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Polarization of Multi-agent Gradient Flows Over Manifolds
With Application to Opinion Dynamics

La Mi , Jorge Gonçalves , Senior Member, IEEE, and Johan Markdahl

Abstract—Multi-agent systems are known to exhibit stable
emergent behaviors, including polarization, over Rn or highly sym-
metric nonlinear spaces. In this article, we eschew linearity and
symmetry of the underlying spaces, and study the stability of po-
larized equilibria of multi-agent gradient flows evolving on general
hypermanifolds. The agents attract or repel each other according
to the partition of the communication graph that is connected
but otherwise arbitrary. The manifolds are outfitted with geomet-
ric features styled “dimples” and “pimples” that characterize the
absence of flatness. The signs of interagent couplings together
with these geometric features give rise to stable polarization under
various sufficient conditions. We propose tangible interpretation
of the system in the context of opinion dynamics, and highlight
throughout the text its versatility in modeling diverse aspects of
the polarization phenomenon.

Index Terms—Agents and autonomous systems, network anal-
ysis and control, nonlinear systems, polarization, stability of non-
linear (NL) systems.

I. INTRODUCTION

Let there be a collection of simple agents traversing a complex
terrain. Their goal is to approach the weighted average positions
of their neighbors, which they are programmed to either attract or
repel. This is a typical distributed process [1], and is akin to many
aspects of social opinion formation, as numerous observers in the
systems and control community have identified [2], [3]. Accordingly,
insights on multi-agent systems, especially on the stability and con-
vergence properties of consensus, have been applied to a large num-
ber of opinion dynamics models to study social agreement [4], [5],
[6]. Continuing this tradition, we investigate multi-agent systems that
evolve over nonlinear spaces for another type of emergent behavior,
namely, polarization. Through this angle, we seek to understand the
social phenomenon of opinion polarization, which has become increas-
ingly conspicuous in the backdrop of perceived deepening of social
discords [7].

The specific empirical observations concerning the polarization phe-
nomenon we are concerned with are the following. At the individual
level, the personal belief system of an agent is simpler and cleaner
compared with the richness of the external environment, composed of
ideas, events, and issues in the public sphere that are often unrelated to
each other. At the macroscopic level, polarization not only arises in a
straightforward fashion when two parties holding diametric views are

Manuscript received 8 May 2023; accepted 28 May 2023. Date of
publication 1 June 2023; date of current version 30 January 2024.
This work was supported by the Luxembourg National Research Fund
under Grant FNR OPEN O19/13904037-SYBION. Recommended by
Associate Editor Z. Kan. (Corresponding author: La Mi.)

La Mi and Johan Markdahl are with the Luxembourg Centre for Sys-
tems Biomedicine, University of Luxembourg, L-4367 Belval, Luxem-
bourg (e-mail: la.mi@uni.lu; markdahl@kth.se).

Jorge Gonçalves is with the Luxembourg Centre for Systems
Biomedicine, University of Luxembourg, L-4367 Belval, Luxembourg,
and also with the Department of Plant Sciences, University of Cam-
bridge, CB2 3EA Cambridge, U.K. (e-mail: jmg77@cam.ac.uk).

Digital Object Identifier 10.1109/TAC.2023.3281980

squarely opposed to each other. It might also happen among groups
sharing significant common grounds with ostensibly minor differences
(e.g., one iota of difference between the Homoousians and Homoiou-
sians [8, Ch. 21]). We show how our results capture these patterns
that have not been addressed to date, thus rendering our polarization
problem over nonlinear space a suitable phenomenological model for
opinion dynamics.

More concretely, we study a model of multi-agent gradient flow
system confined to manifolds embedded in the Euclidean space. Gra-
dient descent flow, being a sufficiently simple optimizing process, is
amenable to rigorous stability analysis and thus widely adopted by many
agent-based models as coordinating protocols for robot swarms [9].
The restriction to nonlinear spaces in social dynamics analysis [10],
however, is less common. We are motivated by the observation that the
variety of issues or situations that an individual confronts is necessarily
more complex and nuanced than the set of a few principles, or core
beliefs, used to navigate those situations. The external events, the
environment, or the expressed opinions of other agents may be naturally
presented in the ambient Euclidean space; the core beliefs of an individ-
ual are encoded in the local parameterization of a lower dimensional
manifold. By the local parameterization of a manifold, we mean the
inverse mapping of the chart ϕ that maps each point on the manifold
onto the ambience; it may differ from point to point on the manifold. The
analytical investigation into this conceptual interpretation is realized
by outfitting the general manifolds with special geometric features
styled “dimples” and “pimples”. The interplay between these geometric
features and the cooperative/antagonistic interactions among agents
then gives rise to different routes to polarization.

There are a few polarization studies on manifolds in the literature,
where the n-sphere has received the most attention. Gaitonde et al. [11]
proved almost sure convergence for a class of Markov processes on the
hypersphere. Hong and Strogatz [12] found traveling wave polarization
in a variant of the Kuramoto model over the unit circle with conformist
and contrarian oscillators. The bifurcation points between different
steady states were solved exactly by a series of reduction techniques ap-
plied to the mean field approximation. A higher dimensional Kuramoto
model analyzed by Ha et al. [13] also features positive and negative cou-
plings between agents. They derived stability conditions on initial con-
ditions, relative strengths of the two types of couplings, and frequency
matrices that govern the self dynamics. More elaborate state-dependent
interaction rules inspired by neuroscience are considered by Crnkić
and Jaćimović [14] over a 3-sphere through a quaternion formulation.
The antipodal configuration is asymptotically stable if agents attract
or repulse each other when they are, respectively, close or far. For ring
graphs over the 2-sphere, Song et al. [15] obtained asymptotically stable
polarization with even number of agents. Moreover, the result is almost
global if the graph is undirected. For more general manifolds, a recent
work by Aydogdu et al. [16] explored geodesic and chordal interactions
between agents on general Riemannian manifolds, and established the
existence of various equilibria and orbits but without stability analysis.

