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Second-Order Partial Outer Convexification
for Switched Dynamical Systems

Christoph Plate , Sebastian Sager , Martin Stoll , and Manuel Tetschke

Abstract—Mixed-integer optimal control problems arise
in many practical applications combining nonlinear, dy-
namic, and combinatorial features. To cope with the result-
ing complexity, several approaches have been suggested
in the past. Some of them rely on solving a reformulated
and relaxed control problem, referred to as partial outer
convexification (POC). Inspired by an efficient algorithm
for switching time optimization by Stellato and coworkers,
SwitchTimeOpt.jl, we developed an algorithmic approach
for POC implemented in a Julia package. Both approaches
are based on linearization and exponential integration to
obtain second derivatives. We show the efficiency and
applicability of the novel approach by comparing it to
SwitchTimeOpt.jl, by extending the concept and calcula-
tions to the treatment of constraints, and by investigating
warm starting of switching time optimization. An additional
comparison to a CasADi-based standard single shooting
approach shows a significant reduction in computational
time despite an increase in iterations. The new solver facili-
tates the reliable and fast solution of mixed-integer optimal
control problems.

Index Terms—Hybrid systems, optimal control, optimiza-
tion algorithms, switched systems.

I. INTRODUCTION

IN THIS article, we are interested in optimal control of
switched dynamical systems, i.e., systems consisting of mul-

tiple subsystems typically described by ordinary differential
equations (ODEs) or differential-algebraic equations (DAEs).
The degree of freedom to minimize a given cost function is the
choice of the active subsystem at each point in time. Switched
dynamical systems are prevalent in control applications. Typical
examples are the choice of gear in vehicles in automotive control,
traffic networks, operating strategies of hybrid vehicles, ON/OFF
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positions of valves, performing measurements yes or no, or the
activation of whole units in process engineering applications;
see [17] for an online benchmark library of such applications
with further references.

Control problems involving switched dynamical systems be-
long to the problem class of mixed-integer optimal control
problems (MIOCPs). Several algorithmic approaches have been
developed to tackle this class of problems. A survey is beyond the
scope of this article and we refer to [7], [9], and [22] for further
references. For direct methods that discretize control functions
with finitely many degrees of freedom, different approaches to
address the integrality of control functions have been proposed.
Two of these are in the focus of this article: switching time
optimization (STO) and partial outer convexification (POC). In
STO [3], [7], a predefined switching sequence of the modes is
assumed. Using a time transformation argument, the problem
of determining the right mode for each point in time can be
translated into finding the optimal switching times. Recently, an
efficient structure-exploiting algorithm for solving STO prob-
lems was proposed in [20], based on a linearization of the
dynamics and integration via matrix exponentials.

In POC [8], [18], a binary control function is introduced for
each mode of the switched system. The integrality constraint
is then relaxed by allowing the control functions to take values
from the interval [0,1], resulting in a standard optimal control
problem (OCP). Solving this relaxed OCP is often the first
step in a decomposition approach for solving MIOCPs, called
combinatorial integral approximation (CIA) [19]. CIA consists
of the following three steps: 1) solving the relaxed OCP; 2)
approximating the relaxed controls with binary controls; and
3) re-evaluating the MIOCP with fixed binary controls. Several
methods for formulating and solving the approximation problem
in the second step have been proposed and implemented in the
software package pycombina [4]. Note that the third step
is only necessary if additional continuous controls are present
and that step 2 can also be replaced or followed by an STO
formulation, as done in Section IV-E.

Here, we focus on the first step, i.e., a new method to solve
the relaxed OCP efficiently. We use ideas from [20] as a starting
point, adopting the approach of linearizing the dynamics and
using matrix exponentials as an integration scheme. We transfer
the ideas for evaluating the objective and its derivatives to
systems of ODEs of the particular form

ẋ(t) = f0 (x(t)) +

nω∑
k=1

wk(t)fk(x(t)) (1)

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0003-0354-8904
https://orcid.org/0000-0002-0283-9075
https://orcid.org/0000-0003-0951-4756
https://orcid.org/0000-0002-8406-2051
mailto:christoph.plate@ovgu.de
mailto:sager@ovgu.de
mailto:martin.stoll@math.tu-chemnitz.de
mailto:tetschke@ovgu.de


4644 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 7, JULY 2024

that arises from applying the POC reformulation, with nω being
the number of modes of the switched system and wk(t) ∈ [0, 1]
being the relaxed binary control functions. The drift term f0
represents the dynamics independent of the choice of the ac-
tive mode. Also continuous functions entering linearly into the
right-hand side are covered by (1). Note that while nonlinearities
in integer controls can be reformulated equivalently into form
(1), nonlinearities in continuous controls require an additional
linearization approach.

In [20], the specific structure of the system dynamics for
STO is exploited. There, after linearization, one has structurally
ẋ(t) = wAx(t) on small intervals for a scalar decision vari-
able w ∈ R+ indicating the duration of a mode. Therefore,
the solution is given involving a matrix exponential as ewAt.
Derivatives with respect to w can be calculated in a straight-
forward way, using dewA

dw = AewA. As (1) features the sum of
controls and a drift term, the calculation of analytical expressions
for derivatives of e(A0+

∑nω
i=1 wiAi)t becomes more involved for

noncommutative matrices Aj . We derive how this can be done
efficiently with matrix calculus. As a result, with some numerical
overhead compared to STO, second-order optimization becomes
also possible for POC control problems.

A. Contributions

In this article, we present a novel algorithm for solving
(relaxed) MIOCPs using a direct, first-discretize-then-optimize
approach. We use existing ideas from an STO algorithm [20] and
transfer and extend them to the POC setting. We also generalize
the setting to constrained MIOCPs. Our work is implemented in
the open source software package SecondOrderPOC.jl, which
is available on GitHub.1 Using the new software, we investigate
the performance of the new algorithm by numerical studies of
benchmark problems, focusing on a comparison between POC
and STO and to a standard way to calculate derivatives, and the
possibility to warmstart the STO algorithm with POC solutions.

B. Organization of this Article

The rest of this article is organized as follows. In Section II,
we state the problem formulation and explain and derive basic
algorithmic ingredients, in particular closed formula for function
and derivative evaluation. In Section III, we formulate the main
algorithm and explain its implementation in Julia. Numerical
results for three benchmark problems and different algorithmic
settings are shown in Section IV. Finally, Section V concludes
this article. Proofs can be found in the Appendix.

