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Abstract—In this article, a novel discrete-time realization of the
super-twisting controller is proposed. The closed-loop system is
proven to converge to an invariant set around the origin in finite
time. Furthermore, the steady-state error is shown to be indepen-
dent of the controller gains. It only depends on the sampling time
and the unknown disturbance. The proposed discrete-time con-
troller is evaluated comparative to previously published discrete-
time super-twisting controllers by means of the controller structure
and in extensive simulation studies. The continuous-time super-
twisting controller is capable of rejecting any unknown Lipschitz-
continuous perturbation and converges in finite time. Furthermore,
the convergence time decreases, if any of the gains is increased.
The simulations demonstrate that the closed-loop systems with
each of the known controllers lose one of these properties, intro-
duce discretization-chattering, or do not yield the same accuracy
level as with the proposed controller. The proposed controller, in
contrast, is beneficial in terms of the above described properties.

Index Terms—Backward Euler discretization, discrete-time con-
trol, implicit discretization, sliding mode control, super-twisting
algorithm, super-twisting control.

I. INTRODUCTION

The field of sliding mode (SM) control (SMC) has proven to be
of high importance when considering systems with unknown distur-
bances [1]. In continuous-time, SMC manages to completely reject
any disturbances that fulfill some requirements like boundedness or
Lipschitz-continuity. However, SM controllers are mostly implemented
on discrete-time hardware, requiring appropriate representations of
these controllers. Discrete-time SM controllers have to deal with
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unpleasant effects like discretization-chattering, which diminishes the
advantageous properties of SMC [2], [3]. One of the first techniques in
conventional SMC [1] avoiding discretization-chattering is the implicit
discretization [4].

A famous continuous-time SM system is the super-twisting al-
gorithm (STA) [5], [6]. The STA is capable of rejecting Lipschitz-
continuous disturbances, which is of high interest in real-world control
problems [7], [8]. Therefore, a proper discrete-time implementation of
the Super-Twisting Controller (STC) is essential for many applications.
There have been different approaches to achieve an implicitly dis-
cretized version of the STC [9], [10]. Also, non-implicit discretization
techniques can be applied to the STC, e.g., the matching approach [11]
and the low-chattering discretization [12].

The continuous-time STC has the following properties:
1) reject Lipschitz-continuous perturbations [5];
2) finite-time convergence [5];
3) increasing any controller parameter reduces the convergence

time [13].
Furthermore, the following are desired properties of the discrete-time

controller:
1) no discretization-chattering occurs, i.e., the control error vanishes

when no disturbance and no measurement noise are present;
2) the steady-state error, i.e.; the control error after all transients died

out, is proportional to the discretization time squared, as in [14];
3) the steady-state accuracy is insensitive to controller parameters.

With the last property, the controller parameters can be selected
solely on requirements regarding convergence time and control signal
magnitude, and do not have to consider a tradeoff with the accuracy
of the controller. Each of the existing discretizations of the STC fails
to resemble some of these properties. Therefore, in this article a novel
discretization of the STC is presented, that unites all above-mentioned
features. Measurement noise is not investigated in this article.

At first, an overview of existing discrete-time versions of the STC is
given in Section II. Then, in Section III a novel implicit discretization
of the STC is presented. Further, stability properties of the presented
discretization are analyzed. Finally, in extensive simulation studies in
Section IV it is demonstrated that the proposed controller preserves all
crucial properties of the continuous-time STC, in contrast to previously
published controllers.

Notation: Let

sign(x) ∈

⎧⎪⎨
⎪⎩
{1} , if x > 0

{−1} , if x < 0

[−1, 1], if x = 0

be the signum function with x ∈ R. Furthermore, the signed power
function �x�y = sign(x)|x|y, with x, y ∈ R will be used. Note that

�x�0 = sign(x). Finally, let sat(x) =

{
x, if |x| < 1
sign(x), else

be the

saturation function.
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II. RELATED WORK

The STC considers the dynamics of the sliding variable x1 with
relative degree 1 of an affine-input dynamic system [5], [15], i.e.,

ẋ1 = u+ ϕ

ϕ̇ = Δ. (1)

System (1) is denoted as plant and x1 and the perturbation ϕ as
plant states in the following. The remaining terms are the control
signal u and the Lebesgue-measurable unknown disturbance Δ(t)
with |Δ(t)| < L ∀t and some known constant L. Due to the bounded
derivative, ϕ is Lipschitz continuous.

