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On the Role of Convexity/Concavity in Vector
Fields, Flows, and Stability/Stabilizability

M. Sassano , Senior Member, IEEE, and A. Astolfi , Fellow, IEEE

Abstract—It is shown that strong convexity/concavity of
a component of the vector field, as a function of the state
variables, induces the same property on the corresponding
component of the flow, as a function of the initial condi-
tion. Such an inherited property is then instrumental, for
instance, for establishing several instability theorems, the
proofs of which rely precisely on consequences of convex-
ity/concavity of the flow with respect to the initial condition.
Furthermore, the property of convexity/concavity permits
the construction of a canonical Chetaev function to certify
instability without explicitly resorting to the computation
of the flow. Finally, necessary conditions for continuous
stabilizability are derived, hence putting the properties of
convexity/concavity of the vector field in relation to the
well-known Brockett’s theorem.

Index Terms—Convex/concave functions, nonlinear sys-
tems, stability of equilibrium points.

I. INTRODUCTION

IMPOSING the property of (asymptotic) stability to an equi-
librium point or to a motion is probably the primary and

unavoidable objective of any control system. It is therefore not
surprising that, since the seminal paper of Lyapunov [1] (see
also [2]), stability theory has received continual and increasing
attention in the literature. In the last century several attempts
have been pursued to generalize and extend the claims of [1] in
different directions [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13] and for wider classes of linear and nonlinear systems [14],
[15], [16], [17].
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Lyapunov’s direct method allows concluding stability prop-
erties of a certain equilibrium point for linear and nonlinear
systems while avoiding the explicit computation of the so-
lution of the underlying ordinary differential equation. Thus,
intensive research efforts have been devoted to the systematic
construction of the so-called Lyapunov functions [18], [19], [20].
Nonetheless, it is worth observing that the availability of easily
verifiable conditions to imply a certain property does not prevent
simultaneous advancements in a deeper understanding of the
nature of the property. In the case of stability theory, for instance,
overcoming the dichotomy between systematic approaches de-
voted to study “how to check” that a certain property holds
(constructing Lyapunov functions) and the mechanism “why”
the property arises (establishing bounds on trajectories) has
stimulated a significant enhancement of the understanding of
the relevant underlying phenomena, i.e., alternative points of
view on the study of the topic may benefit one from the other.
As a few examples illustrating the effect of the intertwining of
the two approaches, note that arguments based on the original
definition of the notion of stability, in terms of bounds on the
ensuing trajectories, led to a further elaboration on the definition
of the property in [3] (related essentially to the concept of
uniformity in time), which is interestingly implied by the same
sufficient conditions as for the original definition in [1]. On the
contrary, once the intuition on the implications of the property
is solid, it may be possible to envision sufficient conditions
that are built on completely different premises with respect to
existing techniques. This has been, e.g., pursued in [12] by
introducing conditions that are dual to the celebrated second
Lyapunov’s method, although yielding identical conclusions on
the nature of the time-evolution of the solutions to a certain
dynamic system.

In addition to the direct method discussed above, several
converse results have been established [21], [22], [23], [24],
[25], [26], [27]. These Converse Lyapunov Theorems imply the
existence of a function with certain properties in the presence
of asymptotically stable equilibrium points of the underlying
dynamics.

By somewhat mirroring the point of view under which the
issue of stability is approached, a few instability theorems have
been proposed in the literature hitherto, the most popular among
them being probably that stated by Chetaev [28]. While the
literature concerning instability theorems is considerably more
limited than the stability counterpart, alternative conditions for
instability have been proposed in [29], based on the divergence
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of the underlying vector field, in [30], in which necessary
conditions for instability are discussed, and in [31], in which
the concept of stability restricted to the positive orthant is
considered.

Finally, by building on the intuition that sufficient conditions
for instability constitute in fact obstructions for imposing the
property of asymptotic stability via the selection of a feedback
control action, in [32], [33], and [34] the authors provided
necessary conditions for smooth stabilizability, including the
celebrated Brockett’s Theorem discussed in [32].