II. PRELIMINARIES

A. Problem Definition

We are interested in optimal control problems of the form

min
x,w

∫ tf

t0

x(t)�Q̄x(t) dt+ x(tf)
�Ēx(tf)

1[Online]. Available: https://github.com/chplate/SecondOrderPOC.jl.git

s.t. ẋ(t) = f0(x(t)) +

nω∑
k=1

wk(t)fk(x(t))

x(t0) = x0,

0 ≥ c(x(t))

1 =

nω∑
k=1

wk(t)

wk(t) ∈ [0, 1], k ∈ [nω] (POC)

on a fixed time horizonT = [t0, tf]with differential statesx(t) ∈
Rn̄x , initial values x0 ∈ Rn̄x , state constraints c : Rn̄x �→ Rn̄c ,
and a quadratic objective of Bolza type given by symmetric ma-
trices Q̄, Ē ∈ Rn̄x×n̄x . We assume all functions to be sufficiently
smooth and Lipschitz continuous. The setting is identical to [20]
with two differences: a POC instead of STO reformulation of the
dynamical system and the additional possibility to consider state
constraints. Here and throughout this article, we use the standard
notation [N ] := {1, 2, . . . , N} and [N ]0 := {0, 1, 2, . . . , N}.

B. Linearization

We follow a direct approach including a discretization of the
control functions onN control intervals as well as a linearization
of the dynamics using the Taylor expansion. The approach is
very closely related to the ideas presented in [20]. In a first step,
we introduce the necessary time grids.

Definition 1 (Equidistant time grids): LetN ∈ N be the num-
ber of control intervals and nlin be the number of linearization
points on each control interval. We define

GN := [t0, t1, t2, . . . , tN = tf ] (2)

with equidistant outer grid size Δt := ti − ti−1 and intervals

Ti := [ti−1, ti] , i ∈ [N ] (3)

for a coarse grid partition T = ∪i∈[N ]Ti. For the inner grid, we
introduce the fine grid size ξ := Δt

nlin
and write

Tij := [ti,j , ti,j+1] , i ∈ [N ] , j ∈ [nlin] (4)

for a fine grid partition Ti = ∪j∈[nlin]Tij with equidistant inner
grid points ti,j := ti−1 + (j − 1) · ξ.

Using the Taylor expansion, we linearize the dynamics

ẋ(t) = f0(x(t)) +

nω∑
k=1

wk(t)fk(x(t)) (5)

around the state xi,j = x(ti,j). Also, we discretize the controls
w as piecewise constant functions

wk(t) = wik, t ∈ Ti, i ∈ [N ] (6)

with wik ∈ [0, 1], i ∈ [N ], k ∈ [nω]. This yields

ẋ(t) ≈ f0(xi,j) +

nω∑
k=1

wikfk(xi,j) + [Jf0(xi,j)

+

nω∑
k=1

wikJfk(xi,j)

]
(x(t)− xi,j), t ∈ Tij . (7)

https://github.com/chplate/SecondOrderPOC.jl.git
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Here, Jfk represents the Jacobian of the mode fk, i.e.,

Jfk(x) =
∂fk(x)

∂x
, k ∈ [nω]0. (8)

If we augment the state variables by a constant state

x(t)←
[
x(t)�, 1

]�
(9)

and from now on x(t) ∈ Rnx with nx = n̄x + 1, we can write
the approximation (7) of the (nonlinear) differential equation as
a linear ODE on each interval Tij , i.e.,

ẋ(t) = Ai,jx(t), t ∈ Tij (10)

where the system matrix Ai,j ∈ Rnx×nx (the dependence on ωi

is omitted) follows from reordering the terms in (7) is as follows:

Ai,j :=

(
Jf0(xi,j) f0(xi,j)− Jf0(xi,j)xi,j

0 0

)

+

nω∑
k=1

wik

(
Jfk(xi,j) fk(xi,j)− Jfk(xi,j)xi,j

0 0

)

=: A0
i,j +

nω∑
k=1

wikA
k
i,j . (11)

Here, Ak
i,j represents the unweighted contribution of the kth

mode to the overall linearized dynamic. Considering the increase
in dimension due to the linearization, we also augment the
matrices Q̄, Ē ∈ Rn̄x×n̄x and use

Q =

(
Q̄

0

)
∈ Rnx×nx , E =

(
Ē

0

)
∈ Rnx×nx . (12)

This leads to a slight modification of problem (POC) with a
linear ODE, which we will from now on consider

min
x,w

∫ tf

t0

x(t)�Qx(t) dt+ x(tf)
�Ex(tf)

s.t. ẋ(t) = Ai,jx(t)

x(t0) = x0

wk(t) ∈ [0, 1], k ∈ [nω]

1 =

nω∑
k=1

wk(t)

0 ≥ c(x(ti)), i ∈ [N ]. (POC− lin)

The ODE holds piecewise for i ∈ [N ], j ∈ [nlin], t ∈ Tij .

C. Exponential Integrator

The linearized ODE (10) can be solved analytically using the
matrix exponential of the system matrix (11), i.e.,

x(ti,j+1) = eAi,jξx(ti,j) (13)

noting that the integration step length ξ is constant by virtue
of Definition 1. To simplify notation, we define as follows
(generally omitting dependencies, e.g., on ωi).

Definition 2 (Auxiliary matrices): The matrix exponential
Ei,j ∈ Rnx×nx of the matrix Ai,j , i ∈ [N ], j ∈ [nlin] is

Ei,j := eAi,jξ. (14)

Moreover, we define the matrix Mi,j ∈ Rnx×nx

Mi,j :=

∫ ξ

0

eA
�
i,jηQeAi,jηdη (15)

as the Lagrange term of the objective on the interval Tij .
Both quantities can be computed through a single matrix

exponential due to [13, Th. 1]. For this, a temporary matrix is
created and its matrix exponential is computed

Zi,j := exp

(
ξ ·

[
−A�i,j Q
0 Ai,j

])
=:

[
Z1
i,j Z2

i,j

0 Z3
i,j

]
. (16)

With (16), the expressions (14) and (15) can be obtained via

Ei,j = Z3
i,j

Mi,j = Z3�
i,j Z

2
i,j . (17)

The procedure of linearization and computation of the next state
can be applied iteratively and be generalized as follows.