The dynamic sliding-mode controller

u = −α�x1� 1
2 + ν

ν̇ = −β�x1�0 (2)

with the controller state ν is known as STC and stabilizes x1 = 0 of (1)
if the constant gains α and β > L are chosen accordingly [5]. The
closed-loop system

ẋ1 = −α�x1� 1
2 + x2

ẋ2 = −β�x1�0 +Δ (3)

with x2 = ϕ+ ν resulting from the plant (1) and the STC (2) is called
STA.

The goal of implementing the STC is to determine a discrete-time
representation of the controller (2), which can generally be written as

uk = −αΨ1(x1,k) + νk+1

νk+1 = νk − hβΨ2(x1,k) (4)

with the state-dependent functions Ψ1 and Ψ2, the constant
discretization-time h, the known discrete-time system state x1,k =
x1(kh), and k = 1, 2, . . . . Note that measurement noise in the state
x1,k is not investigated in this article. The discrete-time control variable
uk is then fed to the continuous-time system through a zero-order hold
element, i.e., u(t) = uk for kh ≤ t < (k + 1)h. Note that uk contains
the controller-state at k + 1, i.e., νk+1, as in this article mainly implicit
discretization approaches are considered. Denote by C∗ the controller
resulting from (4) and specific controller functionsΨ1,∗ andΨ2,∗. In the
following, several discrete-time realizations of the STC are presented.

A. Implicit Discretization

One discrete-time STC was published in [9] and [16] by Brogliato
et al. and can be written as

Ψ1,Brogliato =

�x1,k�0 ·
(
−hα

2
+

√
h2α2

4
+ max(0, |x1,k + hνk| − h2β)

)

Ψ2,Brogliato = sat

(
x1,k + hνk

h2β

)
. (5)

Note that Ψ1,Brogliato depends not only on the plant state x1,k, but
also on the controller state νk. The authors use an implicit discretiza-
tion approach to establish the explicitly given discrete-time controller
functions (5). It is proven that the undisturbed closed-loop system
is globally asymptotically stable. The authors introduce the sliding
variable x1,k + hνk, which is driven to zero and maintained there.
Also, CBrogliato drives the closed-loop state ϕk + νk to zero.

However, let us assume an unbounded perturbation ϕk, e.g., due to
a constant disturbance Δk. Then, ϕk will grow, and thus, also νk will
grow. With the sliding variable kept at the origin, therefore alsox1,k will
grow and the control goal x1,k = 0 cannot be maintained. Therefore,
the controller CBrogliato is not able to reject an unbounded perturbation
ϕ, which reduces the class of disturbances Δ that can be handled by
the controller compared to the continuous-time STC. These thoughts
will be discussed in simulations in Section IV as well.

B. Discretization Based on Matching Approach

Another discrete-time implementation of the controller (2) is pre-
sented in [11] and [17] by Koch et al. The authors utilize the matching
approach to establish a discrete-time controller, resulting in the con-
troller functions

Ψ1,Koch = − 1

αh

(
e

p1 h√
|x1,k |

+ e

p2 h√
|x1,k | − 2

)
x1,k − hβ

α
Ψ2,Koch

Ψ2,Koch =
1

h2β

(
e

p1 h√
|x1,k | − 1

)(
e

p2 h√
|x1,k | − 1

)
x1,k (6)

with p1,2 = −α
2
±
√

α2

4
− β. The discrete-time closed-loop system

is shown to avoid discretization-chattering effects and to be globally
asymptotically stable in the disturbance-free case. Note that Ψ1,Koch

differs from the function in [11] due to the different definition of the
general discrete-time controller (4).

C. Semi-Implicit Discretization

The third known discrete-time version of the STC that is considered
in this article was published in [10] by Xiong et al. and is obtained by
a semi-implicit discretization. It consists of the controller functions

Ψ1,Xiong =
1

hα
Dksat

(
x1,k

Dk

)

Ψ2,Xiong = sat

(
x1,k

Dk

)
(7)

where Dk =

{
hα|x1,k| 12 + h2β, if |x1,k| > hα|x1,k| 12 + h2β

h2β, else.
The authors show that the controller is insensitive to an overestimation
of the gains regarding the asymptotic accuracy of the closed-loop
system.

D. Low-Chattering Discretization

Finally, the last considered discrete-time STC is derived from the
low-chattering differentiator presented in [12]. The controller functions
take the form

Ψ1,Hanan = sat

( |x1,k|
γh2

) 1
2

�x1,k� 1
2 − hβ

α
sat

(
x1,k

γh2

)

Ψ2,Hanan = sat

(
x1,k

γh2

)
. (8)

The derivation of this discrete-time representation of the STC and the
selection of γ are given in Appendix A.

