z(t)) converges to x?.

(ii) assume Ωp is compact and ϑp satisfies Assumption 3(ii), ∀p,
then x(t) = Cε(z(t)) converges to x?.

We now sharpen Theorem 1 by considering several other classes
of games in which MD2 is guaranteed to converge. From [2], [50],

Definition 3. The game G is,
(i) pseudo-monotone (resp. strictly pseudo-monotone), if

U(x′)>(x − x′) ≤ 0 =⇒ U(x)>(x − x′) ≤ 0, ∀x, x′ ∈ Ω
(resp. U(x)>(x− x′) < 0, with equality iff x = x′.)

(ii) quasi-monotone (resp. strictly quasi-monotone), U(x′)>(x −
x′) < 0 =⇒ U(x)>(x − x′) ≤ 0, ∀x, x′ ∈ Ω (resp.
U(x)>(x− x′) < 0, with equality iff x = x′).

Observe that when x′ in the above definitions is NE x? of a
pseudo-monotone game (or a globally strict NE of a quasi-monotone
game), it automatically implies the associated NE is globally mere
VS. Moreover, x? is globally strictly VS when the above games
are strict. Since MD converges to globally strict VSS [1], therefore
it converges to NE in strictly pseudo-monotone games and strict
NE in strictly quasi-monotone games. Our next corollary, which
immediately follows from Theorem 1, partially generalizes these
results to the non-strict setting under MD2.

Corollary 1. Let G be a concave game and assume that every NE
is interior. Suppose that all players choose strategies according to
MD2 (13). Let x = (xp(t))p∈N = Cε(z(t)) be generated by (13)
and Cε = (Cpε )p∈N be induced by ψpε := εϑp, ϑp is C2 and satisfies
Assumption 3(i), ∀p, then for any α, β, γ, ε > 0 and any x(0) =
Cε(z(0)),

(i) x(t) converges to an interior NE x? whenever G is merely
monotone or pseudo-monotone, and,

(ii) x(t) converges to an interior strict NE x? if G is quasi-
monotone, whenever x? exists.

The same conclusions hold whenever ϑp satisfies Assumption 3(ii)
and Ωp is compact ∀p.

Remark 7. We note that the existence of a NE in pseudo-monotone
games is guaranteed under our continuous game assumption [50, The-
orem 2.3.5], possibly requiring −Up to be coercive, see Remark 1,
and the non-empty set of NEs coincides with the set of globally mere
VSS [2, Theorem 2]. However, [2] pointed out that the existence of
a globally merely VS for quasi-monotone games is not guaranteed
in general. Instead, a globally merely VS exists under the stronger
property of properly quasi-monotone [2, Theorem 3].

V. ADDITIONAL CONVERGENCE PROPERTIES OF MD2

In this section, we investigate two additional properties of MD2,
namely, that of rate of convergence and regret minimization. To
account for the geometry of the problem, we provide a relative
extension to the strong VSS.

Definition 4. Let h : Rn → R ∪ {∞} be any differentiable, convex
function with domain dom(h) = Ω. Then x? ∈ Ω is η-relatively
strongly VS (with respect to h) if for all x ∈ Ω, U(x)>(x− x?) ≤
−η(Dh(x, x?) + Dh(x?, x)), for some η > 0, where Dh is the
Bregman divergence of h.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3291953

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



7

We note that Definition 4 is analogous to that of a relatively
strongly monotone game, which was previously introduced in [29].
Following [29, Theorem 4.4], it can be shown that MD converges to a
relatively strongly VSS in O(e−γηε

−1t) given a strongly-induced Cε
that is adapted to the geometry of this VSS. We now wish to provide
a similar result for the convergence of MD2 towards a relatively
strong VSS. However, exponential convergence does not follow from
Theorem 1. Instead, we propose an augmented version of MD2 that
exhibits exponential convergence,{

ż = (U(x)− γα(x− ξ)), ξ̇ = β(x− ξ),
x = Cε(z), γ̇ = −ηε−1γ,

(MD2γ)

where γ(0) > 0. Observe that MD2γ is equivalent to the non-
autonomous system,{

ż = (U(x)− e−ηε
−1tγ(0)α(x− ξ)), ξ̇ = β(x− ξ),

x = Cε(z),
(20)

whose rest point condition coincides with that of MD2.

Remark 8. From (20), MD2γ can be seen as MD with a vanishing
perturbation g(t, z, ξ) = e−ηε

−1tα(0)(x− ξ), which allows for the
following simple learning interpretation: when the players are aware
that the game being played has a η-strong VSS, they no longer bother
with exploring the strategy space during the initial stages and instead
discard the extra information represented by x−ξ exponentially fast.

Theorem 2. Let G be a concave game with a unique interior η-
strongly VSS relative to h(x) =

∑
p∈N ϑp(xp), denoted by x?,

where x = (xp(t))p∈N =Cε(z(t)) is generated by MD2γ and Cε=
(Cpε )p∈N is induced by ψpε := εϑp, ϑp satisfies Assumption 3(ii).
Then for any α, β, ε, η, γ0 = γ(0)> 0 and any x0 = (xp(0))p∈N =
Cε(z(0)), z(0), ξ0 =ξ(0) ∈ Rn, x converges to x? with the rate,

Dh(x?, x) ≤ e−ηε
−1t(

αγ0

2βε
‖ξ0 − x?‖22 +Dh(x?, x0)). (21)

Furthermore, since ϑp satisfies Assumption 3(ii), i.e., ϑp is ρ-strongly
convex, therefore,

‖x? − x‖22 ≤ 2ρ−1e−ηε
−1t(

αγ0

2βε
‖ξ0 − x?‖22 +Dh(x?, x0)). (22)

Remark 9. The above results confirm our intuition: the upper-bound
rate of convergence diminishes faster when an equilibrium is more
strongly VSS (η ↑), when Cε is induced by an even more strongly
convex regularizer (ρ ↑), when the regularization parameter goes
down (ε ↓), so that Cε approximates a best-response map, or when
the extra information x− ξ diminishes more rapidly (β ↑).

Next, we turn our attention towards the question of regret min-
imization. Let us define the time-averaged (external/static) regret
function of player p ∈ N as, R p : [0,∞)→ R, R p(0) = 0,

R p(t) = max
yp∈Ωp

1

t
∫ t0 U

p(yp;x−p(τ))− Up(x(τ))dτ. (23)

Intuitively, the regret value at time t represents the time-averaged
sum total of the payoff difference between the actual strategy x(t) =
(xp(t);x−p(t)) versus the best strategy (yp;x−p(t)) that the player
p could have played in hindsight, given any opponents’ strategy
x−p(t) ∈ Ω−p. Player p’s dynamics that generate xp(t) is said to
achieve no-regret with respect to (23) if lim supt→∞ R p(t) ≤ 0.

While MD was shown to achieve no-regret in finite games, it
cannot converge in ZS finite games with an interior mixed equi-
librium [21]. In contrast to [20], [21], our next result, coupled with
Theorem 1, shows that MD2 achieves both no-regret as well as exact
convergence whenever the (interior) equilibrium is a mere VSS.

Theorem 3. Let G be a concave game, where Ωp is compact for
all p ∈ N . Then for every continuous trajectory of x−p(t) of
opponents of player p, each player that uses MD2 achieves no-regret
independently from the rest of the players.

VI. CONSTRUCTION OF SECOND-ORDER
PRIMAL-SPACE DYNAMICS

In this section, we show that MD2 can either be used to create
new primal-space dynamics (that is, dynamics that solely evolve on
Ω) or recover existing ones. To simplify our presentation and to
avoid the technicality of non-differentiable mirror maps Cε (for which
examples of induced primal-space dynamics can still be generated
through a technical treatment, see the so-called projection dynamics
discussed in [18]), we impose the following general assumption,

Assumption 4. ϑp :Rnp→R∪{∞} is steep and induces a C1 mirror
map Cε = (Cpε )p∈N = (∇ψp?ε )p∈N .

Under this assumption, taking the time-derivative of x = Cε(z)
shows that MD2 can be written as a pair of differential inclusions,

ξ̇ ∈ β(x− ξ), ẋ ∈ γ JCε(z)(U(x)− α(x− ξ)), (24)

where γ > 0, α, β ≥ 0 and the Jacobian of Cε is,

JCε(z) := blkdiag(JCpε
(zp)) =


J
C1
ε

(z1)

. . .
J
CNε

(zN )

 ∈ Rn×n,

and each JCpε
(zp) = J∇ψpε

?(zp) = ∇2ψpε
?
(zp) ∈ Rnp×np . We

note that the inclusions in (24) come from z ∈ C−1
ε (x). We can

further express (24) in each p as,

ξ̇p ∈ β(xp− ξp), ẋp ∈ γ∇2ψpε
?
(zp)(Up(x)−α(xp− ξp)). (25)

In the following, we offer two general ways of re-writing (25) as a
set of ODEs in the primal-space.