Definition 3 (State transition matricesΦ): The state transition
matrix Φ(tj , ti) for the transition of the state x(ti) to the state
x(tj) with t0 ≤ ti < tj ≤ tN is defined as

Φ(tj , ti) :=

j∏
m=i+1

nlin∏
n=1

Em,n. (18)

Note that the multiplications in Definition 3 need to be
multiplications from the left, such that the matrix exponential
belonging to the first considered time step stays rightmost. Using
these transition matricesΦ, one can now propagate the state over
multiple timesteps at once, i.e.,

x(tj) = Φ(tj , ti)x(ti). (19)

Definition 4 (Cost-to-go matrices): For a given grid point
ta ∈ GN with ta ≤ tN , the cost-to-go-matrices Pa, Fa, and Sa

are defined as

Fa := Φ(tN , ta)
�EΦ(tN , ta)

Pa :=

∫ tN

ta

Φ(t, ta)
�QΦ(t, ta) dt

Sa := Fa + Pa. (20)

For the computation of Sa ∈ Rnx×nx , we make use of the
following recursion, which was also used in [20]. The main
difference is our choice of equidistant grids.

Lemma 5 (Recursive evaluation of cost-to-go-matrices):
Given matrices Mi,j and Ei,j with i ∈ [N ], j ∈ [nlin] (and for
notational convenience using Si+1 := Si,nlin+1), the following
recursion holds:

SN+1 = E
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Si,j = Mi,j + E�i,jSi,j+1Ei,j (21)

Proof: Follows the proof in [20]. �

D. Derivatives

The key to solving the problem (POC-lin) via an iterative opti-
mization algorithm is computing the derivatives of the objective
function and constraints with respect to the controls w. In this
section, the necessary quantities are derived.

1) Derivatives of Matrix Exponentials: To compute
derivatives of our integration method, we are combining two
methods: the block-triangular method [14] and the complex step
method [1]. In a first step, we state [14, Th. 2.1], which is used
to compute the derivative of a single matrix exponential with
respect to a control wik.

Theorem 6: Let D denote an open subset of R or C and
Mn = Cn×n. Let Mn(D,m) denote the subset of matrices with
spectrum contained in D and largest Jordan block of size at
most m. Let f be m− 1 times differentiable on D. Let A(t) be
differentiable at t = t0 and assume that A(t) ∈Mn(D,m) for
all t in some neighborhood of t0. Then

d

dt
f(A(t))|t=t0 =

[
f

(
A(t0) A′(t0)
0 A(t0)

)]
1,2

(22)

where the subscript 1,2 indicates the (1,2)-block of the result of
applying the matrix function.

Proof: See [14, Th. 2.1]. �
This theorem can be transferred to our setting by identifying

f as the exponential function for matrices and A(t) as (11) with
the controls wik taking the place of the variable t, thus

Eki,j : =
∂Ei,j
∂wik

=

[
exp

(
ξ ·

[
Ai,j Ak

i,j

0 Ai,j

])]
1,2

. (23)

The same quantity can be computed via the complex step
method [1] with some small h > 0, avoiding the doubling in
size of the matrix exponential as in (23), as

Eki,j = Im
exp

(
ξ · (Ai,j + ihAk

i,j)
)

h
. (24)

For computing second derivatives of a matrix exponential Ei,j
with respect to two controls on Ti different approaches are pos-
sible. One could apply Theorem 6 to (23). This does, however,
result in a further doubling of the dimensions of the matrix
exponential to be calculated.

Ek,li,j :=
∂Eki,j
∂wil

=
∂2eAi,jξ

∂wik∂wil

=

⎡
⎢⎢⎢⎣exp

⎛
⎜⎜⎜⎝ξ ·

⎡
⎢⎢⎢⎣
Ai,j Ak

i,j Al
i,j

∂Ak
i,j

∂wil

0 Ai,j 0 Al
i,j

0 0 Ai,j Ak
i,j

0 0 0 Ai,j

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦
1,4

=

⎡
⎢⎢⎣exp

⎛
⎜⎜⎝ξ ·

⎡
⎢⎢⎣
Ai,j Ak

i,j Al
i,j 0

0 Ai,j 0 Al
i,j

0 0 Ai,j Ak
i,j

0 0 0 Ai,j

⎤
⎥⎥⎦
⎞
⎟⎟⎠
⎤
⎥⎥⎦
1,4

. (25)

By combining the two approaches, the renewed doubling in size
of the matrix exponential can be avoided. We thus use

Ek,li,j = Im

⎡
⎢⎢⎣

exp

(
ξ ·

[
Ai,j + ihAk

i,j Al
i,j

0 Ai,j + ihAk
i,j

])
h

⎤
⎥⎥⎦
1,2

.

(26)

2) Derivatives of Transition Matrices: With the previous
results one can easily calculate the derivative for the transition
matrices Φ by applying the product rule

Ck
i :=

∂Φ(ti, ti−1)

∂wik
=

∂

∂wik

(
nlin∏
l=1

Ei,l

)

=

nlin∑
l=1

[(
l−1∏
m=1

Ei,m

)
Eki,l

(
nlin∏

n=l+1

Ei,n

)]
. (27)

Again, note that the matrix belonging to the first time step needs
to stay rightmost. For the second derivative Dk,p

i of a given
transition matrix Φ(ti, ti−1) with respect to two controls wik

and wip on the same interval Ti, one needs to determine the
derivative of (27). With (24), (26), and the product rule, this
quantity can be computed as in (28) shown at the bottom of the
next page, Due to the application of the product rule and the
resulting structure of the expression, this quantity is expensive
to calculate. However, as discussed later in Section III, using
Horner’s scheme to compute (27) and (28) can help reducing
the number of necessary operations.

