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Sliding-Mode-Based Output-Feedback Control of Multivariable
Systems via Youla Parameterization

Richard Seeber , Stefan Koch , and Martin Horn , Member, IEEE

Abstract—A nonlinear multivariable control scheme for linear
time-invariant plants is presented that is capable of rejecting un-
matched disturbances that are sufficiently often differentiable. It is
based on the Youla parameterization in state space. Robust exact
sliding-mode differentiators are employed for the realization of im-
proper Youla parameters. Implementation complexity is optimized
by minimizing the total number of required differentiator states.
The resulting closed loop is shown to be input-to-state stable with
respect to arbitrary bounded disturbances. Simulations and exper-
imental results from a four-tank system corroborate the results.

Index Terms—Differentiation, linear systems, robust control,
sliding mode control, unmatched disturbance.

I. INTRODUCTION

Robust control of multivariable systems is an important and active
area of research. One way to design such robust controllers is via
sliding-mode control; see, e.g., [1] and [2]. For multivariable systems,
in particular, several such approaches rely on the differentiation of
outputs or output errors obtained from linear observers [3], [4]. When
this differentiation is performed using the robust exact sliding-mode
differentiator [5], exact reconstruction and full rejection of a wide class
of disturbances can, in theory, be achieved.

Several differentiator-based sliding-mode approaches are found
in [3], [4], [6], and [7]. Thereof, the authors in [6] and [7] study
exact state and disturbance reconstruction by means of differentiation.
In particular, Bejarano and Fridman [6] solve the problem by means
of a minimal number of differentiations, while Tranninger et al. [7]
design an observer that requires no differentiability assumptions for the
disturbance. The corresponding control design problem—stabilizing
the plant and rejecting the disturbance by using the reconstructed
information—is solved in [3] and [4]. All of those approaches assume
the disturbance to be matched, however, i.e., to act on the system in
the same channel as the control signal. Unmatched disturbances are
considered in [8], [9], and [10]. However, all of these approaches require
system transformations, and apart from [9], also impose additional
restrictions on the transformed system such as strong observability.

This article presents a new, unified approach for output regulation
based on sliding-mode disturbance reconstruction and rejection. The
approach is based on the Youla parameterization [11] of stabilizing
controllers. Starting from an ideal, but improper linear Youla parameter,
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a sliding-mode-based realization of that parameter is developed. The
resulting nonlinear Youla parameter is shown to yield an input-to-state
stable (ISS) closed loop, which can completely reject disturbances that
are sufficiently often differentiable.

The main contribution of the present approach is a novel approach
to solve the exact output regulation problem in the presence of un-
matched disturbances by combining the Youla parameterization with
sliding mode differentiators. In particular, unmatched disturbances are
automatically translated—in the context of the considered output reg-
ulation problem—to differentiability requirements for the disturbance.
Compared to [9], the approach avoids separate, explicit disturbance re-
construction and cancellation by handling both problems in a combined
way, and does not need subspace decompositions or involved system
transformations. Rather, it requires only transfer function manipula-
tions, which are straighforward to apply. Moreover, it is proven that
the proposed approach minimizes the cumulative differentiator order,1

i.e., the total number of derivatives of scalar signals that need to be
calculated during the implementation. In the context of the control
problem, this improves on the results of [6], where the total number
of vector-valued differentiations is minimized but, as pointed out in
Remark 1 therein, fewer differentiations may sometimes be sufficient
for some components of the vector.

The combination of Youla parameterization and sliding-mode con-
trol has only scarcely been studied in literature; see [12], [13], and [14]
for some of the few occurrences. In [12], a Youla parameterization of
a sliding-mode controller is presented. However, the resulting distur-
bance rejection performance is equivalent to that of the linear controller.
In [13], a sliding-mode controller is added to a two degree-of-freedom
control scheme, similar to the one considered in this article, but only
first-order sliding-mode control is used. The use of a sliding mode
observer is suggested as one possibility to obtain the states in [14],
where the Youla parameterization is also used to obtain a stabilizing
controller. However, none of these contributions provide a technique
to achieve full disturbance rejection using robust exact sliding-mode-
based differentiation, as it is done in this article by means of a minimum
number of differentiators.

Section II introduces the considered problem and briefly recapit-
ulates the state-space form of the Youla parameterization presented
in [15] and [16]. Section III first uses linear techniques to design an
ideal Youla parameter that, however, cannot be realized as a linear
state-space model. Then, a realization for this parameter is shown using
a minimal number of sliding-mode-based robust exact differentiators
(REDs). Section IV proves input-to-state stability of the closed loop
and states requirements for the disturbance signal that guarantee full
disturbance rejection. An academic example in Section V, as well as
a simulation example and experimental results in Section VI show
the practical viability of the proposed approach. Finally, Section VII
concludes this article.