Fig. 1(a) and (b) show the discrete-time controller functions Ψ1,j

(x1) respective Ψ2,j(x1) from (5), (6), (7) and (8) with j ∈
{Brogliato,Koch,Xiong,Hanan}, as well as the functions �x1� 1

2 re-
spective �x1�0 from the continuous-time controller (2). The parameters
were chosen as h = 1, β = 1, α =

√
2β. For the computation of
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(a) (b)

Fig. 1. Compared controller functions. (a) Ψ1(x1). (b) Ψ2(x1)

Ψ1,Brogliato(x1) and Ψ2,Brogliato(x1), νk was assumed to be zero. This
is the case in steady state in the absence of a disturbance. Fig. 1(a)
shows two regions within x1, whereΨ1,Xiong is constant. Between these
regions, Ψ1,Xiong is linear. The size of the constant regions depends on
the parameters α and β and is large w.r.t. the linear region, when α is
large compared to β. The effect of this linear region will be discussed
in Section IV. Note that Fig. 1 helps to get an intuitive understanding
of the controllers.

III. PROPOSED DISCRETE-TIME STC

Sampling the continuous-time state x1(t) of system (1) with u(t) =
uk ∀t ∈ [kh, (k + 1)h) results in x1((k + 1)h) = x1(kh) + huk +∫ (k+1)h

kh
ϕ(τ)dτ . Defining the discrete-time state ϕk := 1

h

∫ (k+1)h

kh
ϕ

(τ)dτ and the unknown discrete-time input Δk := 1
h
(ϕk+1 − ϕk)

yields

Δk =
1

h2

(∫ (k+2)h

(k+1)h

ϕ(τ)dτ −
∫ (k+1)h

kh

ϕ(τ)dτ

)

=
1

h2

∫ (k+1)h

kh

ϕ(τ + h)− ϕ(τ)dτ. (9)

As |ϕ̇(t)| = |Δ(t)| ≤ L∀t > 0, |ϕ(t+ h)− ϕ(t)| ≤ Lh holds and
thus |Δk| ≤ L. Defining x1,k := x1(kh) yields the discrete-time plant
model

x1,k+1 = x1,k + huk + hϕk

ϕk+1 = ϕk + hΔk. (10)

The state ϕk can be interpreted as the mean value of ϕ(t) in the
interval t ∈ [kh, (k + 1)h). Also, ϕk as well as Δk are virtual values,
and not samples of the continuous-time signals Δ(t) and ϕ(t). Note
that even though (10) is structurally equivalent to an Euler forward
discretization of (1) the state x1,k coincides with the samples x1(kh).

The novel discrete-time STC functions

Ψ1,proposed = sign (x1,k)

(
hβ

α
sat

( |x1,k|
h2β

)
− hα

2
+

+

√
h2α2

4
+ max(0, |x1,k| − h2β)

)

Ψ2,proposed = sat

(
x1,k

h2β

)
(11)

are proposed in this article for the discrete-time plant model (10). It is
worth noting that the controller functions (11) resemble the terms of

Fig. 2. Invariant set M of the closed-loop system.

Fig. 3. Simulation in time-domain with a disturbance, α =
√
10, β =

10, h = 0.01, and x1(0) = 1. (a) Constant disturbance 	(t > 1) = 5.
(b) Disturbance 	(t) = 1.2 cos(2t) + 0.4

√
10 cos(

√
10t) + 5.

the implicit controller functions (5), with x1,k + hνk replaced by x1,k,
and extended by the saturation term in the first equation. The controller
can therefore be regarded as a modified implicitly discretized STC.
Fig. 1(a) and (b) also shows the controller functions in (11). Note that
Ψ2,proposed, Ψ2,Brogliato, and Ψ2,Xiong coincide. Furthermore, Ψ1,proposed

and Ψ1,Xiong coincide near the origin, i.e., at |x1| ≤ h2β.
Let the unknown virtual state x2,k be defined as x2,k := νk + ϕk.

The closed-loop system resulting from the discrete-time plant (10) and
the controller Cproposed is

x1,k+1 = x1,k − 2h2βsat

(
x1,k

h2β

)
− hαsign (x1,k)

(
−hα

2
+

+

√
h2α2

4
+max(0, |x1,k| − h2β)

)
+ hx2,k

x2,k+1 = x2,k − hβsat

(
x1,k

h2β

)
+ hΔk. (12)

In the following, the stability properties of the discrete-time STA (12)
are examined. For this define M = {(x1,k, x2,k) ∈ R2||x1,k| ≤ h2

β, |hx2,k − x1,k| ≤ h2β}. M is plotted in Fig. 2 in state-space as
a blue area.