Using the cost-to-go-matrices introduced in Definition 4 will
later allow us to evaluate the objective function and its deriva-
tives. Therefore, these quantities are investigated in the follow-
ing. First, we make use of an approximation for computing
the derivative of the cost-to-go-matrix Pa. Recall that for any
continuous function f : [a, b] �→ R andn ∈ N evaluation points
on [a, b], it is possible to approximate the integral of f on [a, b]
as a Riemann sum, i.e.,

∫ b

a

f(x) dx ≈
n∑

i=1

(
b− a

n

)
· f

(
a+

i · (b− a)

n

)
. (29)

Using the nlin equidistant linearization points, we can approxi-

mate the Lagrange term on a given interval Ti as

∫ ti

ti−1

Φ(t, ti−1)
�QΦ(t, ti−1) dt

≈
nlin∑
j=1

ξ · Φ(ti,j , ti−1)�QΦ(ti,j , ti−1)

= ξ ·
nlin∑
j=1

(
j∏

k=1

Ei,k

)�
Q

(
j∏

k=1

Ei,k

)
(30)
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noting that the fine grid size ξ is constant. Now, each summand
can be differentiated independently using the product rule

Lk
i :=

∂

∂wik

∫ ti

ti−1

Φ(t, ti−1)
�QΦ(t, ti−1) dt

≈ ξ · ∂

∂wik

nlin∑
j=1

(
j∏

k=1

Ei,k

)�
Q

(
j∏

k=1

Ei,k

)

= ξ ·
nlin∑
j=1

[(
∂

∂wik

j∏
k=1

Ei,k

)�
Q

(
j∏

k=1

Ei,k

)

+

(
j∏

k=1

Ei,k

)�
Q

(
∂

∂wik

j∏
k=1

Ei,k

)]
. (31)

As we will need second derivatives for our optimization, we
differentiate (31) again to get

Gk,l
i :=

∂

∂wil
Lk
i

=
∂2

∂wik∂wil

∫ ti

ti−1

Φ(t, ti−1)
�QΦ(t, ti−1) dt

≈ ξ · ∂2

∂wik∂wip

nlin∑
j=1

(
j∏

k=1

Ei,k

)�
Q

(
j∏

k=1

Ei,k

)

= ξ ·
nlin∑
j=1

⎡
⎣( ∂2

∂wik∂wil

j∏
k=1

Ei,k

)�
Q

j∏
k=1

Ei,k

+

(
j∏

k=1

Ei,k

)�
Q

(
∂2

∂wik∂wil

j∏
k=1

Ei,k

)⎤⎦ . (32)

Note that the derivatives of products of matrix exponentials
appearing in (31) and (32) can be computed via the same routines
as for (27) and (28), respectively. With these introductory results,
the first derivatives of the cost-to-go-matrices can be stated,
summarized in the following lemma.

Lemma 7: Let Fa and Pa be given as in Definition 4. Then,
it holds that

∂Fa

∂wik
= Φ(ti−1, ta)

� [Ck�
i FiΦ(ti, ti−1)

+Φ(ti, ti−1)
�FiC

k
i

]
Φ(ti−1, ta) (33)

and
∂Pa

∂wik
= Φ(ti−1, ta)

� (Lk
i + Ck�

i PiΦ(ti, ti−1)

+ Φ(ti, ti−1)
�PiC

k
i

)
Φ(ti−1, ta). (34)

Combining the two results, one obtains

∂Sa

∂wik
=

∂Fa

∂wik
+

∂Pa

∂wik

= Φ(ti−1, ta)
� (Lk

i +Φ(ti, ti−1)
�SiC

k
i

+ Ck�
i SiΦ(ti, ti−1)

)
Φ(ti−1, ta). (35)

The proof can be found in Appendix A. For second derivatives
of Sa, we consider the derivative of (35) with respect to a second
control either on the same control interval Ti or on an interval
Tj with ti < tj as follows.

Lemma 8: The second derivatives of Sa as defined in Defini-
tion 4 for two grid points ti, tj ∈ GN with ti < tj are

∂2Sa

∂wik∂wil
= Φ(ti−1, ta)

�
[
Gk,l

i + Cl�
i SiC

k
i

+Φ(ti, ti−1)
�SiD

k,l
i

+Dkl�
i SiΦ(ti, ti−1)

+Ck�
i SiC

l
i

]
Φ(ti−1, ta) (36)

and

∂2Sa

∂wik∂wjl
= 2Φ(tj−1, ta)

� [Ll
j +Φ(tj , tj−1)

�SjC
l
j

+Cl�
j SjΦ(tj , tj−1)

]
Φ(tj−1, ti)C

k
i ·

Φ(ti−1, ta). (37)

The proof is given in Appendix B.
3) Derivatives of Constraints: The one-hot-constraints are

linear in the controls, with constant first derivatives

∂

∂wjl

nω∑
k=1

wik =

{
1, j = i
0, j �= i

, i, j ∈ [N ], l ∈ [nω]. (38)

The path constraints c(x(t)) ≤ 0 are only evaluated at the grid
points ti ∈ GN . By using (27) and the chain rule, it follows for
some ti, tj ∈ GN with t0 < tj ≤ ti

∂c(x(ti))

∂wjk
= Jc(x(ti))Φ(ti, tj)C

k
j x(tj−1), k ∈ [nω] (39)

Dk,p
i :=

∂Ck
i

∂wip
=

∂

∂wip

nlin∑
l=1

[(
l−1∏
m=1

Ei,m

)
Eki,l

(
nlin∏

m=l+1

Ei,m

)]
=

nlin∑
l=1

∂

∂wip

((
l−1∏
m=1

Ei,m

)
Eki,l

(
nlin∏

m=l+1

Ei,m

))

=

nlin∑
l=1

[
l−1∑
m=1

[(
m−1∏
n=1

Ei,n

)
Epi,m

(
l−1∏

n=m+1

Ei,n

)]
Eki,l

(
nlin∏

m=l+1

Ei,m

)
+

(
l−1∏
m=1

Ei,m

)
Ek,pi,l

(
nlin∏

m=l+1

Ei,m

)

+

(
l−1∏
m=1

Ei,m

)
Eki,l

nlin∑
m=l+1

[(
m−1∏

n=l+1

Ei,n

)
Epi,m

(
nlin∏

n=m+1

Ei,n

)]]
. (28)
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where Jc denotes the Jacobian, i.e., Jc(x(t)) =
∂c(x(t))

∂x .

E. Evaluation of Objective Function and Derivatives

Summarizing the previous results, the following theorem
states the expressions for evaluating the objective function of
(POC-lin) and its derivatives for a given control w.

Theorem 9: With the aforementioned definitions, given a
control w ∈ [0, 1]N×nω and two grid points ti, tj ∈ GN with
t0 < ti < tj ≤ tN , it holds the following.