In view of these related works, our contribution is that we provide
rigorous stability analysis of polarized equilibria for the multi-agent
gradient descent system with arbitrary connected network topology
over more general manifolds. When reduced to the hypersphere case,
our results generalize and complement the existing ones obtained in the
literature [13], [15]. Furthermore, we draw on our unique interpretation
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Fig. 1. Common fruits illustrating Definition 2.1: a lemon with a pair of pimples (left), an apple with a pair of dimples (middle), and a peach with
one pimple and one dimple (right).

for embedded lower dimensional manifolds in the context of opinion
dynamics, to address aspects of the opinion polarization hitherto unac-
counted for.

II. SETUP

A. Geometric Features of the Manifold

Consider a closed and connected n-dimensional hypermanifold em-
bedded in the Euclidean ambient space

Hn = {y ∈ Rn+1 | c(y) = 0}

implicitly defined by a smooth C2 function c : Rn+1 → R, with the
usual requirement that the gradient in Rn+1 satisfies ∇c(x) �= 0 for
every x ∈ Hn. A closed manifold is a compact manifold without
boundary; closedness and connectedness allow us to quote the Jordan–
Brouwer separation theorem, which says that the hypermanifold Hn

separates its complement Rn+1 −Hn into two disjoint sets [17]. The
implicit function c is positive in one of the two disjoint sets, and
negative in the other. Without loss of generality, we identify the former
with the unbounded set outside Hn, and the latter with the bounded
set inside Hn. The unit normal n(x) = ∇c(x)/‖∇c(x)‖ is outward-
pointing, i.e., pointing toward the unbounded set.

The hypermanifold Hn is equipped with special features: dimples
and pimples. To define them, introduce a height function hx : Hn → R
with respect to a fixed x

hx(y) := 〈n(x), y〉 ∀y ∈ Hn.

The height function gives the altitude of a point y along the axis spanned
by n(x). For the example of a 2-sphere, we can take the north pole
(0, 0, 1) as the fixed point. Then, the normal at the north pole is (0, 0, 1).
Consequently, the height function of any point on the sphere gives
its z-coordinate. For notational convenience, if the fixed x carries a
subscript, e.g., xi, then hxi

is shortened as hi. Similarly, n(xi) is often
shortened to ni. Now, we are ready to introduce the definitions for a
dimple and pimple.

Definition 2.1: If for somex ∈ Hn, y = x is a strict local minimizer
of hx(y) in a sufficiently small neighborhood Ix = {y ∈ Hn | ‖y −
x‖ < ε}, then Ix is referred to as a dimple, and x the bottom of the
dimple. Similarly, if for somex ∈ Hn, y = x is a strict local maximizer
of hx(y) in a sufficiently small neighborhood Ix, then Ix is referred to
as a pimple, and x the bottom of the pimple.

Fig. 1 illustrates the concepts of dimples and pimples in R3 by three
common fruits.

Remark 2.1: The dimple or pimple Ix does not necessarily contain
only one bottomx. It may be that Ix has a single set of bottoms covering
all or part of Ix, or there are multiple disjoint sets of bottoms within
Ix. We require Ix to be sufficiently small in Definition 2.1 to exclude
the latter case, by shrinking the radius ε of the neighborhood around x.
However, it is not always possible to completely avoid disjoint sets of
bottoms when, e.g., the embedding of the hypermanifold is not analytic.

B. Multi-agent Networks

Evolving on the hypermanifold is a homogeneous multi-agent sys-
tem with N agents, associated with an undirected, connected, and
weighted graph structure G = (V, E , A). The adjacency matrix A =
[aij ] is symmetric and has nonnegative entries. The vertices V are
divided into two groups Vu = {1, 2, · · ·M} and Vl = {M + 1, · · ·N}
for 1 < M < N . The edge set E is partitioned into intragroup and
intergroup sets E+ = {{i, j} ∈ E | i, j ∈ Vu or i, j ∈ Vl} and E− =
{{i, j} ∈ E | i ∈ Vl, j ∈ Vu}.

Such a partition is introduced to enforce different coupling rules
over edges in E+ and E−. The couplings are positive over all edges in
E+, whereas those over E− can be either all positive or all negative.
This “edge coloring” equivalently generates a structurally balanced
graph [18] if we allow the graph to be signed such that edge weights on
elements in E+ are all positive, and edge weights on elements in E− are
either all positive or all negative. In fact, doing so would not affect any
of our results conceptually, as such, no loss of generality is incurred
with the nonnegativity requirement on A.

Remark 2.2: It is noted in [18, Lemma 1] that there exists a gauge
transformation that brings a structurally balanced signed graph to a
nonnegative one. This operation is akin to simultaneously reshuffling
group membership and assigning to the affected agents opposite po-
sitions in the Euclidean space. It is not applicable in our general case
(except the sphere case of special interest in Section III-B), because no
symmetry is assumed in the underlying nonlinear space, as detailed in
Section II-A. The symmetry assumption on A, however, is essential, as
we deal with gradient flows, see Section II-C.