Proposition 1: Consider the closed-loop system (12) with the Lips-
chitz constant L, i.e., |Δk| ≤ L ∀k, and β > L. Then, M is a forward
invariant set and ifxk ∈ M is fulfilled for somek = K, the steady-state
error is limited, i.e., lim supk≥K+2 |x1,k| ≤ h2 L. Further, the closed-
loop system is exact in the absence of a disturbance, i.e., the state
x1,k converges to zero. Thus, discretization-chattering is completely
avoided.

Proof: Assume |x1,k| ≤ h2β. Then, the controller (4) with (11) can
be simplified to

uk = − 1

h
x1,k + νk+1

νk+1 = νk − 1

h
x1,k (13)

which in explicit form yields uk = − 2
h
x1,k + νk.
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(a) (b) (c)

Fig. 4. Simulations in time-domain in the undisturbed case, β = 10, h = 0.01, and x1(0) = 1. (a) α =
√
10. (b) α = 30. (c) α = 1.5

√
β/1.1.

Fig. 5. Convergence time tC over varying parameter α.

The second-order closed-loop system resulting from (10) and (13)
in matrix form is then given by[

x1,k+1

x2,k+1

]
=

[
−1 h

− 1
h

1

]
︸ ︷︷ ︸

M

[
x1,k

x2,k

]
+

[
0

h

]
Δk. (14)

The eigenvalues of the system-matrixM are both zero, which means
that (14) is a second-order dead-beat system [18]. Thus, the steady state
is reached after two steps.

The discrete-time controller acts as a dead-beat controller,
whenever |x1,k| ≤ h2β. In order to reach steady state, the dead-beat
controller (13) must be applied to the plant two times consecutively.
Thus, to reach steady state |x1,k| ≤ h2β and |x1,k+1| ≤ h2β must
hold. According to (14) |x1,k+1| ≤ h2β ⇔ |hx2,k − x1,k| ≤ h2β,
which corresponds to xk ∈ M. Assume xK ∈ M. Then, (14) gives
|x1,K+2| = | − x1,K+1 + hx2,K+1| = | − (−x1,K + hx2,K) +
(−x1,K + hx2,K) + h2ΔK | = |h2ΔK | ≤ h2 L < h2β. Therefore,
M is forward invariant for system (12) and x1,K+2+i = h2ΔK+i

∀i ≥ 0. �
Theorem 2: Let L ≥ 0, |Δk| ≤ L ∀k, V > 0 and discretiza-

tion time h > 0. Given parameters α > 0, β > max(4L, 5
7

√
V
h
,√

L2 + 2L
√
V

h2 ), and initial states (x1,0, x2,0) fulfilling V ≥ V0 :=

2β|x1,0 − hx2,0|+ x2
2,0. Then, the states of system (12) converge to

the set M in finite time and remain there. Further, in the absence of a
disturbance, i.e., L = 0, and if α > 0, β > 0 the origin of system (12)
is globally finite-time stable.

The proof of Theorem 2 is given in Appendix B. �

IV. EVALUATION IN SIMULATION STUDIES

In this section, the results of numerical simulations are presented. All
simulations were performed in MATLAB/Simulink. The plant was sim-
ulated in discrete-time according to (10) with the same discretization-
time h as the controllers. The discrete-time disturbance Δk for the
simulations was computed solving the integral in (9) analytically yield-
ing xk = x(hk). The simulations were performed with a fixed-step
solver. In the following, Σ∗ denotes the simulated closed-loop system

consisting of the plant and the discrete-time controller C∗. It is shown in
what regard Cproposed is an improvement to state-of-the-art discrete-time
STCs.

A. Disturbed Case

The first simulation was performed with a constant disturbance
Δ = 1 ∀t ≥ 1 and Δ = 0 ∀t < 1. The parameters where chosen as
α =

√
10, β = 10, the discretization time h = 0.01 and x1(0) = 1.

The second simulation was performed with the same parameters and
a disturbance known from literature [10], [17] with a constant offset
of 5, Δ(t) = 1.2 cos(2t) + 0.4

√
10 cos(

√
10t) + 5. The results are

presented in Fig. 3(a) and (b). The results clearly show that CBrogliato

is not capable of rejecting constant parts of the disturbance Δ, as it
was described in Section II. All other controllers result in a state x1

converging close to zero. CHanan leads to decaying oscillations in x1.