1) The objective function of (POC-lin) can be evaluated as

J(w) = x�0 S0x0. (40)

2) The gradient can be computed as

∂J(w)

∂wik
= x�i−1

(
Lk
i + 2Φ(ti, ti−1)

�SiC
k
i

)
xi−1. (41)

3) The elements of the Hessian HJ (w) involving two con-
trols on Ti can be computed as

∂2J(w)

∂wik∂wil
= x�i−1

(
Gk,l

i + 2Cl�
i SiC

k
i

+2Φ(ti, ti−1)
�SiD

k,l
i

)
xi−1. (42)

4) The elements of the HessianHJ (w) involving one control
on Ti and one on Tj can be computed as

∂2J(w)

∂wik∂wjl
= 2x�j−1

(
Ll
j +Φ(tj , tj−1)

�SjC
l
j

+Cl�
j SjΦ(tj , t

�
j−1)

)
·

Φ(tj−1, ti)C
k
i xi−1. (43)

Proof: Summary of the previous results, especially Lemmas 7
and 8. �

As a novel feature compared to SwitchTimeOpt.jl, in
SecondOrderPOC.jl also state constraints

c(x(t)) ≤ 0

for differentiable c : Rnx �→ Rnc can be considered. Their
derivatives are calculated in a similar way as the derivatives
of the objective function.

F. Error Estimation

Piecewise linearization and integration via matrix exponen-
tials introduces an error. A detailed error analysis for exponential
integration can be found in [16]. Essentially, the maximum error
depends on the right-hand sides through their Lipschitz constants
and bounds to the norm of their second derivatives as well as
the maximum discretization stepsize. In numerical studies, the
authors found the piecewise linearization method to be more
accurate than the second-order explicit improved Euler’s method
(also known as Heun’s method) and the trapezoidal rule and
less accurate compared to the explicit fourth-order Runge–Kutta
method, all using fixed stepsizes. The integration error also
carries over to the computation of sensitivities. As Lipschitz
constants are difficult to assess in practice, we compared the

Fig. 1. Maximum deviation of first- and second-order derivatives of
(Lotka) with respect to controls over the number of control intervals N
for nlin = 1. Our approach of integrating the piecewise linearized dy-
namics via matrix exponentials and evaluating derivatives as proposed
in Lemmas 7 and 8 is compared with integrating the nonlinear dynamics
using an adaptive fourth-order Runge–Kutta method and computing
sensitivities using forward-mode of automatic differentiation.

first- and second-order sensitivities of (POC-lin) numerically.
We did this exemplarily for the well-known Lotka–Volterra
fishing problem, which is given by

min
x,w

∫ 12

0

(x1(t)− 1)2 + (x2(t)− 1)2 dt

s.t. ẋ1(t) = x1(t)− x1(t)x2(t)− w(t)c1x1(t)

ẋ2(t) = −x2(t) + x1(t)x2(t)− w(t)c2x2(t)

x(0) = [0.5, 0.7]

w1(t) ∈ [0, 1] (Lotka)

with parameters c1 = 0.4 and c2 = 0.2. The control goal for the
Lotka–Volterra system is to reach the steady state x1 = x2 = 1.
A comparison of an explicit fourth-order Runge–Kutta inte-
grator for the nonlinear dynamics and exponential integration
resulted in consistent values, as shown in Figs. 1 and 2. The
impact of the inaccuracies on the performance of optimization
is investigated in Section IV-D.

III. IMPLEMENTATION

Our implementation is based on SwitchTimeOpt.jl [20], a
software package implemented in the programming language Ju-
lia. It consists mainly of the necessary computations to evaluate
the objective function and its derivatives. These evaluations must
then be passed to a suitable NLP solver, which is made possible
in a simple way via the Julia package MathOptInterface.jl [12].
With this approach, we can interface our code to a variety of
NLP solvers, for example, IPOPT [21] or KNITRO [5]. The
procedure of linearizing and integrating the dynamics is shown
in Algorithm 1. For a given iterate, the differential states as well
as auxiliary matrices like the system matrices Ai,j and their
matrix exponentials are calculated and temporarily saved as they
are necessary for the subsequent computation of derivatives.
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Fig. 2. Absolute error in the second-order sensitivities of (Lotka) of our
approach as proposed in Lemma 8. Shown here is the case N = 150,
compare also Fig. 1, with a maximum error of 0.0043.

Algorithm 1: Linearize and Propagate States.
1: Initialize x1,1 = x0, � Fixed initial state
2: function LINMATEXPROP

3: for i ∈ [N ] do
4: for j ∈ [nlin] do
5: Ai,j ← (11) � Linearize dynamic
6: Zi,j ← (16) � Matrix exponential
7: Ei,j ,Mi,j ← (17)
8: xi,j+1 ← Ei,jxi,j � Compute next state
9: end for

10: end for
11: return xi,j , Ai,j , Ei,j ,Mi,j , i ∈ [N ], j ∈ [nlin]
12: end function

Algorithm 2 shows the necessary computations to perform
one iteration of an NLP solver. The main steps consist of
linearizing and integrating the dynamics, computing the cost-to-
go-matrices using Lemma 5 and the derivatives of the individual
matrix exponentials using Theorem 6. Having computed these,
the composite expressions (e.g., the transition matricesΦ) can be
differentiated using the product rule. Finally, the objective and
its derivatives can be evaluated via Theorem 9. These evaluated
quantities are passed to the solver that performs an update on
the current iterate. This process is iterated until a convergence
criterion is fulfilled. We further improved the efficiency of the
derivative calculation as follows.

1) Horner’s Scheme for Evaluating Derivatives: The
derivatives of products of matrix exponentials appear in several
places throughout Section II, e.g., in (27), (28), (31), and (32).
They can be calculated in multiple ways. We use Horner’s
scheme [11], reducing the number of necessary matrix multi-
plications. We illustrate this procedure in Algorithm 3 with the
example of (27).

2) Joint Evaluation of First and Second Derivatives: The
first and second derivatives of our matrix exponentials (14) can
be computed jointly, reducing the number of operations. This

Algorithm 2: Compute J(w),∇J(w), HJ (w).

1: Input w � Current iterate
2: function COMPUTECOSTFUNCTIONANDDERIVATIVES

Precomputations:
3: x,A, E ,M ← LINMATEXPPROP � Algorithm 1
4: S ← COMPUTES � Lemma 5
5: ∇E ,∇2E ← (26)
6: Φ← (18) � Transition matrices
7: C,D ← (27), (28)
8: L,G← (31), (32) Evaluation: � Theorem 9
9: J(w)← (40)

10: ∇J(w)← (41)
11: HJ (w)← (42), (43)
12: end function

Algorithm 3: Horner’s Scheme for Computing (27).
1: function COMPUTECHORNER

2: for i ∈ [N ] do
3: for j ∈ [nω] do
4: P ← Ei,1
5: S ← Eji,1
6: for k = 2 . . . nlin do
7: S ← Ei,kS + Eji,kP
8: P ← Ei,kP
9: end for

10: Cj
i ← S

11: end for
12: end for
13: end function

is due to the structure of the appearing matrices in (26) and the
power series definition of the matrix exponential. In addition
to extracting the (1,2)-block in (26), and thereby, obtaining the
second derivativeEk,li,j , extracting the (1,1)-block obviously gives
the first derivative Eki,j .