1A control scheme using m differentiators with orders k1, . . . , km is under-
stood to have a cumulative differentiator order of

∑m

i=1
ki.
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Fig. 1. Structure of the parameterized controller (4).

Notation: Matrices and vectors are written as boldface uppercase
and boldface lowercase letters, respectively. For scalar y and p ≥ 0,
the abbreviations �y�p = |y|p sign(y) and �y�0 = sign(y) are used;
when applied to vectors, these operations are understood to be applied
component wise. The Laplace transform and its inverse are denoted
by L and L−1, respectively. Typically, the variable s is added as an
argument to signify either the Laplace transform of a vector-valued
signal, such as y(s), or a transfer function matrix, such as Q(s). When
writing dynamic systems, ẋ denotes the time derivative of x, and time
dependence is typically omitted wherever it is clear from context.

II. PROBLEM STATEMENT

Consider a linear time invariant plant

ẋ = Ax+Bu+Fw, y = Cx (1)

with state x ∈ R
n, control input u ∈ R

l, disturbance w ∈ R
p, output

y ∈ R
m, and constant parameter matrices A,B,C, and F. It is as-

sumed that l ≥ m ≥ p holds, and that the matrices B,C, and F have
maximal rank. Moreover, the plant is assumed to be minimum phase
with respect to u and y, and strongly detectable with respect to w and
y. More formally, the following assumption is made.

Assumption 1: The plant parameters A ∈ R
n×n, B ∈ R

n×l, C ∈
R

m×n, and F ∈ R
n×p with l ≥ m ≥ p satisfy

rank

[
A− λI B

C 0

]
= n+m, rank

[
A− λI F

C 0

]
= n+ p

(2)
for all λ ∈ C≥0.

For this plant, consider an observer-based state-feedback controller
of the form

˙̂x = Ax̂+Bu+ L (y −Cx̂) (3a)

u = −Kx̂ (3b)

with constant K and L designed such that A−BK and A− LC are
Hurwitz matrices. Starting from this controller, all controllers that stabi-
lize the (unperturbed) plant may be obtained by means of the so-called
Youla parameterization [15], [16]. In state space, this parameterization
is obtained by filtering the observer innovation ỹ = y −Cx̂ and adding
the filter’s output ũ to the control input. The parameterized controller
is given by

˙̂x = Ax̂+Bu+ Lỹ (4a)

ỹ = −Cx̂+ y (4b)

u = −Kx̂+ ũ (4c)

and the Youla parameter is the system that computes ũ from ỹ. A block
diagram of the parameterized controller is shown in Fig. 1. It is worth
pointing out that the controller (4) with a linear Youla parameter may

be represented by a linear fractional transform in frequency domain,
cf., e.g. [17]. It is well-known that, by appropriate choice of the Youla
parameter, different optimal controllers may be obtained.

The goal of this article is to use sliding-mode techniques for real-
izing an ideal Youla parameter that permits complete rejection of the
disturbance.

III. DESIGN OF YOULA PARAMETER

The design is divided in two steps. First, an ideal linear Youla
parameter is computed. Then, sliding-mode techniques and robust
exact differentiation are used to approximate its behavior. Stability
and disturbance rejection properties of the closed loop are afterwards
derived in the next section.

A. Ideal Youla Parameter

For the first step, assume that ũ(s) = Q(s)ỹ(s) holds in Laplace
domain with some transfer-function matrix Q(s). Introducing the ob-
server error x̃ = x− x̂, the closed-loop system with input ũ and output
ỹ may be written as

ẋ = (A−BK)x+BKx̃+Bũ+Fw (5a)

˙̃x = (A− LC) x̃+Fw (5b)

ỹ = Cx̃. (5c)

Transforming into the Laplace domain, with the initial conditions
x(0) = x̃(0) = 0, yields

(sI−A+BK)x(s) =
(
BK+BQ(s)C

)
x̃(s) +Fw(s)

(sI−A+ LC)x̃(s) = Fw(s) (6)

and by solving for x̃(s) and x(s), the transfer relation between distur-
bance w and output y = Cx is obtained as

y(s) = C (sI−A+BK)−1

· [(BK+BQ(s)C) (sI−A+ LC)−1 + I
]
Fw(s)

= [G1(s)Q(s)G2(s) +G3(s) +G1(s)G4(s)]w(s) (7)

with

G1(s) = C(sI−A+BK)−1B (8a)

G2(s) = C(sI−A+ LC)−1F (8b)

G3(s) = C(sI−A+BK)−1F (8c)

G4(s) = K(sI−A+ LC)−1F. (8d)

The construction of an ideal Youla parameter that achieves complete
disturbance rejection is based on the following auxiliary lemma.

