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Abstract—This article deals with the dynamic factor anal-
ysis problem for an ARMA process. To robustly estimate the
number of factors, we construct a confidence region cen-
tered in a finite sample estimate of the underlying model,
which contains the true model with a prescribed probability.
In this confidence region, the problem, formulated as a rank
minimization of a suitable spectral density, is efficiently
approximated via a trace norm convex relaxation. The latter
is addressed by resorting to the Lagrange duality theory,
which allows to prove the existence of solutions. Finally,
a numerical algorithm to solve the dual problem is pre-
sented. The effectiveness of the proposed estimator is as-
sessed through simulation studies both with synthetic and
real data.

Index Terms—Convex optimization, duality theory, dy-
namic factor analysis (DFA), nuclear norm.

I. INTRODUCTION

W E DEAL with the problem of constructing a dynamical
model from a high-dimensional stream of data that are

assumed to be noisy observations of a process depending on a
small number of hidden variables. In the static case, this problem
is known as factor analysis. Its origins can be traced back to
the beginning of the last century and the amount of literature
produced on this topic is impressive: we refer the readers to the
recent papers [1], [2], [3], [4] for an overview of the literature and
a rich list of references. The solution to factor analysis problems
may be obtained by decomposing the covariance matrix of the
observed data as the sum of a diagonal positive definite matrix
(accounting for the noise covariance) and a positive semidefinite
matrix whose rank must be as small as possible since it equals
the number of hidden variables in the model. The main problem
of this solution is that it is inherently fragile; in fact, even a
minuscule variation in the covariance matrix of the observed
data usually leads to a substantial variation of the number of
hidden variables, which is the key feature of the modeling
procedure. On the other hand such a matrix must be estimated
and is therefore subject to errors. To address this fragility issue,
a robust method has been recently proposed [5], for the static
factor analysis problem. The approach has been generalized
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with good results also to the dynamic framework of learning
AR latent variable dynamic graphical models [6], in which the
problem of finding a “sparse plus low-rank” decomposition of
the inverse power spectral density of the underlying process
is considered.

Dynamic factor analysis (DFA) has been addressed much
more recently, the first contribution in this field being appar-
ently [7]. We refer to the surveys [8], [9] and to the recent
article [10] for an overview of the literature on this subject.
In [11] an interesting generalization is applied to modelization
of dynamical systems.

In this article, we address the dynamic autoregressive moving
average (ARMA) case with the aim of extracting, from the
observed data, a model featuring a small number of hidden
variables. This is important both from the point of view of the
model simplicity and to uncover the structure of the mechanism
generating the data. The problem may be mathematically formu-
lated as that of decomposing the spectral density of the process
generating the data as the sum of a diagonal spectral density
and a low-rank one. The fragility issue in this case is even more
severe. We address the problem as follows.

1) Given the observed data, we compute by standard meth-
ods (e.g., truncated periodogram) a raw estimate Φ̂ of the
spectral density Φ generating the data.

2) We compute a neighborhood N of Φ̂ that contains Φ with
prescribed probability; clearly the size of N depends on
the sample size.

3) We compute a refined estimate Φ◦ ∈ N by imposing that
it admits an additive decomposition as a diagonal spectral
density and a spectral density with the lowest possible
rank. To this end we set up an optimization problem that
we address by resorting to duality. In particular, we prove
existence of solutions and provide a numerical algorithm
to compute a solution.

Our work may be cast in the rich stream of literature devoted
to learning dynamic models having a topological structure
describing the presence or the absence of interactions among
the variables of the systems; see the former works [12], [13],
[14] as well as their extensions to reciprocal processes [15],
[16], sparse plus low rank graphical models [3], [17], [18],
the Bayesian viewpoint proposed in [19], [20] and the case
of oriented graphical models [21], [22]. The common aspects
of these papers are a decomposition of the type “sparse +
low rank” of a certain spectral density and/or the fact that an
underlying graphical model (possibly with latent variables) is
considered where the presence of an edge of the graph depends
on the conditional dependence between the random process
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and is therefore related to the inverse of the spectral density
of the observed process. In our work, instead, we consider a
“diagonal + low rank” decomposition and we do not consider
the presence of an underlying graphical model.

The contribution of this article is twofold; first, we propose a
procedure to estimate the number of latent factors in dynamic
ARMA factor models: this is the most delicate aspect of factor
analysis problems; second, we derive an identification method
to estimate the parameters of a factor model describing the
observed data.

Dynamic factor models have been deeply investigated in the
last two decades in the fields of econometrics and statistics.
We refer to [23] for an overview of the contributions provided
by such a community over the recent years and a rich list of
references. The fundamental results in this literature is to show
how principal component techniques can be used to consistently
estimate the latent components from the observable variables
as the cross sectional dimension m and the sample size N
both tend to infinity [24], [25], [26], [27], [28]. An alternative
likelihood-based method has been shown in [29], where the
factor model is cast in state-space form and the likelihood is
maximized using the expectation maximization (EM) algorithm.
Note that in all these methods a preliminary first step consists
in identifying the number of common factors. Bai and Ng [30]
provided a class of information criteria to consistently estimate
the number of factors in static models while Hallin and Liška [31]
dealt with the dynamic counterpart of the problem. Thus, in
the econometrics and statistics literature, the solution to the
dynamical factor analysis problem consists of two steps: first
the estimation of the number of factors and then identification
of the parameters of the model. Here, we present an alternative
optimization-based approach, which simultaneously estimates
the number of dynamic latent factors and the parameters of an
ARMA factor model. We also remark that, whereas the econo-
metric literature focuses the attention on factor models with
weakly correlated idiosyncratic component and with a divergent
number of observed variables, in this article we consider fixed
cross-sectional dimension factor models where the idiosyncratic
terms are assumed to be cross-sectionally uncorrelated.

The rest of this article is organized as follows. In Section II we
introduce the DFA problem for moving average (MA) models.
Section III shows that such a problem admits solution by means
of duality theory, while Section IV shows how to reconstruct the
solution to the primal problem from the dual one. In Section V
we propose an algorithm to compute the solution to the dual
problem. In Section VI we extend the previous ideas to ARMA
models. Section VII presents some numerical results. Finally,
Section VIII concludes this article.

A. Notation

Given a matrix M , we denote its transpose by M� and by
M(i,j) the element of M in the ith row and jth column. If M
is a square matrix, tr(M), |M |, and σ(M) denote its trace,
its determinant and its spectrum, respectively. The symbol ‖ · ‖
stands for the Frobenius norm. For A,B ∈ R

m×m, we define
their inner product as 〈A,B〉 := tr(A�B). Let Qm be the

space of real symmetric matrices of size m; if M ∈ Qm is
positive definite or positive semidefinite, then we writeM � 0or
M 	 0, respectively. We denote by (·)∗ the complex conjugate
transpose. Φ(eiϑ) for ϑ ∈ [−π, π] denotes a function defined
on the unit circle {eiϑ : ϑ ∈ [−π, π]}, and the dependence on
ϑ is dropped if necessary. If Φ(eiϑ) is positive (semi-)definite
∀ϑ ∈ [−π, π] we write Φ(eiϑ) � 0 (	 0). Integrals are always
defined from −π to π with respect to the normalized Lebesgue
measure dϑ/2π.

II. IDENTIFICATION OF MA FACTOR MODELS

Consider the MA factor model whose order is n

y(t) = WLu(t) +WDw(t) (1)

where

WL(e
iϑ) =

n∑
k=0

WL,ke
−iϑk, WD(eiϑ) =

n∑
k=0

WD,ke
−iϑk.

WL,k ∈ R
m×r, WD,k ∈ R

m×m diagonal; u = {u(t), t ∈ Z}
and w = {w(t), t ∈ Z} are normalized white Gaussian noises
of dimension r andm, respectively, such thatE[u(t)w(s)�] = 0
∀t, s. The aforementioned model has the following interpre-
tation. u is the process which describes the r factors, with
r � m, not accessible to observation; WL is the factor load-
ing transfer matrix; WLu(t) is the latent variable; WDw(t)
is idiosyncratic noise. Accordingly, y = {y(t), t ∈ Z} is a m-
dimensional Gaussian stationary stochastic process with power
spectral density

Φ = ΦL +ΦD (2)

where, ΦL = WLW
∗
L 	 0 and ΦD = WDW ∗

D 	 0 belong to
the finite dimensional space

Qm,n =

{
n∑

k=−n

Rke
−iϑk, Rk = RT

−k ∈ R
m×m

}
.