General Case: Our next result shows that, in the general case,
finding the primal-space dynamics associated with MD2 generally
amounts to evaluating the operator ∇2ψpε

? ◦∇ψpε := ∇2ψpε
?
(∇ψpε ).

Proposition 2. Suppose Assumption 4 holds, then (25) reduces to,{
ξ̇p = β(xp − ξp)

ẋp = γ∇2ψpε
?
(∇ψpε (xp))(Up(x)− α(xp − ξp)).

(26)

Example 7. (Simplex) Let Ωp = {xp ∈ Rnp≥0|‖x
p‖1 = 1}

and consider ϑp(xp) =
∑np
i=1 x

p
i log(xpi ), ψpε (xp) = εϑp(xp)

and ψpε
?
(zp) = ε log(

∑np
i=1 exp(ε−1zpi )). It can be shown that,

∇2ψpε
?
(zp) = ε−1(diag(Cpε (zp)) − Cpε (zp)Cpε (zp)>) where

Cpε (zp) = (exp(ε−1zpi )(
∑np
j=1 exp(ε−1zpj ))−1)i∈[np] is the soft-

max function (Example 5). Let xp ∈ rint(Ωp). We can show
∇ψpε (xp) = ε(log(xp) + 1) (log is applied component-wise) and
Cpε (∇ψpε (xp)) = xp. Taken together, we have, ∇2ψpε

? ◦ ∇ψpε =

∇2ψpε
?
(∇ψpε (xp)) = ε−1(diag(xp) − xpxp>). By applying (26)

and defining H (xp) := diag(xp)−xpxp>, we obtain (27) as the
induced primal-space dynamics of MD2 on the simplex,

ξ̇p=β(xp−ξp), ẋp=γε−1H (xp)(Up(x)−α(xp−ξp)), (27)

We note that (27) represents a version of second-order replicator
dynamics (RD), which is different from the ones introduced in [33],
[35]. In particular, when α = β = 0, we recover the (multi-
population) replicator dynamics [2], [12], [13], [18], [21], [44].

We can also reduce (27) to a single population model (p = 1),
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which takes the following form:ξ̇i = β(xi − ξi),
ẋi = xi(Ui(x)− α

β
ξ̇i −

∑
j∈A xj(Uj(x)− α

β
ξ̇j)),

(28)

where A = {1, . . . , n} represents n subpopulations of non-atomic
players, and Ui represents the fitness of subpopulation i. We note
that structurally (28) shares similarity with the anticipatory replicator
dynamics studied in [35], which can be written as,{

ξ̇i = β(xi − ξi),
ẋi = xi(Ui(x+ αξ̇)−

∑
j∈A xj(Uj(x+ αξ̇))).

(29)

Note that the variable ξj in (28) does not directly interacts with the
pseudo-gradient/payoff vector U(x), as is the case for the anticipatory
RD.

Legendre and Supercoercive: A more structured scenario is when
ψpε := εϑp is Legendre and supercoercive for all p (Assumption 3(i)).
Since ψpε is finite on int(Ωp), coercive, strictly convex and C2,
then applying [62, Example 11.9, p. 480], ψpε

? shares the same
properties and we have that [∇2ψpε (xp)]−1 = ∇2ψpε

?
(zp) =

(∇2ψpε
? ◦ ∇ψpε )(xp),∀xp = ∇ψpε

?
(zp) ∈ int(Ωp), which allows

us to write (25) or (26) as,{
ξ̇p = β(xp − ξp),

ẋp = γ[∇2ψpε (xp)]−1(Up(x)− α(xp − ξp)),
(NG2)

which we refer to as the second-order natural gradient descent
(NG2). NG2 is so named because in the optimization setup (p = 1),
for U = −∇f , where f : Rn → R∪{∞} is some objective function
and α, β = 0, is analogous to the so-called natural gradient descent
[31], ẋ = −[∇2ψε(x)]−1∇f(x).

Example 8. (Unconstrained) Let Ωp = Rnp , ϑp(xp) = 1
2‖x

p‖22,
then ∇2ψpε (xp) = εI where ψpε = εϑp. By comparing with NG2,
we obtain,

ξ̇p = β(xp − ξp), ẋp = γε−1(Up(x)− α(xp − ξp)), (30)

which recovers the one recently introduced in [26]. (30) can be
further shown via discretization to recover algorithms such as op-
timistic gradient-descent/ascent, Polyak’s heavy-ball method, among
others (see [26]). While (30) is by far the most standard choice
for unconstrained action sets, more than one type of dynam-
ics can reside on the same action sets. To witness, let Ωp =

Rnp , ϑp(xp) =
∑np
i=1 x

p
i arcsinh(xpi /℘) −

√
xp2i + ℘2 , ℘ >

0, which represents an interpolation between entropic and Eu-
clidean terms [61]. ϑp is Legendre and supercoercive (its con-
vex conjugate is

∑np
i=1 ℘ cosh(xpi ), which is also Legendre). Let

ψpε = εϑp, then ∇ψpε = ε
∑np
i=1 arcsinh(xpi /℘) and ∇2ψpε =

ε

[
diag(

[√
xp1

2
+ ℘2 , . . . ,

√
xp2np + ℘2 )

]>
)

]−1

. By comparing

with NG2, we obtain,

ξ̇p = β(xp− ξp), ẋp = γε−1S(xp)(Up(x)−α(xp− ξp)). (31)

where S(xp) := diag(
[√

xp1
2

+ ℘2 , . . . ,
√
xp2np + ℘2

]>
), which

translates into a version of (30) with a strategy-dependent coefficient.

Example 9. (Orthant) Let Ωp = Rnp≥0 and consider ϑp(xp) =∑np
i=1 x

p
i log(xpi ) − xpi with 0 log(0) = 0. We can show

∇2ψpε (xp) = ε[diag(xp)]−1 where ψpε = εϑp. Using NG2, we
immediately arrive at,

ξ̇p = β(xp−ξp) ẋp = γε−1 diag(xp)(Up(x)−α(xp−ξp)). (32)

We note that the first-order variant (α = β = 0) of (32) was recently

studied by [60] as the mean-dynamics to a payoff-based learning
dynamics in continuous games with non-negative orthant action sets.
Suppose instead ϑp(xp) = −

∑n
i=1 ln(xpi ) (the log-barrier function),

which leads to ∇2ψpε (xp) = ε[diag(xp2)]−1 and,

ξ̇p = β(xp−ξp) ẋp = γε−1 diag(xp2)(Up(x)−α(xp−ξp)). (33)

We stress however that the log-barrier does not fall under our
definition of a regularizer, as dom(ϑp) is a proper subset of Ωp.
(33) with α = β = 0 has been previously studied in the context of
optimization, see [63].

VII. DISCRETE-TIME SECOND-ORDER DUAL
AVERAGING WITH NOISY OBSERVATIONS

So far we have considered a continuous-time setup whereby each
player is able to acquire a partial-gradient Up at each time instance.
In practical scenarios where the games are played in discrete-time,
the acquired pseudo-gradient information could be corrupted due to
a multitude of reasons, such as a noisy communication channel. This
leads us to consider the so-called “noise-corrupted” pseudo-gradient
scenario (also known as “semi-bandit” learning). In this setting, each
player receives a realization of a so-called noise-corrupted version of
the true pseudo-gradient,

Ûpk+1
:= Up(xk) + ζpk+1,

where ζpk is some noise process. A special case of the semi-bandit
scenario is when the payoff is obtained as the expectation of the true
payoff, i.e., Up(xpk;x−pk ) = E[Up(xpk;x−pk , vpk)], vpk some random
vector, where E denotes the expectation operator. Here Ûpk is an
estimate of the expected partial-gradient ∇xpE[Up(xpk;x−pk , vpk)].

Let’s consider the convergence of the discrete-time MD2 with noisy
observations which we refer to as second-order dual averaging or
DA2, 

Xp
k = Cpε (Zpk)

Zpk+1 = Zpk + γtk+1(Ûpk+1 − α(Xp
k − Ξpk))

Ξpk+1 = Ξpk + τk+1β(Xp
k − Ξpk),

(DA2)

where Xp
k , Z

p
k ,Ξ

p
k are the stochastic counter-part of (resp.) xp, zp, ξp

at time k. {tk}k∈N, {τk}k∈N denote deterministic sequences of
non-increasing step-sizes, assumed to be common for all players.
α, β, γ > 0 are the auxiliary parameters as from before. When
α = β = 0, we refer to the resulting expression as the dual averaging
with noisy observations,{

Xp
k = Cpε (Zpk)

Zpk+1 = Zpk + γtk+1Û
p
k+1,

(DA)

which coincides with the dual averaging scheme studied in [1] for
γ = 1.