C. Gradient Flow Dynamics

Let us denote the states of the agents individually by xi and col-
lectively by χ := (xi)

N
i=1. The agents evolve according to a simple

rule of gradient descent flow in continuous time. Given a disagreement
function V : Hn → R, the dynamics of each agent is

ẋi = − gradi V (χ) = −Pi (∇iV (χ)) (1)

where gradi is the intrinsic gradient on the tangent space Txi
Hn

at the point xi, Pi = I − nin
′
i is a positive semidefinite projection

matrix [19] on Txi
Hn, and ∇iV (χ) is the standard gradient in the

Euclidean space of the disagreement function.
As mentioned in Section II-B, we divide the N agents into two

groups so that members within the same group are attracted to each
other, whereas members in different groups can be made to either
oppose or attract each other. To model the situation with attractive
intragroup coupling and repulsive intergroup coupling on Hn, we use
the disagreement function

V−(χ) :=
1

2

∑
{i,j}∈E+

aij‖xj − xi‖2 − 1

2

∑
{i,j}∈E−

aij‖xj − xi‖2. (2)
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Another appealing option in the literature is to retain the sum of square
structure [18] by changing the second term

1

2

∑
{i,j}∈E+

aij‖xj − xi‖2 + 1

2

∑
{i,j}∈E−

aij‖xj + xi‖2. (3)

However, (3) is not suitable for nonlinear spaces. Take a two particle
system evolving on the unit circle as an example, every antipodal
formation minimizes (3) only if the unit circle is centered at the origin.
Right shift by one unit, and consensus at the origin becomes the new
minimizer. To be coordinate agnostic, we choose (2) to arrive at

ẋi = Pi

⎛
⎝∑

j∈Vu

aij (xj − xi)−
∑
j∈Vl

aij (xj − xi)

⎞
⎠ , i ∈ Vu

ẋi = Pi

⎛
⎝∑

j∈Vl

aij (xj − xi)−
∑
j∈Vu

aij (xj − xi)

⎞
⎠ , i ∈ Vl. (4)

The sphere model with homogeneous frequency matrices [13, Eq. (2.3)]
is a special case of (4).

For the situation with purely attractive coupling, we simply change
the sign of the second term in (2)

V+(χ) =
1

2

∑
{i,j}∈E

aij‖xj − xi‖2 (5)

following which the state equation for agent i becomes:

ẋi = (I − nin
′
i)
∑
j∈V

aij (xj − xi) , i ∈ V. (6)

Or more compactly, (6) can be written as χ̇ = −PL⊗ Iχ, where
P = diag(Pi) and L is the familiar graph Laplacian. It is readily
recognizable as a nonlinear higher dimensional version of the Abelson
model [20], where the nonlinearity comes from the underlying non-
linear hypermanifold. Moreover, the sphere version of (6) is a higher
dimensional Kuramoto model with homogeneous frequencies [21],
[22].

D. Assemblage

Assembling the aforementioned ingredients in Sections II-B and
II-C, we have a multi-agent gradient flow system with repulsive (4)
or attractive (6) intergroup interactions evolving on a hypermanifold
Hn. The hypermanifold is equipped with a pair of dimples or pimples
as illustrated in Fig. 1, each containing one of the two groups of
agents Vu and Vl. We are interested in possible polarization arising
in this setting as a result of the interplay between the graph couplings
and the geometry of the underlying nonlinear space.

Definition 2.2 (Polarization): The agents are said to be polarized if
xi = xj for all {i, j} ∈ E+ and xi �= xj for all {i, j} ∈ E−.

This definition is less in common with the notion of bipartite
consensus over linear Euclidean space in [18] meaning all agents
are equal up to signs, or with the strong/weak polarization [11] and
complete polarization [13] over the hypersphere, which are antipodal.
Those definitions are convenient for highly symmetric spaces, whereas
we work with more general hypermanifolds without symmetry and
cannot define polarization this way. However, our definition enjoys
more flexibility, as we can model opposition over seemingly trivial
differences (from the external point of view) with Definition 2.2 plus
‖xi − xj‖ < ε for {i, j} ∈ E−. In this sense, the partial polarization
defined in [13] is more closely related, where the two groups on the
sphere need not be antipodal and is possible in their case due to the
presence of frequency terms.

Definition 2.2 characterizes a polarized configuration without speci-
fying whether the states are in equilibrium, limit cycle, or more complex
nonstationary modes. We focus on polarization as an equilibrium (set)
and its stability properties, because equilibrium is the only possible

attractor as shown by the following proposition. Let ui denote the
aggregate attraction for xi

ui =
∑
j∈V

aij (xj − xi) . (7)

Proposition 2.1: The system (6) converges to an equilibrium set on
(Hn)N . At the equilibrium, ui defined in (7) is either zero or parallel
to ni for all i ∈ V .

Proof: For V+(χ) in (5)

V̇+ =
∑

{i,j}∈E
aij (〈xj − xi, ẋj〉 − 〈xj − xi, ẋi〉)

=
∑
i∈V

〈
ẋi,

∑
j∈V

aij(xi − xj)

〉
+

∑
j∈V

〈
ẋj ,

∑
i∈V

aij(xj − xi)

〉

= 2
∑
i∈V

〈
ẋi,

∑
j∈V

aij(xi − xj)

〉

= − 2
∑
i∈V

〈Piui, ui〉 = −2
∑
i∈V

‖Piui‖2

where the last equality comes from P2
i = Pi. Thus, we have V̇+ ≤ 0.

By LaSalle’s invariance principle, system (6) converges to the set
{χ | V̇+ = 0}. To achieve V̇+ = 0, either ui = 0 or ui ∈ kerPi. In the
latter case, as kerPi = span (ni), we have ui parallel to ni. Inspect-
ing (6), we see that both cases lead to ẋi = 0 for all i ∈ V . Therefore,
the system (6) converges to an equilibrium set on (Hn)N . �

As mentioned in Section II-B, we may use signed graphs for in-
tergroup antagonism, then (2) and (4) would, respectively, reduce in
form to (5) and (6). And the same conclusion as Proposition 2.1 can be
reached via identical arguments for system (4) derived from V−.