By construction, rank(ΦL) = r, where rank denotes the normal
rank (i.e., the rank almost everywhere), and ΦD is diagonal.
Hence, y represents a factor model if its spectral density can be
decomposed as “low rank + diagonal” as in (2).

Assume to collect a finite length realization of y defined in
(1), say yN = { y(1) . . . y(N) } where the order n is known.
We want to estimate the corresponding factor model, that is the
decomposition in (2) as well as the number of factors r. To this
aim, given our data yN , we first compute the sample covariance
lags R̂j as

R̂j =
1

N

N−j∑
t=0

y(t+ j)y(t)�, j = 0 . . . n.

Then, an estimate Φ̂ of Φ is obtained by the truncated peri-
odogram

Φ̂ =

n∑
k=−n

R̂ke
iϑk. (3)
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Notice that Φ̂ could be not positive definite for all ϑ; in that case,
we can add εIm to the right-hand side of (3), with the constant
ε > 0 chosen in such a way as to ensure the positivity of Φ̂.
On the other hand, Φ̂ may not admit a low rank plus diagonal
decomposition. Thus, we estimate directly the two terms ΦL

and ΦD of the decomposition (2) by solving the following
optimization problem:

min
Φ,ΦL,ΦD∈Qm,n

tr

∫
ΦL

subject to ΦL +ΦD = Φ

Φ � 0 a.e., ΦL,ΦD 	 0

ΦD diagonal

SIS

(
Φ||Φ̂

)
≤ δ. (4)

Here, the objective function promotes a solution for ΦL having
low rank, see [17]. The first three constraints impose thatΦL and
ΦD provide a genuine spectral density decomposition of type
(2). The last constraint, in which SIS(Φ||Φ̂) is the Itakura–Saito
divergence defined by

SIS

(
Φ||Φ̂

)
=

∫
log |Φ̂Φ−1|+ tr

[
Φ̂−1Φ− Im

]
imposes thatΦbelongs to a set “centered” in the nominal spectral
density Φ̂ and with prescribed tolerance δ. Notice that ΦD is
uniquely determined by Φ and ΦL. Thus, (4) can be rewritten
by removing ΦD

(Φ◦,Φ◦
L) = arg min

Φ,ΦL∈Qm,n

tr

∫
ΦL

subject to Φ � 0 a.e., ΦL,Φ− ΦL 	 0

Φ− ΦL diagonal

SIS

(
Φ||Φ̂

)
≤ δ. (5)

A. Choice of δ

Before solving our problem, we deal with the choice of the
tolerance parameter δ appearing in the constraint of (5). This
choice should reflect the accuracy of the estimate Φ̂ of Φ.
This can be accomplished by choosing a desired probability
α ∈ (0, 1) and considering a ball of radius δα (in the Itakura–
Saito topology) centered in Φ̂ and containing the true spectrum
Φ with probability α. The estimation of δα is not an easy task
because we do not know the true power spectral densityΦ. Next,
we propose a resampling-based method to estimate it.

The idea is to approximate Φ with Φ̂, and use this model to
perform a resampling operation. Let

W
(
eiϑ

)
=

n∑
k=0

Wke
−iϑk, Wk ∈ R

m×m

be the minimum phase spectral factor of Φ̂ and define the process
ŷ = {ŷ(t), t ∈ Z} as ŷ(t) := W (eiϑ)e(t), where e(t) is an m-
dimensional normalized white noise. The truncated periodogram

(understood as estimator) based on a sample of the process ŷ of
length N is

Φ̂r

(
eiϑ

)
=

n∑
k=−n

e−iϑk 1

N

N−k∑
t=0

ŷ(t+ k)ŷ(t)T

where, the subscript “r” stands for resampling, as it is the means
by which we perform the resampling operation, and the boldface
notation Φ̂r is used to highlight that this is an estimator, namely a
random matrix and must not be confused with the corresponding
estimate which is denoted by Φ̂r. The latter is a deterministic
matrix obtained by replacing the random process ŷ(t) with the
corresponding realization ŷ(t).

By generating a realization ŷN = { ŷ(1) . . . ŷ(N) } from Φ̂
(i.e., by resampling the data), we can easily obtain a realization
of the random variable SIS(Φ̂||Φ̂r). Accordingly, it is possible
to compute numerically δα such that Pr(SIS(Φ̂||Φ̂r) ≤ δα) = α
by a standard Monte Carlo procedure. Numerical simulations
show that this technique indeed provides a good estimate of δ.

It is worth noting that if the chosenα is too large with respect to
the data length N , the resulting δα may be too generous yielding
to a diagonal Φ obeying SIS(Φ||Φ̂) ≤ δα. In this case (5) admits
the trivial solution ΦL = 0 and ΦD = Φ. To rule out this trivial
case, δ in (5) must be be strictly smaller than the upper bound

δmax := min
Φ∈S+

m
Φ diagonal

SIS

(
Φ||Φ̂

)

where,S+
m denotes the family of bounded and coercive functions

defined on the unit circle and taking values in the cone of positive
definite m×m Hermitian matrices. Since Φ must be diagonal,
by denoting with φi and by γ̂i the ith element in the diagonal of
Φ and of Φ̂−1, respectively, we have

δmax =

[
m∑
i=1

min
φi∈S+

1

SIS
(
φi||γ̂−1

i

)]
+

∫
log

∣∣∣Φ̂ diag2
(
Φ̂−1

)∣∣∣
where, diag2(·) is the (orthogonal projection) operator map-
ping a square matrix M into a diagonal matrix of the same
size having the same main diagonal of M . Therefore, since
the Itakura–Saito divergence is nonnegative, the solution cor-
responds to φopt

i (eiϑ) = (γ̂i(e
iϑ))−1, i = 1, . . .,m for which

SIS(φ
opt
i ||γ̂−1

i ) = 0. Accordingly

δmax =

∫
log

∣∣∣Φ̂ diag2
(
Φ̂−1

)∣∣∣ . (6)

The derivation of the aforementioned result is based on reason-
ings similar to [3, Section IV].

A more generous upper bound can be derived by assuming
that Φ is the spectrum of an MA process of order n. However,
numerical experiments showed that δmax � δα even in the case
that N is relatively small.

III. PROBLEM SOLUTION

In this section we first provide a finite dimensional matrix
parametrization of (5). The latter is then analyzed by resorting
to the Lagrange duality theory, which allows us to prove the
existence of a solution.
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A. Matricial Reparametrization of the Problem

To study (5), it is convenient to introduce the following matrix
parametrization for Φ,ΦL, and Φ− ΦL:

Φ = ΔXΔ∗ ∈ Qm,n

ΦL = ΔLΔ∗ ∈ Qm,n

Φ− ΦL = Δ(X − L)Δ∗ ∈ Qm,n (7)

where, Δ(eiθ) is the so-called shift operator

Δ
(
eiϑ

)
:=

[
Im eiϑIm . . . einϑIm

]
. (8)

X and L are matrices in Qm(n+1) and Xij denotes the block of
X in position i, j with i, j = 0, . . . , n, so that

X =

⎡
⎢⎢⎢⎢⎢⎣

X00 X01 . . . X0n

X�
01 X11 . . .

...
...

...
...

...

X�
0n X�

1n . . . Xnn

⎤
⎥⎥⎥⎥⎥⎦ .

Moreover, Mm,n denotes the vector space of matrices of the
form

Y := [Y0 Y1 . . . Yn] , Y0 ∈ Qm, Y1, . . ., Yn ∈ R
m×m.

(9)
The linear mapping T : Mm,n → Qm(n+1) constructs a sym-
metric block-Toeplitz matrix from its first block row so that if
Y is given by (9)

T (Y ) =

⎡
⎢⎢⎢⎢⎢⎣

Y0 Y1 . . . Yn

Y �
1 Y0

. . .
...

