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Masako Kishida , Senior Member, IEEE

Abstract—This article introduces the notions of stability, ulti-
mate boundedness, and positive invariance for stochastic systems
in view of risk. More specifically, those notions are defined in terms
of the worst-case conditional value-at-risk (CVaR), which quantifies
the worst-case conditional expectation of losses exceeding a cer-
tain threshold over a set of possible uncertainties. Those notions
allow us to focus our attention on the tail behavior of stochastic
systems in the analysis of dynamical systems and the design of
controllers. Furthermore, some event-triggered control strategies
that guarantee ultimate boundedness and positive invariance with
specified bounds are derived using the obtained results and illus-
trated using numerical examples.

Index Terms—Conditional value-at-risk, event-triggered control,
positive invariance, stability, stochastic systems, ultimate bound-
edness.

I. INTRODUCTION

Whether it is a financial portfolio or an engineering system, we often
need to accept a certain level of risk to balance the pros and cons of
spending costs in the decision-making processes under uncertainties.
This is particularly true when the uncertainty distributions have an
unbounded support because a guarantee of 100% ideal satisfaction is
impossible or requires an infinite amount of cost. Therefore, risk has
been studied for a long time, not only in the financial industry [1], [2],
[3], [4], but also in the wide areas of engineering [5], [6], [7] using
many different approaches.

The notions of stability, ultimate boundedness, and positive invari-
ance are fundamental in the analysis of dynamical systems and in the
design of controllers [8]. To deal with stochastic uncertainties in dynam-
ical systems [9], the concept of probabilistic stability was introduced
in [10]. Later, the concepts of probabilistic set invariance and ultimate
boundedness were introduced for discrete-time linear systems in [11]
and extended to continuous-time linear systems in [12]. Those proba-
bilistic notions are defined using chance constraints. Another popular
approach to dealing with stochastic uncertainties is to consider mean
square and p-stability [13]. In this direction, ultimate boundedness [14]
and positive invariance [15], [16] have been also investigated. However,
the use of those notions may result in a significant loss, especially
when the uncertainty distribution has a fat tail. This is because they
do not characterize the tail risk—the risk that has a low probability of
occurring, but if it does occur, it will result in a large loss.

To take into account the tail risk in the controller design, this
article introduces definitions of stability, ultimate boundedness, and
positive invariance in terms of the worst-case conditional value-at-risk
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(CVaR) for stochastic systems. This allows us to design controllers
that guarantee that the expected value of the constraint-violating cases
is small. CVaR is a relatively new risk measure that is defined as the
conditional expectation of losses exceeding a certain threshold [17]. It
is known that the (worst-case) CVaR is a coherent risk measure [4] and
enjoys nice mathematical properties. In the recent controls community,
CVaR has been used such as for optimal control [18], [19], [20],
collision avoidance [21], and risk-perception-aware control under dy-
namic spatial risks in [22]. However, the computation of CVaR requires
knowledge of the probability distribution of uncertainties, which is
not always available. The worst-case CVaR, on the other hand, is the
supremum of CVaR over a set of possible disturbances [4], [23]. Thus,
the computation of the worst-case CVaR does not require knowledge
of the probability distribution of uncertainties. For this reason, as well
as its computational tractability, the worst-case CVaR is well-suited for
risk-aware control design in practice. The worst-case CVaR has been
used such as for the shortest path problem [24] and the multistage
stochastic constrained control problem [25] as well as the author’s
earlier work about linear quadratic control [26].

The rest of this article is organized as follows. After introducing no-
tation, definitions, and properties of the worst-case CVaR in Section II,
Section III presents the system model we consider. Sections IV–VI
discuss the properties of stability, ultimate boundedness, and positive
invariance using the worst-case CVaR, respectively. Based on the results
in those sections, approaches to risk-aware event-triggered control are
discussed in Section VII, which is followed by numerical examples in
Section VIII, and finally, Section IX concludes this article.

II. PRELIMINARIES

A. Notation

The sets of real numbers, real vectors of length n, and real matrices
of size n×m are denoted by R, Rn, and R

n×m, respectively. The sets
of nonnegative numbers, nonnegative integers, and positive integers are
denoted by R≥0, Z≥0, and Z>0, respectively. For M ∈ R

n×n, ρ(M)
denotes the spectral radius of M and M � 0 indicates M is positive
definite. M� denotes the transpose of a real matrix M and Tr(M)
denotes the trace of M . In denotes the identity matrix of size n. The
Kronecker product of two matrices X and Y is denoted as X ⊗ Y .
For x ∈ R, x+ = max{x, 0}. For a vector v ∈ R

n, ‖v‖ denotes the
Euclidean norm. For a matrix M , ‖M‖ denotes the maximum singular
value norm. Recall that a function γ : R≥0 → R≥0 is a K function
if it is continuous, strictly increasing and γ(0) = 0. A function β :
R≥0 × R≥0 → R≥0 is aKL function if for each fixed t ≥ 0,β(s, t) ∈ K
with respect to s and for each fixed s ≥ 0, β(s, t) is decreasing with
respect to t and limt→∞ β(s, t) = 0.