Proposition 1: Suppose that Assumption 1 holds and that the ma-
trices A−BK and A− LC are Hurwitz. Then, the transfer function
matricesG1(s) andG2(s)defined in (8) have a stable (but not necessar-
ily proper) left-inverse G−1

1 (s) and right-inverse G−1
2 (s), respectively.

Proof: It is sufficient to show that the matrices G1(s) or G2(s) are
left- or right-invertible, respectively, for every s ∈ C≥0, which implies
that their inverses have no poles in the right complex half plane. This is
now shown for G2(s); the proof for G1(s) is analogous after transpo-
sition. Fix λ ∈ C≥0 and suppose to the contrary that G2(λ) ∈ C

m×p is
not right invertible. Then, there exists a vector q ∈ C

p such that

G2(λ)q = C(λI−A+ LC)−1Fq = 0. (9)
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Denote v = (λI−A+ LC)−1Fq, and note that v is well-defined
because A− LC is Hurwitz. Then, since Cv = 0,

0 = Fq− (λI−A+ LC)v = (A− λI)v+Fq (10)

which implies [
A− λI F

C 0

][
v

q

]
= 0. (11)

This contradicts Assumption 1, which requires this matrix to have full
column rank for all λ ∈ C≥0. �

As a consequence of this lemma, an ideal Youla parameter that
nullifies the influence of the disturbance on the output may be computed
as

Q(s) = −[G4(s) +G1(s)
−1G3(s)

]
G2(s)

−1. (12)

This transfer function matrix is improper, because the numerator degree
of its entries generally exceeds the degree of the denominator. In
general, it may be written as

Q(s) = H(s) + J(s) (13)

where H(s) is a biproper transfer-function matrix and J(s) is a poly-
nomial matrix of dimension l ×m.

B. Sliding-Mode-Based Realization

The part H(s) may be realized by means of a linear state-space
model using standard techniques; see, e.g., [18]. In order to realize the
transfer behavior of the polynomial matrix J(s), a sliding-mode-based
differentiation approach is proposed.

To that end, J(s) is written as

J(s) = J0 + J1 s+ J2 s
2 + · · ·+ Jks

k (14)

whereJj (j = 1, . . . , k) are constant coefficient matrices and k denotes
the highest degree of the polynomials occurring in J(s). Performing
an inverse Laplace transform of the expression J(s)ỹ(s) yields in time
domain

L−1(J(s)ỹ(s)) = J0ỹ+ J1
dỹ

dt
+ · · ·+ Jk

dkỹ

dtk
. (15)

This expression suggests that up tok derivatives of each of themoutputs
need to be computed. A naive implementation would therefore require
m parallel kth order differentiators, i.e., a cumulative differentiator
order of m · k.

C. Minimization of Cumulative Differentiator Order

The following approach minimizes the cumulative order of the
required differentiators. To achieve this, linear combinations of ỹ are
first determined, which are then fed to differentiators of varying orders.
These linear combinations and the required differentiator orders are
determined by the following algorithm: For each j = k, k − 1, . . . , 0
in descending order, compute orthogonal rectangular matrices Pj , Vj

and invertible diagonal matrices Σj according to the following steps.
1) Define

J̃j = Jj − Jj

k∑
r=j+1

VrV
T
r (16)

i.e., orthogonally decompose Jj into components parallel and
orthogonal to Vj+1,Vj+2, . . . ,Vk as

Jj = J̃j + JjVj+1V
T
j+1 + . . .+ JjVkV

T
k . (17)

2) Perform a singular value decomposition of J̃j to obtain Pj ∈
R

l×αj , Vj ∈ R
m×αj , and Σj ∈ R

αj×αj according to

J̃j = PjΣjV
T
j (18)

where αj is the number of nonzero singular values, i.e., where
αj = rank J̃j . Note that Vj , Pj , and Σj may be empty (zero-
column) matrices if all singular values are zero; in this case, step
three can be skipped for this value of j.