...
. . .

. . . Y1

Y �
n . . . Y �

1 Y0

⎤
⎥⎥⎥⎥⎥⎦ .

The adjoint of T is the mappingD : Qm(n+1) → Mm,n defined
by D(X) = [[D(X)]0 . . . [D(X)]n] with

[D(X)]0=
n∑

h=0

Xhh, [D(X)]j = 2

n−j∑
h=0

Xhh+j , j = 1, . . ., n.

Next, the objective is to provide a more convenient formula-
tion of (5) in terms of X and L. To this end, we have to take into
account the following points.

1) Positivity constraints Φ � 0 a.e. and ΦL,Φ− ΦD 	 0: It
can been shown (see, for example, [16, Appendix A]) that, for
any Ψ ∈ Qm,n, Ψ 	 0 if and only if there exists a matrix P ∈
Qm(n+1) such thatΔPΔ∗ andP 	 0. Therefore, we replace the
conditions ΦL 	 0 with L 	 0, the condition Φ− ΦL 	 0 with
X − L 	 0. Note that these conditions only guarantees X 	 0
and thus Φ to be positive semidefinite, however we will show
that this is sufficient to guarantee thatΦ � 0 a.e. at the optimum.

2) Constraint Φ− ΦL diagonal: Let ofd : Rm×m → R
m×m

denote the linear operator defined as follows. GivenA ∈ R
m×m,

ofd(A) is the matrix in which each off-diagonal element is equal
to the corresponding element of A and each diagonal element is
zero. We define the “block ofd” linear operatorofdB : Mm,n →

Mm,n as follows. Given Z = [Z0 Z1 . . . Zn ] ∈ Mm,n, then

ofdB(Z) = [ ofd(Z0) ofd(Z1) . . . ofd(Zn) ].

It is not difficult that ofdB is a self-adjoint operator, since ofd
is self-adjoint as well. Then, it is easy to see that the condition
Φ− ΦL diagonal is equivalent to the condition [D(X − L)]j
diagonal for j = 0, . . . , n, that is ofdB(D(X − L)) = 0.

3) Low rank regularizer: We have

tr

∫
ΦL = tr

∫
ΔLΔ∗ = tr

(
L

∫
Δ∗Δ

)
= tr(L)

where, we exploited the fact that
∫
eijϑ = 1 if j = 0, and∫

eijϑ = 0 otherwise.
4) Divergence constraint: A convenient matrix parameteriza-

tion of the Itakura–Saito divergence SIS(Φ||Φ̂) can be obtained
by making use of the following facts.

First, since Φ = ΔXΔ∗ with X 	 0, there exists A ∈
R

m×m(n+1) such that X = A�A. Then, by using the Jensen–
Kolmogorov formula we obtain∫

log |Φ| =
∫

log |ΔA�AΔ∗| = log |A�
0A0| = log |X00|

(10)
which, holds provided thatX00 � 0 andΦ is coercive (i.e., |Φ| is
bounded away from zero on the unit circle). We need to general-
ize this result to spectral densities that may be singular on the unit
circle. This is possible because the zeros of a rational spectral
density, if any, have finite multiplicity so that the logarithm of
the determinant of a rational spectral Φ is integrable as long as
the normal rank of Φ is full.

Lemma 3.1: Consider a power spectral density Φ ∈ Qm,n

having full normal rank. Let X ∈ Qm(n+1) be such that X 	 0,
X00 � 0, and Φ = ΔXΔ∗. Then∫

log |Φ| = log |X00|.

The proof is deferred to the appendix.
A second observation in order to conveniently parameterize

the Itakura–Saito divergence constraint is that, by exploiting the
cyclic property of the trace∫

tr(Φ̂−1Φ) =

∫
tr(Φ̂−1ΔXΔ∗)

= tr

(
X

∫
Δ∗Φ̂−1Δ

)
= 〈X,T (P̂ )〉

where, P̂ is defined from the expansion

Φ̂−1 =

∞∑
k=−∞

P̂ke
−iϑk

as P̂ := [P̂0 . . . P̂n].
Summing up, we get the following matrix reparametrization

of (5):

(X◦, L◦) = arg min
X,L∈Qm(n+1)

tr(L)

subject to X00 � 0, L 	 0, X − L 	 0
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ofdB(D[X − L]) = 0

− log |X00|+
∫

log |Φ̂|

+ 〈X,T (P̂ )〉 −m ≤ δ. (11)

We remark once again that to prove the equivalence between (5)
and (11) we still need to show that Φ � 0 a.e. at the optimum:
this fact will be established after the variational analysis.

B. Dual Problem

We reformulate the constrained minimization problem in (11)
as an unconstrained problem by means of duality theory.

If we use V,U ∈ Qm(n+1), V, U 	 0 as the multipliers
associated with the constraints on the positive semidefiniteness
of X − L and L, respectively; Z ∈ Mm,n as the multiplier
associated with the constraint ofdB(D(X − L)) = 0 and
λ ∈ R, λ ≥ 0, as the multiplier associated with the Itakura–Saito
divergence, then the Lagrangian of (11) is

L (X,L, λ, U, V, Z)

= tr(L)− 〈V,X − L〉 − 〈U,L〉
+ 〈Z, ofdB(D(X − L))〉+ λ (− log |X00|

+

∫
log |Φ̂|+

〈
X,T (P̂ )

〉
−m− δ

)

= 〈L, I − U + V − T (ofdB(Z))〉

+
〈
X,T (ofdB(Z))− V + λT (P̂ )

〉

− λ

(
log |X00| −

∫
log |Φ̂|+m+ δ

)
. (12)

Note that we have not included the constraint X00 � 0 because,
as we will show later on, this condition is automatically met by
the solution to the dual problem.

The dual function is defined as the infimum ofL overX andL.
Thanks to the convexity of the Lagrangian, we rely on standard
variational methods to characterize the minimum.

1) Partial minimization with respect to L: L depends on L
only through 〈L, I − U + V − T (ofdB(Z))〉, which is
bounded below only if

I − U + V − T (ofdB(Z)) = 0. (13)

Thus, we get that

inf
L

L=

⎧⎪⎪⎨
⎪⎪⎩

〈
X,T (ofdB(Z))− V + λT (P̂ )

〉
−λ

(
log |X00|−

∫
log |Φ̂|+m+δ

)
if (13)

−∞ otherwise.

2) Partial minimization with respect to X: The terms in X00

are bounded below only if[
T (ofdB(Z))− V + λT (P̂ )

]
00

� 0 (14)

and are minimized if λ > 0 and

X00 =
([

T (P̂ ) + λ−1(T (ofdB(Z))− V )
]
00

)−1

.

(15)
The Lagrangian is linear in the remaining variables Xlh,
for (l, h) �= (0, 0), and therefore bounded below only if[
T (ofdB(Z))− V + λT (P̂ )

]
lh

= 0 ∀(l, h) �= (0, 0).

(16)
Therefore, the minimization of the Lagrangian with
respect to X and L is finite if and only if (13), (14), and
(16) hold in which case

min
X,L

L = − λ
(
− log

∣∣∣[T (P̂ ) + λ−1 (T (ofdB(Z))

−V )]00| −
∫

log
∣∣∣Φ̂∣∣∣+ δ

)
.

Otherwise the Lagrangian has no minimum and its
infimum is −∞.

To simplify the notation, let us define the vector space O as
follows:

O := {Z ∈ Mm,n : ofdB(Z) = Z, j = 0, . . ., n}
since Z always appears in the form ofdB(Z), we can replace it
with Z ∈ O. Then, we can formulate the dual problem for the
Lagrangian (12) as

max
(λ,U,V,Z)∈C̃

J̃ (17)

where

J̃ := λ

(
log

∣∣∣[T (P̂ )+λ−1(T (Z)−V )
]
00

∣∣∣+∫ log |Φ̂|−δ

)

and the feasible set C̃ is given by

C̃ :=
{
(λ, U, V, Z) : U, V ∈ Qm(n+1), U, V 	 0, Z ∈ O

λ ∈ R, λ > 0, I−U+V −T (Z) = 0,
[
λT (P̂ )+T (Z)− V

]
00

� 0,
[
λT (P̂ ) + T (Z)− V

]
lh

= 0 ∀(l, h) �= (0, 0)
}
.