To analyze the convergence behavior of DA2, we impose the
following set of regularity assumptions [54], [55].

Assumption 5. (`2\`1-Summability and Diminishing Step-sizes)∑
k∈N tk =∞

∑
k∈N t

2
k <∞ limk→∞ tk = 0,∑

k∈N τk =∞
∑
k∈N τ

2
k <∞ limk→∞ τk = 0.

(34)

Assumption 6. (L2-Bounded Martingale Difference Noise) As-
sume {ζk}k∈N, ζk = (ζpk)p∈N is a L2-bounded marginal difference
process adapted to the filtration {Fk}k∈N: each ζk is a random vector
that is measurable with respect to Fk for each k, where each Fk is
the σ-field, i.e., Fk = σ(Ξ0, Z0, ζ0, . . . , ζk) and Fk ⊆ Fk+1. In
particular, {ζk}k∈N satisfies,

E[ζk+1|Fk] = 0, ∀k ∈ N a.s., (35)
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and for some σ ≥ 0,

E[‖ζk+1‖2?|Fk] ≤ σ2, ∀k ∈ N a.s. (36)

Assumption 7. (Bounded Iterates)

supk ‖Z
p
k‖ <∞ supk ‖Ξ

p
k‖ <∞, ∀p. (37)

Finally, we impose “global integrability” on MD2, i.e., MD2 has
a complete vector field. To do so, we need to convert MD2 into a
first-order system by defining: ωp := (ξp, zp), which generates the
following stacked system on R2n ∼= Rn × Rn,

ω̇p =

[
ξ̇p

żp

]
=

[
β(Cpε (zp)− ξp)

γ(Up(Cε(z))− α(Cpε (zp)− ξp))

]
,

=

[
βCpε (zp)

γ(Up(Cε(z))− αCpε (zp))

]
+

[
−βξp
γαξp

]
,

(38)

or equivalently, ω̇p = F p(ω) = gp(z) + Ap(ξp), where, Ap(ξp) =[
−βξp
γαξp

]
and gp(z) =

[
βCpε (zp)

γ(Up(Cε(z))− αCpε (zp))

]
.

We then proceed to impose the following assumption on the overall
system,

ω̇ = F (ω), ω = (ωp)p∈N , F = (F p)p∈N . (39)

Assumption 8. (Global Integrability) The vector field F : R2n →
R2n of (39) is continuous globally integrable, that is, for every initial
condition (ξ(0), z(0)) ∈ R2n, the unique solution of (39) is defined
for all t ∈ R.

Remark 10. We note that global integrability of MD2 is satisfied
whenever the following holds,

(i) Suppose Cpε is bounded on Rnp and Up is bounded continuous
locally Lipschitz on ran(Cpε ) for all p ∈ N , then F (39)
is bounded locally Lipschitz and hence continuous globally
integrable. This follows from [54].

(ii) Suppose Up is continuous locally Lipschitz and both Cpε and
Up ◦ Cε are sublinear for all p, that is,

lim sup
‖z‖2→∞

‖Cpε (z)‖2
‖z‖2

<∞, lim sup
‖z‖2→∞

‖Up ◦ Cε(z)‖2
‖z‖2

<∞,

(40)
then F is sublinear and hence continuous and globally inte-
grable. This follows from [56].

Under Assumption 5 – 8, DA2 can be shown to track the con-
tinuous trajectories generated by MD2 via stochastic approximation
arguments [54], [55].

Theorem 4. Let G be a concave game and assume that every interior
NE is globally merely VS. Suppose that all players choose strategies
according to DA2 and Cε = (Cpε )p∈N is induced by ψpε := εϑp,
where ϑp is C2 and satisfies Assumption 3(i). Suppose that the
following assumptions hold,

• Assumption 5 (`2\`1 Summability and diminishing step-sizes)
• Assumption 6 (L2-bounded Martingale difference noise),
• Assumption 7 (Bounded iterates)
• Assumption 8 (Global integrability)

then Xk converges to an interior mere VSS of G almost surely. The
same conclusions hold whenever ϑp satisfies Assumption 3(ii) and
Ωp is compact ∀p.

Remark 11. The closest result to ours is [1, Theorem 4.7], but for DA
(i.e., α, β = 0). Assumption 5, Assumption 6 are identical to theirs
and Assumption 8 encapsulates the Lipschitz continuous requirement
for U . The major departure is Assumption 7, which does not hold
under certain circumstances, such as convergence towards (boundary)
strict VSS in finite games. Hence our result only deals with interior

mere VSS in general. To account for these boundary VSS possibly
involves an extension of the inductive shadowing argument used by
[1] which we leave for future work.

Remark 12. In addition to DA [1], there are several other algorithms
that converge in similar settings. The most notable example is the
mirror-prox/optimistic mirror descent algorithm, which converges to
mere VSS in perfect-gradient feedback setting [46]. However, the
authors of [46] noted that convergence in null-coherent saddle point
problems (a game with a mere VSS) fails in the presence of noise.
This is a key advantage of DA2 over mirror-prox. Another algorithm
is the stochastic iterative Tikhonov method of [25], which converges
in the semi-bandit setting. However, [25] requires the game to be
strictly monotone, whereas DA2 does not require monotonicity.

VIII. SIMULATIONS

In this section, we consider three illustrative examples. The first
example is the RPS game with a non-negative payoff for ties as
in Example 3. We provide convergence behavior of MD and MD2
as well as MDA towards mere and weak VSS. We then provide
the convergence behavior of DA2. The second example concerns a
wireless power control game previously studied in [58]. We show
that DA2 converges in this game under different noise assumptions
and study the effect of the number of players. Finally, we provide
an example involving a generative adversarial network (GAN), which
admits a locally mere VSS. We show that DA2 also converges in this
game under different noise assumptions. In lieu of exact estimation
of the basin of attraction for locally mere VSS, which is difficult, we
deal with all such cases through appropriate initialization.

Example 10. (RPS with non-negative payoff for ties) Consider the
RPS game as discussed in Example 3. We set the game parameters to
be l = 0,w = 2 and vary the tie payoff parameter ς ∈ [1,w) = [1, 2)
to induce different VS properties on the NE x? = (xp)p∈N , x

p =
(1/3, 1/3, 1/3). We simulate both MD and MD2 at initial conditions
z(0) =

[
3 2 1

]>
, ξ(0) = 0. γ, β, α are kept as 1.

We begin by contrasting the continuous-time MD and MD2. For
ς = 1, this game is merely monotone, x? is globally merely VS,
MD2 converges by Theorem 1 while MD diverges (Figure 1). For
ς = 1.1, the game is 0.1-weakly monotone, but since x? is only
0.1-weak VSS therefore it can be considered a nearly mere VSS (see
Remark 2). In this case, MD2 still converges while MD approaches
a heteroclinic orbit (Figure 2).
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Fig. 1: ς = 1, G merely monotone, x? is merely VS. MD2 converges
(Embedded: MD, cycling).

It is useful to also examine the advantage of MD2 over time-
averaged MD (MDA). While MDA does converge for ς = 1 towards
the mere VSS, when the equilibrium becomes just slightly weak (ς =
1.1), it no longer converges and instead approaches a Shapley triangle
[57] (Figure 3). This shows time-averaging is in general not a panacea
to non-convergence.

Next, we perform a set of experiments for the globally merely VS
case (ς = 1) using DA2, where we assume the same initial condition
as before. For each of the following simulations, we separately
perturb the pseudo-gradient Up (9) with zero-mean Gaussian noise
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Fig. 2: ς = 1.1, G 0.1-weakly monotone, x? is 0.1-weakly VS. MD2
converges (Embedded: MD, cycling).
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Fig. 3: ς = 1.1, G 0.1-weakly monotone, x? is 0.1-weakly VS. MD2
converges (Embedded: MDA, cycling).

with the same variance σ2
ζ > 0 across all players. Such a perturbed

gradient setting could describe a game involving multiple users
interacting over a fully connected network with noisy communication
channels. Figure 4 shows that DA2 easily converge in the low
variance regimes σ2

ζ = 1. As we employ larger variance, e.g.,
σ2
ζ = 10, the standard step-sizes no longer leads to convergence:

a larger tk will amplify the additive noise. Instead, we utilize step-
size sequences of the form

c

kι
and search over both ι ∈ (0, 1), c > 0

for optimal sets of parameters. The simulation with tuned step-size is
shown in Figure 5. We see that despite the larger noise injected into
Up, the strategies X = (Xp)p∈N still converge toward the vicinity
of the mere VSS.
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Fig. 4: ς = 1, σ2
ζ = 1, tk = 4/k, τk = 1/k.
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Fig. 5: ς = 1, σ2
ζ = 10, tk = 0.23/k0.48, τk = 0.34/k0.88.

