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Abstract—The goal of this paper is to investigate under
what conditions a Boolean Control Network admits a state
feedback control law that makes the resulting Boolean Network
reconstructable. Starting from an algebraic representation of the
Boolean Control Network, we first propose a result that allows to
significantly reduce the problem size, and hence to mitigate the
curse of dimensionality that typically arises when dealing with
logical systems of very large size. Subsequently, we provide a
necessary and sufficient condition for the problem solvability that
relies on the algebra of noncommutative polynomials. Finally,
when such a condition holds, we present a procedure to design a
possible state feedback controller that achieves the desired result.

I. INTRODUCTION

The last 15 years have witnessed a surge of interest in
Boolean Control Networks (BCNs), motivated by the large
number of application areas where such networks represent
effective modelling tools. This is the case when it is important
to highlight the logical relationships among the describing
variables, rather than predicting their numerical values. In
addition, functional modelling can be a preliminary modelling
phase, or the only meaningful description one may search for,
based on the limited information available. BCNs have been
successfully applied to different fields, such as biology [25],
[28], smart homes [15], multi-agent systems and consensus
problems [13], [21], or game theory [4], [26]. However, the
application area where they proved to be more effective is
represented by gene regulatory networks [16], [24]. Genes
behave as binary devices whose status can be active or inactive,
and their time evolutions are mutually related by logical
relationships, that formalise activation/inhibition processes.

The algebraic approach to Boolean Control Networks pro-
posed by D. Cheng and co-authors [2], [5], [6], [7] has
offered a very successful tool to formalise and solve control
problems in the context of logical networks. Indeed, the
semitensor product of matrices allows to represent BCNs as
state space models whose describing variables are canonical
vectors. In this way, classical concepts and methods developed
for linear time invariant state-space models have been tailored
to BCNs, thus leading to matrix based characterizations for a
number of properties and control problems, such as stability,
stabilizability, controllability [8], [10], [18], [19], disturbance
decoupling [3], [23], observability and reconstructability [9],
[27], [29], fault detection [12], [31], and optimal control [11],
[17], [32].
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As in classical Systems Theory, reconstructability is the
property of a system to reveal its current status provided that
the input acting on the system (if any) and the corresponding
output evolution have been measured over a sufficiently large
time window. This property, which is a weaker requirement
with respect to observability, often represents a mandatory
feature for a logical network and provides a clear indication
of how well the output measurements have been chosen.
Indeed, for the correct functioning of a BCN (of a BN)
it is of fundamental importance to be able to deduce the
internal logical status from the input and output (the output)
measurements. This is quite intuitive if one thinks of fault
detection problems, since output measurements are typically
used to detect and identify system failures. Indeed, in [12] the
connection between reconstructability and the solvability of
fault detection problems has been explored. Furthermore, in
biological and medical applications, being able to reconstruct
the internal state of the system from its external behaviour
means to be able to perform a correct diagnosis by making
use of the testing input and the corresponding output
measurements. In particular, when a BN models a gene
regulatory netrwork, the possibility of reconstructing the
state of the BN from the output measurements means to be
able to understand if the gene regulatory network is in a
healthy situation or not. For instance, detecting the level of an
oxidative stress response from output measurements allows to
prevent major side effects as cancer, cardiovascular disease,
chronic inflammation, and neurodegenerative disorders [25].
The goal of this paper is to investigate under what conditions,
given a BCN, it is possible to design a state feedback control
law such that the resulting BN is reconstructable. To this
end, we first propose, in Section III, a result that allows to
significantly reduce the problem size, and hence to mitigate
the curse of dimensionality that typically arises when dealing
with logical systems of very large size. Subsequently, in
Section IV, we provide a necessary and sufficient condition
for the problem solvability that relies on the algebra of
noncommutative polynomials. Finally, in Section V, when
such a condition holds, we present a procedure to design a
state feedback controller that achieves the desired result.
Note that there is no contradiction in designing a state
feedback law, which suggests that the state is accessible,
with the goal of making the resulting system reconstructable
(which allows to rely on the output measurements to deduce
its state). First of all, the system state may be accessible
during the design phase, but it may be advisable that the
end-users have no access to it, and yet they can deduce
its evolution from external measurements. This is the case
for several electronic devices and in particular biomedical
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wearable devices. Secondly, as clearly discussed in the
sequel, when dealing with BCNs a state feedback law can
be implemented by simply designing offline the controlled
BN, without resorting to real time measurements of the
state variables at each time instant. Moreover, the proposed
feedback control law does not aim at reducing the degrees of
freedom of the BCN, by converting it into a BN, in order
to guarantee reconstructability. Rather, the idea is to apply
the feedback law on a finite time interval to reconstruct the
system state (a sort of “preliminary off-line procedure”) and
then leave the BCN evolve according to its standard operating
conditions, meanwhile keeping track of the internal state
evolution.