3) Unless j = 0, apply a sliding-mode-based differentiator of order j
to the expression VT

j ỹ, i.e.,

ζ̇j,0 = κj,0�VT
j ỹ − ζj,0�

j
j+1 + ζj,1

ζ̇j,1 = κj,1�VT
j ỹ − ζj,0�

j−1
j+1 + ζj,2

...

ζ̇j,j−1 = κj,j−1�VT
j ỹ − ζj,0�

1
j+1 + ζj,j

ζ̇j,j = κj,j�VT
j ỹ − ζj,0�0 (19)

with constant parameters κj,0, . . . , κj,j and component-wise ap-
plication of the operator �·�p to obtain in finite time the derivatives

ζj,1 =
dVT

j ỹ

dt
, . . . , ζj,j =

djVT
j ỹ

dtj
. (20)

Note that (19) contributes j rankVj = jαj to the cumulative
differentiator order.

Remark 1: For single-input–single-output (SISO) plants, i.e., for
l = m = p = 1, the algorithm yields Vk = 1, while Vk−1, . . . ,V0

are empty.
Remark 2: It is worth to remark that in step 3), instead of the

differentiator (19), a robust exact filtering differentiator as proposed
in [19] may also be used to obtain the time derivatives ζj,1, . . . , ζj,j .
Doing so may improve the differentiation accuracy in the presence of
random measurement noise in practice.

By following the steps of the algorithm, it is obvious that the
expression Jj

dj ỹ
dtj

may be computed as

Jj
dj ỹ

dtj
= PjΣj

djVT
j ỹ

dtj
+

k∑
r=j+1

JjVr
djVT

r ỹ

dtj
(21)

from the outputs of the resulting differentiators. Further insight into the
algorithm and a simplification of this expression is obtained using the
following lemma, which shows that the algorithm yields an orthogonal
decomposition of the vector space R

m of the signal ỹ.
Lemma 1: Consider orthogonal matrices Vj ∈ R

m×αj as obtained
using the presented algorithm, with αj = rankVj for j = 0, . . . , k.
Then, the columns of the matrix

M =
[
V0 V1 V2 . . . Vk

]
(22)

are orthogonal, i.e., MTM = I.
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Remark 3: This lemma also shows that the sum
∑k

j=1 αj cannot
exceed k. If it is equal to k, then M is invertible; otherwise, if it is less
than k, then parts of the signal ỹ, which lie in the nullspace of M, are
not needed to realize J(s).

Remark 4: Using this lemma and relation (16), one straightfor-
wardly obtains that

JjVj =

(
J̃j + Jj

k∑
r=j+1

VrV
T
r

)
Vj = J̃jVj = PjΣj . (23)

Hence, (21) may be rewritten more concisely as

Jj
dj ỹ

dtj
=

k∑
r=j

JjVrζr,j . (24)

Proof: Since all Vj are orthogonal matrices by construction, it
suffices to prove the following statement: for all j and all q > j,
VT

j Vq = 0. The proof is done by induction over j, starting with j = k,
in which case the statement is trivially true.

Suppose that the statement is true for all j ≥ i, i.e., VT
j Vq = 0 for

all q > j ≥ i. To see that it is then also true for j = i− 1, note that for
all q > i− 1, one has

k∑
r=i

VrV
T
r Vq =

q∑
r=i

VrV
T
r Vq +

k∑
r=q+1

Vr(V
T
q Vr)

T = Vq.

(25)
Consequently, (16) and (18) yield

0 = J̃i−1Vq = Pi−1Σi−1V
T
i−1Vq (26)

which implies VT
i−1Vq = 0, because Pi−1Σi−1 has full column

rank. �
Let now (Λ,Π,Γ,Θ) be a minimal state-space representation of

the transfer function matrix H(s). The realized Youla parameter is
then obtained from (15) and (24) as

ż = Λz+Πỹ (27a)

ũ = Γz+ (Θ+ J0)ỹ+
k∑

j=1

k∑
r=j

JjVrζr,j . (27b)

Fig. 2 depicts a block diagram representation of this system.
The following theorem shows that the presented realization (27) of

the ideal Youla parameter (12) minimizes the cumulative differentiator
order.

Theorem 1: Consider the realization of J(s) obtained using the pre-
sented algorithm in the form of matrices Pj ∈ R

l×αj , Vj ∈ R
m×αj ,

and Σj ∈ R
αj×αj , with αj = rankVj for j = 1, . . . , k. Then, the

cumulative differentiator order is given by
∑k

j=1 jαj and it is minimal
among all possible differentiator-based realizations of J(s).