Remark 2.3: Proposition 2.1 dictates convergence to a set, rather
than to a point of equilibrium. Hence, it does not exclude nonstationary
solutions. An example of a gradient system displaying nontrivial con-
vergence behavior is the Mexican hat, which has trajectories converging
to the unit circle [23, Introduction].

The first statement in Proposition 2.1 can be proved using more stan-
dard arguments for gradient flows on manifolds [24, Appendix C.12].
Nevertheless, our derivation, analogous to that of [25, Prop. 11], makes
explicit the second statement which points to the necessary condition
for polarization to occur. Namely, the normals at the two distinct points
forming the polarized configuration must be aligned. This observation
motivates the sufficient conditions for stable polarization that we are
about to see in the next section.

We collect a few previous results and associated definitions that will
pave the way for the development of our main results. The definitions
of concepts, such as stability and a local minimizer of a real function
are well known. Here, we clarify their meanings when a set rather than
a point is in question, which is perhaps less standard.

Introduce the Hausdorff distance between two sets Y,Z ⊂ Rn

dH(Y,Z) := max

{
sup
y∈Y

inf
z∈Z

‖y − z‖, sup
z∈Z

inf
y∈Y

‖y − z‖
}
.

Definition 2.3 (Stability): A set of equilibria S is Lyapunov stable
if, for each ε > 0, there is δ = δ(ε) such that dH(x,S)|t=0 < δ implies
dH(x,S)|t < ε for all t ≥ 0; is asymptotically stable if it is stable and δ
can be chosen such that dH(x,S)|t=0<δ implies limt→∞ dH(x,S)=0.

Definition 2.4 (Local minimizer): A set S ⊂ M is said to be a local
minimizer of a real function f : M → R from a metric space (M, dH)
if for some ε > 0 there is an open neighborhood N (S) = {x ∈
M| dH(x,S) < ε} such that f |S ≤ f(x) for all x ∈ N (S). Moreover,
if the inequality is strict for all x ∈ N (S)\S , then S is said to be a
strict local minimizer.

Definition 2.5 (Isolated critical): A set S ⊂ M of critical points
of a real function f : M → R from a metric space (M, dH) is said
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to be isolated critical if for some ε > 0 there is an open neighborhood
N (S) = {x ∈ M| dH(x,S) < ε} such thatN (S)\S is void of critical
points.

Proposition 2.2 (Prop. 3 [26]): Let M be closed and take any V :
M → R that is C2. Let S be a compact set of local minimizers of V . If
S is a strict local minimizer, thenS is a Lyapunov stable equilibrium set
of ẋ = − gradV . If S is also isolated critical, then it is asymptotically
stable.

III. MAIN RESULTS

In this section, we present and discuss our main results concerning
the stability properties of polarized equilibria. They arise in different
combinations of attractive/repulsive interactions with dimple/pimple
geometric features, best exemplified by the fruits portrayed in Fig. 1.
Despite the symmetrical shapes that the fruits assume in the figure, we
emphasize that our general results do not require any spatial symmetry
of the hypermanifold embedding.

The following sections are headed by various cases of geometric
features. We are motivated to study these cases because, as pointed out
in the abstract, nonlinear hypermanifolds are typically free of flatness;
dimples and pimples are the norm. So, although our results are only
sufficient, the cases we study are representative of general polarizing
conditions.

A. Pimple Pairs

Consider a pair of pimples on the hypermanifold, one containing the
group of agents Vu and the other Vl. The assumption is then

Assumption 1: The sets Iu and Il are a pair of pimples, and xi ∈ Iu

for all i ∈ Vu, xi ∈ Il for all i ∈ Vl.
1) Lemon: To begin, we may picture the system (4) evolving on a

lemon-like manifold in Fig. 1 (left). For the dynamics, we are interested
in (4) with attractive intragroup coupling and repulsive intergroup
coupling corresponding to the disagreement function (2).

Denote a closed ball centered at a point x with radius r as Br(x).
Let xo = 1

2
(xu + xl) denote the midpoint between xu and xl, and

ro = 1
2
‖xu − xl‖ the half distance between them. The following results

concern the set:

Clem :=
{
χ ∈ (Hn)N |
xi = x, ∀i ∈ Vu, xi = y, ∀i ∈ Vl, (x, y) ∈ Y } (8)

where Y := {(x, y) ∈ Iu × Il | ‖x− y‖ = 2ro}. This set is nonempty
as Clem ⊃ χ∗, where

χ∗ := {χ ∈ (Hn)N |xi = xu, ∀i ∈ Vu, xi=xl, ∀i ∈ Vl}. (9)

It may contain other elements when, for instance, the pair of pimples
belongs to a sphere or a sphere-like hypermanifold that fully or partially
overlaps with the boundary of the closed ball Bro(xo).

Proposition 3.1: For system (4) under Assumption 1, if there exists
a pair of distinct pimple bottoms xu ∈ Iu and xl ∈ Il such that Iu and
Il are entirely contained in Bro(xo), then a strict local minimum of
V− is V ∗

− := −2r2o
∑

{i,j}∈E− aij , and the corresponding strict local
minimizer is a compact set of polarized configurations Clem defined
in (8).