B. Undisturbed Case

Three more simulations were performed with no disturbance, i.e.,
Δ ≡ 0. In Fig. 4(a) α =

√
10 was chosen as before. In Fig. 4(b) the

parameter was set to α = 30, which is large w.r.t.β, and in Fig. 4(c)
α = 1.5

√
β/1.1 was set according to the recommended parameter

choice for CHanan in [12, Fig. 3]. The other parameters remained
unchanged, i.e., β = 10, discretization time h = 0.01, and x1(0) = 1.
The state x1 is depicted in absolute values and scaled logarithmically
in these plots, in order to emphasize the differences between the
results of the controllers. The results show that Σexplicit is not exact
and exhibits discretization-chattering in steady state. All other systems
converge to zero without discretization-chattering effects. However,
ΣHanan converges slower than the other systems. From the continuous-
time STA (3), it is expected that increasing the parameter α leads to
faster convergence times. However, increasing α from

√
10 to 30 in

Fig. 4(b) shows an increased convergence time of ΣXiong. The systems
Σproposed and ΣBrogliato converge faster to zero. System ΣKoch exhibits a
larger convergence time than Σproposed and ΣBrogliato.

C. Convergence Time When Varying One Parameter

In order to analyze the behavior of increasing convergence times
when increasing α, the convergence time was determined for several
parameter values α. The displayed convergence time tC is the lowest
time for which the absolute state value does not exceed 1% of the
initial value, i.e., |x1(t)| ≤ 10−2|x1(0)| ∀t ≥ tC . Fig. 5 shows the
convergence times of the compared systems over the parameter α,
which was set to values between 1 and 100, i.e., 0.1β and 10β, in
intervals of 0.1. The other parameters were fixed at β = 10, h = 0.01,
and x1(0) = 1. Fig. 5 illustrates that the convergence time of ΣXiong

behaves very sensitive to changes in α when α > β. Small changes in
α can lead to a large increase of the convergence time, e.g., changing α
from 29.8 to 29.9 results in tC changing from 0.11 to 0.87 (all numbers
are rounded). The reason for the large convergence times of ΣXiong



5624 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 8, AUGUST 2024

(a) (b) (c)

Fig. 6. Accuracy by means of the steady-state error ef , h = 0.05 and x1(0) = 0. (a) Accuracy over Λ. (b) Accuracy over α with fixed β = 10.
(c) Accuracy over β with fixed α = 10.

Fig. 7. State trajectories with Δ ≡ 0.

when α > β may be connected to the constant regions of the controller
function Ψ1,Xiong in (7), which is depicted in Fig. 1(a). When α is
large w.r.t.β, then the constant regions are larger w.r.t. the linear region
of Ψ1,Xiong, as described in Section II. The function Ψ1,Xiong can be
interpreted as a rate at which x1 approaches the origin. When this
function is constant with a rather small magnitude, this approaching
phase could then take longer, the larger this constant region is. ΣHanan

shows oscillations in the convergence time with very small magnitude,
interestingly with a similar frequency as the oscillations in ΣXiong.

D. Steady-State Accuracy When Varying the Parameters

Finally, simulations were performed regarding the accuracy of the
closed-loop systems, i.e., the remaining steady-state error. Let this
steady-state error be defined as ef = lim supt |x1|, with the initial
value x1(0) = 0. The systems were simulated until t = 20. The distur-
bance was chosen asΔ(t) = 1.2 cos(2t) + 0.4

√
10 cos(

√
10t), which

was also used in [10] and [17]. The discretization time was set to
h = 0.05. Fig. 6(a) depicts ef over the value Λ, which determines
the parameters α = 1.5

√
Λ and β = 1.1Λ. This parameter relation

corresponds to the suggested parameter choice in [12] and was also
applied in [10], where the same simulation was performed. The value
Λ was varied between 1 and 40 in 1000 steps. The results from [10]
were reproduced, whereas Σproposed and ΣHanan performed very similar
to ΣXiong. Fig. 6(b) and (c) shows ef over varying α and β from 1 to 80
and 110, respectively, in 1000 steps. The second controller parameter
was fixed at 10. The results again show the exactness of Σproposed as
well as ΣXiong, which yield the same small steady-state error after some
minimal gain values. The system ΣBrogliato, however, settles at larger
errors, due to the appearance of the attenuated perturbation ϕ in x1

in steady state. In the results of ΣKoch, which is not the result of an
implicit approach, a dependence between the controller parameters α
and β and the steady-state error can be observed. Increasing α even

drives the steady-state error of ΣKoch to the same level where ΣBrogliato

settles, as can be seen in Fig. 6(b). The system ΣHanan achieves smaller
steady-state errors than Σproposed and ΣXiong within some bounds of
α and β. Outside of these bounds, the accuracy of ΣHanan decreases
significantly.