Notation. Z+ denotes the set of nonnegative integers. Given
two integers k, n ∈ Z+, with k ≤ n, we denote by [k, n] the
set of integers {k, k+1, . . . , n}. We consider Boolean vectors
and matrices, taking values in B := {0, 1}, with the usual
Boolean operations.
δik denotes the ith canonical vector of size k (namely

the ith column of the identity matrix Ik), Lk the set of
all k-dimensional canonical vectors, and Lk×n ⊂ Bk×n
the set of all k × n logical matrices, i.e., matrices whose
columns are canonical vectors of size k. Any logical matrix
L ∈ Lk×n can be represented as L =

[
δi1k δi2k . . . δink

]
,

for suitable indices i1, i2, . . . , in ∈ [1, k]. The k-dimensional
vector with all entries equal to 1 is denoted by 1k. We denote
by blkdg{F1, F2, . . . , Fk} the square block diagonal matrix
having the square matrices F1, F2, . . . , Fk as diagonal blocks.

Given a Boolean matrix L ∈ Bk×k (in particular, a logic
matrix L ∈ Lk×k), its (`, j)th entry is denoted by [L]`j , its
ith column by coli(L), and its nonzero pattern by

ZP (L) := {(i, j) ∈ [1, k]× [1, k] : [L]ij = 1}.

A Boolean matrix L ∈ Bk×k is irreducible [14] if either k = 1
or k > 1 and no k × k permutation matrix P can be found
such that

P>LP =

[
L11 0
L21 L22

]
,

where L11 and L22 are square matrices.
We associate [1] with the matrix L a directed graph (digraph)
D(L) = (V, E), with V = {1, . . . , k} the set of vertices and E
the set of arcs (edges). There is an arc (j, `) from j to ` if and
only if (`, j) ∈ ZP (L). A sequence j1 → j2 → · · · → jr →
jr+1 in D(L) is a path of length r from j1 to jr+1 provided
that (j1, j2), . . . , (jr, jr+1) are arcs of D(L). A closed path is
a cycle. In particular, a cycle γ with no repeated vertices is
called elementary, and its length |γ| coincides with the number
of its (distinct) vertices.
Two distinct vertices h and k are said to communicate if
there is a path from h to k and conversely. Each vertex is
assumed to communicate with itself. The concept of com-
municating vertices allows to partition the set of vertices
V into communication classes. A communication class is a
maximal set of vertices that communicate with each other.
Communication classes with no outgoing arcs are called final.
A digraph is strongly connected if it consists of a single

communication class. D(L) is strongly connected if and only
if L is irreducible.

There is a bijective correspondence between Boolean vari-
ables X ∈ B and vectors x ∈ L2, defined by the relationship
x =

[
X X̄

]>
, where X̄ is the negation of X . We introduce

the (left) semi-tensor product n between matrices (in particu-
lar, vectors) as follows [7], [18], [20]: given L1 ∈ Br1×c1 and
L2 ∈ Br2×c2 , we set

L1nL2 := (L1⊗IT/c1)(L2⊗IT/r2), T := l.c.m.{c1, r2},

where l.c.m. denotes the least common multiple. The semi-
tensor product represents an extension of the standard matrix
product, by this meaning that if c1 = r2, then L1nL2 = L1L2.
Note that if x1 ∈ Lr1 and x2 ∈ Lr2 , then x1 n x2 ∈
Lr1r2 . For the various properties of the semi-tensor product
we refer to [7]. By resorting to the semi-tensor product,
we can extend the previous correspondence to a bijective
correspondence between Bn and L2n , by mapping the vector
X =

[
X1 X2 . . . Xn

]> ∈ Bn into

x :=

[
X1

X̄1

]
n
[
X2

X̄2

]
n · · ·n

[
Xn

X̄n

]
.

We let Φ denote the power-reducing matrix, i.e., the matrix of
suitable size such that Φx(t) = x(t) n x(t).

Finally, we need some definitions borrowed from the
algebra of noncommutative polynomials [22]. Given the
alphabet Ξ = {ξ1, ξ2, . . . , ξP }, we denote by Ξ∗ the set of
all words w = ξikξik−1

. . . ξi1 , k ∈ Z+, ξih ∈ Ξ (including the
empty word ε = ∅). The integer k is called the length of w
and is denoted by |w|. Note that |ε| = 0.
If w̃ = ξjmξjm−1

. . . ξj1 is another element of Ξ∗,
the product ww̃ is defined by concatenation as
ξikξik−1

. . . ξi1ξjmξjm−1 · · · ξj1 . This induces in Ξ∗

the monoid structure, with ε as unit element. Clearly,
|ww̃| = |w|+ |w̃|. B〈ξ1, ξ2, . . . , ξP 〉 is the set of polynomials
with Boolean coefficients, in the noncommutative variables
ξ1, ξ2, . . . , ξP . Given a word w ∈ Ξ∗ of length k, say
w = ξikξik−1

. . . ξi1 , the cyclic permutation of one step of w,
σw, is σw = ξi1ξikξik−1

. . . ξi2 . The extension to the concept
of cyclic permutation of d steps, with d ∈ Z+, is immediate.