Proof: We shall minimize V−, which is composed of disagreement
terms ‖xj − xi‖ among agents. Under Assumption 1, the bounds on the
disagreement terms differ for agents belonging to the same or opposing
groups. For all {i, j} ∈ E−, assume without loss of generality that i ∈
Vu and j ∈ Vl. The term ‖xj − xi‖2 in (2) is upper bounded by

‖xj − xi‖ ≤ 2ro = ‖xu − xl‖.
The inequality is because both pimples are entirely contained in
Bro(xo). The upper bound is achieved when xi = x and xj = y for
every pair (x ∈ Iu, y ∈ Il) such that ‖x− y‖ = 2ro, an example of
which is x = xu and y = xl.

For all {i, j} ∈ E+
‖xj − xi‖2 ≥ 0

where the equality is achieved when xi = xj , of which a special case is
xi = xj = xu for i, j ∈ Vu and xi = xj = xl for i, j ∈ Vl. Therefore,

V−(χ) ≥ −1

2

∑
{i,j}∈E−

aij‖xj − xi‖2 ≥ −2r2o
∑

{i,j}∈E−
aij .

The minimum is achieved only whenxi = x, i ∈ Vu andxi = y, i ∈ Vl

for every pair of (x ∈ Iu, y ∈ Il) such that ‖x− y‖ = 2ro. �
Corollary 2.2: For system (4) under Assumption 1, if the two

pimples Iu and Il satisfy the conditions given in Proposition 3.1, then
Clem defined in (8) is a Lyapunov stable set of polarized equilibria.

Proof: This is a direct application of Proposition 2.2 to 3.1. �
Next, we derive an asymptotic stability result for when Iu and Il live

on nice manifolds.
Theorem 3.3: For system (4) under Assumption 1, if the two pimples

Iu and Il satisfy the conditions given in Proposition 3.1, and in addition,
there is a neighborhood Na(Clem) on (Hn)N that belongs to an analytic
manifold, then Clem defined in (8) is an asymptotically stable set of
polarized equilibria.

Proof: The first part of the proof is to show that pointwise, there
are no equilibrium points other than those in Clem in the neighborhood
of each χp ∈ Clem. We label quantities by a subscript “p” to stress that
they vary with each differentχp ∈ Clem. Following a variant [27, Sec. 9]
of the Łojasiewicz inequality valid on analytic Riemannian manifolds,
the analytic function V−(χ) in (2) behaves in the following way in a
neighborhood Nł(χp) ⊂ Na(Clem) of every polarized equilibrium χp ∈
Clem:

|V−(χ)− V−(χp)|αp ≤ κp‖ gradV−(χ)‖
forαp < 1 andκp > 0. Suppose thatχ ∈ Nł(χp) is an element in the set
of equilibria Q such that Q ∩ Clem = ∅, then gradV−(χ) = 0, c.f. (1).
Consequently, V−(χ) = V−(χp). However, Proposition 3.1 says that
the local minimum V ∗

− is achieved only if χ ∈ Clem, a contradiction.
Therefore, Q ∩Nł(χp) = ∅, ∀χp ∈ Clem.

Having shown that every point in Clem is isolated fromQ, we proceed
to demonstrate that no sequence inQ can approachClem arbitrarily close.
Suppose on the contrary that there is such a sequence {χi}∞i=1 ∈ Q,
then infχ∈Q V−(χ) = V ∗

− and limi→∞ V−(χi) = V ∗
− . The sequence is

bounded, since Iu and Il are bounded sets. By the Bolzano–Weierstrass
theorem, the sequence {χi}∞i=1 has a subsequence that converges to
some point χq such that V (χq) = V ∗

− , which in turn implies that χq ∈
Clem. This is to say that this subsequence in Q must converge to a point
χq ∈ Clem, contradicting the fact that Q ∩Nł(χq) = ∅.

Thus, we have shown that Clem is isolated critical, and therefore is
asymptotically stable by Proposition 2.2. �

Remark 3.1: The additional requirement on the analyticity of the
manifold in Theorem 3.3 is a local one. In fact, the sole purpose of
introducing the neighborhood Na(•) is to emphasize this local nature.
We do not require the whole manifold to be analytic for Clem or χ∗ to
be asymptotically stable. For instance, Na(Clem) may be a subset of
(Hn)N ∩MN , where Hn is the hypermanifold on which the agents
inhabit, whereas M is an analytic manifold.

The condition proposed in Proposition 3.1 essentially seeks to ensure
that 2ro is the largest possible distance between all possible pairs of
points {x, y} ∈ Iu × Il in the neighborhood, whereby V ∗

− is a strict
local minimizer of V−. However, the conservatism introduced by this
approach can be immediately identified. Even if one pimple, say Iu, is
outsideBro(xo), if the other pimple Il is very “steep,” it may still be the
case that 2ro is the largest possible distance between all possible pairs
of points {x, y} ∈ Iu × Il. Nonetheless, if both pimples are outside
Bro(xo), then instability can be established for χ∗. For brevity, we
only show the loss of asymptotic stability in the following.

Proposition 3.4: For system (4) under Assumption 1, if the two
pimples Iu and Il are entirely outside Bro(xo) except for the bottoms
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Fig. 2. Lemon donut with a pair of dimples (left), apple donut with a pair of pimples (middle), and peach donut with one dimple and one pimple
(right).

xu and xl, then the equilibrium χ∗ defined in (9) is not asymptotically
stable.

Proof: That χ∗ is an equilibrium can be checked by substituting (9)
into (4). To show instability, we find a perturbation that causes the
trajectory not to settle into χ∗. We choose a perturbation χ̃ that leaves
the configuration polarized, that is xi = x̃u �= xu for all i ∈ Vu and
xi = x̃l �= xl for all i ∈ Vl, such that x̃u − x̃l passes through xo. As
both pimples are outside Bro(xo) except for the isolated points xu and
xl, ‖x̃u − x̃l‖ is guaranteed to be greater than ‖xu − xl‖. Consequently,
the disagreement function is upper bounded:

V−(χ̃) = − 1

2

∑
{i,j}∈E−

aij‖x̃u − x̃l‖

< − 1

2

∑
{i,j}∈E−

aij‖xu − xl‖ = V−(χ∗).