B. Conditional Value-at-Risk (CVaR)

Let μ ∈ R
n be the mean and Σ ∈ R

n×n be the covariance matrix
of the random vector ξ ∈ R

n under the true distribution P, which is
the probability law of ξ. Thus, it is implicitly assumed that the random
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Fig. 1. Illustration of mean and CVaR.

vector ξ has finite second-order moments. Let P denote the set of all
probability distributions on R

n that have the same first- and second-
order moments as P, i.e.,

P =

⎧⎨
⎩P : EP

⎡
⎣[ξi

1

][
ξj

1

]�⎤⎦ =

[
Σδij 0

0� 1

]
∀i, j

⎫⎬
⎭ .

Here, δij denotes the Kronecker delta and EP[·] denotes the expectation
with respect to P. The true underlying probability measure P is not
known exactly, but it is known that P ∈ P .

Definition 2.1 (Conditional Value-at-Risk (CVaR) [17], [27]): For a
given measurable loss function L : Rn → R, a probability distribution
P onRn and a level ε ∈ (0, 1), the CVaR at εwith respect toP is defined
as

P-CVaRε[L(ξ)] = inf
β∈R

{
β +

1

ε
EP[(L(ξ)− β)+]

}
.

CVaR is the conditional expectation of loss above the (1− ε)-quantile
of the loss function [27] and quantifies the tail risk (see Fig. 1).

The worst-case CVaR is the supremum of CVaR over a given set of
probability distributions as defined as follows.

Definition 2.2 (Worst-case CVaR [27]): The worst-case CVaR over
P is given by

sup
P∈P

P-CVaRε[L(ξ)] = inf
β∈R

{
β +

1

ε
sup
P∈P

EP[(L(ξ)− β)+]

}
.

Here, the exchange between the supremum and infimum is justified by
the stochastic saddle point theorem [28].

If L(ξ) is quadratic with respect to ξ, the worst-case CVaR can be
computed by a semidefinite program [27], [29]. Furthermore, if the
mean of the random vector ξ is zero, the following easy-to-compute
bounds are obtained.

Lemma 2.3 (Bounds for worst-case CVaR [26]): Supposeμ = 0 and
L(ξ) = ‖Aξ + b‖2 + cwith someA ∈ R

m×n, b ∈ R
n and c ∈ R, then

c+ b�b+
1

ε

(
Tr(ΣA�A)

) ≤ sup
P∈P

P-CVaRε[L(ξ)]

≤ c+
1

ε

(
Tr(ΣA�A) + b�b

)
.

If b = 0 and c = 0, then it follows that

sup
P∈P

P-CVaRε[L(ξ)] =
1

ε
Tr(ΣA�A).

To deal with dynamical systems, the following is a simple, but useful
result.

Lemma 2.4: Suppose ξ1, ξ2, . . ., ξm ∈ R
n are independent and

identically distributed random vectors under the true distribution P ∈

P . Let ξ̄ = [ξ�1 , ξ
�
2 , . . ., ξ

�
m]�. Then, ξ̄ ∈ R

nm is a random vector
with the mean zero and covariance Im ⊗ Σ. Thus, the true underlying
probability measure P for ξ satisfies P ∈ Paug, where

Paug =

⎧⎨
⎩P :EP

⎡
⎣[ξ̄i

1

][
ξ̄j

1

]�⎤⎦ =

[
(Im ⊗ Σ)δij 0

0 1

]
∀i, j

⎫⎬
⎭ .

Moreover, for a matrix A ∈ R
�×nm, it holds that

sup
P∈Paug

P-CVaRε[‖Aξ‖2] = 1

ε
Tr((Im ⊗ Σ)A�A).

Proof: Follows from the assumption that ξ1, ξ2, . . ., ξm ∈ R
n are

independent and identically distributed. The second part follows from
Lemma 2.3. �

One reason that the (worst-case) CVaR is popular for risk assessment
is its mathematically attractive properties of coherency.