II. PROBLEM STATEMENT AND PRELIMINARY ANALYSIS

By a Boolean control network we mean a state-space model
described as follows

X(t+ 1) = f(X(t), U(t)), t ∈ Z+, (1)
Y (t) = h(X(t)), (2)

where X(t), U(t) and Y (t) are the n-dimensional state vari-
able, the m-dimensional input and the p-dimensional output
at time t, taking values in Bn, Bm, and Bp, respectively.
The logic function f maps pairs of Boolean vectors into a
Boolean vector, that is f : Bn × Bm → Bn. Similarly, h
is a logic function from Bn to Bp. Once we represent state,
input and output Boolean variables by means of canonical
vectors belonging to LN , N := 2n, LM , M := 2m, and
LP , P := 2p, respectively, by making use of the semi-tensor
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product n we can represent the BCN (1)-(2) by means of its
algebraic description [7]:

x(t+ 1) = Ln u(t) n x(t), t ∈ Z+, (3)
y(t) = Hx(t), (4)

where x(t) ∈ LN , u(t) ∈ LM and y(t) ∈ LP . The matrix
L ∈ LN×NM , whose columns are canonical vectors of size
N , can be split into M square blocks of size N :

L =
[
L1 L2 . . . LM

]
.

Each matrix Li ∈ LN×N describes the behavior of the
Boolean network (BN) (the ith subsystem of the BCN)

x(t+ 1) = Lix(t), t ∈ Z+, (5)

one gets when u(t) = δiM , for every t ∈ Z+. Note that
everything we will say in the following applies to BCNs (3)-
(4) for which N,M and P are arbitrary nonnegative integers
and not necessarily powers of 2.

The problem we address in this paper is the following one:

Feedback Reconstructabillity (FR) Problem: Given a
BCN (3)-(4), determine (if possible) a state feedback law

u(t) = Kx(t), (6)

such that the resulting BN:

x(t+ 1) = L̃x(t), t ∈ Z+, (7)
y(t) = Hx(t), (8)

where (see Notation for the symbol Φ)

L̃ := LnK n Φ ∈ LN×N ,

is reconstructable [9], [30], by this meaning that T ∈ Z+

can be found such that the knowledge of the output trajectory
y(t), t ∈ [0, T ], allows to uniquely determine x(T ) (and hence
x(t) for every t ≥ T ).

We preliminary notice that the effect of a state-feedback
law as in (6) is to create a BN by associating each single state
variable x = δjN with one specific input value u = δiM . As
a consequence, the state-feedback law in (3) maps the state
of the resulting BN from x = δjN to Liδ

j
N . Therefore, the

practical effect of a state-feedback is to transform a BCN into
a BN, by choosing for each state x = δjN its successor in
the set {LiδjN , i ∈ [1,M ]}. So, in a sense, a state-feedback
does not introduce new dynamics, just selects for each state a
specific state transition among those already available.
If we introduce the Boolean matrix

Ltot := L1 ∨ L2 ∨ · · · ∨ LM , (9)

it is immediate to realise that the matrices L̃ ∈ LN×N that can
be obtained via state-feedback are those and only those such
that for each index j ∈ [1, N ] the jth column of L̃, colj(L̃),
belongs to {colj(Li), i ∈ [1,M ]}, namely it coincides with
δ`N for some ` ∈ {i ∈ [1, N ] : [Ltot]ij = 1}. So, we have
proved the following result.

Proposition 1. Given a BCN described as in (3)-(4), there
exists a state feedback matrix K ∈ LM×N such that the
resulting BN is described by the state matrix L̃ ∈ LN×N
if and only if L̃ satisfies ZP (L̃) ⊆ ZP (Ltot).
If so, the matrix K can be determined as follows

K =
[
δi1M δi2M . . . δiNM

]
,

where ik ∈ [1,M ] is any index such that colk(Lik) =
colk(L̃), k ∈ [1, N ].

This analysis of the concept of state feedback for BCNs
can be alternatively expressed in graph terms. Denote by
D(Ltot) = ([1, N ], Etot) the digraph associated with Ltot. The
effect of state-feedback coincides with that of selecting for
each node only one of its outgoing arcs, and this leads to
D(L̃), that uniquely identifies the logic matrix L̃.

Another remark that will help us solving the problem
pertains the characterization of the reconstructability of a BN.
To formalise it, we introduce some notation. Every periodic
state trajectory (of period k) of the BN (7)-(8), i.e,{

x(t) = δ
it+1

N , t ∈ [0, k − 1];
x(t) = x(t− k), t ∈ [k,+∞),

can be uniquely represented by the ordered ktuple
(δi1N , δ

i2
N , . . . , δ

ik
N ). A similar notation can be adopted for peri-

odic output trajectories. The correspondence between periodic
trajectories and ktuples representing them is bijective.

Proposition 2. (Theorem 2 in [9]) The BN (7)-(8)
is reconstructable if and only if distinct periodic state
trajectories (δi1N , δ

i2
N , . . . , δ

ik
N ) (equivalently, distinct cycles

(i1, i2, . . . , ik) in D(L̃)) induce distinct periodic output se-
quences (Hδi1N , Hδ

i2
N , . . . ,Hδ

ik
N )1.