IV. NUMERICAL RESULTS

In this section, we present some numerical results. First, we
compare the efficacy of the package SwitchTimeOpt.jl [20] with
our approach for three test problems and show empirically that
our method is more likely to converge with optimality and needs
fewer iterations on average. Second, we compare the perfor-
mance of our approach to a similar setting, but with derivatives
calculated with an adaptive integrator instead of exponential
integration. Third, we study the effect of using the rounded
solution of (POC-lin) as an initial guess for the problem in STO
formulation in order to mitigate the convergence problems.

The SwitchTimeOpt.jl code used for the numerical experi-
ments is basically identical with [20], but was adapted to the
Julia version 1.7. It can be found on GitHub.2

2[Online]. Available: https://github.com/chplate/SwitchTimeOpt.jl.git.

https://github.com/chplate/SwitchTimeOpt.jl.git
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A. Test Problems

Our three test problems were also used in [20] and are con-
tained in the MIOCP benchmark library [17]. In addition to
(Lotka), we study the following two problems.

1) Egerstedt: This problem has switched linear dynamics.
It was first proposed in [6] with two modes and extended in [18]
with a third mode. It reads

min
x,w

∫ 1

0

‖x(t)‖22 dt

s.t. ẋ(t) =
3∑

i=1

wi(t)Aix(t)

x(0) = [0.5, 0.5],

wi(t) ∈ [0, 1], i ∈ [3]

3∑
i=1

wi(t) = 1 (Egerstedt)

where the right-hand side of the differential equation is described
by the three-system matrices

A1 =

[
−1 0
1 2

]
, A2 =

[
1 1
1 −2

]
, and A3 =

[
1 −1
1 1

]
.

2) Tank: The double-tank control problem

min
x,w

∫ 10

0

(x2(t)− x3(t))
2 dt

s.t. ẋ1(t) = −
√
x1(t) + w1(t)c1 + w2(t)c2

ẋ2(t) =
√
x1(t)−

√
x2(t)

ẋ3(t) = −0.05
x(0) = [2, 2, 3]

wi(t) ∈ [0, 1], i ∈ [2]

1 = w1(t) + w2(t) (Tank)

has parameters c1 = 1, c2 = 2 representing two possible flow
rates into the upper tank x1. The deviation of the level of the
lower tank x2 from the reference level x3 shall be minimized.
The problem was investigated in [3], however for a constant
reference level x3. The specific choice of right-hand side for x3

goes back to SwitchTimeOpt.jl [20].

B. Discretization and Settings

We solved each problem for different discretizations. Five
different numbers of linearization points on T

ngrid ∈ {100, 200, 300, 400, 500}

were investigated. For SwitchTimeOpt.jl, we also varied the
number of switches, ranging from N = 1 up to N = 50, i.e.,

NSTO ∈ {1, 2, . . . , 50}.

In this scenario, allowing for n ∈ N switches, gives n+ 1
intervals of variable length each with a specific right-hand side.
The choice of the right-hand side for each interval is given by

the switching sequence σ : [N + 1] �→ [nω]. It is chosen such
that it repeats a predefined order, i.e.,

σ(i) = 1 + (i− 1) mod nω, for i ∈ [N + 1].

If nω = 1, we alternate between w = 1 and w = 0, beginning
with w = 1. This setup gives a total of 250 instances for each
problem in the STO formulation.

For POC, we varied N in the range between N = 5 and N =
250 with steps of five, more specifically

NPOC ∈ {5, 10, 15, . . . , 250}.

Note that we use N in two different contexts. In the context of
problems in the STO formulation, N describes the number of
allowed switches between the modes. In the context of POC,
N represents the number of control intervals as introduced in
Definition 1.

The parameter nlin was chosen such that the discretization is
comparable to the five stages given by ngrid. Therefore, each nlin

was calculated via

nlin(N) =
{
max

(
1,
⌊nt

N

⌉)
, nt ∈ ngrid

}
.

Here, we used

�x� =
{
�x�, x− �x� ≥ 0.5
�x�, x− �x� < 0.5

as a notation for rounding to the nearest integer. In total, this
approach yields 189 distinct instances for each problem in POC
formulation with a comparable effort for numerical integration
as in the STO formulation. All instances were solved with
IPOPT [21] version 3.14.4 with tolerance 10−6 and limits of
at most 500 iterations and at most 1000 s computation time.

C. Comparison POC Versus STO

In Table I, we compare results obtained using
SwitchTimeOpt.jl and SecondOrderPOC.jl, focusing on

1) rate of success, i.e., percentage of optimally solved in-
stances;

2) number of iterations for optimally solved instances;
3) time per iteration for optimally solved instances.

First, it shows the distribution of termination status of all prob-
lem instances for POC and STO. Evidently, the rate of success for
STO strongly depends on the chosen problem. While (Egerstedt)
could be solved in nearly all cases, roughly every other instance
of (Tank) could not be solved. For (Lotka), only one in five
instances terminated successfully. In contrast, all three prob-
lems have success rates greater than 90% in POC formulation.
Second, it lists the best objectives among the optimally solved
instances as well as the maximum and median deviation from
it. The best objectives among the optimally solved instances of
(Tank) and (Egerstedt) are the same for POC and STO up to
three digits. For (Lotka), the best objective is slightly lower for
POC. More interestingly, the maximal deviation from the best
objective among the optimally solved instances for POC is at
most 0.29%. In contrast, for STO this value is 599.21%. This
suggests that if one does not know the approximate structure
of the optimal solution (e.g., number of switches) and does not
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TABLE I
COMPARISON OF PERFORMANCE INDICATORS FOR POC AND STO AND ALL THREE TEST INSTANCES

Fig. 3. Comparison of time per iteration of solved instances of the
three test problems for POC and STO. Iterations are cheaper by roughly
one order of magnitude for the STO approach, mainly due to simpler
formulas to calculate the derivatives.

provide this prior knowledge when initializing the problem in
STO formulation, the found solution can be arbitrarily far from
the optimum. Third, the computation times among the optimally
solved instances of the three problems are roughly one order
of magnitude larger for POC compared to STO, whereas the
numbers of necessary iterations is consistently lower.