Proof: The expression for the cumulative differentiator order fol-
lows from the fact that the jth differentiator has input dimensionαj and
differentiator order j. It remains to be shown that this cumulative order
is minimal. Let r ∈ [0, k] be an arbitrary integer and v ∈ R

αr be an
arbitrary vector. Consider the signal ỹ(t) = Vrvt

r; the corresponding
output of J(s) at t = 0 is given by(

J0ỹ+ . . .+ Jk
dkỹ

dtk

)∣∣∣∣
t=0

= JrVrv = PrΣrv. (28)

Due to the orthogonality of the matrices Vj shown in Lemma 1, all
differentiator inputs except the signal VT

r ỹ(t) = vtr are zero. Hence,
the structure of the other differentiators has no influence on the present
output, and it suffices to show that neither the signal dimension αr

Fig. 2. Sliding-mode-based realization of the ideal Youla parameter
using REDs with minimal cumulative order.

nor the order r of the differentiator for VT
r ỹ can be reduced without

altering the obtained output signal.
To see this, suppose to the contrary that another correct realization

requires a derivative of order r only for a signal of reduced dimension,
i.e., forMVT

r ỹwith someM ∈ R
c×αj , c < αj . This implies existence

of a nonzero vector v such that Mv = 0. Then, for the considered
structure of ỹ(t), the differentiator input MVT

r ỹ(t) = Mvtr , and
hence, also its output are zero for all t. The output PrΣrv in (28),
however, is nonzero for all nonzero v, because PrΣr by construction
has full column rank. This contradiction proves minimality of the
cumulative differentiator order for rth order differentiation of the signal
VT

r ỹ, and since r is arbitrary, for the entire realization. �

IV. STABILITY CONSIDERATIONS

In the following, two stability properties of the closed loop are
proven. First, input-to-state stability with respect to arbitrary, bounded
disturbances is shown. Subject to some additional differentiability
requirements for the disturbance, full disturbance rejection at the output,
i.e., asymptotic convergence of the output to zero, is then proven.

A. Input-to-State Stability

The following theorem shows that, by appropriately tuning the
differentiators in order to achieve finite-time stability of differentiation
errors, the closed loop is ISS with respect to the disturbance w.

Theorem 2: Suppose that Assumption 1 holds and that the matrices
A−BK andA− LC are Hurwitz. Consider the closed loop obtained
by the interconnection of the plant (1), observer-based state-feedback
controller (4), and the realization (19), (27) of the ideal Youla parameter
(12). Then, for any given positive parameters κj,j (j = 0, . . . , k), there
exist further positive parameters κj,r (j = 0, . . . , k; r = 0, . . . , j − 1)
for the differentiators, such that the closed loop with disturbance input
w is ISS.

Remark 5: If Lj is a Lipschitz constant of the jth derivative of the
respective signal to be differentiated, i.e., if∥∥∥∥∥d

j+1VT
j ỹ(t)

dtj+1

∥∥∥∥∥
∞
≤ Lj (29)
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holds for all t, then a common choice for κj,j is 1.1Lj ; for the selection
of the other parameters, cf. [5] and [20].

Proof: Looking at (5), one can see that the observer error dynamics
(5b)–(5c) with input w and output ỹ is ISS, because A− LC is
Hurwitz. Furthermore, the dynamics of the plant state (5a) with inputs
x̃, ũ, and w are ISS, since A−BK is Hurwitz. Thus, it suffices to
show that the realization of the Youla parameter with input ỹ and output
ũ is ISS. Input-to-state stability of the overall closed-loop system then
follows from the fact that it is a cascade interconnection of ISS systems.

The realization of the transfer function matrix H(s) is ISS due to
the stable invertability of G1 and G2. The only remaining dynamics
are the differentiators (19), whose inputs are linear combinations of the
observer output error ỹ. According to [20, Proposition 2], these also
are ISS for appropriate gains κj,r (j = 0, . . . , k; r = 0, . . . , j). Due to
the homogeneity property of the differentiator, these gains can always
be rescaled such that all κj,j have desired values without altering the
stability properties. �

B. Disturbance Rejection

Similar to [4], the presented sliding-mode-based realization of an
ideal Youla parameter permits to suppress a certain class of distur-
bances. The class of disturbances, which can be rejected, is defined by
certain differentiability requirements. The following theorem provides
conditions, which guarantee asymptotic stability of the closed loop
despite the disturbance.