III. PROBLEM SIMPLIFICATION

When N is large, solving the FR problem for the pair
(L,H) can be quite demanding. We want to show, however,
that under certain conditions (that typically arise when dealing
with BCNs representing gene regulatory networks, whose
associated digraphs are quite sparse) the FR problem may be
significantly reduced in size. In fact, if we partition the digraph
D(Ltot) into disjoint communication classes, then the problem
of determining a state-feedback (equivalently a logical matrix
L̃ with ZP (L̃) ⊆ ZP (Ltot)) such that the resulting BN is
reconstructable can be solved by considering only the states
that belong to the final classes, namely classes devoid of
outgoing arcs.

To this end, it is convenient to introduce the following
not restrictive assumption, which is based on the fact that
every positive matrix can be brought by means of a suitable
permutation (namely by means of a suitable relabelling of

1This implies, in particular, that every periodic state trajectory of minimal
period k induces a periodic output trajectory of minimal period k.
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its row and column indices) to Frobenius (block triangular)
normal form with irreducible diagonal blocks2 [14].
Assumption 1: The matrix Ltot is block-partitioned as:

Ltot =

[
T 0
Q F

]
, (10)

where:
(i) T ∈ Bτ×τ is a lower block triangular matrix with
irreducible diagonal blocks,
(ii) F ∈ B(N−τ)×(N−τ) is a block diagonal matrix with
irreducible nonzero diagonal blocks,
(iii) for every j ∈ [1, τ ] there exist h ∈ Z+ and i ∈ [τ + 1, N ]
such that [Lhtot]ij 6= 0.
Therefore, the matrix H is accordingly block-partitioned as

H =
[
HT HF

]
, (11)

where HF ∈ LP×(N−τ).

Theorem 1. Given a BCN (3)-(4), whose matrices Ltot and
H satisfy Assumption 1, the FR problem is solvable, namely
there exists K ∈ LM×N such that the resulting BN (7)-(8) is
reconstructable, if and only if the FR problem is solvable for
the reduced BCN of size N − τ

z(t+ 1) = An u(t) n z(t), t ∈ Z+, (12)
y(t) = HF z(t) (13)

where A =
[
A1 A2 . . . AM

]
, with

Ai :=
[
0 IN−τ

]
Li

[
0

IN−τ

]
.

Proof. Necessity is obvious. As far as sufficiency is concerned,
we first observe that, under Assumption 1, the nodes of
D(Ltot) belonging to the final communication classes are
those and those only labelled by [τ + 1, N ]. On the other
hand, for each of the nodes labelled by T := [1, τ ], there is a
path from such node to a node in F := [τ + 1, N ].
For each i ∈ T , we let νi be the minimum length of any such
path, which corresponds to the minimum power k of Ltot such
that in

Lktot =

[
T k 0
Q(k) F k

]
(14)

the i-th column of the block Q(k) is nonzero.
Partition now T into the following subsets

Tr := {i ∈ T : νi = r}, (15)

and denote by r̄ the largest value of r such that Tr 6= ∅.
Consequently, T1 ∪ T2 ∪ · · · ∪ Tr̄ = T .
The following procedure shows that it is always possible to

2The Frobenius normal form is unique up to a permutation, consequently
also the form (10) is uniquely determined up to a permutation. This implies
that for any positive matrix P if we denote by[

T1 0
Q1 F1

]
and

[
T2 0
Q2 F2

]
two block triangular matrices satisfying (i)-(iii) to which P can be reduced by
means of permutations, then dimT1 = dimT2 and there exist permutation
matrices Π and Π̃ such that T2 = Π>T1Π and F2 = Π̃>F1Π̃.

determine a state feedback law that drives any state δiN , with
i ∈ T , into some state δjN , j ∈ F , in at most r̄ steps.
(1) For every node i ∈ T1, select an edge from i to some vertex
j ∈ F . This amounts to replacing in Ltot the ith column with
the canonical vector δjN (with j ∈ ZP (Ltotδ

i
N ) ∩ F).

(2) Next, for every i ∈ T2, select an edge from i to some vertex
j ∈ T1. Again, this amounts to replacing in Ltot the ith column
with the canonical vector δjN (with j ∈ ZP (Ltotδ

i
N ) ∩ T1).

(3) Similarly, for every i ∈ T3, select an edge from i to some
vertex j ∈ T2 .... and so on.

In this way we have replaced the first τ columns of Ltot
with canonical vectors in such a way that in the matrix thus
obtained

L̃tot =

[
N 0

Q̃ F

]
,

the block N is nilpotent and ZP
([
N

Q̃

])
⊆ ZP

([
T
Q

])
. It

is now clear that for every logical matrix F̃ ∈ L(N−τ)×(N−τ)

such that ZP (F̃ ) ⊆ ZP (F ), we have that in the directed
graph of the logical matrix

L̃ =

[
N 0

Q̃ F̃

]
,

all possible cycles involve only vertices of F . Consequently,
by Proposition 2, the pair (L̃,H) is reconstructable if the
pair (F̃ ,HF ) is reconstructable. But this means that the FR
problem is solvable for the original BCN if it is solvable for
the BCN that corresponds to the last N − τ entries/nodes of
the original BCN.