Example 11. (Wireless power control game with a non-concave
potential) Consider the wireless power control game in [58], where
N = {1, . . . , N} network users decide on intensities xp ∈ R of
power flow to send over a wireless network. These intensities are
converted to the transmitted power through an exponential function,
i.e., exp(xp) ∈ R>0. The payoff function for each user p ∈ N is
modeled as,

Up(xp;x−p) = log

(
1 +

ap exp(xp)

1 +
∑
p 6=r a

r exp(xr)

)
−K p(xp) (41)

where ap ∈ (0, 1], ∀p and K p(xp) = bp log(1 + exp(xp)) − cpxp
is the cost of user p for transmission, bp > 0, cp ≥ 0. The partial-
gradient Up is calculated to be,

Up(x) =
ap exp(xp)

1 +
∑
r∈N ar exp(xr)

− bp exp(xp)

1 + exp(xp)
+ cp. (42)

The second-order partial derivative of Up can be calculated to be,

∂2Up(xp;x−p)

∂xq∂xp
=



−apaq exp(xp + xq)

(1 +
∑
r∈N ar exp(xr))2

p 6= q

ap exp(xp)(1 +
∑
r 6=p a

r exp(xr))

(1 +
∑
r∈N ar exp(xr))2

− bp exp(xp)

(1 + exp(xp))2

p = q

(43)
which generates a symmetric Jacobian JU (x), ∀x,

JU (x)p,p =
ap exp(xp)(1 +

∑
r 6=p a

r exp(xr))

(1 +
∑
r∈N ar exp(xr))2

− bp exp(xp)

(1 + exp(xp))2

(44)
and

JU (x)p,q =
−apaq exp(xp + xq)

(1 +
∑
r∈N ar exp(xr))2

, p 6= q, (45)

hence the game is a potential game with a non-concave potential
function P such that ∇P = U .

Consider an example with N = 2 and problem parameters, a =
(a1, a2) = (1, 1), b = (b1, b2) = (4, 4), c = (c1, c2) = (3, 3). For
all players, Zp(0) is sampled uniformly from [0, 10], Ξp(0) = 0.
The NE of this game can be found at x? = (1.8663, 1.8663). The
Jacobian at the NE is J(x?) = diag(

[
−4.308 0

]>
), hence by

Proposition 1, the NE is a locally mere VSS. By Theorem 4, DA2
converges towards this NE. For each of the following experiments, we
simulate for T = 104 steps and report the strategies at termination.
We restrict Ωp to be a large but compact set [−1000, 1000]2 and set
Cpε to be the projection operator, Cpε (Zp) = argminyp∈Ωp‖ε

−1Zp−
yp‖22 with ε = 1. Unless specified otherwise, all other parameters
γ, α, β are kept as 1. All additive noise are zero-mean Gaussian with
the same variance σ2

ζ .
We start our experiment with a small variance σ2

ζ = 0.1 and set
the step-sizes to be tk = 0.39/k0.26, τk = 0.12/k0.64. Figure 6
shows that DA2 converges to the NE. We increase the variance to
σ2
ζ = 10 and Figure 7 shows similar observation.
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Fig. 6: σ2
ζ = 0.1, tk = 0.39/k0.26, τk = 0.12/k0.64

0 1 2 3 4 5 6 7 8 9 10

10
3

0

2

4

6

8

10

Fig. 7: σ2
ζ = 10, tk = 0.38/k0.47, τk = 0.13/k0.71

Next, we investigate some possible computational issues can arise
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when we increase the number of players in this game. Consider an
example with N = 10 players. The game parameters are:

a= (12,4,2,5,20,20,12,3,1,2),

b= (15,20,20,14,21,20,16,19,17,17),

c= (13,12,14,8,10,19,10,12,15,1).

A variance of σ2
ζ = 1 is applied for the following experiments.

We employ step-size sequences tk = 0.4/k0.033, τk = 0.78/k0.001

across all players. The NE of this game is located at x? =
(1.87, 0.41, 0.85, 0.28,−0.10, 16, 0.51, 0.54, 2.01,−2.77) (rounded
to two decimal places) and was confirmed to be a nearly mere VSS
(Remark 2). We note that an exact mere VSS is difficult to produce
for this game when there are a large number of players.
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Fig. 8: σ2
ζ = 1, tk = 0.40/k0.033, τk = 0.78/k0.001 (X2 omitted).

Figure 8 shows that the strategy X1 converges to
(1.87, 0.41, 0.85, 0.28,−0.10, 11.29, 0.51, 0.54, 2.01,−2.77)
which is exactly the same as x? in all entries except for the
sixth entry (16.51 vs 11.29), which is likely due to the small rate
parameters employed in the step-sizes. This highlights the difficulty
of employing the same step-size sequences across all players. We
adjust all the parameters β, α and step-sizes ck−ι, ι ∈ (0, 1), c > 0
on a per-player basis, which resulted in a much closer convergence
to the NE as opposed to applying them across all players uniformly
(Figure 9).
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Fig. 9: σ2
ζ = 1, per-player tuned parameters (X2 omitted).

Example 12. (Learning to Generate a Gaussian)
Let Z ∼ P(z) and X ∼ Q (x ) be two random variables. We wish

to construct a model Gθ : Rr → Rm , r ,m ≥ 1, with an unknown,
continuous parameter θ such that Gθ(Z) recovers the statistics (mean,
variance, etc.) of X . Following [53], Gθ can be constructed through
solving,

minθ maxw EX (Dw(X ))− EZ(Dw(Gθ(Z))), (?)

where the model Dw : Rm → R is parametrized by an unknown
continuous parameter w. This problem can be thought of as a game
between the owners of the models Gθ and Dw whereby θ, w are their
respective strategies. The owner of Gθ (or the designer) varies θ and
uses Gθ(Z) to estimate the statistics of X , whereas the owner of Dw
(or the tester) varies w in an attempt to incur the largest penalty
possible for the discrepancy between Gθ(Z) and X .

We construct a more complicated variant of the examples in [28],
[53], whereby we assume that the Gθ owner wishes to learn the
mean and variance of a one-dimensional Gaussian at the same time:
let Z ∼ N (0, 1), and X ∼ N (v, σ2), where v ∈ R, σ ∈ R>0

(·)Z ∼ N (0, 1)

X ∼ N (v, σ2)

Gθ Dwθ2

θ1

(·)2

(·)

w1

w2

Fig. 10: Diagram representation of Gθ and Dw models

are the mean and standard deviation of a Gaussian distribution. Let
Dw(X ) = w1X 2 + w2X , w = (w1, w2) ∈ R × R and Gθ(Z) =
θ1Z + θ2, θ = (θ1, θ2) ∈ R×R, then a brief calculation shows that

(?) = w1((σ2 + v2)− (θ2
1 + θ2

2)) + w2(v − θ2).

Let x1 = θ, x2 = w, we obtain a two-player ZS game,

U1(x1;x2) = x2
1(σ2 + v2 −

∑2
i=1(x1

i )
2) + x2

2(v − x1
2) (46)

and U2(x2;x1) = −U1(x1;x2) where the action sets are, Ω1 =
R×R = Ω2. The pseudo-gradient is, U(x) = (−2x2

1x
1
1,−2x2

1x
1
2−

x2
2,
∑2
i=1(x1

i )
2 − (σ2 + v2), x1

2 − v), which implies an interior NE
at x? = (x1?, x2?) = ((σ, v), (0, 0)). The Jacobian of U is shown
to be,

JU (x) =


−2x2

1 0 −2x1
1 0

0 −2x2
1 −2x1

2 −1

2x1
1 2x1

2 0 0
0 1 0 0

 . (47)

Since y> JU (x)y = 1
2y
>(JU (x) + J>U (x))y = −2((y1)2 +

(y2)2)x2
1 and x2

1 is not restricted to be positive, therefore, this game is
not monotone [50, Prop. 2.3.2]. However, at the interior NE, x2? =
(x2

1
?
, x2

2
?
) = (0, 0) =⇒ x2

1
?

= 0, and hence y> JU (x?)y =
1
2y
>(JU (x?) + J>U (x?))y = −2((y1)2 + (y2)2)(0) = 0. By

Proposition 1(ii’), this implies that x? is locally merely VS.
Consider an example with v = 10, σ = 5. We perform two simu-

lations of the discrete-time MD2 with or without perturbation on the
pseudo-gradient. We assume Z(0) is uniformly sampled as follows:
Z1(0) ∼ unif([10, 50] × [20, 40]), Z2(0) ∼ unif([0, 5] × [0, 5]),
and Ξ(0) = 0. We restrict Ωp to be a compact set [−1000, 1000]2

and set Cpε to be the projection operator as in Example 11. We set
λ = β = α = 1. Each of the following simulations is ran for
T = 4 × 104 steps, with initial conditions randomly sampled as
stated above. Note that our simulations has experimentally shown to
accommodate larger sets of initial conditions than the ones provided
above.