In Fig. 3, the distribution of computation times per iteration
for all successfully solved instances of the three test problems
are shown. Confirming the impression from Table I, the POC
approach is taking roughly one order of magnitude more time
per iteration for the test problems. This behavior can be expected
as it requires the computation of many additional matrix expo-
nentials in order to calculate derivatives. In SwitchTimeOpt.jl,
the evaluation of objective and its derivatives is less expensive.
There, the main computational burden lies in integrating the
dynamical system, after which first derivatives can be computed
cheaply by evaluating only a few matrix products and additions.
Also, due to shared terms in the expressions, computing second
derivatives comes at no significant additional cost.

In Fig. 4, the number of iterations for all three test problems are
shown. Two observations can be made. First, the vast majority
of instances are successfully solved in POC, whereas several
instances are terminating due to resource limits in STO formu-
lation. This is especially apparent when the number of allowed
switches is large. Moreover, the number of allowed switches
clearly influences whether SwitchTimeOpt.jl is able to converge
at all. Second, the POC approach needs less iterations on average
for converging successfully, again confirming the data in Table I.

Fig. 4. Iterations and termination status over number of control in-
tervals N for all instances of the three test problems in (top) STO
and (bottom) POC formulation. The POC formulation results in a larger
number of locally solved instances.

D. Comparison With CasADi

CasADi [1] is an open-source software for solving nonlin-
ear optimization and optimal control problems, with efficient
automatic differentiation capabilities and a direct interface to
NLP solvers, such as Ipopt, and integrators from the Sundials
suite [10]. We compared the performance of CasADi using direct
single shooting with the adaptive ODE solver CVODES with that
of our approach on the three test problems for the same control
discretizations and solver options as described in Section IV-B.
Results for our approach were averaged among the successful
instances with the same number of control intervals but differ-
ences in the number of overall linearization points. Fig. 5 shows
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Fig. 5. Performance profiles comparing the proposed exponential in-
tegration approach (POC) and solution via CasADi [2] and the adaptive
integrator CVODES (Sundials).

the results of this comparison. The computation times are lower
for most instances with our approach, despite an increase in the
number of iterations. The latter may be due to the inaccuracy
introduced by the piecewise linearization of the ODE. The best
found objectives are practically indistinguishable. We speculate
that the exponential integration approach may perform better for
larger problems with more derivatives that need to be calculated
per iteration. In addition, it seems plausible (and is supported by
a comparison between the three benchmarks, data not shown)
that more iterations are needed for the exponential integration
approach for more nonlinear systems.

E. Warmstart

As a second numerical study, we investigate the benefits of
using the rounded solution of (POC-lin) to warmstart the prob-
lem in STO formulation and solve it with SwitchTimeOpt.jl. For
this, we used the same problem instances for POC as described
in Section IV-C and proceeded as follows:

1) solve problem in POC formulation; proceed if and only
if the problem terminates with optimality;

2) use sum-up-rounding to get switching times τ ∗ and inte-
ger controls wSUR;

3) solve problem in STO formulation; initialize the problem
with integer controls wSUR and switching times τ ∗.

We will call this approach STOWS in the following. The
instances of STOWS are not directly corresponding to the in-
stances of STO from Section IV-C in the sense that they do
not have the same number of switches or the same predefined
switching sequence σ. This is due to the fact that for STOWS
these parameters are determined by the solution obtained from
applying sum-up-rounding to the solution of (POC-lin). Never-
theless, it makes sense comparing the two approaches STO and
STOWS in terms of success rates and the quality of the found
solutions. Note that it would also be possible to calculate the
solutions of steps 1) and/or 3) in a different way, e.g., using a
standard way to calculate derivatives as in the previous section.
However, we expect the new algorithms based on exponential
integration to be competetive algorithms in both cases. Fig. 6
gives an overview over computation times and termination status
for all problems and approaches.

In the case of (Egerstedt), all instances solved in the initial-
ization step with POC could also be solved with the STOWS
approach. The best found objective was 0.9891, the same as with
STO. However, the maximal deviation from that value could be
reduced to only 0.52%, with a median deviation of 0.002%. Also,
the computation time and number of iterations could be reduced
to 0.16 s and 18 iterations, respectively.

Concerning (Lotka), we found a success rate of 41.5%
among the instances of STOWS, which is a doubling com-
pared to STO. The best found objective was the same
as with STO and again, the maximal and median devia-
tion from the best objective could be drastically reduced
to 2.92% and 0.16%, respectively. It is also interesting to
see that the structure of the relaxed solution (starting and
ending with control w = 0) leads to only even numbers of
switches.
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Fig. 6. Solution times and status for all problems and approaches. The columns correspond to the three test problems, the rows to the approaches
POC, STO, and STOWS. Times for STOWS do not take into account the initialization step. In addition to the advantages of the warm started STOWS
approach with respect to the quality of local solutions as discussed in Section IV-E, an improvement with respect to solution time and status is visible
for the Tank instances.

For (Tank), we measured a success rate of 79.6% with
STOWS, again a significant increase in comparison to the 56%
with the standard initialization of STO. With our initialization,
now instances with up to approximately 50 switches could be
solved consistently, as Fig. 6 illustrates. The best objective is
again the same as with STO, with the worst objective only 0.38%
higher, in contrast to a maximal deviation of more than 100%
with STO. The median computation time and median number
of iterations among the solved instances are slightly larger with
0.27 s and 15 iterations, respectively.

V. CONCLUSION

In this article, we presented an algorithm for solving the partial
outer convexification reformulation of mixed-integer optimal
control problems. The algorithm uses a first-discretize-then-
optimize approach employing exponential integrators, which
was adapted from an algorithm for solving switching time opti-
mization problems. In particular, we derived closed formula for
the objective and derivative evaluation and implemented them
in an open-source Julia package. The efficient calculation of
second derivatives motivates the usage of Newton’s method to
solve STO and POC problems. Newton’s method was superior

to a BFGS approach (results not included in this article). A
second-order method is particularly promising when the objec-
tive functions are quadratic and convex, as in our setting. It
should also be transferable to other outer convex structures as
surveyed in [15].