Example 1. Assume that N = 9 and

Ltot =



0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 1 0


=

[
T 0
Q F

]
,

H =

1 1 0 0 1 0 1 1 0
0 0 1 0 0 0 0 0 1
0 0 0 1 0 1 0 0 0

 =
[
HT HF

]
.

Note that T is lower block triangular with two irreducible
diagonal blocks of sizes 2 and 3, respectively, while F is block
diagonal with two irreducible diagonal blocks, both of size 2.
So, the pair (Ltot, H) satisfies Assumption 1. The digraph
associated with the previous matrix pair is given in Figure 1
a), where vertex i corresponds to the state δi9 and we have
represented in blue the states δi9 such that Hδi9 = δ1

3 , in green
the states δi9 such that Hδi9 = δ2

3 and in orange the states
δi9 such that Hδi9 = δ3

3 . It is easy to see that there are 4
communication classes, two transient ones: T1 = {1, 2}, T2 =
{3, 4, 5} and two final ones F1 = {6, 7} and F2 = {8, 9}.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3218617

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



1

4

2

3

5

6

7

8

9

T1

T2

F2F1

1

4

2

3

5

6

7

8

9

T1

T2

F2F1

1

4

2

3

5

6

7

8

9

T1

T2

F2F1

Fig. 1 a) Fig. 1 b) Fig. 1 c)

Fig. 1. Three digraphs associated with the three steps in Example 1: a) The first figure represents D(Ltot), b) The second figure represents D(L̃tot), c) The
third figure represents D(L̃).

By following the procedure presented in the proof of The-
orem 1, we first obtain the matrix L̃tot, that corresponds to
a subgraph of D(Ltot) where all vertices in T1 ∪ T2 do not
belong to cycles, have a single outgoing arc, and they can
reach at least one vertex in F1 ∪ F2:

L̃tot =



0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 1 0


=

[
N 0

Q̃ F

]
,

where N is nilpotent. The digraph associated to the previous
matrix is given in Figure 1 b).
Finally, for every node in F1∪F2 we select a single outgoing
edge, in order to ensure that no distinct cycles in F1 ∪ F2

correspond to the same periodic output trajectory. A possible
solution that makes the pair (L̃,H) reconstructable (see
Figure 1 c)) is

L̃ =



0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 1 0


.

IV. CHECKING PROBLEM SOLVABILITY BY MEANS OF
POLYNOMIAL MATRICES IN NONCOMMUTATIVE VARIABLES

In the previous section we have proved that in order to solve
the FR problem we can always reduce ourselves to the case
of a BCN (3)-(4), whose matrix Ltot is block diagonal with
irreducible diagonal blocks. In order to provide a necessary
and sufficient condition for the problem solvability for BCNs
satisfying this assumption, we first consider the case when
Ltot is an irreducible matrix and we assume, without loss of
generality, that the state to output matrix H takes the form

H =
[
δ1
P1
>
n1

δ2
P1
>
n2

. . . δPP 1
>
nP

]
. (16)

This means that the first n1 states generate the output δ1
P ,

the second n2 states generate the output δ2
P and so on. We

can always reduce ourselves to this situation by means of
a suitable permutation of the state variables (and possibly
deleting outputs that do not correspond to any state). Clearly,
n1 + n2 + · · ·+ nP = N and the matrices Li and hence Ltot
need to be accordingly permuted.
We now introduce the polynomial matrix in the noncommuta-
tive variables ξ1, ξ2, . . . , ξP with coefficients in B:

M(ξ1, . . . , ξP ) := Ltot blkdg{ξ1In1 , ξ2In2 , . . . , ξP InP }. (17)

This amounts to multiplying all entries in the first n1 columns
of Ltot by ξ1, the subsequent n2 columns of Ltot by ξ2, and
so on.
If we consider the generic k-th power of the matrix M , each
(i, j)-th entry of M can be expressed as the sum of words,
generically denoted by w

(`)
ij (ξ1, ξ2, . . . , ξP ) ∈ Ξ∗, each of

them of length k, i.e.,

[Mk(ξ1, ξ2, . . . , ξP )]ij =
∑
`

w
(`)
ij (ξ1, ξ2, . . . , ξP ),
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with |w(`)
ij (ξ1, ξ2, . . . , ξP )| = k for every `. The presence

of the specific word w
(`)
ij (ξ1, ξ2, . . . , ξP ) = ξikξik−1

. . . ξi1
in [Mk(ξ1, ξ2, . . . , ξP )]ij indicates that there exists a path
in D(Ltot) from the vertex j to the vertex i of length k,
(equivalently a sequence of k state transitions from δjN to δiN ),
that generates, in the order, the output values δi1P , δ

i2
P , . . . , δ

ik
P .

The following proposition provides a necessary and suffi-
cient condition for the FR problem solution, when Ltot is an
irreducible Boolean matrix.