Since the disagreement function V− decreases along the solutions
of χ̇ = − gradV−(χ) [28], which in this case is (4), the perturbed
configuration χ̃ does not return to χ∗. �

2) Apple Donut: Stable polarization in a pair of pimples also
exists in the system (6) with attractive intergroup coupling, when the
normals of the two pimples point toward each other, see the apple donut
in Fig. 2.

Observe that the graph G is connected and both Vu and Vl are
nonempty, so is E−. Consequently, under polarization as per Defini-
tion 2.2, ui defined in (7) is nonzero, and hence must be parallel to ni

according to Proposition 2.1. This observation motivates the conditions
in the ensuing results.

Proposition 3.5: For system (6) under Assumption 1, if there exists
a pair of distinct pimple bottoms xu ∈ Iu and xl ∈ Il such that
1) xu − xl is parallel to n(xu), and
2) hu(xl) is a local minimum satisfying hu(xl) > hu(xu)

then a strict local minimum of V+ is V ∗
+ := 2r2o

∑
{i,j}∈E− aij , and the

corresponding strict local minimizer is χ∗ defined in (9).
Proof: For all {i, j} ∈ E−, assume without loss of generality that

i ∈ Vu and j ∈ Vl. The term ‖xj − xi‖2 in (5) is lower bounded by

‖xj − xi‖2 ≥ 〈xj − xi, n(xu)〉2 = (hu(xj)− hu(xi))
2

≥ (hu(xu)− hu(xl))
2 = 4r2o. (10)

The first lower bound is achieved only whenxj − xi is parallel ton(xu).
For the second lower bound, observe that xu is the bottom of the pimple
Iu. Consequently, hu(xu) is by Definition 2.1 a strict local maximum
achieved only by xu. Combining this observation with condition 2 in
the proposition, we conclude that the second lower bound is achieved
only when hu(xi) = hu(xu), implying xi = xu, and hu(xj) = hu(xl).
With condition 1 in the proposition, the only configuration to achieve
both lower bounds is thus xi and xj being in their respective bottoms
xu and xl.

For all {i, j} ∈ E+, we again have ‖xj − xi‖2 ≥ 0,with the equality
achieved when xi = xj . Therefore,

V+(χ) ≥ 1

2

∑
{i,j}∈E−

aij‖xj − xi‖2 ≥ 2r2o
∑

{i,j}∈E−
aij .

The minimum is achieved only when xi = xu, i ∈ Vu and xi = xl, i ∈
Vl. �

Corollary 3.6: For system (6) under Assumption 1, if the two
pimples Iu and Il satisfy the properties given in Proposition 3.5, then
χ∗ defined in (9) is a Lyapunov stable polarized equilibrium.

Proof: This is a direct application of Proposition 2.2 to 3.5. �
Theorem 3.7: For system (6) under Assumption 1, if the two pimples

Iu and Il satisfy the properties given in Proposition 3.5, and in addition,
there is a neighborhood Na(χ

∗) on (Hn)N that belongs to an analytic
manifold, then χ∗ defined in (9) is an asymptotically stable polarized
equilibrium.

Theorem 3.7 concerns the asymptotic stability of an equilibrium
point as the singleton set χ∗, rather than an equilibrium set as in (8).
The line of reasoning is consequently simplified to the first paragraph
of the proof of Theorem 3.3 and is omitted.

B. Sphere: A Special Case of the Lemon

In the special case of Hn = Sn when the hypermanifold is the
n-sphere, for every x ∈ Sn and its opposite pole y = −x, Ix and
Iy form a pair of pimples satisfying the conditions in Theorem 3.3.
Therefore, we have a corollary for the following subset of Clem, which
is a polarization set specialized on the n-sphere

Csph :=
{
χ ∈ (Sn)N |
xi = x, ∀i ∈ Vu, xi = y, ∀i ∈ Vl, ‖x− y‖ = 2}

=
{
χ ∈ (Sn)N |
xi = x, ∀i ∈ Vu, xi = −x, ∀i ∈ Vl, x ∈ Sn} . (11)

Corollary 3.8: For system (4) evolving on Sn, Csph given by (11)
constitutes an asymptotically stable set of polarized equilibria.

Furthermore, for n-spheres excepting the circle S1, a stronger result
of almost global asymptotic stability can be obtained by exploiting the
spherical symmetry. By almost global asymptotic stability, we mean

Definition 3.1 (Almost global asymptotic stability): A set of equilib-
ria D ⊂ (Hn)N is almost globally attractive if for all initial conditions
except a measure-zero set, it holds that limt→∞ χ(t) ∈ D. Moreover,
if D is stable, D is almost globally asymptotically stable.

The measure-zero set is with respect to the Lebesgue measure.
Theorem 3.9: For system (4) evolving on Sn with n ≥ 2, the polar-

ization set Csph given by (11) is almost globally asymptotically stable.
Moreover, every trajectory converges to some point in Csph at a locally
exponential rate.

Proof: There is no loss of generality in assuming that the origin is
located at the n-sphere center, as (2) is coordinate agnostic. Apply a
coordinate transformation yi = xi for all i ∈ Vu and yi = −xi for all
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Fig. 3. Symmetric (A1) and asymmetric (A2) network topologies.

i ∈ Vl. System (4) becomes

ẏi = (I − yiy
′
i)
∑
j∈V

aijyj ∀i ∈ V (12)

where we have used the facts that ni = xi and (I − xix
′
i)xi = 0 that

are valid on the unit n-spheres. System (12) is a special case (constant
aij) of a family of consensus protocols considered in [25, Th. 13], which
guarantees the almost global asymptotic stability of the consensus set

C = {(yi)Ni=1 ∈ (Sn)N | yi = yj , ∀i, j ∈ V}.