First, we consider the noiseless case, i.e., σ2
ζ = 0. From Figure 11,

we see that X1 converges to X1? (highlighted using a green star).

0 5 10 15 20 25 30 35 40

10
3

0

10

20

30

Fig. 11: σ2
ζ = 0, tk =

0.0108

k0.3971
, τk =

0.0485

k0.7877
(X2 omitted).

Next, we consider the harder case where Up is subjected to zero-
mean Gaussian noise with a very large variance σ2

ζ = 302 for each
p. The trajectories of X1 are shown in Figure 12. Our previous
observation continues to hold.
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Fig. 12: σ2
ζ = 302, tk =

0.0108

k0.3971
, τk =

0.0485

k0.7877
(X2 omitted).

IX. CONCLUSIONS

In this paper, we have shown that MD2 overcomes many short-
comings of the first-order MD as well as other members of this class
of dynamics, such as MD with time-averaging or discounting. To
summarize our findings: first, we showed that the trajectories of MD2
converge exactly to an interior mere (and not necessarily strictly)
VSS (Theorem 1). As such, it converges to interior mere NEs of
monotone and pseudo-monotone games, and interior strict NE of
quasi-monotone games (Corollary 1). Through simulation, we also
found that MD2 is robust around interior mere VSS (Remark 2,
Example 10). Next, we provided a modification to MD2 based
on vanishing perturbation which results in an exponential rate of
convergence towards a strongly stable VSS (Theorem 2). We then
showed MD2 can achieve no-regret while converging beyond a strict
VSS, such as to an interior/fully-mixed NEs of zero-sum finite
games (Theorem 3). This result improves our current understandings
between no-regret learning and convergence [20], [21]. We then
provided several ways of deriving primal-space dynamics from MD2.
Finally, we moved to the scenario where the game evolves in discrete-
time while the pseudo-gradient is subjected to noise perturbation.
Using stochastic approximation techniques, we were able to relate the
limiting behavior of MD2 with that of its discrete-time, noisy coun-
terpart, and showed that the discrete MD2 with noisy observations or
second-order dual averaging (DA2) can converge to the interior mere
VSS under standard regularity assumptions (Theorem 4).

There are several outstanding issues that could be better un-
derstood. First, our work did not provide a thorough convergence
proof for local VSS, which are dealt with appropriate initialization.
Moreover, we did not address convergence towards boundary point
for MD2, as our proofs relied on an interiority condition associated
with interior NE (14). One possible approach for dealing with these
boundary solutions is to adopt the approach of [18], by restricting
ourselves to the context of finite games, where these boundary
solutions are quite relevant. Another basic issue is that it is still not
entirely clear to us at this time how MD2 relates to other existing
continuous-time dynamics for optimization or games. Aside from the
cases that we know of, e.g., [26], it is possible that there are other
existing algorithms that appear as specific instances of MD2.

Our work opens up an extensive array of directions on the interface
between dynamical systems and games. As a starting point, in the
continuous-time, an interesting direction would be to explain the
difference between MD and MD2 in zero-sum games through a
volume compressibility perspective as in [15], [22]. We can also
try to craft third or even higher-order versions of MD based on the
technique in [27]. In the discrete-time case, we can further reduce the
information, to that of the zero-order information case (or full-bandit
feedback). Moreover, we can tackle the case whereby the game itself
has parameters that are time-varying. Finally, it is also worthwhile to
examine MD2 in a discrete-time setting whereby the mirror map is
replaced with a proximal operator.

Symbol Definition

x/x(t)/Xk Strategy/at time t/at time k

z/z(t)/Zk Dual aggregate/at time t/at time k

ξ/ξ(t)/Ξk Primal aggregate/at time t/at time k

Up/Up/U Payoff/partial-gradient/pseudo-gradient

JU/JU Jacobian of U /symmetric game Jacobian of U

ϑp/ψpε /ψ
p?
ε Regularizer/ψpε = εϑp/convex conjugate of ψpε

Cpε /Cε/JCε Player p’s/overall mirror map/Jacobian of Cε
γ, ε, α, β Parameters associated with MD/MD2/DA2

I/O Identity matrix/zero matrix

TABLE 1: A list of main notations used in this paper.

X. APPENDIX

The following two lemmas are standard in this area of literature,
see [18], [22], [28]. In particular, Lemma 2 follows directly from the
Legendre theorem [52].

Lemma 2. Let ψpε :=εϑp, ε>0, where ϑp satisfies Assumption 3(ii),
and let ψpε

? be the convex conjugate of ψpε . Then,
(i) ψpε

?
: Rnp →R∪{∞} is closed, proper, strictly convex, steep,

and finite-valued over Rnp .
(ii) ∇ψpε : int(dom(ψpε ))→ int(dom(ψpε

?
)) is a homeomorphism

with inverse mapping (∇ψpε )−1 =∇ψpε
?

=Cpε .
(iii) Cpε is strictly monotone on int(dom(ψpε

?
)).

Lemma 3. Let ψpε := εϑp, ε>0, where ϑp satisfies Assumption 3(i),
and let ψpε

? be the convex conjugate of ψpε . Then,
(i) ψpε

?
:Rnp→R∪{∞} is closed, proper, convex and finite-valued

over Rnp , i.e., dom(ψpε
?
) = Rnp .

(ii) ψpε
? is continuously differentiable and ∇ψpε

?
=Cpε .

(iii) Cpε is surjective from Rnp onto rint(Ωp) whenever ψpε is steep,
and onto Ωp whenever ψpε is non-steep.

Proof. (Proof of Proposition 1) Let x, x′ ∈ Ω be two arbitrarily
chosen strategies. Consider x = θx+ (1− θ)x′, θ ∈ [0, 1]. Then the
proof for all these claims boil down to the equality condition found
in [59, Prop. 1.44], in which it be can shown,

(x−x′)>(U(x)−U(x′)) =
∫ 1
0 (x′−x)> JU (x)(x′−x) dθ (48)

Rearranging (48), we have,

(x− x′)>U(x) =
∫ 1
0 (x′ − x)> JU (x)(x′ − x) dθ

+ (x− x′)>U(x′).
(49)

Let x′ = x?, then (x− x?)>U(x?) ≤ 0 and we have,

(x− x?)>U(x) ≤
∫ 1
0 (x? − x)> JU (x)(x? − x) dθ. (50)

By the definiteness assumptions of JU (x) on TΩ(x) for all x ∈ Ω
and x = θx + (1 − θ)x? is contained in Ω for any θ ∈ [0, 1],
(50) implies statements (i), (ii), (iii). Next, suppose the definiteness
condition on JU (x?) holds for all y ∈ TΩ(x?). Since U is assumed
to be continuously differentiable, therefore y> JU (x)y is continuous
for all x ∈ Ω. Using the standard ε− δ definition of continuity, this
means for every ε > 0 there exists a δ(ε) > 0 such that for all
x ∈ Ω, ‖x − x?‖ < δ(ε) =⇒ |y> JU (x)y − y> JU (x?)y| <
ε. The latter statement, |y> JU (x)y − y> JU (x?)y| < ε, implies
y> JU (x)y < ε + y> JU (x?)y. Since this holds for every ε > 0,
therefore this is equivalent to y> JU (x)y ≤ y> JU (x?)y, and hence
JU (x) shares the same definiteness property as JU (x?) for all x in
some ball D = {x ∈ Ω|‖x−x?‖ < δ(ε)}. Let x = θx+ (1− θ)x?,
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θ ∈ [0, 1], x ∈ D. This implies (50) holds locally on the set of all x,
and (i′), (ii′), (iii′) follows. The isolation condition of (i), (i′) are
proven in [1, Prop. 2.7].

Proof. (Proof of Theorem 1) (i) Consider the Lyapunov function,

V (ξ, z) =
α

2β
‖ξ(t)− x?‖22

+ γ−1∑
p∈N ψpε (xp?)− zp>xp? + ψp?ε (zp).

(51)

Here, V is composed of a quadratic distance term, which measures
the progress of ξ(t) towards ξ? = x?, added onto a function which
consists the collection of all the terms associated with the Fenchel-
Young inequality [48, p. 88], also known as the Fenchel coupling
in [1]. Since ϑp satisfies Assumption 3(i), V (ξ, z) is continuous,
positive definite (due to the Legendre theorem), V (ξ, z) = 0 iff
ξ = x? and z = C−1

ε (x?). Taking the time-derivative of V (ξ, z)
along the solutions of MD2, using x = Cε(z), ∇ψpε

?
= Cpε and

ż = γ(U(x)− αβ−1ξ̇),

V̇ (ξ, z) =
α

β
(ξ − x?)>ξ̇ + γ−1(Cε(z)− x?)>ż

=
α

β
(ξ − x?)>ξ̇ + (Cε(z)− x?)>(U(x)− α

β
ξ̇)

=
α

β
(ξ − x? − x+ x?)>ξ̇ + (Cε(z)− x?)>U(x)

=
α

β
(ξ − x)>ξ̇ + (x− x?)>U(x).