E. State Trajectories

Fig. 7 shows the state trajectories of the proposed algorithm with
various discretization times h comparative to the continuous-time
algorithm. In this simulation, the input Δ ≡ 0 and the parameters
were selected as α =

√
10, β = 10, x1,0 = 1, x2,0 = 0, and h ∈

{0.01, 0.05, 0.1}. The continuous-time trajectory was established with
an Euler forward discretized STC and a discretization time of 10−5. In
this simulation, Σproposed yields results similar to the continuous-time
trajectory for small h.

V. CONCLUSION

In this article, a novel discrete-time super-twisting controller is
presented. It is shown to converge to an invariant set in finite time. In
addition, the absence of any discretization-chattering effects is shown.
The controller is directly compared to previously published discrete-
time super-twisting controllers analytically regarding the controller
structure as well as in simulation studies. The analytic considerations
and simulations showed that the presented controller resembles best
several properties of the continuous-time controller. The proposed dis-
cretization can handle all Lipschitz-continuous perturbations. Further,
its finite convergence time decreases when any of the controller gains
is increased. Moreover, the presented controller yields a steady-state
error that is independent of the controller gains and it introduces
no discretization-chattering effects. The proposed discrete-time super-
twisting controller unites all of these beneficial properties, in contrast
to the known controllers. In future work, the presented controller will
be applied to real-world problems.

APPENDIX A
DERIVATION OF THE LOW-CHATTERING DISC

The discrete-time differentiator according to [12] with a differenti-
ation order of 1 and a filtering order of 0 is given by

z0,k+1 = z0,k + hz1,k − hλ̃1L̂
1
2 �z0,k − f0,k� 1

2

z1,k+1 = z1,k − hλ̃0L̂�z0,k − f0,k�0 (15)

where f0,k is the discrete-time signal to be differentiated, λ̃1 and
λ̃0 are constant parameters and z0,k and z1,k are the observer states
that estimate the signal f0,k and its first derivative f1,k, respectively.
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Further, L̂ is an adaptive parameter following the computation law

L̂ = L · sat(
|z0,k−f0,k |

LkLh2 ), with L being the known Lipschitz constant
of the unknown signal f1,k and a constant parameter kL. Selecting
λ̃0 L = β, λ̃1 L

1
2 = α, and LkL = γ yields the error dynamics of the

differentiator (15)

x1,k+1 = x1,k + hx2,k − hαsat

( |x1,k|
γh2

) 1
2

�x1,k� 1
2

x2,k+1 = x2,k − hβsat

( |x1,k|
γh2

)
�x1,k�0 (16)

with x1,k = z0,k − f0,k and x2,k = z1,k − f1,k.

Therefore, by setting uk = −αsat(
|x1,k |
γh2 )

1
2 �x1,k� 1

2 + hβsat(
x1,k

γh2 )

+ νk+1, νk+1 = νk − hβsat(
x1,k

γh2 ), the closed-loop dynamics of sys-
tem (10) will follow the dynamics (16), which yields the controller
functions in (8). This controller has a third tuning parameter γ. Sys-
tem (16) is linear in the band of the saturation around the origin.
So, a natural choice of γ is such that the eigenvalues of this linear
system are in the unit disk. This can be achieved by, e.g., selecting

γ = G

{
β2/α2, if α < 2

√
β

α2/4, else,
with G > 1 which is used in Sec-

tions II and IV with G = 1.52/1.12 ≈ 1.8595. This value was chosen,
as for the relation α = 1.5

√
Λ, β = 1.1Λ this yields γ = L, respective

kL = 1, which is the recommended parameter value in [12].

APPENDIX B
PROOF OF THEOREM 2

If xk ∈ M for some k, then Proposition 1 applies, and xk

remains in M. Otherwise it is proven that xk converges to M
in finite time. In the following, it is assumed that xk /∈ M.
Inspired by the stability analysis in [11, Th. IV.1] define the
Lyapunov candidate Vk = 2β|x1,k − hx2,k|+ x2

2,k. In general,
using (4) the next step of the Lyapunov candidate computes to
Vk+1 = 2β|x1,k − hαΨ1(x1,k)|+ (x2,k − hβΨ2(x1,k) + hΔk)

2.
For the proposed controller, this yields

Vk+1 = 2β

∣∣∣∣x1,k − h2βsat

(
x1,k

h2β

)
− hαsign (x1,k) ·

·
(
−hα

2
+

√
h2α2

4
+max(0, |x1,k| − h2β)

)∣∣∣∣∣
+

(
x2,k − hβsat

(
x1,k

h2β

)
+ hΔk

)2

.