Proposition 2.5 (Coherence properties [4], [30]): The worst-case
CVaR is a coherent risk measure, i.e., it satisfies the following prop-
erties: Let L1 = L1(ξ) and L2 = L2(ξ) be two measurable loss func-
tions.
1) Subadditivity: For all L1 and L2

sup
P∈P

P-CVaRε[L1 + L2]

≤ sup
P∈P

P-CVaRε[L1] + sup
P∈P

P-CVaRε[L2].

2) Positive homogeneity: For a positive constant a > 0

sup
P∈P

P-CVaRε[aL1] = a sup
P∈P

P-CVaRε[L1].

3) Monotonicity: If L1 ≤ L2 almost surely

sup
P∈P

P-CVaRε[L1] ≤ sup
P∈P

P-CVaRε[L2].

4) Translation invariance: For a constant c.

sup
P∈P

P-CVaRε[L1 + c] = sup
P∈P

P-CVaRε[L1] + c.

III. SYSTEM MODEL

This section introduces a model of a linear system with stochastic
disturbances.

Consider the discrete-time linear stochastic system

xt+1 = Axt +Dvt +Ewt (1)

where xt ∈ R
nx is the state, vt ∈ R

nv is the input and wt ∈ R
nw is

the disturbance, respectively, at discrete time instant t ∈ Z≥0. A ∈
R

nx×nx , D ∈ R
nx×nv , and E ∈ R

nx×nw are constant matrices. It
is assumed that the initial condition x0 ∈ R

nx is given, and that wt

are independent and identically distributed random vectors with the
mean zero and covariance Σw � 0 for all t ∈ Z≥0. The true underlying
probability measure P for wt is not known exactly, but it is known that
P ∈ P , where

P=

⎧⎨
⎩P :EP

⎡
⎣[wi

1

][
wj

1

]�⎤⎦=
[
Σwδij 0

0� 1

]
∀i, j

⎫⎬
⎭ . (2)

It is also assumed vt ∈ V , where

V = {v ∈ R
nv : ‖v‖ ≤ d} (3)

for a given d.
For t ∈ Z>0, the state evolution of (1) can be expressed by

xt = Ftx0 +Gtv̄t +Htw̄t (4)
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using

Ft = At

Gt =
[
At−1D At−2D · · · D

]
Ht =

[
At−1E At−2E · · · E

]
w̄t = [w�

0 , w
�
1 , . . . , w

�
t−1]

�

v̄t = [v�0 , v
�
1 , . . . , v

�
t−1]

�. (5)

With this notation, from Lemma 2.4, w̄t ∈ R
nwt is a random vector

with the mean zero and covariance It ⊗ Σw. Thus, the true underlying
probability measure P for w̄t satisfies P ∈ Pt, where

Pt=

⎧⎨
⎩P :EP

⎡
⎣[w̄t,i

1

][
w̄t,j

1

]�⎤⎦=
[
(It ⊗ Σw)δij 0

0 1

]
∀i, j

⎫⎬
⎭ .

(6)

IV. STABILITY

This section introduces the stability notions in terms of the worst-case
CVaR.

The input-to-state stability using the worst-case CVaR is defined as
follows.

Definition 4.1 (Practical input-to-state stability): The system (1) is
practically worst-case CVaR input-to-state stable if there exist β ∈ KL,
γ ∈ K, and c ≥ 0 such that

sup
P∈Pt

P-CVaRε[‖xt‖2]

≤ β(‖x0‖2, t) + γ

(
max

τ∈[0,t−1]
(‖vτ‖2)

)
+ c ∀t ∈ Z≥0. (7)

The following lemma provides conditions for a system to be practi-
cally worst-case CVaR input-to-state stable.

Lemma 4.2 (Conditions for practical input-to-state stability): The
system (1) is practically worst-case CVaR input-to-state stable if and
only if ρ(A) < 1.

Proof: The necessity is clear. For sufficiency, we first note that under
the condition, there exist μ > 0 and λ ∈ [0, 1) such that

‖At‖ ≤ μλt. (8)

Define v̄t−1 = maxτ∈[0,t−1](‖vτ‖))(≤ d), then

‖Gtv̄t‖2 =

∥∥∥∥∥
t−1∑
k=0

AkDvt−1−k

∥∥∥∥∥
2

≤
∥∥∥∥∥

t−1∑
k=0

‖Ak‖‖D‖‖vt−1−k‖
∥∥∥∥∥
2

≤
∥∥∥∥∥

t−1∑
k=0

μλk‖D‖ max
τ∈[0,t−1]

(‖vτ‖)
∥∥∥∥∥
2

≤
(
μ‖D‖
1− λ

)2

v̄2t−1.