Note that the constraints I − U + V − T (Z) = 0 and U 	 0
are equivalent to the constraint I + V − T (Z) 	 0. Thus, we
can eliminate the redundant variable U ; moreover, by chang-
ing the sign to the objective function J̃ and observing that
[T (P̂ ) + λ−1(T (Z)− V )]00 = P̂0 + λ−1(Z0 − V00), we can
rewrite (17) as a minimization problem

min
(λ,V,Z)∈C

J (18)

where

J := λ

(
− log

∣∣P̂0 + λ−1(Z0 − V00)
∣∣− ∫

log |Φ̂|+ δ

)
and the corresponding feasible set C is

C := {(λ, V, Z) : V ∈ Qm(n+1), V 	 0, Z ∈ O
I + V − T (Z) 	 0, λ ∈ R, λ > 0, [λP̂0 + Z0 − V00] � 0

[λ(T (P̂ )) + T (Z)− V ]lh = 0 ∀(l, h) �= (0, 0)}.
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C. Existence of Solutions

The aim of this section is to show that (18) admits solution.
The set C is not compact, as it is neither closed nor bounded. We
show that we can restrict the search of the minimum of J over
a compact set. Then, since the objective function is continuous
over C (and hence over the restricted compact set), we can use
Weierstrass’s theorem to conclude that the problem does admit
a minimum.

The first step consists in showing that we can restrict C to a
subset where λ ≥ ε with ε > 0 a positive constant.

Proposition 3.1: Let (λ(k), V (k), Z(k))k∈N be a sequence of
elements in C such that

lim
k→∞

λ(k) = 0.

Then, such a sequence cannot be an infimizing sequence.
The proof is essentially the same as the proof of Proposition

6.1 in [3] and it is therefore omitted.
As a consequence, minimizing the dual functional over the

set C is equivalent to minimize it over the set

C1 := {(λ, V, Z) : V ∈ Qm(n+1), V 	 0, Z ∈ O
I + V − T (Z) 	 0, λ ∈ R, λ ≥ ε, [λP̂0 + Z0 − V00] � 0

[λ(T (P̂ )) + T (Z)− V ]lh = 0 ∀(l, h) �= (0, 0)}.
Next we show that we can restrict C1 to a subset in which both

(T (Z)− V ) and λ cannot diverge.
Proposition 3.2: Let (λ(k), V (k), Z(k))k∈N be a sequence of

elements in C1 such that either

lim
k→∞

‖ T (Z(k))− V (k) ‖= +∞
or

lim
k→∞

λ(k) = +∞
or both. Then, such a sequence cannot be an infimizing sequence.

The abovementioned result is obtained by following argu-
ments similar to the proof of Proposition 6.2 in [3] with a
few small differences; we refer the interested reader to [32,
Appendix C] for the detailed proof.

It follows from the previous proposition that there exists β ∈
R with | β |< ∞ such that T (Z)− V 	 βI, and 0 < γ < ∞
such that λ ≤ γ. Therefore, the set C1 can be further restricted
to the set

C2 := {(λ, V, Z) : V ∈ Qm(n+1), V 	 0, Z ∈ O, λ ∈ R

βI � T (Z)− V � I, γ ≥ λ ≥ ε, [λP̂0 + Z0 − V00] � 0

[λ(T (P̂ )) + T (Z)− V ]lh = 0 ∀(l, h) �= (0, 0)}.
In addition, it is not possible for V and Z to diverge while

keeping the difference T (Z)− V finite. Accordingly, we can
further restrict the search for the optimal solution to a subset C3
in which neither V nor Z can diverge.

Proposition 3.3: Let (λ(k), V (k), Z(k))k∈N be a sequence of
elements in C2 such that

lim
k→∞

‖ V (k) ‖= +∞ (19)

or

lim
k→∞

‖ Z(k) ‖= +∞ (20)

or both. Then, such a sequence cannot be an infimizing sequence.
The proof can be found in the appendix.
Thus, the minimization over C2 is equivalent to the minimiza-

tion over the subset

C3 := {(λ, V, Z) : V ∈ Qm(n+1), αI 	 V 	 0, Z ∈ O, λ ∈ R

βI � T (Z)− V � I, γ ≥ λ ≥ ε, [λP̂0 + Z0 − V00] � 0

[λ(T (P̂ )) + T (Z)− V ]lh = 0 ∀(l, h) �= (0, 0)}
for a certain α > 0 positive constant.

Finally, we consider a sequence (λ(k), V (k), Z(k))k∈Z ∈
C3 such that [(λ(k))−1([Z(k)]0 − [V (k)]00) + P̂0] tends to be
singular as k → ∞. This implies that |(λ(k))−1([Z(k)]0 −
[V (k)]00) + P̂0| tends to zero and hence J → +∞. Thus, such a
sequence cannot be an infimizing sequence. Therefore, the final
set CC is

CC := {(λ, V, Z) : V ∈ Qm(n+1), αI 	 V 	 0, Z ∈ O, βI �
T (Z)− V � I, λ ∈ R, γ ≥ λ ≥ ε, [λP̂0 + Z0 − V00] 	 μI

[λ(T (P̂ )) + T (Z)− V ]lh = 0 ∀(l, h) �= (0, 0)}
where, α, β, γ, ε, and μ such that |α|, |β|, |γ|, |ε|, and |μ| <
+∞.

Theorem 3.1: Problem (18) is equivalent to

min
(λ,V,Z)∈CC

J(λ, V, Z)

and it admits solution.
Proof: Equivalence of the two problems has already been

proven by the previous arguments. Since CC is closed and
bounded, hence compact, and J is continuous over CC , by the
Weierstrass’s Theorem the minimum exists. �

IV. SOLUTION TO THE PRIMAL PROBLEM

In this section, after proving that the primal problem (5) and
its matrix reformulation (11) are equivalent, we show how to
recover the solution to the primal problem.

Let (λ◦, V ◦, Z◦) be a solution to (18) and (X◦, L◦) be the
corresponding solution to (11). Since X◦

00 is positive definite,
log |X◦

00| is finite. By Lemma 3.1, at the optimum
∫
log |Φ|

must be finite as well; this implies that Φ(eiϑ), ϑ ∈ [−π,+π],
may be singular at most on a set of zero measure, or, in other
terms, ΔX◦Δ∗ � 0 a.e. This observation leads to the following
proposition.

Proposition 4.1: Let (X◦, L◦) be a solution to (11). Then
ΔX◦Δ∗ � 0 a.e. Accordingly, (5) and (11) are equivalent.

Now we are ready to show how to recover the solution to
the primal problem; to this aim we need the following result,
see [33].

Lemma 4.1: Let Z ∈ Mm,n and W ∈ Qm. If W � 0 is such
that

T (Z) 	
[
W 0
0 0

]
(21)
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then T (Z) � 0.
Exploiting the constraints [λ(T (P̂ )) + T (Z)− V ]lh = 0,

∀(l, h) �= (0, 0) and [λP̂0 + Z0 − V00] � 0, it is not difficult to
see that

V ◦ = λ◦T (P̂ ) + T (Z◦)−
[
W ◦ 0
0 0

]
(22)

where

W ◦ := Z◦
0 − V ◦

00 + λ◦P̂0 � 0. (23)

SinceV ◦ 	 0 and in view of Lemma 4.1, λ◦T (P̂ ) + T (Z◦) � 0.
Hence, V ◦ has rank at least equal to mn.