Case 1: |x1,k| ≤ h2β gives

Vk+1 = 2β

∣∣∣∣∣x1,k − x1,k − hαsign (x1,k)

(
−hα

2
+

√
h2α2

4

)∣∣∣∣∣
+

(
x2,k − 1

h
x1,k + hΔk

)2

=

(
x2,k − 1

h
x1,k + hΔk

)2

.

The difference ΔVk = Vk+1 − Vk then computes to

ΔVk = −2β|x1,k − hx2,k|+
(
x2,k − x1,k

h
+ hΔk

)2
− x2

2,k =

= −2β|x1,k − hx2,k|+ x1,k

h2
(x1,k − hx2,k)− x1,kx2,k

h
+

+ h2Δ2
k − 2Δk(x1,k − hx2,k)

≤ (−β + 2L)|x1,k − hx2,k| − x1,kx2,k

h
+ h2 L2

with the limit established with |x1,k| ≤ h2β and |Δk| ≤ L. From xk /∈
M and |x1,k| ≤ h2β follows |x1,k+1| = |x1,k − hx2,k| > h2β and
|x2,k| > 0. Two cases are distinguished.

Case 1.a: sign(x1,k) = sign(x2,k) or x1,k = 0 yields

ΔVk ≤ (−β + 2L) |x1,k − hx2,k|︸ ︷︷ ︸
>h2β

−|x1,kx2,k|
h

+ h2 L2 ≤

≤ (−β + 2L)h2β + h2 L2 = h2(L2 − β2 + 2Lβ) < 0,

where the last inequality is fulfilled due to β > 4L.
Case 1.b: sign(x1,k) = −sign(x2,k) and x1,k �= 0
This case gives |x1,k − hx2,k| > |hx2,k|. Assume L = 0. Then,

with |x1,k| ≤ h2β

ΔVk < −hβ|x2,k|+ |x1,kx2,k|
h

≤ −hβ|x2,k|+ hβ|x2,k| = 0.

Now, assume L > 0, which gives with H := −h2α2

2
+√

h4α4

4
+ h2α2(|x1,k+1| − h2β) > 0

Vk+2 = 2β
∣∣|x1,k+1| − h2β −H

∣∣
+ (x2,k+1 − �x1,k+1�0hβ)2

+ 2Δk+1(hx2,k+1 − �x1,k+1�0h2β) + h2Δ2
k+1.

With x1,k+1 = −x1,k + hx2,k and x2,k+1 = −x1,k

h
+ x2,k + hΔk

from (14) and �x1,k+1�0 = −�x1,k�0 from sign(x1,k) = −sign(x2,k)
this further computes to

Vk+2 = 2β
∣∣−|x1,k| − h|x2,k|+ h2β +H

∣∣
+
(
−x1,k

h
+ x2,k + �x1,k�0hβ + hΔk

)2
+ 2Δk+1(−x1,k + hx2,k + �x1,k�0h2β + h2Δk) + h2Δ2

k+1.

Without loss of generality assume x1,k > 0, i.e., x2,k < 0, in the
remaining part of this case. Thus, with |Δk| ≤ L, |Δk+1| ≤ L and
−x1,k + hx2,k + h2β < 0 the upper limit

Vk+2 ≤ 2β
∣∣hx2,k − x1,k + h2β +H

∣∣
+
(
x2,k − x1,k

h
+ hβ − hL

)2
− 2L(hx2,k − x1,k + h2β − h2 L) + h2 L2

is established. It can easily be shown that −x1,k + hx2,k + h2β +
H < 0. With some rearranging steps this gives

Vk+2 − Vk ≤ − 2β(h2β +H) +
x2
1,k

h2
+ 2

|x1,kx2,k|
h

+ (β − L)
(−2x1,k + 2hx2,k + h2β − h2L

)
+ L2x1,k − L2hx2,k − L2h2β + L3h2 L.

With |x1,k| ≤ h2β and using the last expression the difference is further
limited by

Vk+2 − Vk ≤ −2β(h2β +H) + βx1,k − 2hβx2,k

+ 2(β − 2L)(hx2,k − x1,k) + h2β(β − 3L)− h2L(β − 4L).