Substituting in ξ̇ = β(x− ξ), we have,

V̇ (ξ, z) = −αβ−2‖ξ̇‖22 + (x− x?)>U(x) (52)

≤ −αβ−2‖ξ̇‖22 ≤ 0,

where we have used x? is a mere VSS. Observe that V̇ (ξ, z) = 0
only if ξ̇ = 0 ⇐⇒ x = ξ. By the Legendre theorem [52], ψpε

?

is coercive, which implies V (ξ, z) is coercive (radially unbounded)
on Rn × Rn and hence all of its sublevel sets are compact. Let
Dc = {(ξ, z) ∈ Rn×Rn|V (ξ, z) ≤ c} be a compact sublevel set for
some c > 0. Consider E = {(ξ, z) ∈ Dc|V̇ (ξ, z) = 0} = {(ξ, z) ∈
Dc|ξ = x = Cε(z)}. Let (ξ(t), z(t)) be some solution starting in E ,
then ξ = x = Cε(z) =⇒ ξ̇ = ẋ = JCε(z)ż =⇒ 0 = JCε(z)ż.
By Legendre theorem and the C2 assumption, JCε(z) exists and is
invertible, therefore ż = JCε(z)

−10 = 0. This means the largest
invariant set contained in E is S = {(ξ, z) ∈ E|ż = 0}. By LaSalle’s
invariance principle [42, Theorem 3.3], any solution starting from Dc
converges to S as t→∞. On S, ż = 0 =⇒ U(x) = U(Cε(z)) =
0, which means x = Cε(z) converges to some interior NE (which
we may denote as x?, since x? is arbitrary), which by assumption
is a globally mere VSS. Global convergence follows from coercivity
of V (ξ, z).

(ii) Suppose instead Ωp is compact for all players p. Let xω

be an ω-limit point of x(t) = Cε(z(t)) of MD2. Since x(t) is
bounded for all t ≥ 0, the existence of xω follows from Bolzano-
Weierstrass theorem. Suppose that xω is not a globally mere VSS x?.
Take Oω be an open ball around xω . By definition, there exists a
sequence {x(tk)}k∈N, x(tk) ∈ Oω , converging towards xω , where
{tk}k∈N is an increasing sequence of times. Following the technique
in [19], we wish to build an auxiliary sequence in Oω and show
that V is unbounded below along this sequence, thereby obtaining a
contradiction.

First, note that since ϑp is ρ-strongly convex, ψpε := εϑp is ερ-
strong convex, and hence by the conjugate correspondence theorem
[48, Theorem 5.26], ψpε

? is (ερ)−1-smooth, i.e., Cpε = ∇ψpε
? is

(ερ)−1-Lipschitz. Let τ > 0 be a time increment, then, by z(tk +

τ)−z(tk) =
∫ tk+τ
tk

ż(s)ds = γ
∫ tk+τ
tk

U(x(s))−α(x(s)−ξ(s))ds,

we have,

‖x(tk + τ)− x(tk)‖ = ‖Cε(z(tk + τ)− Cε(z(tk))‖ (53)

≤ (ερ)−1‖z(tk + τ)− z(tk)‖? (54)

≤ (ερ)−1γ‖ ∫ tk+τ
tk

U(x(s))− α(x(s)− ξ(s))ds‖? (55)

≤ (ερ)−1γ ∫ tk+τ
tk

‖U(x(s)‖? + α‖x(s)− ξ(s)‖?ds (56)

≤ (ερ)−1τγmax
x∈Ω

(‖U(x)‖? + α‖x(s)− ξ(s)‖?) ≤ b(τ), (57)

where b(τ) is a τ -dependent upper-bound. Let Bτ (x(tk)) = {x ∈
Ω|‖x− x(tk)‖ ≤ b(τ), x(tk) ∈ Oω} be a ball around x(tk). Since
Oω is open, therefore there exists some δ > 0, such that Bτ (x(tk)) ⊆
Oω for all τ ∈ [0, δ] and hence x(tk + τ) ∈ Oω .

Integrating (52), we have,

V (ξ(t), z(t)) = V0 − ∫ t0 α‖x− ξ‖22 + (x− x?)>U(x)dτ, (58)

where V0 := V (ξ(0), z(0)) is some constant. Since x? is assumed to
be a globally mere VSS, therefore (x−x?)>U(x) ≤ 0, ∀x. Tossing
out (x− x?)>U(x) ≤ 0, ∀x, (58), we obtain,

V (ξ(t), z(t)) ≤ V0 − ∫ t0 α‖x(τ)− ξ(τ)‖22dτ.

Expressing this inequality in terms of the sequence {x(tk)}k∈N and
{ξ(tk)}k∈N, −‖x(τ)− ξ(τ)‖2 ≤ 0, and using the δ which we have
previous found, we have,

V (ξ(tk + δ), z(tk + δ)) ≤ V0 −
∑k
`=1 ∫

t`+δ
t`

α‖x(τ)− ξ(τ)‖22dτ

for some k. Since Ω is compact, x is continuous, ξ is a continuous
function of x (15), and ξ is not eventually identically equal to x
(otherwise, using the rest point condition for MD2 (14) with our
assumption that all interior NE are globally mere, we arrive at xω =
x? hence a contradiction), ‖x − ξ‖22 achieves a lower-bound on an
interval [t`, t` + δ]. Let c = max{l > 0|‖x(τ) − ξ(τ)‖22 > l, τ ∈
[t`, t` + δ], ` = 1, . . . , k}. This means,

V (ξ(tk + δ), z(tk + δ)) ≤ V0 −
∑k
`=1 ∫

t`+δ
t`

αcdτ ≤ V0 − αcδk,

which shows that V is unbounded below as k →∞, a contradiction.

Lemma 4. Suppose ϑp : Rnp → R∪{∞} satisfies Assumption 3(i)
or (ii). Let h =

∑
p∈N ϑp, xp? ∈ dom(ϑp), xp ∈ dom(∂ϑp), zp ∈

∂ψpε (xp), ψpε = εϑp, ∀p, then,

Dh(x?, x) = ε−1∑
p∈N ψpε (xp?)−ψpε

?
(zp)−zp>xp?, (59)

where x? = (xp?)p∈N , x = (xp)p∈N .

Proof. (Proof of Lemma 4) By definition,

Dh(x?, x) =
∑
p∈N ϑp(xp?)− ϑp(xp)− ε−1zp>(xp?− xp) (60)

=
∑
p∈N ϑp(xp?) + ϑp?(ε−1zp)− ε−1zp>xp? (61)

= ε−1∑
p∈N εϑp(xp?) + εϑp?(ε−1zp)− zp>xp? (62)

= ε−1∑
p∈N ψpε (xp?) + ψpε

?
(zp)− zp>xp?, (63)

where we used ψpε (xp?) = εϑp(xp?), zp ∈ ∂ψpε (xp) =
ε∂ϑp(xp), ψpε

?
(zp) = εϑp?(ε−1zp), xp ∈ ∂ψpε

?
(zp). We note

that ψpε
?
(zp) = εϑp?(ε−1zp) follows from the conjugate property

εϑp(xp)⇐⇒ εϑp?(ε−1zp) [48, p. 93].

Proof. (Proof of Theorem 2) Consider the following Lyapunov
function,

V (ξ,z,γ)=
αγ

2β
‖ξ − x?‖22+

∑
p∈N ψpε (xp?)− zp>xp?+ψp?ε (zp),
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Then taking the time-derivative of V (ξ, z, γ) along MD2γ, and using
∇ψpε

?
= Cpε , xp = Cpε (zp), ż = U(x)− γαβ−1ξ̇, we have,

V̇ (ξ, z, γ) =
αγ̇

2β
‖ξ−x?‖22+

αγ

β
(ξ − x?)>ξ̇+(Cε(z)−x?)>ż

=
αγ̇

2β
‖ξ−x?‖22+

αγ

β
(ξ−x?−x+x?)>ξ̇+(x−x?)>U(x)

=
−αηγ
2βε

‖ξ − x?‖22 −
αγ

β2
‖ξ̇‖22 + (x− x?)>U(x)

≤ −αηγ
2βε

‖ξ − x?‖22 + (x− x?)>U(x)

≤ −αηγ
2βε

‖ξ − x?‖22 − η(Dh(x?, x) +Dh(x, x?))