(9)

Because for two vectors x, y ∈ R
n, it holds that

2x�y ≤ α2‖x‖2 + 1

α2
‖y‖2 ∀α > 0

it follows that

‖xt‖2 = ‖Ftx0 +Gtv̄t +Htw̄t‖2

≤ (1 + α2
1)‖Ftx0‖2 +

(
1 +

1

α2
1

)(
1 + α2

2

) ‖Gtv̄t‖2

+

(
1 +

1

α2
1

)(
1 +

1

α2
2

)
‖Htw̄t‖2

≤ (1 + α2
1)μ

2λ2t‖x0‖2 +
(
1 +

1

α2
1

)(
1 + α2

2

)(μ‖D‖
1− λ

)2

v̄2t−1

+

(
1 +

1

α2
1

)(
1 +

1

α2
2

)
‖Htw̄t‖2 (10)

for any α1, α2 > 0. Using Proposition 2.5 along with Lemma 2.4, it
follows that

sup
P∈Pt

P-CVaRε[‖xt‖2]

≤ (1 + α2
1)μ

2λ2t‖x0‖2 +
(
1 +

1

α2
1

)(
1 + α2

2

)(μ‖D‖
1− λ

)2

v̄2t−1

+

(
1 +

1

α2
1

)(
1 +

1

α2
2

)
1

ε
Tr(P ). (11)

Here, we used

Tr((It ⊗ Σw)H
�
t Ht) = Tr

(
t−1∑
k=0

(Ak)EΣwE
�(A�)k

)

≤ Tr

( ∞∑
k=0

(Ak)EΣwE
�(A�)k

)

= Tr(P ) (12)

where P � 0 is the solution to the Lyapunov equation

APA� − P +EΣwE
� = 0. (13)

Thus, choosing

β(s, t) = (1 + α2
1)μ

2λ2ts

γ(v̄t−1) =

(
1 +

1

α2
1

)(
1 + α2

2

)(μ‖D‖
1− λ

)2

v̄2t−1

c =

(
1 +

1

α2
1

)(
1 +

1

α2
2

)
1

ε
Tr(P ) (14)

in (11) verifies Definition 4.1. �
If there is no input, we can simplify the definition and lemma as

follows.
Definition 4.3 (Practical asymptotic stability): The system (1) with

D = 0 is practically asymptotically worst-case CVaR stable if there
exist β ∈ KL and a constant c ≥ 0 such that

sup
P∈Pt

P-CVaRε[‖xt‖2] ≤ β(‖x0‖2, t) + c ∀t ∈ Z≥0. (15)

Corollary 4.4 (Conditions for practical asymptotic stability): The
system (1) with D = 0 is practically asymptotically worst-case CVaR
stable if and only if ρ(A) < 1.

Proof: Similarly to the proof of Lemma 4.2, using

β(s, t) = (1 + α2)μ2λ2ts, c =

(
1 +

1

α2

)
1

ε
Tr(P ). (16)

in (11) verifies Definition 4.3. �
The results in this section indicate that the standard stability con-

dition ρ(A) < 1 also guarantees that the expected value of the tail
of the squared norm of the states does not grow as long as the in-
puts are bounded. The bounds obtained here are not tight, however,
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tight bounds can be obtained for computing the worst-case CVaR
of ‖xt‖2 = ‖Ftx0 +Gtv̄t +Htw̄t‖2 at each t using a semidefinite
program as shown in [27] and [29].

Remark 4.5: An earlier version of this article [31] inspired the
development of risk-aware stability theory using other measures and
discussions of the relations between them [32].

V. ULTIMATE BOUNDEDNESS

Here, we introduce a notion of worst-case CVaR ultimate bound,
which is an extension of the probabilistic ultimate bound [11]. Ultimate
bounds can be found for practically worst-case CVaR input-to-state
stable systems, i.e., for systems with ρ(A) < 1.

Definition 5.1 (Ultimate bound): A compact set Ω ∈ R
nx is a

worst-case CVaR ultimate bound set for the system (1) if for every
initial state x0, there exists T = T (x0) > 0 such that for any η > 0,
supP∈Pt

P-CVaRε[x ∈ Ω] ≤ η for all t ≥ T . In particular, a positive
scalar r is said to be a worst-case CVaR ultimate bound if Ω = {x ∈
R

nx : ‖xt‖2 ≤ r2}.
Without stochastic disturbance, this definition agrees with the stan-

dard ultimate bound definition that r is an ultimate bound if for every
initial state x0, there exists T = T (x0) > 0 such that ‖xt‖2 ≤ r2 + η
for all t ≥ T .