Using 2(β − 2L) = (β − 3L) + β − L the last expression can be
rewritten as

Vk+2 − Vk ≤ − 2β(h2β +H) + Lx1,k − h(β + L)x2,k

+ (β − 3L)(−x1,k + hx2,k + h2β)− h2 L(β − 4L).
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Due to β > 4L the term h2L(β − 4L) < 0, and due to xk /∈ M
the term (β − 3L)(−x1,k + hx2,k + h2β) < 0. It must be shown that
the sum of the remaining terms is negative, i.e., 2βH ≥ −2h2β2 +
Lx1,k − h(L+ β)x2,k. This is trivial if the right-hand side is negative
or zero, i.e., |x2,k| ≤ hβ(2β−L)

β+L
. It holds that |x2,k| ≤

√
Vk ≤ √

V0 ≤√
V . With β > 4L and β > 5

7

√
V
h

, we have |x2,k| ≤
√
V < 7

5
hβ ≤

hβ(2β−L)
β+L

which was to be shown. Therefore, Vk+2 < Vk.
Case 2: |x1,k| > h2β yields

Vk+1 = 2β

∣∣∣∣x1,k − sign (x1,k)

(
h2β + hα

(
−hα

2
+

+

√
h2α2

4
+ |x1,k| − h2β

))∣∣∣∣∣+ (x2,k − sign (x1,k)hβ)
2 −

− 2Δk(x2,k − sign (x1,k)hβ) + h2Δ2
k.

Let us introduce z1,k := x1,k − sign(x1,k)h
2β, z2,k := x2,k −

sign(x1,k)hβ, with z1,k ∈ R\{0} and z2,k ∈ R. Note that
sign(x1,k) = sign(z1,k). This gives

Vk = 2β|z1,k − hz2,k|+ z22,k + sign (z1,k) 2hβz2,k + h2β2

Vk+1 = 2β

∣∣∣∣∣z1,k − hαsign (z1,k)

(
−hα

2
+

√
h2α2

4
+ |z1,k|

)∣∣∣∣∣
+ z22,k − 2Δkz2,k + h2Δ2

k

and further with A := hα(−hα
2

+
√

h2α2

4
+ |z1,k|) > 0

ΔVk = 2β (|z1,k − sign (z1,k)A| − |z1,k − hz2,k|)
− 2hβsign (z1,k) z2,k − h2β2 + h2Δ2

k − 2Δkz2,k

≤ 2β (|z1,k − sign (z1,k)A| − |z1,k − hz2,k|)
+ 2L|z2,k| − 2hβsign (z1,k) z2,k − h2β2 + h2 L2.

Note that this upper limit of ΔVk is an even function. Therefore, it
is sufficient to only consider the case z1,k > 0. The following shows
that z1,k −A ≥ 0 always holds, as

(
z1,k +

h2α2

2

)2

≥
(
h4α4

4
+ h2α2z1,k

)
⇔ z21,k ≥ 0

which holds ∀z1,k. Together this yields

ΔVk ≤ 2β((z1,k −A)− |z1,k − hz2,k|)− 2hβz2,k

+ 2L|z2,k| − h2β2 + h2 L2

and is assumed in the remaining part of the proof. Two cases are
distinguishing in the following.

Case 2.a: z1,k − hz2,k ≥ 0 leads to

ΔVk ≤ 2β(hz2,k −A− hz2,k) + 2L|z2,k| − h2(β2 − L2)

= −2βA+ 2L|z2,k| − h2(β2 − L2)

≤ 2L|z2,k| − h2(β2 − L2)

which must be negative. For L = 0, this is fulfilled. For L > 0 and
with |z2,k| ≤

√
Vk <

√
V it is sufficient that 2L

√
V < h2(β2 − L2),

which is fulfilled due to β2 > L2 + 2L
√
V

h2 and thus ΔVk < 0.

Case 2.b: z1,k − hz2,k < 0 gives z2,k > 0 and

ΔVk ≤ 2β(2z1,k −A− hz2,k) + 2(L− hβ)z2,k − h2(β2 − L2)

= 4β(z1,k − hz2,k)− 2βA+ 2Lz2,k − h2(β2 − L2)

≤ 2Lz2,k − h2(β2 − L2)

which was already shown in Case 2.a to be negative.
In the cases above all possible combinations of states (x1,k, x2,k)

were considered. In all cases but Case 1.b (x1,k, x2,k) /∈ M,
ΔVk(x1,k, x2,k) < 0 was proven. In Case 1.b Vk+2 − Vk < 0 was
proven. Therefore,ΔV2,k := Vk+2 − Vk = ΔVk+1 +ΔVk < 0.Vk is
continuous in (x1,k, x2,k) and as ΔVk is continuous, also ΔV2,k is
continuous. Due to the continuity, the maximum of ΔV2,k exists. Fur-
ther Vk > 0 ∀xk �= 0 and Vk = 0 for xk = 0. So, ∃VM > 0 such that
xk /∈ M ⇒ Vk > VM . Thus,∃δ := maxxk/∈M,Vk≤V (ΔV2,k) < 0 and
so the maximum number of steps untilM is reached, (V0 − VM )/|δ| <
∞, is finite. Therefore, xk converges to M in a finite number of steps,
i.e., in finite time.
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