Theorem 3: Suppose that Assumption 1 holds, that the two matrices
A−BK and A− LC are Hurwitz, and let W ≥ 0. Consider the
controller obtained by the interconnection of the observer-based state-
feedback controller (4) and the realization (19), (27) of the ideal Youla
parameter (12). Then, parameters κj,r (j=0, . . . , k; r = 0, . . . , j − 1)
exist, such that the output y(t) tends to zero, i.e., limt→∞ y(t) = 0,
whenever the disturbance w is such that ‖w(t)‖∞ ≤ W for all t, and
that for all integers j, r with 1 ≤ j ≤ r ≤ k the linear combinations of
the disturbance w given by

ψr,j = VT
r C(A− LC)j−1Fw (30)

are r − j + 1 times differentiable and that all derivatives also are
uniformly bounded with respect to time with bound W .

Proof: Since (A− LC) is Hurwitz and w is uniformly bounded,
also x̃ is uniformly bounded due to (5b). Then, the (r + 1)th time
derivative of the input VT

r ỹ to the rth (and thus, rth order) differentia-
tor, as depicted in Fig. 2

dr+1VT
r ỹ

dtr+1
= VT

r (A− LC)r+1x̃+

r∑
j=1

dr−j+1ψr,j

dtr−j+1
(31)

exists and is also uniformly bounded. Hence, given a uniform bound
W ≥ 0, there exist parameters κj,r > 0 such that all differentiator
errors converge to zero in finite time.

Consider now any closed-loop trajectory and let T be a correspond-
ing upper bound for the convergence times of all differentiators. Then,
in the state-space realization (27)

J0ỹ+
k∑

j=1

k∑
r=j

JjVrζr,j = J0ỹ+ J1
dỹ

dt
+ . . .+ Jk

dkỹ

dtk
(32)

holds for t ≥ T by construction. As a consequence, the closed loop
behaves like a linear, time-invariant system for t ≥ T and the trajectory
can be split into two additive components, which are denoted by the
indices (·)(1) and (·)(2) in the following. Let the splitting be performed
such that w(2) = w −w(1) is differentiable, x̃(2)(T ) = 0 holds, and
moreover, that w(2) and all its derivatives up to order k − 2 vanish at

t = T , whereas w(1) and all derivatives of the signals ψ(1)
r,j defined in

(30) up to order r − j tend to zero for t → ∞.
For the first trajectory, the vanishing w(1) and the Hurwitz property

of A− LC in (5b) allow to conclude that also limt→∞ x̃(1)(t) = 0.
Furthermore, all derivatives of ỹ(1) that are relevant in computing
ũ(1) vanish by virtue of the vanishing ψ(1)

r,j and a similar computa-
tion as in (31), and hence, also limt→∞ ũ(1)(t) = 0. Consequently,
limt→∞ x(1)(t) = 0 follows from (5a) and the fact that A−BK
is Hurwitz. For the second trajectory, the vanishing initial condition
x̃(2)(T ) along with differentiability and vanishing derivatives of w(2)

at t = T imply that ỹ(2) and its derivatives up to order k − 1 exist and
are zero at t = T . Computing the Laplace transform of (32) for2 t ≥ T ,
hence, yields J(s)ỹ(2)(s). Therefore

ũ(2)(s) = Q(s)ỹ(2)(s) (33)

holds in Laplace domain with the ideal Youla parameter Q(s), and
consequently,y(2)(s) = 0 is obtained by design, implyingy(2)(t) = 0
for t ≥ T . The claim now follows from the fact that, for t ≥ T ,
y(t) = y(1)(t) + y(2)(t) holds, and y(1)(t) tends to zero whereas
y(2)(t) is equal to zero. �

V. ACADEMIC SISO EXAMPLE

As a simple illustrative example, consider the SISO plant

ẋ1 = x2 + cw, ẋ2 = u+ w, y = x1 + x2 (34)

wherein c ≥ 0 is a known constant. Design the parameterized observer-
based state-feedback controller as

˙̂x1 = x̂2 + �1ỹ, ỹ = −x̂1 − x̂2 + y, (35a)

˙̂x2 = u+ �2ỹ, u = −k1x̂1 − k2x̂2 + ũ. (35b)

From (12) and (13), the polynomial J(s) = −s− (�1 + �2 + k2 − 1)

and transfer functionH(s) = (k2−k1−1)(�1−1)
s+1

are obtained. According
to Remark 1, V0 is not present and V1 = 1. Theorem 3 requires w to
be differentiable only once regardless of whether the disturbance is
matched or unmatched. The Youla parameter, finally, is given by the
first-order differentiator realizing J(s) and the linear system realizing
H(s) as