This consensus set C maps to the polarization set Csph by reversing
the bijective coordinate transform. Therefore, applying [25, Th. 13]
to system (12) and then reversing the coordinate transformation, we
obtain the first conclusion. For the second statement, notice that the
adjacency matrix A is constant and nonnegative. Then, [25, Th. 13]
again applies. �

Remark 3.2: Theorem 3.9 together with Corollary 3.8 complements
and generalizes several existing results in the literature. For instance,
[13, Th. 3.4] provides regions of attraction with exponential stability
under a condition on relative strengths of attractive and repulsive gains,
assuming all-to-all networks. The almost global asymptotic stability
result for polarization in [15, Th. 4.5] is only established on the 2-sphere,
and is restricted to cycle graphs with even number of agents. In contrast,
we are able to conclude without extra conditions that the polarized
equilibria set is almost globally asymptotically stable onSn withn ≥ 2,
and locally asymptotically stable on Sn for all n ∈ N.

C. Dimple Pairs

There is an apparent symmetry between a pair of pimples and a
pair of dimples. Indeed, through identical arguments we can obtain
mirroring conditions for stable polarization within a pair of dimples. In
this section, we operate under the following assumption.

Assumption 2: The sets Iu and Il are a pair of dimples, and xi ∈ Iu

for all i ∈ Vu, xi ∈ Il for all i ∈ Vl.
If the manifold resembles the apple in Fig. 1, we have something

akin to Theorem 3.7 for the apple donut.
Proposition 3.10: For system (6) under Assumption 2, if there

exists a pair of distinct dimple bottoms xu ∈ Iu and xl ∈ Il such that
xu − xl is parallel to n(xu), and hu(xl) is a local maximum satisfying
hu(xl) < hu(xu), then χ∗ defined in (9) is Lyapunov stable. Further-
more, if there is a neighborhood Na(χ

∗) on (Hn)N that belongs to an
analytic manifold, then χ∗ is asymptotically stable.

Proof: See proofs of Corollary 3.6 and Theorem 3.7. �
On the other hand, if the manifold resembles the lemon donut in

Fig. 2, we have a result analogous to Theorem. 3.3.
Proposition 3.11: For system (4) under Assumption 2, if there exists

a pair of distinct dimple bottoms xu ∈ Iu and xl ∈ Il such that Iu and Il

are entirely contained in Bro(xo), then Clem defined in (8) is Lyapunov
stable. Furthermore, if there is a neighborhoodNa(Clem) on (Hn)N that
belongs to an analytic manifold, then Clem is asymptotically stable.

Proof: Identical to the proofs of Corollary 3.2 and Theorem 3.3. �
By now it is clear that the various cases we have classified in

Sections III-A and III-C hinge on aligned normals that point either

TABLE I
EDGE ROBUSTNESS

toward or away from each other. Orientability is thus essential, but this
is implied by the hypermanifold being compact (see Section II-A).

Remark 3.3: The asymptotic stability results in Theorems 3.3
and 3.7 (Propositions 3.10 and 3.11) rely on an analyticity assumption
of the manifold. Although a smooth manifold may be topologically
equivalent to an analytic one, it is worth stressing that our results
concern manifolds with special geometric features, see Definition 2.1,
and are thus not amenable to such topological equivalence.

IV. NUMERICAL EXAMPLES

We illustrate our main results of Section III with simple numerical
examples, and explore other possible routes to polarization not covered
by the main results.

A. Illustrations of the Main Results

We demonstrate the stable polarization processes on lemon, sphere,
and apple manifolds. There are N = 7 agents divided into two groups
Vu = {1, 2, 3} and Vl = {4, 5, 6, 7}. They are connected with uniform
weights over all edges by a network A1 portrayed in Fig. 3.

The agents update their beliefs according to the rules specified by (4)
or (6). They are randomly initialized in a pair of pimples or dimples.
Note that one of the agents in Vl are initialized very close to the final
state on all the fruit-like manifolds. In the case of the sphere, they
are randomly initialized on the entire 2-sphere, since every pair of
antipodal points can serve as the pimple bottoms, and the radii ε of
their neighborhoods may be very large up to 2. These specifications
conform to the conditions in Theorem 3.3 and Proposition 3.10, and
the trajectories depicted in Fig. 4 converge to polarized equilibria as
expected. The accompanying convergence rates are shown in Fig. 5 in
log scale. The predominantly linear trends are evidence of exponential
convergence, and in the sphere case is also locally guaranteed by
Theorem 3.9.

The example on the lemon in Fig. 4 visually demonstrates that our
polarization model, is able to capture the phenomenon of radicalization,
where opinions become more extreme. Many opinion models in the
literature are contractive even when explicit mechanisms to foster
social cleavage is present (antagonistic interactions [18], bounded
confidence [29], and stubborn agents [30]), unless nonlinear factors
are incorporated, such as biased assimilation [31] and saturation [32].

The example on the apple in Fig. 4 suggests that even when two
parties try to reach a common ground by making compromises, thereby
getting closer to each other in the Euclidean space, the unbridgeable
core belief landscape presents an obstruction to the eventual concord.
Especially interesting is when the Euclidean distance between the
polarized points are small as seen from the extrinsic point of view,
it may represent an irreconcilable long lasting hostility between two
groups with minor differences.