≤ −αηγ
2βε

‖ξ − x?‖22 − ηDh(x?, x)

=−ηε−1(
αγ

2β
‖ξ − x?‖22 +

∑
p∈N ψpε (xp?)−ψpε

?
(zp)−zp>xp?)

= −ηε−1V (ξ, z, γ), (64)

where we have used Dh(x?, x) = ε−1∑
p∈N ψpε (xp?)−ψpε

?
(zp)−

zp>xp?), ∀x = Cε(z), z ∈ C−1
ε (x) (Lemma 4). (64) implies

V (ξ, z, γ) ≤ e−ηε
−1tV (ξ0, z0, γ0). Substituting in the exact ex-

pression for V (ξ, z, γ) and V (ξ0, z0, γ0), then rearranging the re-
sulting expression, we obtain (21). (22) follows from Dh(x?, x) ≥
2−1ρ‖x? − x‖22 whenever ϑp is ρ-strongly convex.

Proof. (Proof of Theorem 3) Without loss of generality, let γ =
1. Let yp ∈ Ωp be an arbitrary strategy. Since Up(yp;x−p(t))
is concave in yp, Up(yp;x−p(t)) ≤ Up(xp(t);x−p(t)) +
∇xpUp(xp(t);x−p(t))>(yp − xp(t)) = Up(xp(t);x−p(t)) +
Up(x)>(yp − xp(t)), ∀t ≥ 0, therefore, the integral term of (23),
can be written as (suppressing time-index for brevity),∫ t

0 U
p(yp;x−p)− Up(x)dτ ≤

∫ t
0 (yp − xp)>Up(x)dτ, (65)

Next, define,

Q p(t) := ψpε
?
(zp(t))− yp>zp(t) +

α

β
(
1

2
‖ξp(t)‖22 − yp

>
ξp(t)).

(66)
Taking the time-derivative of Q p along the solutions of MD2 and
using ∇ψpε

?
= Cpε , xp = Cpε (zp), żp = Up(x)− β−1αξ̇p, yields,

Q̇ p(t)=∇ψpε
?
(zp)>żp−yp>żp +

α

β
(ξp
>
ξ̇p−yp>ξ̇p) (67)

= Cpε (zp)>żp − yp>żp +
α

β
(ξp
>
ξ̇p − yp>ξ̇p) (68)

= (xp − yp)>żp +
α

β
(ξp − yp)>ξ̇p (69)

= (xp−yp)>(Up(x)−α
β
ξ̇p) +

α

β
(ξp−yp)>ξ̇p (70)

= (xp − yp)>Up(x) +
α

β
(−xp + ξp)>ξ̇p (71)

= (xp − yp)>Up(x)− α

β2
‖ξ̇p‖22. (72)

Carrying on from (65) and using (72), we have,∫ t
0 U

p(yp;x−p)− Up(x)dτ =
∫ t
0 −Q̇ p(τ)− α

β2
‖ξ̇p‖22dτ (73)

≤ Q p(0)− Q p(t). (74)

Applying Fenchel’s inequality [52] to the function Q p, we obtain,
Q p(t) ≥ −ψpε (yp)− α

2β
‖yp‖22. Hence Q p(0)− Q p(t) ≤ Q p(0) +

ψpε (yp) +
α

2β
‖yp‖22, where Q p(0) is some finite constant (due to

Lemma 3(i)). Therefore we obtain the following inequality,∫ t
0U

p(yp;x−p)−Up(x)dτ ≤Q p(0)+ψpε (yp)+
α

2β
‖yp‖22. (75)

Plugging into (75) the definition of regret, we obtain,

R p(t) = max
yp∈Ωp

t−1 ∫ t
0 U

p(yp;x−p(τ))− Up(x(τ))dτ

≤ max
yp∈Ωp

t−1(Q p(0) + ψpε (yp) +
α

2β
‖yp‖22). (76)

Since Ωp is assumed to be compact, and the numerator is continuous
on all of Ωp, therefore by Weierstrass theorem [48, Theorem 2.12]
a maximum is achieved. Taking the limsup yields the desired result.
When α = 0, this proof recovers no-regret bound of MD [21].

Proof. (Proof of Proposition 2) By Lemma 3(ii), xp = Cpε (zp) =
∇ψpε

?
(zp), therefore xp ∈ ∂ψpε

?
(zp). Using the fact that ∂ψpε is the

inverse map of ∂ψpε
?, for all xp ∈ dom(∂ψp?ε ) = rint(Ωp),

zp ∈ ∂ψpε (xp)={∇ψpε (xp)}+NΩp(xp), (77)

From (77), we can write zp = ∇ψpε (xp) +np(xp) where np(xp) ∈
NΩp(xp). Plugging this expression into (25), we have,{
ξ̇p ∈ β(xp − ξp)

ẋp ∈ γ∇2ψpε
?
(∇ψpε (xp)+np(xp))(Up(x)−α(xp−ξp)).

(78)

To reduce (78) from a set of differential inclusions to a set of
ODEs, we will show, for all xp ∈ rint(Ωp),

∇2ψpε
?
(∇ψpε (xp) + np(xp)) = ∇2ψpε

?
(∇ψpε (xp)). (79)

Indeed, xp ∈ ∂ψp?ε (zp) ⇐⇒ zp ∈ ∂ψpε (xp)
(77)⇐⇒ ∇ψpε (xp) +

np(xp) ∈ ∂ψpε (xp). The last equation, ∇ψpε (xp) + np(xp) ∈
∂ψpε (xp) means, ∀yp ∈ Ωp ψpε (yp) ≥ ψpε (xp) + (∇ψpε (xp) +
np(xp))>(yp − xp). Since np(xp) ∈ NΩp(xp), therefore
np(xp)>(yp − xp) ≤ 0, hence it is also true that ψpε (yp) ≥
ψpε (xp) + ∇ψpε (xp)>(yp − xp) or equivalently, ∇ψpε (xp) ∈
∂ψpε (xp), or ∂ψp?ε (∇ψpε (xp)) = ∂ψp?ε (∂ψpε (xp)). Hence by re-
substituting in (77) and using the single-valuedness of ∂ψp?ε , we
obtain, ∇ψpε

?
(∇ψpε (xp)+np(xp)) = ∇ψpε

?
(∇ψpε (xp)). Taking the

Jacobian of the preceding equality yields our desired result.

The proof of Theorem 4 requires the following definitions from
[54]–[56]. Recall that a semiflow Φ on a metric space (M, d) is a
continuous map Φ : T × M → M, (t, x) 7→ Φ(t, x) = Φt(x),
where T = R≥0, such that, Φ0 = Id and Φt+s = Φt ◦ Φs, for
all (t, s) ∈ R≥0 × R≥0. If T = R, then Φ defines a flow. We
say that a continuous function f : R>0 → M is an asymptotic
pseudotrajectory of Φ if lim

t→∞
sup0≤h≤T d(f(t+h),Φh(f(t))) = 0

for any T > 0. A set A ⊂M is positively invariant if Φt(A) ⊂ A
for all t ≥ 0 and invariant if Φt(A) = A for all t ∈ T.

Proof. (Proof of Theorem 4) For simplicity, we assume that all
constants associated with MD2 are set to 1. We break up our proof
into the following steps:

1) We first need to show that DA2 is the stochastic approximation
of MD2.

Rearranging the Zpk update for DA2,
Zpk+1 − Z

p
k

tk+1
= Ûpk+1 =

Up(Xk) + ζpk+1 and taking the expectation with respect to the
filtration Fk = σ(Ξ0, Z0, ζ0, . . . , ζk) yields,

E(
Zpk+1 − Z

p
k

tk+1
|Fk) = E(Up(Xk) + ζpk+1 − (Xp

k − Ξpk)|Fk),

(80)
Since E(Up(Xk)|Fk) = Up(Xk) − (Xp

k − Ξpk) and
E(ζpk+1|Fk) = 0 by Assumption 6, therefore,

E(
Zpk+1 − Z

p
k

tk+1
|Fk) = Up(Xk)− (Xp

k − Ξpk), (81)

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3291953

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



15

And similarly for Ξpk+1, we have,

E(
Ξpk+1 − Ξpk

τk+1
|Fk) = Xp

k − Ξpk, (82)

which shows that MD2 is the mean ODE of DA2.
2) Next, we need to build interpolated processes for Zk and Ξk and

show that the interpolated processes converge to a rest point of
MD2. The full construction process is provided as follows: let
{`k}k∈N be a sequence such that,

`0 = 0 `k =
∑k
i=1 ti, k ≥ 1, (83)

and define the interpolated process,

Zp(`k + s) = Zpk + s
Z
p
k+1
−Zp

k
`k+1−`k

, (84)

where 0 ≤ s < tk+1. Similarly, let {`′k}k∈N be a sequence
such that,

`′0 = 0 `′k =
∑k
i=1 τi, k ≥ 1, (85)

and define the interpolated process associated with Ξp as,

Ξp(`′k + s′) = Ξpk + s′
Ξ
p
k+1
−Ξ

p
k

`′
k+1
−`′
k
, (86)

where 0 ≤ s′ < τk+1.
3) Let Zp : R≥0 → Rnp and Ξp : R≥0 → Rnp denote

the continuous functions (as functions of s, s′ respectively)
associated with the above processes and let Z = (Zp)p∈N ,Ξ =
(Ξp)p∈N be the stacked-vector of all the individual interpolated
processes.