ζ̇2,0 = κ2,0�ỹ − ζ2,0� 1
2 + ζ2,1 (36a)

ζ̇2,1 = κ2,1�ỹ − ζ2,0�0 (36b)

ż = −z + (k2 − k1 − 1)(�1 − 1)ỹ (36c)

ũ = −(�1 + �2 + k2 − 1)ζ2,0 − ζ2,1 + z. (36d)

VI. APPLICATION TO MULTIVARIABLE FOUR-TANK SYSTEM

The interacting four-tank system (see, e.g., [21]), which is shown
schematically in Fig. 3, is used to demonstrate the application of the
proposed sliding-mode-based control approach. The system consists of
four tanks that are arranged as shown in the illustration. Each tank has a
rectangular bottom surface of areaAν , ν = 1, . . . , 4 and there is a drain
on the bottom. The area of the drain and the height of the drain socket
differs from tank to tank and is denoted by aν and h̃ν , respectively.
The tanks are arranged so that water flows from the upper tank into the
tank directly below and from the lower tanks into a collecting reservoir.
Two pumps are used to pump water from the collecting reservoir back

2The Laplace transform of a signal f(t) for t ≥ T is understood to be
computed as

∫ ∞
T

f(t)e−s(t−T ) dt.
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Fig. 3. Schematic of the considered four-tank system.

to the tanks. In particular, each pump delivers water to a lower and the
opposing upper tank. The ratio of the volumetric flow rate between the
lower and the corresponding upper tank can be adjusted by a valve. The
ratio is denoted by γμ with γμ ∈ [0, 1] and μ = 1, 2 in the following.
The opening width of the drain of each tank can in principle also be
adjusted via valves.

The control goal is to regulate the levels in the lower two tanks. As
control inputs the voltages applied to the two pumps are considered. In
this regard, the system features two inputs and two outputs. The filling
level in each tank, excluding the socket height, can be measured with
a sampling time of 0.01 s. MATLAB/Simulink is used to implement and
deploy the algorithm to the control hardware. It is noteworthy, that in the
experiment the minimum pump voltage was limited in order to ensure
that the hoses to the upper two tanks are always filled with water, and
thus, avoid transport delays.

Using the proposed approach, a controller is designed based on a
mathematical system model in the following. The system dynamics are
modeled by the sixth-order nonlinear system (see [22])

dλ1

dt
= − a1

A1

√
2gλ1 +

a3

A1

√
2gλ3 +

γ1
A1

q1 (37a)

dλ2

dt
= − a2

A2

√
2gλ2 +

a4

A2

√
2gλ4 +

γ2
A2

q2 (37b)

dλ3

dt
= − a3

A3

√
2gλ3 +

(1− γ2)

A3

q2 − 1

A3

w1 (37c)

dλ4

dt
= − a4

A4

√
2gλ4 +

(1− γ1)

A4

q1 − 1

A4

w2 (37d)

τ
dω1

dt
= −ω1 + v1, q1 = k1ω1, h1 = λ1 − h̃1 (37e)

τ
dω2

dt
= −ω2 + v2, q2 = k2ω2, h2 = λ2 − h̃2. (37f)

Therein the state variables λν , represent the total filling level of each
tank, i.e., including the socket (see Fig. 3), qμ are the inlet flow rates,
and g is the gravity constant. The dynamics of the pump are modeled
by a first-order lag with time constant τ and gain kμ, where the state
variable ωμ represents the pump speed. The pump supply voltage is
denoted by vμ. The variables w1 and w2 in (37c) and (37d) denote
unknown external disturbances, i.e., unknown inflows and outflows into
the upper two tanks. The system outputs hμ are the filling levels of the
lower two tanks minus the heights of the outlet sockets h̃μ. The system
parameters are summarized in Table I.

TABLE I
SYSTEM PARAMETERS

In the following, the proposed control approach is applied to regulate
the levels h1 and h2. To that end, the nonlinear system (37) is linearized
about the nominal operating point λν = λ̄ν , vμ = v̄μ from Table I with
wμ = 0. The resulting linear time-invariant model is in the form (1)
with parameters