Proposition 3. Given a BCN (3)-(4), assume that the matrix
Ltot, defined as in (9), is irreducible, and let M(ξ, ξ2, . . . , ξP )
be the associated matrix in (17).
The FR problem is solvable, namely there exists K ∈ LM×N
such that the resulting BN (7)-(8) is reconstructable, if
and only if there exist κ̄ and i both in [1, N ] such that
[M κ̄(ξ1, ξ2, . . . , ξP )]ii 6= 0 and if κ̄ ≥ 2 then one of the words
composing [M κ̄(ξ1, ξ2, . . . , ξP )]ii, say w(`)

ii (ξ1, ξ2, . . . , ξP ) =
ξiκ̄ξiκ̄−1

. . . ξi1 , satisfies

σdw
(`)
ii (ξ1, . . . , ξP ) = w

(`)
ii (ξ1, . . . , ξP )⇒ d multiple ofκ̄.

(18)

Proof. [Sufficiency] Suppose that one of the terms
of [M κ̄(ξ1, ξ2, . . . , ξP )]ii is w

(`)
ii (ξ1, ξ2, . . . , ξP ) =

ξiκ̄ξiκ̄−1
. . . ξi1 .

This implies that in D(Ltot) there is a cycle of length κ̄
(if κ̄ = 1 a self-loop), say (j1, j2, . . . , jκ̄), by this meaning
that (jh, jh+1), h ∈ [1, κ̄ − 1], and (jκ̄, j1) are all arcs in
D(Ltot). Moreover, the cycle corresponds to the periodic
state trajectory, with period κ̄ (a constant trajectory if κ̄ = 1),
(δj1N , δ

j2
N , . . . , δ

jκ̄
N ), and the corresponding output trajectory

(δi1P , δ
i2
P , . . . , δ

iκ̄
P ) is, in turn, periodic with minimal period κ̄

(by the assumption (18)).
We now proceed as follows: we preserve all arcs
(jh, jh+1), h ∈ [1, κ̄ − 1], and (jκ̄, j1) (equivalently, the
corresponding entries in Ltot) and delete all the other
outgoing arcs from the vertices in D0 := {j1, j2, . . . , jκ̄}.
Since D(Ltot) is irreducible, for every i ∈ [1, N ] \ D0 there
exists a path from i to one of the vertices in D0. We let D1

be the set of vertices i ∈ [1, N ] \D0 whose distance from D0

is 1. For each such node we preserve a single arc (i, j), with
j ∈ D0. We then consider all vertices i ∈ [1, N ] \ (D0 ∪ D1)
whose distance from D1 is 1 and denote such set by D2.
For each such node we preserve a single arc (i, j), with
j ∈ D1. By proceeding in this way we construct a subgraph
of D(Ltot) with vertices [1, N ] and a single outgoing arc for
each vertex. Moreover, the cycle (j1, j2, . . . , jκ̄) belongs to
such subgraph and it can be reached from every other node.
If we denote by L̃ the adjacency matrix of such subgraph, L̃
is logical, the only attractor of the BN with matrix L̃ is the
cycle (j1, j2, . . . , jκ̄). By assumption (18) and Proposition 2,
the pair (L̃,H) is reconstructable.

[Necessity] Suppose that there exists a logical matrix L̃ ∈
LN×N , with ZP (L̃) ⊆ ZP (Ltot), such that (L̃,H) is recon-
structable. Then there exists a cycle of some length, say κ̄ ∈
[1, N ], (j1, j2, . . . , jκ̄) in D(L̃) ⊆ D(Ltot), and if κ̄ ≥ 2 then
the corresponding output sequence (Hδj1N , Hδ

j2
N , . . . ,Hδ

jκ̄
N ) =

1

4

2

3

1

4

2

3

Fig. 2 a) Fig. 2 b)

Fig. 2. D(Ltot) (on the left) and D(L̃) (on the right) for Example 2.

(δi1P , δ
i2
P , . . . , δ

iκ̄
P ) is periodic with minimal period κ̄. But

this means that there exists i ∈ [1, N ] such that one of
the terms of [M κ̄(ξ1, ξ2, . . . , ξP )]ii is w(`)

ii (ξ1, ξ2, . . . , ξP ) =
ξiκ̄ξiκ̄−1

. . . ξi1 , and when κ̄ ≥ 2 the minimality of the period
κ̄ implies that condition (18) necessarily holds.

Example 2. Consider the matrix pair

Ltot =


0 1 0 1
1 0 0 0
0 1 0 0
1 0 1 0

 H =

[
1 1 0 0
0 0 1 1

]

that corresponds to the digraph of Fig. 2, where we have
represented in blue the states δi4 such that Hδi4 = δ1

2 , and
in orange the states δi4 such that Hδi4 = δ2

2 . Note that Ltot is
irreducible, while n1 = n2 = 2. We associate with (Ltot, H)
the matrix