For the peach with a pimple and a dimple in Fig. 1, we are unable to
find a polarization condition for the gradient flow dynamics of either (4)
or (6); we only provide the example in Fig. 4 (right) to show the
possibility. In Fig. 4 (right), the agents in Vu are repulsed by those
in Vl, and the agents in Vl are attracted to those in Vu. Such dynamics
can be derived from the following disagreement functions:

V∓(χ) =

{
V−(χ) i ∈ Vu

V+(χ) i ∈ Vl.



1294 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 2, FEBRUARY 2024

Fig. 4. In total two groups of agents with network A1 form stable polarization on various manifolds. From left to right: system (4) on a lemon, (4) on
a sphere, (6) on an apple, and mixed intergroup coupling on a peach. Initial and final states correspond to small and large dots on the trajectories.
Some parts outside the geometric features are intentionally left blank in part to recall the fact that they do not play a role in the local stability results,
and in part to highlight the trajectories.

Fig. 5. Rates of convergence to the polarized equilibrium χp in log
scale for the cases in Fig. 4: lemon (yellow solid), sphere (yellow dotted),
apple (green solid), and peach (pink solid).

Since asymmetric intergroup interactions are not generated by a sin-
gle gradient flow, the polarized equilibrium we numerically found is
not covered by our theoretical approach. In fact, such systems do
not necessarily converge to an equilibrium set, (not just because the
sum-of-squares in the proof of Proposition 2.1 is lost) as we have
found simulated counter examples on the sphere with network A2 and
on a peach having a “flatter” pimple with a bipartite network. The
nonconvergent peach case and the convergent case in Fig. 4 (right)
suggest that depending on the flatness of the geometric features, one of
the components inV∓ may play a dominant role. Such a characterization
of the geometric features goes beyond the simple height-function-based
definitions of dimples and pimples.

B. Weakly Anomalous Intergroup Coupling

It is conceivable that for system (4) on a lemon, introducing weakly
attractive intergroup coupling to a small number of edges in E− does
not necessarily compromise polarization or its stability properties. In
turn, the tolerance for such deviation from purely repulsive intergroup
coupling may be viewed as a measure of robustness. Along this line
and based on the example in Section IV-A, we switch the sign of
interaction and change the weight on each edge in E− successively one
at a time, to see to what degree can polarization be maintained given
different manifolds and initial conditions. Each experiment is allowed
sufficient time to run for agents starting at different initial conditions
to evolve. The final configuration is considered polarized if the order
parameters ‖ρu‖ and ‖ρl‖ are equal to 1.000 within the final integration
time 200, where ρu = (x1 + · · ·+ xM )/(M‖xu‖) and similarly for ρl.
Complete phase synchronization also results in ‖ρu‖ = ‖ρl‖ = 1, but
is ruled out by visual inspection.

Table I summarizes the findings. The maximal weights for each
edge in E− when changed to attractive coupling are the same for seven
different initial conditions. The tests are run on the lemon and the sphere
with graph structures A1 and A2 in Fig. 3.

ForA1, a24 = a34 and a27 = a35 because the network topology has
a symmetric structure. The initial conditions appear to have no effect
on the attainable weights. This may be because no new equilibrium
points are created within the dimples by the change of sign on the link,
and the only option is to converge to the known equilibrium point,

irrespective of the initial conditions. We also observe that the edge
{2, 4} is more robust to treason than {2, 7}.

The asymmetric network A2 is obtained by switching the link {6, 7}
to {4, 7}, leaving the group membership unchanged. The N/A values
mean that the system fail to completely polarize no matter how small
the weight is, indicating zero tolerance. The {3, 5} link is especially
sensitive because agent 6 is completely dependent on agent 5, and
is thus swept along once agent 5 switches allegiance. It is difficult
to quantitatively characterize the actual robustness measure, as the
outcome heavily depends on the geometry of the underlying manifold,
as well as the network topology.

V. CONCLUSION

We have established sufficient conditions for asymptotic stability of
polarized equilibria of arbitrarily connected multi-agent gradient flow
systems over nonlinear spaces. These sufficient conditions are tailored
to four scenarios likely to be found on nonflat hypermanifolds, arising
from the combination of dimple/pimple pairs and attractive/repulsive
intergroup couplings. In particular, the hypersphere as a special case
of general manifolds provides effortless generalization of previously
known results. Its highly symmetric nature further allows us to prove al-
most global asymptotic stability except for the unit circle. To strengthen
the proposed opinion dynamics interpretation of the low-dimensional
core belief space embedded in the high-dimensional external space, a
natural next step is to work with manifolds of dimensions much lower
than the ambient space, whereby the normal space dimension exceeds 1.
Although this can be partially addressed by the introduction of products
of hypermanifolds, where the combined dimension of all normal spaces
can be arbitrarily large.

In light of the stark contrast between the abundance of opinion
dynamics models and the lack of experimental validation thereof [2],
we sketch a simplistic way how validation of the model that we studied
may be done in practice. For a given subject consisting of multiple
components, collect an initial sample of vector valued opinions from
different individuals by surveys to form a point cloud. The graph
structure and signs of interaction may be obtained through the surveys
or inferred from social network interactions. The point cloud is assumed
to be sampled from an underlying low-dimensional manifold, which can
be recovered through widely available manifold embedding techniques.
The inference of both the communication network and the manifold
can be constrained to conform to the structural balance requirement
and Assumptions 1 or 2, respectively. Collect a subsequent sample of
opinion point cloud as the ground truth. If the learned manifold satisfies
the conditions of either of our main results, one compares the outcome
of the distributed gradient flow system with the ground truth. This is of
course one of many possible ways to carry out the validation.
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