A worst-case CVaR ultimate bound can be found as follows.
Theorem 5.2 (Ultimate bound): Consider the system (1) with

ρ(A) < 1

r =
μ‖D‖
1− λ

d+

√
1

ε
Tr(P ) (17)

with d defined in (3), μ and λ that satisfy (8) and P � 0 that satisfies
the Lyapunov (13) is a worst-case CVaR ultimate bound for the system
(1).

Proof: By using v̄t−1 ≤ d and choosing

α2
1 =

r2

η − c
, α2

2 =
1− λ

μ‖D‖d

√
1

ε
Tr(P ) (18)

for some c ∈ (0, η) in (11), it follows that

sup
P∈Pt

P-CVaRε[‖xt‖2]

≤ (1 + α2
1)μ

2λ2t‖x0‖2 +
(
1 +

1

α2
1

)(
μ‖D‖
1− λ

d+

√
1

ε
Tr(P )

)2

=

(
1 +

r2

η − c

)
μ2λ2t‖x0‖2 +

(
1 +

η − c

r2

)
r2

=

(
1 +

r2

η − c

)
μ2λ2t‖x0‖2 + r2 + η − c. (19)

Because the first term approaches to 0 as t goes to infinity, there exists
T such that supP∈Pt

P-CVaRε[‖xt‖2] ≤ r2 + η for all t ≥ T . �
The result can be simplified in the case of D = 0 as follows.
Corollary 5.3 (Ultimate bound): Consider the system (1) with

ρ(A) < 1 and D = 0.

r =

√
1

ε
Tr(P ) (20)

is a worst-case CVaR ultimate bound for (1) without inputs.

Proof: Substitute D = 0 in the proof of Theorem 5.2. �
Corollary 5.3 indicates that the ultimate bound is proportional to the

square root of the inverse of the risk level ε. In other words, if we are
considering the worst 10% cases and would like to tighten it to 2.5%,
then the ultimate bound must be increased by a factor of 2.

VI. POSITIVE INVARIANCE

The notion of positive invariance is yet another important concept,
which is intimately related to ultimate boundedness.

Definition 6.1 (Robust positively invariant set): Let f : Rnx → R

be a continuous function. A domain D = {x ∈ R
nx : f(x) ≤ 0} is a

worst-case CVaR robust positively invariant set for the system (1) if for
any state xt ∈ D, supP∈Pk

P-CVaRε[f(xt+k)] ≤ 0 for all k ∈ Z>0.
A worst-case CVaR robust positively invariant set can be found as

follows.
Theorem 6.2 (Robust positively invariant set): Consider the system

(1) with ‖A‖ < 1. For any η > 0, the set

D = {x ∈ R
nx : ‖x‖2 ≤ r2 + η} (21)

where

r =
1

1− ‖A‖

(
‖D‖d+

√
1

ε
Tr(ΣwE�E)

)
(22)

is a worst-case CVaR robust positively invariant set for (1). Note d is
defined in (3).

Proof: First, we show that xt ∈ D implies supP∈P P-CVaRε

[‖xt+1‖2] ≤ r2 + η. Similarly to (10), we have

‖xt+1‖2 = ‖Axt +Dvt +Ewt‖2

≤ (1 + α2
1)‖Axt‖2 +

(
1 +

1

α2
1

)
(1 + α2

2)‖D‖2 d2

+

(
1 +

1

α2
1

)(
1 +

1

α2
2

)
‖Ewt‖2. (23)

Choose α1 > 0 that satisfies

(1 + α2
1)‖A‖ = 1 (24)

and α2 > 0 that satisfies

α2
2‖D‖d =

√
1

ε
Tr(ΣwE�E). (25)

Using Proposition 2.5 as well as the norm submultiplicativity and
Lemma 2.3, it follows that

sup
P∈Pt+1

P-CVaRε[‖xt+1‖2]

≤ ‖A‖‖xt‖2 + 1

1− ‖A‖

(
‖D‖d+

√
1

ε
Tr(ΣwE�E)

)2

. (26)

Hence, if xt ∈ D, using the condition (22), it follows that

sup
P∈P

P-CVaRε[‖xt+1‖2]

≤ ‖A‖(r2 + η) +
1

1− ‖A‖ (1− ‖A‖)2 r2

≤ r2 + η. (27)

Next, we show supP∈Pk
P-CVaRε[‖xt+k‖2] ≤ r2 + η for some

k > 0 implies supP∈Pk+1
P-CVaRε[‖xt+k+1‖2] ≤ r2 + η. For any
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α1, α2 > 0

‖xt+k+1‖2 = ‖Axt+k +Dvt+k +Ewt+k‖2

≤ (1 + α2
1)‖Axt+k‖2 +

(
1 +

1

α2
1

)
(1 + α2

2)‖D‖2 d2

+

(
1 +

1

α2
1

)(
1 +

1

α2
2

)
‖Ewt+k‖2. (28)