M(ξ1, ξ2) =


0 ξ1 0 ξ2
ξ1 0 0 0
0 ξ1 0 0
ξ1 0 ξ2 0

 .
Clearly, all diagonal entries of M are zero, while

M2(ξ1, ξ2) =


ξ1ξ1 + ξ2ξ1 0 ξ2ξ2 0

0 ξ1ξ1 0 ξ1ξ2
ξ1ξ1 0 0 0

0 ξ2ξ1 + ξ1ξ1 0 ξ1ξ2

 .
So, it is easy to see that, for instance [M2]44 = ξ1ξ2 (and
[M2]11 includes the word ξ2ξ1). Therefore we can keep, the
cycle of length 2 in D(Ltot) (see Figure 2) involving the
vertices3 {1, 4} and retain, for instance, the edges (3, 4) and
(2, 1) to obtain a directed graph D(L̃) (see Figure 3) where
there is a single cycle of length 2 whose nodes correspond to
different outputs, so that (L̃,H) is reconstructable, where

L̃ =


0 1 0 1
0 0 0 0
0 0 0 0
1 0 1 0

 .
The previous result can be easily extended to the case of

a matrix Ltot that consists of k irreducible diagonal blocks,
namely takes the form:

Ltot = blkdg{F1, F2, . . . , Fk}, (19)

3The general procedure to deduce L̃ from Ltot will be described later in
this section.
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where each Fi ∈ Bni×ni is an irreducible Boolean matrix.
Accordingly, the matrix H can be partitioned so that H =[
H1 H2 . . . Hk

]
, where each block Hi has a number

of columns equal to ni. Subsequently, we can permute the
columns of each block Hi (and hence the corresponding
entries in Fi) based on the corresponding output values, so
that Hi has the structure (16), namely

Hi =
[
δ1
P1
>
n

(i)
1

δ2
P1
>
n

(i)
2

. . . δPP 1
>
n

(i)
P

]
.

If we now define the matrix in the noncommutative variables

M(ξ1, ξ2, . . . , ξP ) = blkdg{M (1), . . . ,M (k)} := LtotΩ, (20)

where

Ω := blkdg{Ω(1),Ω(2), . . . ,Ω(k)},
Ω(i) := blkdg{ξ1In(i)

1
, ξ2In(i)

2 ,...,ξP I
n

(i)
P

}, i ∈ [1, k],

then we easily extend the result of Proposition 3 as follows.

Theorem 2. Given a BCN (3)-(4), assume that the matrix
Ltot, defined as in (9), is described as in (19), with Fi, i ∈
[1, k], irreducible Boolean matrices, and let M(ξ1, . . . , ξP ) be
the associated matrix in (20).
The FR problem is solvable if and only if for each i ∈
[1, k] there exist κ̄i and ji in [1, ni] such that by choosing
one of the words composing [M κ̄i

i (ξ1, ξ2, . . . , ξP )]jiji , say
wi(ξ1, ξ2, . . . , ξP ) with |wi| = κ̄i, we obtain a set of k words
{w1, w2, . . . , wk} for which the following property holds: for
every `,m ∈ [1, k] and d ∈ Z+

σdw`(ξ1, . . . , ξP ) = wm(ξ1, . . . , ξP )⇒
{
d is a multiple of κ̄`

and ` = m.

Theorems 1 and 2 together provide a general answer to the
FR problem. Indeed, by Theorem 1 the problem is solvable
if and only if it is solvable for the pair (A,HF ), where the
matrices A and HF are submatrices of L and H obtained as
described in Assumption 1 and in the statement of Theorem
1. While the problem can be solved for the pair (A,HF ) if
and only if the conditions given in Theorem 2 hold.

V. DETERMINING A MATRIX K THAT SOLVES THE FR
PROBLEM

Theorem 2 gives necessary and sufficient conditions for
the problem solvability, but it does not provide an explicit
procedure to construct a feedback matrix K that solves the
problem. We want to investigate how the previous approach,
based on polynomial matrices in noncommutative variables,
can be used to obtain such a matrix K.
We assume that the matrix Ltot is irreducible, and hence refer
to the special case of Theorem 2 addressed in Proposition
3. The general situation corresponding to Theorem 2 can be
addressed according to the same logic, but it is just more
complicated.
Define κ̄ := min{h ∈ [1, N ]: ∃ i ∈ [1, N ] such that
[Mh(ξ1, ξ2, . . . , ξP )]ii 6= 0 includes a word w s.t. σdw 6=
w,∀ d ∈ [1, h− 1]}.

Case 1: If κ̄ = 1, i.e., M(ξ1, ξ2, . . . , ξP ) has a nonzero
diagonal entry, say [M(ξ1, ξ2, . . . , ξP )]ii, this means that there
exists j ∈ [1,M ] such that δiN = (LδjM )δiN = Ljδ

i
N (i.e., δiN

is an equilibrium point of the jth subsystem of the BCN).
Equivalently, there is a self-loop in D(Ltot). In this case, we
have a standard problem of state-feedback stabilisation to an
equilibrium point, and a matrix K that solves this problem
can be obtained, e.g., with the technique described in [10].