4) Next, define the overall process,

W : R≥0 → R2n W = (Ξ, Z), (87)

Define the interpolated process W . By Proposition 4.1 and
Proposition 4.2 of [54], under Assumption 5 - 8 W is an
asymptotic pseudo-trajectory of the semiflow Φ : R≥0×R2n →
R2n induced by ω̇ = F (ω) (39), that is,

limt→∞ sup0≤h≤T ‖W (t+ h)− Φ(h,W (t))‖2 = 0, (88)

for any T > 0.
5) By Assumption 7, W has compact closure, i.e., is pre-compact.

Since we have shown that W is a pre-compact APT of Φ induced
by ω̇, by [54, Theorem 5.7(i)] the limit set

L(W ) =
⋂
t≥0 cl(W ([t,∞))), (89)

is internally chain transitive, which by [54, Prop 5.3], L(W ) is
a compact invariant set.

6) Recall that V : R2n → R was used as the Lyapunov function
associated with ω̇ = F (ω) in Theorem 1. Consider the set of
critical points of V , E = {(ξ, z) ∈ R2n|V̇ = 0} = {(ξ, z) ∈
Rn × Rn|ξ = x = C(z)}. By the arguments in the proof of
Theorem 1, since V (ξ′, z′) < V (ξ, z) for all (ξ, z) ∈ R2n\E ,
(ξ′, z′) = Φ(t, (ξ, z)) and V (ξ′, z′) ≤ V (ξ, z) for all (ξ, z) ∈
E , (ξ′, z′) = Φ(t, (ξ, z)), therefore V is a Lyapunov function
for E [55].

7) Since V (ξ, z) is a Lyapunov function for E ⊂ R2n, and V (E)
is a constant, which implies int(V (E)) = ∅, therefore by [55,
Prop. 3.27], L(W ) is contained in E . By our assumption that
every NE is a mere VSS, hence every point in E corresponds to
an interior mere VSS and L(W ) ⊂ E , therefore L(W ) contains
a compact subset of the rest points of ω̇.

8) By the definition of a limit set, for any W (0), the interpolated
process W (t) converges as t→∞.

9) From our construction of the interpolated process and the dimin-

ishing step-size assumption, i.e., 0 ≤ s < τk+1, 0 ≤ s′ < tk+1

and limk→∞ tk = limk→∞ τk = 0, the convergence of the
interpolated processes Ξ and Z implies the convergence of Ξk,
Zk respectively.

10) By continuity of Cε, it follows that Xk = Cε(Zk) converges
almost surely an interior mere VSS x?.
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V. Bilò and M. Flammini, Eds. Cham, Switzerland: Springer, pp. 252–263, 2017.

[24] A. Kannan and U. V. Shanbhag, “Distributed Computation of Equilibria in Mono-
tone Nash Games via Iterative Regularization Techniques”, SIAM J. on Optimization,
vol. 22, no. 4, pp. 1177-1205, 2012.

[25] J. Koshal, A. Nedich, and U. V. Shanbhag, “Regularized iterative stochastic
approximation methods for stochastic variational inequality problems,” IEEE TAC,
vol. 58, pp. 594–609, 2013.

[26] D. Gadjov and L. Pavel, “On the exact convergence to Nash equilibrium in
monotone regimes under partial-information,” IEEE CDC, 2020, pp. 2297-2302.

[27] B. Gao and L. Pavel, “On Passivity, Reinforcement Learning and Higher-Order
Learning in Multi-Agent Finite Games”, IEEE TAC, vol. 66, no. 1, pp. 121-136,
2021.

[28] B. Gao and L. Pavel, ”Continuous-Time Discounted Mirror Descent Dynamics in
Monotone Concave Games,” in IEEE TAC, vol. 66, no. 11, pp. 5451-5458, 2021.

[29] B. Gao and L. Pavel, “Continuous-Time Convergence Rates in Potential and
Monotone Games,” SIAM Journal on Control and Optimization, vol. 60, no. 3,
pp. 1712–1731, 2022.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3291953

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



16

[30] M. Sylvestre and L. Pavel, “Q-Learning with Side Information in Multi-Agent
Finite Games,” in Proc. of the 58th IEEE Conf. on Decision and Control, 2019.

[31] S. Amari, Information Geometry and Its Applications. Springer Japan, 2016.
[32] B. T. Polyak, “Some methods of speeding up the convergence of iteration methods,”

USSR Comp. Math. and Math. Phy., vol. 4, no. 5, pp. 1-17, 1964.
[33] R. Laraki and P. Mertikopoulos, “Higher order game dynamics”, Journal of

Economic Theory, vol. 148, no. 6, pp. 2666-2695, 2013.
[34] S. D. Flam and J. Morgan, “Newtonian mechanics and Nash play,” International

Game Theory Review, vol. 6, no. 2, pp. 181-194, 2004.
[35] G. Arslan and J. S. Shamma, “Anticipatory learning in general evolutionary games,”

Proceedings of the 45th IEEE CDC, pp. 6289-6294, 2002.
[36] A. Nagurney and D. Zhang, “Projected dynamical systems in the formulation,

stability analysis, and computation of fixed-demand traffic network equilibria,”
Transp. Sci., vol. 31, no. 2, pp. 147-158, 1997.

[37] J. M. Smith and G. R. Price, “The logic of animal conflict,” Nature, vol. 246, no.
5427, pp. 15–18, 1973.

[38] J. M. Smith, Evolution and the Theory of Games. Cambridge, U.K.: Cambridge
Univ. Press, 1982.

[39] H. Attouch, Z. Chbani, J. Fadili and H. Riahi, “First-order optimization algorithms
via inertial systems with Hessian driven damping,” Mathematical Programming, pp.
1-43, 2020.

[40] I. M. J. Sutskever, G. Dahl, and G. Hinton, “On the importance of initialization
and momentum in deep learning,” in Proc. ICML, pp. 1139-1147, 2013.

[41] A. Krogh and J. A. Hertz, “A simple weight decay can improve generalization”,
in Proc. NIPS, 1992.

[42] W. Haddad and V. Chellaboina, Nonlinear Dynamical Systems and Control.
Princeton: Princeton University Press, 2011.

[43] C. De Persis and S. Grammatico, “Continuous-time integral dynamics for a class
of aggregative games with coupling constraints,” IEEE TAC, vol. 65, pp. 2171-2176,
2020.

[44] S. Sorin and C. Wan, “Finite composite games: Equilibria and dynamics,” Journal
of Dynamics & Games, vol. 3, p. 101, 2016.

[45] T. Tatarenko and M. Kamgarpour, “Learning Nash Equilibria in Monotone Games,”
In Proc. IEEE Conf. Decision and Control, pp. 3104-3109, 2019.

[46] P. Mertikopoulos, H. Zenati, B. Lecouat, C.-S. Foo, V. Chandrasekhar, and G.
Piliouras, “Mirror descent in saddle-point problems: Going the extra (gradient) mile,”
ICLR 2019, pp. 1-23 2019.

[47] E. Mazumdar, L. Ratliff and S. Sastry, “On Gradient-Based Learning in Continuous
Games,” SIMODS, vol. 2, no. 1, pp. 103-131, 2020.

[48] A. Beck, First-Order Methods in Optimization, 1st ed. SIAM, 2017.
[49] T. Başar, G. Olsder, Dynamic noncooperative game theory. SIAM, 1999.
[50] F. Facchinei and J.-S. Pang, Finite-dimensional Variational Inequalities and Com-

plementarity Problems. Vol.I & II, Springer-Verlag, NY, 2003.
[51] J. Rosen, “Existence and Uniqueness of Equilibrium Points for Concave N-Person

Games”, Econometrica, vol. 33, no. 3, p. 520, 1965.
[52] J. M. Borwein, H. H. Bauschke, “Legendre functions and the method of random

Bregman projections,” J. of Convex Analysis, vol. 4, pp. 27-67, 1997.
[53] C. Daskalakis, A. Ilyas, V. Syrgkanis and H. Zeng, “Training GANs with Opti-

mism”, In Proc. 6th Int. Conf. on Learning Representation, 2018.
[54] M. Benaim, “Dynamics of stochastic approximation algorithms,” in Séminaire de
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