Choose α1 > 0 and α2 > 0 that satisfy (24) and (25), respectively.
Similarly to before, we have

sup
P∈P

P-CVaRε[‖xt+k+1‖2]

≤ ‖A‖ sup
P∈P

P-CVaRε[‖xt+k‖2] + 1

1− ‖A‖ (1− ‖A‖)2 r2

≤ r2 + η. (29)

This completes the proof. �
The result can be simplified in the case of D = 0 as follows.
Definition 6.3 (Positively invariant set): Let f : Rnx → R be a

continuous function. A domainD = {x ∈ R
nx : f(x) ≤ 0} is a worst-

case CVaR positively invariant set for the system (1) with D = 0 if for
any state xt ∈ DsupP∈Pk

P-CVaRε[f(xt+k)] ≤ 0 for all k ∈ Z>0.
A worst-case CVaR positively invariant set can be found as follows.
Corollary 6.4 (A positively invariant set): Consider the system (1)

with ‖A‖ < 1 and D = 0. For any η > 0, the set D in (21), where

r =
1

1− ‖A‖

√
1

ε
Tr(ΣwE�E) (30)

is a worst-case CVaR positively invariant set for (1) with D = 0.
Proof: Substitute D = 0 in the proof of Theorem 6.2. �
In this section, we considered the systems with ‖A‖ < 1 instead of

systems with ρ(A) < 1. This is because unlike stability and ultimate
boundedness, the notion of positive invariance is the relation between
the current state and the state at the next time, instead of the relation
between the initial state and the state at some time sufficiently later.
Therefore, Gelfand’s formula cannot be utilized. Yet, Corollary 6.4 in-
dicates that the parameter r of the positively invariant set is proportional
to the square root of the inverse of the risk level ε as for the ultimate
bound.

VII. EVENT-TRIGGERED CONTROL

This section presents an application of the results of Sections V
and VI to developing event-triggered controllers, which reduce the
control input updates while meeting the required risk-aware properties
of the system.

A. System Description

Consider the discrete-time linear control system subject to stochastic
disturbance

xt+1 = Axt +But +Ewt. (31)

This is the same as the system (1) except for the control inputut ∈ R
nu .

Here, we assume that a linear state feedback controlut = Kxt has been
designed.

To design trigger conditions, let us introduce the following notation:
Let the triggering time sequence {tk}k∈Z≥0

, and define the state used
for the control input by

x̂t = xtk ∀t ∈ [tk, tk+1) (32)

and the state error by

et = x̂t − xt ∀t ∈ [tk, tk+1). (33)

Then, the control law can be written as

ut = Kx̂t ∀t ∈ [tk, tk+1) (34)

and the system (1) can be written as

xt+1 = (A+BK)xt +BKet +Ewt. (35)

The rest of this section considers the event-triggering mechanism in the
form of

tk+1 = min{t > tk : φ(xt, x̂t) > σ}, t0 = 0 (36)

where the triggering function φ and the triggering threshold σ are to
be designed. Note that such an event-trigger condition guarantees that
φ(xt, x̂t) ≤ σ for all t ∈ Z≥0.

We consider static event-triggered control strategies that use a con-
stant error threshold σ.

B. Ultimately Bounded Control

Event-triggered control strategies that guarantee ultimate bounded-
ness are followed from Theorem 5.2.

Corollary 7.1: Suppose K is designed such that ρ(A+BK) < 1
and an ultimate bound

r >

√
1

ε
Tr(P̃ ) (37)

where P̃ � 0 is the solution to the Lyapunov equation

(A+BK)P̃ (A+BK)� − P̃ +EΣwE
� = 0 (38)

is chosen. Then, the use of the event-triggered condition

φ(xt, x̂t) = ‖x̂t − xt‖ = ‖et‖ > σ1 (39)

in (36) guarantees ultimate boundedness with r if σ1 satisfies

σ1 ≤ 1− λ

μ‖BK‖

(
r −

√
1

ε
Tr(P̃ )

)
(40)

where μ > 0 and λ ∈ [0, 1) satisfy

‖(A+BK)t‖ ≤ μλt. (41)

Note that the existence of such μ and λ are guaranteed under the
condition ρ(A+BK) < 1.