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
T1

0 A3
A1T3

0 γ1
A1

0

0 − 1
T2

0 A4
A2T4

0 γ2
A2

0 0 − 1
T3

0 0 (1−γ2)
A3

0 0 0 − 1
T4

(1−γ1)
A4

0

0 0 0 0 − 1
τ

0

0 0 0 0 0 − 1
τ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

0 0
k1
τ

0

0 k2
τ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

− 1
A3

0

0 − 1
A4

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0 1

0 0

0 0

0 0

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(38)

where Tν = Aν
aν

√
2̄λν
g
. It is noteworthy, that for (γ1 + γ2) > 1, the

linear system is minimum phase; see, e.g., [22].
The state feedback controller

K =

[
1.046 0.015 0.068 0.045 0.460 0.015

0.003 0.975 0.061 0.093 0.015 0.394

]
(39)

as well as the observer gains

L =

[
0.485 0.001 0.047 0.013 0.025 0

0.001 0.474 0.010 0.048 0 0.022

]T
(40)

are computed using the LQR approach. With these particular parame-
ters, the polynomial matrix J(s) in (13) takes the form (14) with

J0 =

[
−4.085 −0.015

0.021 −4.260

]
, J1 =

[
−9.818 −0.015

0.021 −10.840

]

J2 =

[
−7.888 0

0 −8.957

]
. (41)
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Fig. 4. Simulation results. As can be seen in the uppermost graph,
the controller ensures accurate tracking of the setpoint (black dashed
lines) despite the disturbances w1(t) = 5 sin(0.12t) + 20 sin(0.7t) + 3
and w2(t) = 4 sin(0.15t) + 10 sin(0.4t) + 5.

Following Remark 2, the transfer behavior of J(s) is realized using the
differentiator toolbox presented in [23], which implements the robust
exact filtering differentiator published in [19]. The differentiator order
is two, the filtering order is set to one and the differentiator gains
are κ2,2 = 0.015, κ2,1 = 0.172, κ2,0 = 0.735, and κ2,−1 = 1.4. The
differentiators are discretized using the approach discussed in [24].
The toolbox enables the real-time implementation of the differentiator
at the used control hardware. The performance of the controller is
evaluated in a first step in simulation. For this purpose, the controller
is applied to the nonlinear model (37). The simulation is carried out
in MATLAB/Simulink. The discretization step size is set to 0.01 s.
Note that this corresponds to the sampling time in the real system.
The simulation results are presented in Fig. 4. The upper graph shows
the evolution of the levels in the two lower tanks (red and blue solid
lines) as well as the desired level (black dashed lines). The graph
in the middle shows the evolution of the filling level in the upper
two tanks. The pump supply voltages are plotted in the graph on
the bottom. It can be seen from the upper plot that the controller
is capable of driving the filling level of the two lower tanks to the
desired value despite the nonvanishing disturbances, which, in this
simulation is selected as w1(t) = 5 sin(0.12t) + 20 sin(0.7t) + 3 and
w2(t) = 4 sin(0.15t) + 10 sin(0.4t) + 5. The filling level in the upper
two tanks show an oscillating behavior, which is due to the disturbances
w1 and w2 (graph in the middle). Also the control signals show an
oscillating behavior after the transient phases as it counteracts the
effect of the disturbance. Note that in this simulation, no noise is
considered in order to emphasize the disturbance rejection properties of

Fig. 5. Experimental results. The same controller as used in simulation
is applied to the experimental setup. It can be seen that it ensures
accurate setpoint tracking.

the proposed controller, i.e., to demonstrate the asymptotic convergence
in the presence of the disturbances of the filling level in the lower two
tanks to the desired filling level.

The controller is applied with the same settings to the real system.
The results are shown in Fig. 5, where the arrangement of the plots is
the same as in Fig. 4. Also in the experiment, the controller ensures
accurate tracking of the same set point as in the simulation. In the real
experiment, the robustness against measurement noise is also apparent.
Furthermore, controller windup is avoided, since the proposed approach
inherently possesses the observer-based antiwindup property; see [25]
for details.

VII. CONCLUSION

By designing a sliding-mode-based Youla parameter, a unified ap-
proach for differentiation-based disturbance cancellation for multi-
variable plants was developed. Apart from stabilizability, the only
requirements for applying it are strong detectability of the plant with
respect to the disturbance and asymptotic stability of the zero dynamics
of the plant’s output. In particular, the approach also handles unmatched
disturbances and, subject to certain differentiability requirements, can
fully cancel their influence on the output. Moreover, it is proven that
the approach minimizes the implementation complexity in the sense
that the cumulative differentiator order of the required sliding-mode
differentiators is minimized. The application to a multivariable four
tank system demonstrated the proposed approach’s efficiency both in
simulations and experiments. In the future, the influence of additional
effects such as parametric or multiplicative uncertainties in the plant
model may be investigated.
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