Case 2: If κ̄ ≥ 2, let w = ξiκ̄ . . . ξi2ξi1 be a word satisfying
the assumptions of Proposition 3. This implies that (1) the
set W := {w, σw, . . . , σκ̄−1w} consists of distinct words
and (2) w represents the output sequence corresponding to an
elementary cycle of length κ̄ in D(Ltot), meaning that there
are κ̄ distinct nodes belonging to that cycle.
Case 2a: If for each d ∈ [1, κ̄] there exists a single diagonal
entry of M κ̄(ξ1, ξ2, . . . , ξP ) including the word σd−1w, say
the jdth entry, then we have found the nodes of the cycle and
the exact order in which they appear. Indeed, the bijective
correspondence between words of the set W and diagonal
entries of M κ̄(ξ1, ξ2, . . . , ξP ) allows to say that the cycle in
D(Ltot) corresponding to the word w is (j1, j2, . . . , jκ̄).
Case 2b: If Case 2a does not hold, this means that there
is more than one elementary cycle of length κ̄ in D(Ltot)
corresponding to the same periodic output trajectory of min-
imal period κ̄ represented by the word w. To identify one of
them, one can start from any state δiN , where i is such that
[M κ̄(ξ1, ξ2, . . . , ξP )]ii includes the word w = ξiκ̄ . . . ξi2ξi1 .

Set j1 := i. Clearly j1 is a node of the cycle and it
corresponds to the output value δi1P .
Set, now,

V2 := {j ∈ [1, N ] : δi2P = HδjN ∧ (j1, j) ∈ E},
E12 := {(j1, j) ∈ E : j ∈ V2}.

In this way we have determined all the states that can be
reached from vertex j1 = i in one step and that generate the
output y = δi2P , conformably with the structure of the word
w. Subsequently, set

V3 := {j ∈ [1, N ] : δi3P = HδjN ∧ ∃ h ∈ V2 s.t. (h, j) ∈ E},
E23 := {(h, j) ∈ E : h ∈ V2, j ∈ V3}.

By proceeding in this way, we define all vertex sets Vh and all
edge sets Eh,h+1, h = 1, 2, . . . , κ̄+ 1. Clearly, j1 = i ∈ Vκ̄+1,
and we can determine backward both the nodes in the cycle
and the edges that connect them4. Indeed, as i ∈ Vκ̄+1 then
there exists jκ̄ ∈ Vκ̄ such that δiκ̄P = Hδjκ̄N and (jκ̄, j1) ∈ E .
Similarly, there exists jκ̄−1 ∈ Vκ̄−1 such that δiκ̄−1

P = Hδ
jκ̄−1

N

and (jκ̄−1, jκ̄) ∈ E , and so on till we find j2 ∈ V2 such that
δi2P = Hδj2N and (j1, j2) ∈ E . Note that the solution is not
necessarily unique.

Both in Case 2a and in Case 2b, once a cycle has been
identified, the feedback matrix K can be designed by follow-
ing the procedure to stabilise a BCN to a given limit cycle
described, for instance, in [10].

4In case in each set Eh,h+1 one can memorize for each edge (h, j) also
the value of the input corresponding to the state transition from δhN to δjN .
This would make the construction of the matrix K more efficient.
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Remark 1. Note that if instead of the state feedback u(t) =
Kx(t) we adopt a state feedback of the following type

u(t) = K n v(t) n x(t),

where v(t) is an independent input, we can move from the
original BCN to a new BCN that preserves all the properties
of the original one, but for a special (constant) choice of the
input value v(t) becomes a reconstructable BN. To this end it
is sufficient to impose that v assumes M + 1 values and the
controlled BCN takes the following form:

x(t+ 1) = LK n v(t) n x(t),

LK =
[
L1 L2 . . . LM L̃

]
.

Therefore when v(t) ∈ {δiM+1, i ∈ [1,M ]} the controlled
BCN behaves as the original one, while when v(t) = δM+1

M+1

the BCN becomes a reconstructable BN. In this way, one can
first “offline” identify the current BCN state (by assuming
v(t) = δM+1

M+1 for t ∈ [0, T ], and T sufficiently large) and
then let the BCN operate as the original one.
A possible state-feedback matrix that achieves this goal takes
the form K =

[
K1 K2 . . . KM K̃

]
, where Ki =

δiM1>N , i ∈ [1,M ], while K̃ ∈ LM×N makes the BN

x(t+ 1) = (Ln K̃ n Φ)x(t) = L̃x(t)

reconstructable from the output y(t) = Hx(t).

VI. CONCLUSIONS

In this paper we have addressed the Feedback Recon-
structability problem for BCNs. We have first simplified
the problem, showing that the solvability analysis can be
performed on a BCN of smaller (oftentimes, much smaller)
size than the original one. Subsequently we have provided
necessary and sufficient conditions for the problem solvability.
Finally, we have proposed a method to derive possible state
feedback matrices that solve the problem.

It is interesting to remark that the key idea underlying the
problem solution is to reduce the FR problem to a stabilisation
problem either to an equilibrium point or to a limit cycle (or, of
course, more equilibrium points and limit cycles, if we have
different disjoint components), like those addressed in [10].
However, while typical stabilisation problems are formalised
by referring to specific limit cycles (in particular, equilibria), a
priori assigned, in this case every choice of the limit cycles is
possible provided that each of them corresponds to a periodic
output trajectory that is distinguishable from all the others. In
other words, there must be a bijective correspondence between
periodic state trajectories and periodic output trajectories that
feedback “preserves” in the resulting BN.
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