Proof: By replacing A, D, and vt in (1) and d in (3) by A+BK,
BK, and et in (31) and σ1 in (36), respectively, the result follows from
Theorem 5.2. �

Corollary 7.1 provides a way to design an event-triggered condi-
tion. One can also find an ultimate bound for a given event-triggered
condition; given σ1 = σ′

1 > 0 in (39), an ultimate bound is given by

r =
μ‖BK‖
1− λ

σ′
1 +

√
1

ε
Tr(P̃ ). (42)

This should be a more direct corollary of Theorem 5.2.
A similar result can be obtained using the error threshold on the

control input error.
Corollary 7.2: Suppose r > 0 is chosen to satisfy the condition (37).

The use of the static event-triggered condition

φ(xt, x̂t) = ‖K(x̂t − xt)‖ = ‖Ket‖ > σ2 (43)
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with

σ2 ≤ 1− λ

μ‖B‖

(
r −

√
1

ε
Tr(P̃ )

)
(44)

in (36) guarantees ultimate boundedness with r.
Proof: Similarly to Corollary 7.1, replace A, D, and vt in (1) and

d in (3) by A+BK, B, and Ket in (31) and σ2 in (36), respectively,
the result follows from Theorem 5.2. �

C. Positively Invariant Control

Event-triggered control strategies that guarantee positive invariance
are followed from Theorem 6.2.

Corollary 7.3: Suppose

r >
1

1− ‖A+BK‖

√
1

ε
Tr(ΣwE�E) (45)

is chosen. Then, the use of the event-triggered condition

φ(xt, x̂t) = ‖x̂t − xt‖ = ‖et‖ > σ3 (46)

in (36) guarantees positive invariance with (21) if σ3 satisfies

σ3 ≤ 1

‖BK‖

(
(1− ‖A+BK‖)r −

√
1

ε
Tr(ΣwE�E)

)
. (47)

Proof: Follows from Theorem 6.2. �
A similar result can be obtained using the error threshold on the

control input error:
Corollary 7.4: Suppose r > 0 is chosen to satisfy the condition (45).

The use of the static event-triggered function

φ(xt, x̂t) = ‖K(x̂t − xt)‖ = ‖Ket‖ > σ4‖xt‖ (48)

with

σ4 ≤ 1

‖B‖

(
(1− ‖A+BK‖)r −

√
1

ε
Tr(ΣwE�E)

)
. (49)

in (36) guarantees positive invariance with (21).
Proof: Follows from Theorem 6.2. �

VIII. NUMERICAL EXAMPLES

This section illustrates the proposed notions and the performances
of the risk-aware event-triggered controllers.

A. Relations Between ε, Σw and r

Here, we illustrate the meanings of Theorems 5.2 and 6.2 by in-
vestigating how r in (17) and (22) of the ultimate bound and positive
invariant set are affected as ε (risk level) or Σw (covariance) varies for
the system (1) with

A =

[
0.8 0.3

0 0.5

]
, D =

[
0 0.7

0.2 0.5

]

E =

[
1 2

0.5 −0.5

]
, Σw = p

[
0.5 0

0 0.25

]

d = 0.3. (50)

The covariance matrix Σw is varied by varying the value of p.
Fig. 2 illustrates (17), where Fig. 2(a) shows the ultimate bounds

for different parameter values of ε and p, and Fig. 2(b) displays the
plot of the boundaries of the worst-case CVaR ultimate bound sets.
Fig. 3 represents the illustration of (22), with Fig. 3(a) presenting the

Fig. 2. Illustration of (17). (a) Ultimate bounds for different parameter
values of ε (risk level) and p (covariance parameter). (b) Boundaries of
worst-case CVaR ultimate bound sets Ω = {x ∈ Rnx : ‖xt‖2 − r2 ≤ 0}
for different parameter values of ε (risk level) and p (covariance param-
eter).

Fig. 3. Illustration of (22). (a) Bounds for positively invariant sets for
different parameter values of ε (risk level) and p (covariance parame-
ter). (b) Boundaries of worst-case CVaR robust positively invariant sets
Ω = {x ∈ Rnx : ‖xt‖2 ≤ r2 + η} for different parameter values of ε (risk
level) and p (covariance parameter) with η = 0.1.

bounds for positively invariant sets for different parameter values of
ε and p, and Fig. 3(b) depicting the boundaries of worst-case CVaR
robust positively invariant sets.

Those figures show similar patterns. As ε approaches 0, r values
increase toward infinity, and as ε approaches 1, they decrease. Thus,
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Fig. 4. Event-triggered controller performances and control inputs (ul-
timate boundedness).

smaller ε results in larger worst-case CVaR ultimate bound sets and
robust positively invariant sets. On the other hand, smaller p for the
covarianceΣw leads to smaller r values, resulting in smaller worst-case
CVaR ultimate bound sets and robust positively invariant sets.