In our numerical study, we showed that already for small-scale
benchmark problems, there is a considerable speed-up compared
to standard ways of derivative calculation when the overall
computational time is considered. We expect this advantage to
increase in the number of degrees of freedom, but to decrease
for more nonlinear systems.

In addition, we showed the effectiveness of our method and
compared convergence behavior and quality of solutions to
the original switching time optimization implementation. The
results of our study indicate that the two methods work well
together when combined, i.e., using POC solutions as initializa-
tions for SwitchTimeOpt.jl helped improve the quality of found
solutions. Nevertheless, still for many instances in two out of
three of our test problems, no convergence was obtained within
the time limit, regardless of the initialization. Thus, future work
is necessary to find better STO formulations or tailored STO
algorithms. Performing only a fixed number of iterations as
done in [20], but initialized with the POC solution, might be
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one heuristic approach to obtain good solutions. A comparison
between exponential integration and standard derivatives for
STO is lacking and might give additional insight. In view of
the higher per-iteration costs of POC, one might investigate
whether initializing SwitchTimeOpt.jl with not fully converged
POC solutions reduces the overall computational time.

There are other directions for future work. An integration
scheme of higher order might help to tackle problems with “more
nonlinear” dynamics. The implementation could be parallelized
efficiently. The single shooting approach could be matched by a
structure-exploiting multiple shooting version.

APPENDIX A
PROOF OF LEMMA 7

Proof: We begin by analyzing the component Pa.

∂Pa

∂wik
=

∂

∂wik

(∫ tN

ta

Φ(t, ta)
�QΦ(t, ta) dt

)

=
∂

∂wik

(∫ ti−1

ta

Φ(t, ta)
�QΦ(t, ta) dt

+

∫ ti

ti−1

Φ(t, ta)
�QΦ(t, ta) dt

+

∫ tN

ti

Φ(t, ta)
�QΦ(t, ta) dt

)

=
∂

∂wik

(
Φ(ti−1, ta)

�·

∫ ti

ti−1

Φ(t, ti−1)
�QΦ(t, ti−1) dt · Φ(ti−1, ta)

+ Φ(ti, ta)
�·∫ tN

ti

Φ(t, ti)
�QΦ(t, ti) dtΦ(ti, ta)

)

= Φ(ti−1, ta)
�·

∂

∂wik

(∫ ti

ti−1

Φ(t, ti−1)
�QΦ(t, ti−1) dt

)
·

Φ(ti−1, ta)

+ Φ(ti−1, ta)
�Ck�

i ·∫ tN

ti

Φ(t, ti)
�QΦ(t, ti) dt · Φ(ti, ta)

+ Φ(ti, ta)
�·∫ tN

ti

Φ(t, ti)
�QΦ(t, ti) dt · Ck

i Φ(ti−1, ta)

= Φ(ti−1, ta)
�·

∂

∂wik

(∫ ti

ti−1

Φ(t, ti−1)
�QΦ(t, ti−1) dt

)
·

Φ(ti−1, ta)

+ Φ(ti−1, ta)
�Ck�

i PiΦ(ti, ta)

+ Φ(ti, ta)
�PiC

k
i Φ(ti−1, ta)

≈ Φ(ti−1, ta)
� (Lk

i + Ck�
i PiΦ(ti, ti−1)

+Φ(ti, ti−1)
�PiC

k
i

)
Φ(ti−1, ta). (44)

In the first equality, we use Definition 4. In the second equality,
we split up the integral into three parts. Then, we bring Φ(ti, ta)
and Φ(ti−1, ta) outside of the integrals since they do not depend
on t. Also, we conclude that the last term is zero as wik only
has an impact on the interval [ti−1, ti]. After that we bring the
constant Φ(ti−1, ta) outside of the derivative operator and apply
the product rule, (27) and (31), which concludes the proof.
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∂
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∂
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Φ(ti, ti−1))Φ(ti−1, ta))

= Φ(ti−1, ta)
� ∂Φ(ti, ti−1)

�

∂wik
FiΦ(ti, ta)

+ Φ(ti, ta)
�Fi

∂Φ(ti, ti−1)

∂wik
Φ(ti−1, ta)

= Φ(ti−1, ta)
�Ck�

i FiΦ(ti, ta)

+ Φ(ti, ta)
�FiC

k
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= Φ(ti−1, ta)
� (Ck�

i FiΦ(ti, ti−1)
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�FiC

k
i

)
Φ(ti−1, ta). (45)

We start again with the Definition 4. In the second equation,
we split up the transition matrices Φ and identify the inner
expression as Fi. Then, we note that Fi does not depend on
wik, and apply the product rule together with (27). By adding
(44) and (45), we conclude the overall proof.

APPENDIX B
PROOF OF LEMMA 8

Proof: We introduce Φti
ta

= Φ(ti, ta) as a short notation for
the transition matrix from ta to ti.

∂2Sa

∂wik∂wil
=

∂

∂wil

[
Φti−1�

ta

(
Lk
i +Φti�

ti−1SiC
k
i

+Ck�
i SiΦ

ti
ti−1

)
Φti−1

ta

]

= Φti−1�
ta

[
∂Lk

i

∂wil
+ Cl�

i SiC
k
i

+Φti�
ti−1SiD

k,l
i +Dkl�

i SiΦ
ti
ti−1

+Ck�
i SiC

l
i

]
Φti−1

ta
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= Φti−1�
ta

[
Gk,l

i + Cl�
i SiC

k
i +Φti�

ti−1SiD
k,l
i

+Dkl�
i SiΦ

ti
ti−1 + Ck�

i SiC
l
i

]
Φti−1

ta
. (46)

Here, we started with the result from Lemma 7 and applied the
product rule as well as (27), (28), and (32). In the case when we
take the derivative with respect to a control wjl from a control
interval Tj with tj > ti, we can write ∂2Sa

∂wik∂wjl
as

∂
[
Φti−1�

ta

(
Lk
i +Φti�

ti−1SiC
k
i + Ck�

i SiΦ
ti
ti−1

)
Φti−1
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]
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[
Φ
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(
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l
j
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j SjΦ
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)
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i Φ
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Φ
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(
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tj−1SjC

l
j

+Cl�
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)
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= 2Φ
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(
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l
j
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j SjΦ
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)
Φ
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Ck
i Φ
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. (47)

Again, we applied the product rule, (27), (28), and Lemma 7.
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