Since the duality gap between (11) and (18) is equal to zero,
we have that 〈V ◦, X◦ − L◦〉 = 0, which in turn implies

V ◦(X◦ − L◦) = 0 (24)

because V ◦, X◦ − L◦ 	 0. Recalling that rank(V ◦) ≥ mn, in
view of (24) the matrix X◦ − L◦ has rank at most equal to m.
Let rank(X◦ − L◦) = m̃ ≤ m. Then, there exists a full-row rank
matrix A ∈ R

m̃×m(n+1) such that

X◦ − L◦ = A�A. (25)

By (24), it follows that V ◦A� = 0. Let YD :=
[vo v1 . . . vl] ∈ R

m(n+1)×l denote the matrix whose
columns form a basis of ker(V ◦). Note that the dimension l of
the null space of V ◦ is at least m̃ because Im(A�) ⊆ ker(V ◦)
and rank(A�) = m̃; also l ≤ m because rank(V ◦) ≥ mn.
Rewriting the matrix A� as A� = YDS with S ∈ R

l×m̃, from
(25) we obtain

X◦ − L◦ = YDQDY �
D (26)

with QD := SS� ∈ Ql unknown.
In a similar fashion, by the zero duality gap between

(11) and (18), the complementary slackness condition for
the multiplier associated to the positive semidefiniteness of
L reads as 〈U ◦, L◦〉 = 0, which in turn implies U ◦L◦ = 0.
Repeating the same reasoning as before, it can be seen that,
if the dimension of the null space of U ◦ is r̃ with r̃ ≥ r
and YL := [uo u1 . . . ur̃] ∈ R

m(n+1)×r̃ is a matrix whose
columns form a basis of ker(U ◦), then L◦ can be written as

L◦ = YLQLY
�
L (27)

withQL ∈ Qr̃ unknown. Plugging (27) into (26), we then obtain

X◦ − YLQLY
�
L = YDQDY �

D . (28)

Assume now that each block of X◦ − L◦ is diagonal, namely

ofd
([
YDQDY �

D

]
hk

)
= 0 h, k = 0, . . ., n. (29)

Remark 1: We can make the previous assumption without loss
of generality. Indeed, let (Φ◦,Φ◦

L) be the solution to Problem (5)
and Φ◦

D = Φ◦ − Φ◦
L; X , L, and D = X − L are any matrices

in Qm(n+1) such that Φ◦ = ΔXΔ∗, Φ◦
L = ΔLΔ∗, and Φ◦

D =
ΔDΔ∗. We can always consider a different matrix parametriza-
tion (X̃, L̃, D̃) for Φ◦, Φ◦

L, and Φ◦
D as follows. First notice that

there always exists a matrix D̃ with all diagonal blocks such
that Φ◦

D = ΔD̃Δ∗; in other words, we can always find δD ∈
Qm(n+1) such that ΔδDΔ∗ = 0 and D̃ := D + δD satisfies

ofd([D̃]hk) = 0 for h, k = 0, . . ., n. Now, let δX ∈ Qm(n+1)

such that ΔδXΔ∗ = 0 and X̃ := X + δX satisfies (15). Define
L̃ = X̃ − D̃ = X −D + δLwith δL := δX − δD. It is easy to
see thatΦ◦ = ΔX̃Δ∗ and Φ̂L = ΔL̃Δ∗. This means that (X̃, L̃)
is still a solution to (11) and it allows us to restrict to solutions
of (11) for which (29) holds.

By applying the ofd operator to both sides of (28) and exploit-
ing the assumption (29), it is not difficult to obtain

ofd
([
YLQLY

�
L

]
00

)
= ofd (X◦

00) (30)

which is a system of m(m− 1)/2 linear equations in the r̃(r̃ +
1)/2 unknowns QL. Notice that X00 is given by (15). Finally,
once L◦ is computed, in order to retrieve QD we exploit (29)
and the following system of m(m+ 1)/2 linear equations:[

YDQDY �
D

]
00

= X◦
00 − L◦

00. (31)

Since both the dual and the primal problem admit solution, the
resulting systems of (29), (30), and (31) do admit solutions.

V. PROPOSED ALGORITHM

In this section, we propose an algorithm to solve numerically
the dual problem. To start with, as observed in Section IV,
we rewrite (18) in a different fashion by getting rid of the
slack variable V ∈ Qm(n+1). This is done by introducing a new
variable W ∈ Qm defined, similarly to (23), as

W := Z0 − V00 + λP̂0 � 0 (32)

such that, as in (22), the variable V can be expressed as

V = λT (P̂ ) + T (Z)−
[
W 0
0 0

]
. (33)

Accordingly, the dual problem (18) can be expressed in terms
of the variables λ, W , and Z as follows:

min
(λ,W,Z)∈C

J (34)

where

J := λ

(
− log

∣∣λ−1W
∣∣− ∫

log
∣∣∣Φ̂∣∣∣+ δ

)

and the corresponding feasible set C is

C :=

{
(λ,W,Z) : W ∈ Qm,W � 0, Z ∈ O, λ ∈ R

λ > 0, λT (P̂ ) + T (Z)−
[
W 0
0 0

]
	 0

I + λT (P̂ )−
[
W 0
0 0

]
	 0

}
.

We can further simplify our problem as follows. First, we
observe that the constraint

V = λT (P̂ ) + T (Z)−
[
W 0
0 0

]
	 0 (35)
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may be rewritten as

λT (P̂ ) + T (Z) 	
[
W 0
0 0

]

and then, by Lemma 4.1, λT (P̂ ) + T (Z) � 0. Now, we can
easily rewrite (35) recalling the characterization of a symmet-
ric positive semidefinite matrix using the Schur complement.
To this aim, it is convenient to introduce the linear operators
T0,0 : Mm,n → Qm, T0,1:n : Mm,n → Mm,n−1 and T1:n,1:n :
Mm,n → Qmn that, for a given matrix H ∈ Mm,n construct
a symmetric block-Toeplitz matrix and extract the blocks in
position (0,0), (0, 1 : n) and (1 : n, 1 : n), respectively. With
this notation, we have

T (Z + λP̂ ) =

[
T0,0(Z + λP̂ ) T0,1:n(Z + λP̂ )

T�
0,1:n(Z + λP̂ ) T1:n,1:n(Z + λP̂ )

]

and the constraint (35) is equivalent to require T1:n,1:n(Z +

λP̂ ) � 0 and W � Q(λ, Z) with

Q(λ, Z) := T0,0

(
Z + λP̂

)
− T0,1:n

(
Z + λP̂

)
× T−1

1:n,1:n

(
Z + λP̂

)
T�
0,1:n

(
Z + λP̂

)
.

In a similar fashion, the last matricial inequality constraint in
C can be equivalently expressed as W � R(λ) where

R(λ) := I + T0,0(λP̂ )− T0,1:n(λP̂ )
(
I + T1:n,1:n(λP̂ )

)−1

× T�
0,1:n(λP̂ ).

Therefore, (18) can be formulated as

min
(λ,W,Z)∈C

J = λ

(
− log

∣∣λ−1W
∣∣− ∫

log |Φ̂|+ δ

)
(36)

where

C :=
{
(λ,W,Z) : Z ∈ O, λ ∈ R, λ > 0, T1:n,1:n

(
Z + λP̂

)
� 0,W ∈ Qm, W � 0, W � Q(λ, Z), W � R(λ)} .

Before solving this problem, notice that J in (36) is jointly con-
vex in (λ,W ) and at each feasible point (λ0,W0) (whereλ0 �= 0)
it is strictly convex in all directions except for the direction equal
to the point itself, i.e., (λ0,W0). Thus, if (λopt,Wopt) is an
optimal value for λ and W , all the other optimal values must lie
on the nonstrictly convex direction. As a consequence there exist
αmin ≤ 0 and αmax ≥ 0 such that ((1 + α)λopt, (1 + α)Wopt)
are optimal values for (λ,W ) for any α ∈ [αmin, αmax]. More-
over, if αmin = αmax = 0 then the pair (λopt,Wopt) that, to-
gether with a certain Z, solves (36) is unique. This is indeed the
case. In fact, at the optimum J is strictly negative so that at the
optimum the derivative of J along the only nonstrictly convex
direction (λopt,Wopt) is not equal to zero. In other words, at
the optimum and along the only nonstrictly convex direction J
is not constant which implies αmin = αmax = 0.

Uniqueness of Z is a much more problematic issue. Indeed,
we have observed in simulations that in some cases it may

happen that there are different optimal values of Z. The cor-
responding number of identified latent factors, however, is not
affected and the predictive powers of the identified models are
essentially the same.