The figures emphasize the importance of considering varying risk
levels and covariance in order to understand the behavior of the tail
risks. For instance, consider Fig. 2(a); when estimating the value of r
using the expected value (which corresponds to ε = 1), the r value is
roughly 4.3. However, if the tail with ε = 0.2 is taken into account, the
value of r becomes approximately 6.9. Consequently, if a controller is
designed (e.g., A symbolizes a component of a system along with the
controller) with the objective of achieving an ultimate bound of less
than 5 based on the expected value, the tail will not meet this target.

B. Risk-Aware Event-Triggered Controllers

This subsection provides numerical examples of risk-aware event-
triggered controllers developed earlier in this section. The performances
are compared with nonevent-triggered controllers to see the effect of
update reductions using the event-triggered conditions.

Consider the system (31) with

A =

[
1.2 0.3

0 0.5

]
, B =

[
1

0.5

]
, E =

[
1 2

0.5 −0.5

]

x0 = [2 3]� (51)

subject to the zero-mean Gaussian disturbance with the covariance

Σw =

[
0.5 0

0 0.25

]
(52)

and the state feedback gain

K = [−0.7 − 0.2]. (53)

Choose ε = 0.3 to compute the worst-case CVaR. Namely, we focus
our attention on the tail behavior of the worst 30%.

To see the performances of the controllers with Corollaries 7.1 and

7.2, choose μ = 1, λ = ‖A+BK‖, r = 6 >
√

1
ε

Tr(P ) = 2.94 and
σ1 = 1.36, σ2 = 0.99, which satisfy (40) and (44) with equalities,
respectively. With those parameters, the event-triggered control perfor-
mances and control inputs as well as those of a standard state feedback
controller that updates the control input all the time are shown in Fig. 4.
It is observed that the numbers of the control input updates were reduced

Fig. 5. Event-triggered controller performances and control inputs
(positive invariance).

to 27 and 25 during 60 time steps, respectively, while ‖xt‖2 is always
smaller than 15 < 62 = 36, thus ultimate boundedness is achieved.

To see the performances of the controllers with Corollaries 7.3

and 7.4, choose r = 10 >
√

1
(1−‖A+BK‖)2

1
ε

Tr(ΣwE�E) = 6.54 and

σ3 = 1.52, σ4 = 1.11, which satisfy (47) and (49) with equalities,
respectively. With those parameters, the event-triggered control per-
formances and control inputs as well as those of a periodic controller
are shown in Fig. 5. The numbers of control input updates were 24 and
23 during 60 time steps, respectively.

In all cases, it is observed that the number of control inputs achieved a
50% reduction while achieving the objectives. We see that the norms of
the system states for the event-triggered controllers are larger than that
of the non event-triggered controllers, as expected, due to the update
reduction. The reductions and state norms are heavily dependent on
the threshold σ. As we decrease the size of ε, we focus more on the
tail behaviors thus reducing σ in (36) and increasing the frequency of
the updates. On the other hand, large r and ε, and a small ‖A+BK‖
increase the size of σ, thus reducing the number of updates.

IX. CONCLUSION

This article introduced the concepts of stability, ultimate bounded-
ness, and positive invariance for stochastic systems using the worst-case
CVaR to quantify the tail behavior of the stochastic systems. The benefit
of the introduced notions is that they allow us to take into account the
quantified tail risks in the controller design. In the controller design,
the risk level ε ∈ (0, 1) is a design parameter; which determines how
much of the worst cases we focus on. If ε is close to 1, we are basically
considering the mean performance, and if ε is close to 0, we are focusing
on the performances of the worst cases. This article clarified how ε and
the bounds r of the ultimate bound and the positive invariance are
related.

It should be acknowledged that the use of the worst-case CVaR
may lead to conservative results due to focusing on the distribution
with the worst possible tails. However, as for many other robust con-
trol approaches, this conservatism is necessary for risk-aware control,
where the goal is to design controllers that guarantee a certain level
of performance even in the worst-case scenarios. Moreover, although
inflating the terms that account for the covariance of the disturbance
(e.g., Tr(P̃ ) and Tr(ΣwE

�E)) by 1/ε could appear crude, introducing
this 1/ε factor is vital for addressing varying risk levels. This article
clarified the relationship between the acceptable risk level, covariance,
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and its effects on r, which are used in the design of the controller, offer-
ing practitioners a straightforward and easily implementable method to
deal with tail risks.

The introduced notions based on the worst-case CVaR are funda-
mental and applicable to systems where conventional stability, ultimate
boundedness, and positive invariance have been considered such as
model predictive controls and beneficial where the worst-case behaviors
should be taken into account.
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