Solving (36) simultaneously for λ, W, and Z is not trivial be-
cause the inequality constraints W � Q(λ, Z) and W � R(λ)
both depend on λ. On the other hand, once we fix the dual
variable λ to a positive constant λ̄ > 0, the problem

min
(W,Z)∈C̄λ

J(λ̄,W,Z) (37)

with

Cλ̄ := {(W,Z) : Z ∈ O, W ∈ Qm, T1:n,1:n(Z + λ̄P̂ ) � 0,

W � 0, W � Q(λ̄, Z), W � R(λ̄)}.
can be efficiently solved by resorting to the ADMM algo-
rithm [34]. To this aim, we rewrite (37) by introducing a new
variable Y ∈ Qm defined as Y = Q(λ̄, Z)−W

min
(W,Z)∈CW,Z ,

Y ∈Q+
m

J = λ̄

(
− log

∣∣̄λ−1W
∣∣− ∫

log |Φ̂|+ δ

)

subject to Y = Q(λ̄, Z)−W (38)

where

CW,Z := {(W,Z) : Z ∈ O,W ∈ Qm, W � 0,

W � R(λ̄), T1:n,1:n(Z + λ̄P̂ ) � 0}
and Q+

m denotes the cone of symmetric positive semidefinite
matrices of size m×m. The augmented Lagrangian for (38) is

Lρ(W,Z, Y,M) := λ̄

(
− log

∣∣̄λ−1W
∣∣− ∫

log |Φ̂|+ δ

)

+ 〈M,Y −Q(λ̄, Z) +W 〉
+

ρ

2
‖ Y −Q(λ̄, Z) +W ‖2

where, M ∈ Qm is the Lagrange multiplier, and ρ > 0 is the
penalty parameter. Accordingly, given the initial guesses W (0),
Z(0), Y (0), and M (0), the ADMM updates are(
W (k+1), Z(k+1)

)
= arg min

(W,Z)∈CW,Z

Lρ

(
W,Z, Y (k),M (k)

)
(39)

Y (k+1) = arg min
Y ∈Q+

m

Lρ

(
W (k+1), Z(k+1), Y,M (k)

)

M (k+1) = M (k) + ρ
(
Y (k+1) −Q

(
λ̄, Z(k+1)

)
+W (k+1)

)
.

(40)

Problem (39) does not admit a closed form solution, therefore
we approximate the optimal solution by a gradient projection
step

W (k+1) = Π
(
W (k) − tk∇WLρ

(
W (k), Z(k), Y (k),M (k)

))
Z(k+1) = ΠO

(
Z(k) − tk∇ZLρ

(
W (k), Z(k), Y (k),M (k)

))
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where:
1) ∇WLρ(W,Z, Y,M) denotes the gradient of the aug-

mented Lagrangian with respect to W

∇WLρ = −λ̄W−1 +M + ρ(Y −Q+W );

2) ∇ZLρ(W,Z, Y,M) denotes the gradient of the aug-
mented Lagrangian with respect to Z

∇ZLρ = D

([
Im

−T−1
1:n,1:nT

�
0,1:n

](
−M − ρ

× (Y −Q+W )

)[
Im −T0,1:nT

−1
1:n,1:n

])

where the omitted argument of the operators T0,1:n and
T1:n,1:n is intended to be equal to (Z + λ̄P̂ );

3) ΠO denotes the projection operator onto O
ΠO(A) = ofdB(A);

4) Π denotes the projection operator onto the convex cone
{S ∈ Qm : S � R(λ̄)}. It is not difficult to see that

Π(A) = R(λ̄)−Π+(R(λ̄)−A)

where Π+ is the projection operator onto the cone Q+
m;

5) the step-size tk is determined at each step k in an iterative
fashion: we start by setting tk = 1 and we decrease it
progressively of a factor β, with 0 < β < 1, until the
conditions W (k+1) � 0 and T1:n,1:n(Z

(k+1) + λ̄P̂ ) � 0
are met and the Armijo’s condition [35] is satisfied.

Problem (40) admits a closed form solution, which can be
easily computed as follows:

Y (k+1) = Π+

(
Q(λ̄, Z(k+1))−W (k+1) − 1

ρ
M (k)

)
.

To define the stopping criterion, we need to introduce the fol-
lowing quantities:

RP = Y −Q
(
λ̄, Z(k+1)

)
+W (k+1)

RD = D

([
Im

−T−1
1:n,1:nT

�
0,1:n

](
ρ(Y (k+1) − Y (k))

)

× [
Im −T0,1:nT

−1
1:n,1:n

])

which are referred to as the primal and dual residual, respec-
tively. Notice that the omitted argument of the operators T0,1:n

and T1:n,1:n is intended to be equal to (Z(k+1) + λ̄P̂ ).
Then, the algorithm stops when the following conditions are

met:

‖RP ‖ ≤ mεABS

+ εREL max
{
‖W (k)‖, ‖Q

(
λ̄, Z(k)

)
‖, ‖Y (k)‖

}

‖RD‖ ≤ m
√
(n+ 1)εABS + εREL‖D

([
Im

−T−1
1:n,1:nT

�
0,1:n

]

Algorithm 1: Numerical solution to the dual problem
Input: b > a > 0, l > 0, h > 0
Output: (λ◦,W ◦, Z◦)
1: Repeat
2: ã = (a+ b)/2− h; b̃ = (a+ b)/2 + h.
3: Compute g(ã) by applying the ADMM with λ = ã.
4: Compute g(b̃) by applying the ADMM with λ = b̃.
5: if g(ã) < g(b̃) then
6: b = b̃
7: else
8: a = ã
9: elseif

10: until b− a < l
11: λ◦ = (a+ b)/2.
12: Compute (W ◦, Z◦) by applying the ADMM with

λ = λ◦.

×M (k)
[
Im −T0,1:nT

−1
1:n,1:n

])‖

where εABS and εREL are the desired absolute and relative toler-
ances.

It remains to determine the optimal value λ◦ for λ which solves
(36). To this aim, we exploit the following result (see [35, pp.87–
88]):

Proposition 5.1: If f is convex in (x, y) and C is a convex
nonempty set, then the function

g(x) = inf
y∈C

f(x, y) (41)

is convex in x, provided that g(x) > −∞ for some x. The
domain of g is the projection of dom(f) on its x-coordinates.

This result guarantees that the function

g(λ) = min
(W,Z)∈Cλ

J(λ,W,Z)

is convex in λ. Hence, in order to determine λ◦ =
arg minλ>0g(λ) we can choose an initial interval of uncertainty
[a, b] containing λ◦, and we progressively reduce it by evaluating
g(λ) at two points within the interval placed symmetrically,
each at distance h > 0 from the midpoint. This is repeated until
the width of the uncertainty interval is smaller than a certain
tolerance l > 0.

The overall procedure to solve the dual problem (36) is
summarized in Algorithm 1.

VI. IDENTIFICATION OF ARMA FACTOR MODELS

In this section, we extend the proposed approach to ARMA
processes. Consider the ARMA factor model

y(t) = a−1 (WLu(t) +WDw(t)) (42)

where

a
(
eiϑ

)
=

p∑
k=0

ake
−iϑk, ak ∈ R
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and WL,WD, u, and w are defined analogously to (1). Notice
that yMA(t) := ay(t) = WLu(t) +WDw(t) is an MA process
of order n whose spectral density Φ = WLW

∗
L +WDW ∗

D ∈
Qm,n admits a low rank plus diagonal decomposition. Finally,
it is worth noting that it is not restrictive to assume that the autore-
gressive part in (42) is characterized by a scalar filter a; Indeed,
any ARMA factor model can be written in the form of (42).

Assume now to collect a realization yN = { y(1) . . . y(N) }
of numerosity N of the process y. Our aim is to estimate the
factor model (42) and the number of factors r. Before proceed-
ing, the following observation needs to be made: there is an
identifiability issue in the problem. Indeed, if we multiply a(z),
WL and WD by an arbitrary nonzero real number c, the model
remains the same. We can easily eliminate this uninteresting
degree of freedom by normalizing the polynomial a(z), so that
from now on we assume a0 = 1. In addition, for identifiability of
model (42), we assume that there are not zero/pole cancellations
between the roots of the denominator a(z) and the numerator
matrices WL(z) and WD(z). In other words, we assume that
(42) is a minimal representation of the ARMA model.

The idea is to estimate first a, and then ΦL and ΦD by pre-
processing yN through a. In more detail, the proposed solution
consists of the following two steps.

1) The AR dynamic estimation. Given the realization yN , we
estimate the p parameters of the filter a by applying the
maximum likelihood estimator proposed in [34, Section
II.b]. In doing so, we are estimating an AR process whose
spectral density is a−1(a−1)∗Im.

2) The MA DFA. Let yNMA be the finite length trajectory
obtained by passing through the filter a◦(eiϑ) the trajec-
tory yN with zero initial conditions. After computing the
truncated periodogram Φ̂ ∈ Qm,n from yNMA, we solve
(5) with Φ̂ in order to recover the number of latent factors.

Although the abovementioned procedure is suboptimal, the
numerical simulations showed that the resulting estimator of the
number of factors performs well, see Section VII-B.

VII. NUMERICAL SIMULATIONS

In this section, we test the performance of the proposed
approach both for MA and ARMA factor models. In all the sim-
ulations, the parameter δ is computed according to the empirical
procedure of Section II-A for α = 0.5. Then, (36) is solved by
applying Algorithm 1 with l = 7 and h = 3. In regard to the
ADMM algorithm, we set εABS = 10−4, εREL = 10−4, and the
penalty term ρ = 0.05.

A. Synthetic Example—MA Factor Models

We consider a Monte Carlo study composed by 50 experi-
ments, where for each experiment:

1) we build an MA factor model (1) of order n = 2, with
m manifest variables and r latent factors, computed
by randomly generating the zeros of the transfer func-
tions [WL](i,j)’s and [WD](i,i)’s for i=1, . . . ,m, j=1,
. . . , r within the circle with center at the origin and radius
0.95 on the complex plane. The model is generated in such
a way that

∫ ‖ΦL(e
iθ))‖/ ∫ ‖ΦD(eiθ))‖ = 2, that is the

TABLE I
MEAN ABSOLUTE ERROR BETWEEN THE ESTIMATED RANK

AND THE TRUE RANK r

idiosyncratic component is not negligible with respect to
the latent variable;

2) we generate from the model a sample yN of length N =
5000;

3) we apply the proposed identification procedure to esti-
mate the number of common factors. More precisely, we
define

sj :=

∫
σj

(
Φ◦

L

(
eiθ

))
σ1 (Φ◦

L (eiθ))

where, σj(Φ
◦
L(e

iθ) denotes the jth largest eigenvalue of
Φ◦

L at frequency θ. It is clear that sj represents the integral
of the jth largest normalized singular value of Φ◦

L over
the unit circle. Let imax be the first i such that si+1 < 0.05
and imin the last i such that si > 0.3. Then, we define the
“numerical rank” of Φ◦

L as

r◦ := max
imin≤i≤imax

si/si+1; (43)

4) we compute the number of factors from the data sequence
yN by applying the method proposed by Hallin and
Liška [31];

5) we assess the performance of the two estimators in terms
of the mean absolute error

ē =
1

50

50∑
i=1

|r − r̂|

where, r̂ is one of the two previous estimates and r is the
true rank of the data generating process.

Table I shows the mean absolute error ē when r = 2, 4 and
m = 20, 30, 40.

We see that in the six Monte Carlo studies the proposed
method outperforms the Hallin and Liška’s algorithm. In par-
ticular, the performances of the two estimators are comparable
when the number m of observed variables is much higher than
the number r of latent factors. The problem becomes more
challenging when the ratio m/r decreases; improvements by
our method are more sizable in these situations.

Figs. 1 and 2 plot the quantities sj obtained by applying
our estimation method in one of the previous Monte Carlo
experiment withm = 40manifest variables and r = 2 and r = 4
latent variables, respectively. We can notice that there is a knee
point at j = 2 and at j = 4 in Fig. 1 and Fig. 2, respectively, so
that we can recover the exact number of common factors in both
cases.
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Fig. 1. Estimated MA factor model with n = 2, m = 40, and r = 2.
Integral over the unit circle of the first 30 normalized singular values
of Φ◦

L with N = 5000.

Fig. 2. Estimated MA factor model with n = 2, m = 40, and r = 4.
Integral over the unit circle of the first 30 normalized singular values
of Φ◦

L with N = 5000.

Fig. 3. Estimated ARMA factor model with m = 40, r = 2, n = 2 and
p = 2. Boxplot of the integral over the unit circle of the first 15 normalized
singular values of Φ◦

L with N = 5000.

B. Synthetic Example—ARMA Factor Models

In order to test the robustness of the proposed algorithm also
in the case of a more general model class, i.e., the ARMA model
class considered in VI, we consider the following Monte Carlo
simulation study composed of 50 experiments. We randomly
build an ARMA factor model (42) with m = 40, r = 2, n = 2
and p = 2; without loss of generality we fix a0 = 1. Then, for
each Monte Carlo experiment a data sequence of length N =
5000 is randomly generated from the model and the ARMA
factor model identification procedure is performed. The boxplot
of the quantities sj for the estimated Φ◦

L’s are shown in Fig. 3

Fig. 4. Application of the ARMA factor models identification procedure
by using the measurements yN1 from the SMLsystem as training data.
The figure shows the integral over the unit circle of the normalized
singular values of Φo

L.

and it reveals that the proposed identification procedure is able
to successfully recover the number of latent factors.

C. Smart Building Dataset

The SMLsystem is a house built in Valencia at the Universidad
CEU Cardenal Herrera. It is a modular house that integrates a
whole range of different technologies to improve energy effi-
ciency, with the objective to construct a near zero-energy house.
A complex monitoring system has been used in the SMLsystem:
it has indoor sensors for temperature, humidity, and carbon
dioxide; outdoor sensors are also available for lighting measure-
ments, wind speed, rain, sun irradiance, and temperature. We
refer the reader to [37] for a detailed description of the building
and its monitoring system. Two datasets from the SMLsystem
are available for download at the UCI machine learning repos-
itory.1 We take into account m = 17 sensor signals extracted
from these datasets: the indoor temperature (in ◦C) of the dining
room and of the room, the weather forecast temperature (in ◦C),
the carbon dioxide (in ppm) in the dining room and in the room,
the relative humidity (in %) in the dining room and the room, the
lighting in the dining room and the room (in lx), the sun dusk, the
wind (in cm/sec), the sun light (in klx) in the west, east, and south
facade, the sun irradiance (in dW), the outdoor temperature (in
◦C), and finally the outdoor relative humidity (in %). The data
are sampled with a period of T = 15 min and each sample is the
mean of the last quarter, reducing in this way the signal noise.
The first datasetyN1 = { y(1), . . . , y(N1) }was captured during
March 2011 and has N1 = 2764 points (≈ 28 days), while
the second dataset yN2 = { y(N1 + 1), . . . , y(N1 +N2) } has
N2 = 1373 points (≈ 14 days) collected in June 2011.

It is reasonable to expect that the variability of the considered
signals may be successfully explained by a smaller number of
factors. Motivated by this reason, we apply the ARMA factor
model identification procedure with parametersn = 2 andp = 2
using the realization yN1 . As shown in Fig. 4, we obtain an
estimate of four latent factors.

For the sake of comparison, we also use the MATLAB func-
tion armax() of the system identification toolbox to compute
the prediction-error method (PEM) estimate for an ARMA

1[Online]. Available: http://archive.ics.uci.edu/ml

http://archive.ics.uci.edu/ml
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Fig. 5. Fit (in percentage) term JFIT,j for each output channel for the
model estimated via our factor analysis method, via PEM and via the IC+
ML approach. The fit values are computed by using the measurements
yN2 from the SMLsystem as validation data.

model with polynomials A(z) and C(z), diagonal, of order 2
from the realization yN1 . It is well know that the PEM estimate
has guarantees of optimality, at least for large samples, for the
identification of linear dynamic systems, so that it is interesting
to use it as a benchmark to which to compare the prediction
capability of our model.

We also compare our model with the factor model proposed
in [29] where, however, the number r of latent factors is assumed
to be a given input. We computed this input by preliminarily
applying the Hallin and Liška’s information criterion (IC). This
article [29] assumes an underlying AR factor model where the
idiosyncratic components are temporarily and cross-sectionally
uncorrelated and it employs the EM algorithm to compute the
ML estimator. The selection of the model order both for our
method and for the method proposed in [29] is obtained by
applying the BIC criterion. Notice that since the IC has a random
step, it gives different results when repeatedly applied to the
same dataset yN1 . In this particular case the IC method estimates
either one or four latent factors: to be more han fair, we provided
the method proposed in [29] with the input r = 4 since the
corresponding model explains the training data much better than
the one corresponding to r = 1.

The second dataset yN2 is used in the validation step to test the
prediction capability of the three estimated models. The results
are summarized in Fig. 5 which displays for each output channel
j = 1, . . . ,m the fit (percentage) term

JFIT,j := 100

⎛
⎝1−

√∑N1+N2

t=N1+1(yj(t)− ŷj(t|t− 1))2√∑N1+N2

t=N1+1(yj(t)− ȳj)2

⎞
⎠

where, ȳj := 1
N2

∑N1+N2

t=N1+1 yj(t) and ŷj(t|t− 1) is the one-step
ahead prediction at time t computed with zero initial conditions
for the three estimated models. The figure shows that the ARMA
factor model estimated with the proposed method matches quite
well the measurement data yN2 , reaching fit values that are
essentially equal to the benchmark PEM estimate. This allows
us to conclude that the available smart building dataset can
be successfully modeled with the proposed method. It is a
remarkable result since the factor model is parameterized by
257 coefficients, much less than the 612 coefficients of the PEM

estimate. Not only the factor model is more parsimonious, but it
is also able to organize the complex, high-dimensional dataset
in a suitable structured model, which is easier to understand
and interpret. On the contrary, the PEM model is much more
complex and does not give us any intuitive explanation of the
underlying dynamics.

Finally we notice the AR factor model obtained by applying
the IC and the ML principle fails to provide good performances
for several output channels.

We have repeated the numerical simulations with the SMLsys-
tem dataset for different the values of the probability α, specif-
ically for α = 0.2 and α = 0.8. We obtain that the estimated
number of factors is still equal to 4 and the prediction capabilities
of the model remain essentially the same: the algorithm appears
to be robust with respect to the choice of α.

We have also tested the proposed factor analysis method
on the smart building dataset by changing the values of the
tolerance parameters εABS and εREL. By decreasing the value of
the tolerances the computation time grows, whereas the resulting
model remains essentially the same. On the other hand, for larger
values of the tolerance parameters the ADMM algorithm may
stop before reaching an accurate solution. As a matter of fact,
by setting εREL = εABS = 10−3, the factor analysis procedure
still recovers the exact number of latent factors, but the resulting
model shows poorer performances.

Remark: Another important consequence of dealing with
simple models such as those considered in our setting is the
possibility of identifying systems from a limited dataset. Indeed
simple models have few parameters and hence highly reduce
the risk of overfitting. To concretely show this advantage in
our setting, we repeat the previous simulation by assuming that
we have only access to the first 800 measurements (≈ 8 days)
of the smart building dataset yN1 for the estimation step. We
then compute the one-step ahead prediction capabilities of our
ARMA factor model, the PEM model, and the IC+ML model on
the second dataset yN2 . We find out that the proposed ARMA
factor model provides the best performances, reaching an aver-
age fit term equal to 83.6% against the 45.9% and the 22.5% of
the PEM and the IC+ML methods, respectively. In particular the
PEM method completely fails to predict the channels number 11
and 12. We conclude that, differently from the PEM model, our
ARMA factor model does not suffer from overfitting.

VIII. CONCLUSION

A procedure to estimate the number of factors and to learn
ARMA factor models has been proposed. This method is based
on the solution to an optimization problem whose solution has
been proven to exist via dual analysis. The simulations results
applying the procedure both to synthetic and real data provide
evidence of a good performance.

APPENDIX

Proof of Lemma 3.1

SinceΦ = ΔXΔ∗ withX 	 0, there existsA ∈ R
m×m(n+1)

such that X = A�A. The matrix A is such that Φ 	 0
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admits the spectral factorization Φ = WW ∗ where W :=
ΔA�. Now, define Φn := Φ + 1

nI with n ∈ N and let Wn :=

ΔAn be a spectral factor of Φn with An ∈ R
m×m(n+1).

Clearly, limn→+∞ Φn = Φ; accordingly, limn→+∞ Wn = W
and limn→+∞ An = A. Since Φn � 0 ∀ϑ we can exploit (10)
to obtain ∫

log |Φn| = log |A�
n0
An0

|.

Then, applying the limit operator to both sides, we have

lim
n→+∞

∫
log |Φn| = log |A�

0A0| = log |X00|.

To conclude the proof, it remains to show that in the left side
of the previous equation it is possible to interchange the limit
and the integral operators. To this aim, we introduce the se-
quence {fn}+∞

n=1 where fn(θ) := log |Φn(ϑ)| and the function
f(ϑ) := limn→+∞ fn(θ) = log |Φ(ϑ)|. Observe that, since the
interval of integration [−π, π] is bounded and f1(ϑ) < +∞
for any ϑ ∈ [−π, π], then

∫
f1(ϑ)dϑ < +∞. We also define

the sequence {gn}+∞
n=1 as gn(ϑ) := fn(ϑ)− f1(ϑ) and g(ϑ) :=

limn→+∞ gn(ϑ).{gn} is a pointwise nonincreasing sequence of
measurable nonpositive functions

· · · ≤ g2(ϑ) ≤ g1(ϑ) ≤ 0, ∀ϑ ∈ [−π,+π]

converging to g(ϑ) from previous. Hence, it satisfies all the
hypotheses of Beppo–Levi’s monotone convergence theorem
(applied with opposite signs), from which it immediately follows
that:

lim
n→+∞

∫
gn(ϑ) =

∫
g(ϑ)

and consequently

lim
n→+∞

∫
fn(ϑ) =

∫
g(ϑ) +

∫
f1(ϑ). (44)

Now, since f1(ϑ) < +∞ for all ϑ

g(ϑ) = f(ϑ)− f1(ϑ) (45)

and, by plugging (45) into (44), we finally obtain

lim
n→+∞

∫
fn(ϑ) =

∫
f(ϑ).

�

Proof of Proposition 3.3

Consider a sequence (λ(k), V (k), Z(k))k∈N in C2.
We first show that [Z(k)]0 cannot diverge. Indeed, assume

by contradiction that limk→∞ ‖ [Z(k)]0 ‖= +∞. Since it is a
symmetric and traceless matrix, this implies

lim
k→∞

min
α(k)∈σ([Z(k)]0)

α(k) = −∞. (46)

In view of (46), since λ(k)P̂0 is bounded and V (k) positive
semidefinite ∀k, then (λ(k)P̂0 + [Z(k)]0 − [V (k)]00) has at least
a negative eigenvalue fork sufficiently large, so that the sequence

(λ(k), V (k), Z(k)) is not in C2. We conclude that

lim
k→∞

‖
[
Z(k)

]
0
‖< ∞.

As a consequence, since βI � T (Z(k))− V (k) � I (which
is one of the condition for the sequence to be in C2), and
[T (Z(k))]hh = [Z(k)]0 by construction, it holds that ∀k

‖ [V (k)]hh ‖< ∞, h = 0, . . . , n.

Then, from V (k) 	 0 it follows that also the off-diagonal blocks
of V (k) must be bounded ∀k, i.e.,

‖
[
V (k)

]
hl

‖< ∞, l �= h, l, h = 0, . . . , n. (47)

Finally, by the boundedness of (T (Z(k))− V (k)) and by (47)
we obtain that ∀k

‖ [Z(k)]h ‖< ∞ h = 1, . . . , n (48)

which concludes the proof. �
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