The main contribution of this article is twofold. First, it is
shown that the properties of strong convexity or concavity of a
component of the vector field with respect to the state variable
imply that the corresponding flow, interpreted as a function of
the initial condition, exhibits in turn properties of convexity or
concavity, respectively. In the second part of the article, instead,
it is proved that the above implication is further instrumental to
state several instability theorems based on convexity/concavity
of the underlying flow with respect to the initial condition, even
whenever the latter properties hold only locally in time. Further-
more, it is shown that convexity/concavity of a component of
the vector field permits the construction of a canonical Chetaev
function, which allows us to systematically verify instability
of an equilibrium point, hence somewhat complementing the
discussion about the abstract (trajectory-based) nature of the
property of instability arising in the presence of convex/concave
vector fields. This is inspired by the spirit of reconciling the
dichotomy mentioned above in the case of stability. Finally,
similar ideas are extended to the setting of controlled systems
by providing necessary conditions for continuous stabilizability
of a certain equilibrium point by means of smooth feedback.
These statements, in turn, establish a connection between the
well-known Brockett’s Theorem and the properties of convexity
and concavity of a component of the vector field.

The rest of the article is organized as follows. A few prelimi-
nary definitions and results are briefly recalled for completeness
in Section II. In Section III, we establish an implication between
the property of convexity or concavity of a component of the
underlying vector field with respect to the state and an identical
property of the corresponding flow with respect to the initial
condition. Then, the above implication is instrumental for stating
several instability theorems for nonlinear systems. These are
discussed in detail in Section IV. Finally, similar considerations
are extended to the case of control system in Section V, before
conclusions are drawn in Section VI.

Notation: The set Cκ(Rn), κ � 0, denotes the space of func-
tions defined onRn that admit continuous derivatives of order κ.
Given a function h ∈ R → R in C2(R), dh

dx and d2h
dx2 denote the

first and second derivatives, respectively. Given a multivariable
function g : Rn → R in C2(Rn), ∂g

∂x (x) ∈ R
1×n denotes the

gradient of g atx, whereas ∂2˜g
∂x2 (x) ∈ R

n×n denotes the Hessian
matrix of g at x. For a vector-valued function f : Rn → R

n, ∂f
∂x

denotes its Jacobian matrix. Let U denote a subset of Rn. Then
∂U and Uo denote the boundary and the interior, respectively, of
U . The notation Bε(x0) describes the set Bε(x0) := {x ∈ R

n :
‖x− x0‖ < ε}.

II. DEFINITIONS AND PRELIMINARIES

Consider a nonlinear, autonomous, dynamical system de-
scribed by the equation

ẋ(t) = f(x(t)), x(0) = x0 (1)

with x(t) ∈ R
n denoting the state of the system and x0 ∈ R

n

prescribing the initial condition. The vector field f : Rn → R
n,

f ∈ C2(Rn) is such that f(0) = 0, i.e., without loss of generality
it is assumed that the origin is an equilibrium point of (1).
The solution of the ordinary differential (1), parameterized with
respect to time t and the initial condition x0, is denoted by the
flow ϕ : R× R

n → R
n, ϕt(x0) = ϕ(t, x0), which satisfies the

equation

∂

∂t
ϕ(t, x0) = f (ϕ(t, x0)) (2)

for any t ∈ Ix0
⊆ R, together with the boundary condition

ϕ(0, x0) = x0, for allx0 ∈ R
n. The setIx0

denotes the maximal
interval of existence of the solution of the differential (2) passing
through x0 ∈ R

n at time t = 0. It is worth observing that the
function x0 �→ ϕt(x0) inherits regularity properties identical to
the underlying f whenever it exists, hence it is at least twice
continuously differentiable, see, e.g., [35]. Furthermore, as well
known, the flow ϕt possesses also an interesting fixed-point
characterization, namely

ϕt(x) = x+

∫ t

0

f (ϕs(x)) ds. (3)

Note that, by slightly abusing the notation, the variable x ∈ R
n

in (3) (as well as throughout the rest of the manuscript, whenever
it does not create confusion) defines the initial condition of (1),
rather than the state variable of (1).

The main objective of this article consists in characterizing
the properties of convexity and concavity of the flow with
respect to the initial condition x ∈ R

n and with respect to time
t ∈ Ix. Moreover, these properties are further put in relation with
the property of stability (or instability) of equilibrium points.
Toward this end, the notion of convex (multivariable) function
is recalled in the following definition.

Definition 1: Consider a continuous function g : Rn → R.
The function is said to be convex in a set Ω ⊆ R

n if its epigraph
{(x, c) ∈ Ω× R : c � g(x)} is a convex set. A function g is
concave if −g is convex. ◦

More practical characterizations of convexity and of concav-
ity have been provided. In fact, a continuously differentiable
function g : Rn → R is convex if and only if

g(x2) � g(x1) +
∂g

∂x
(x1) (x2 − x1) (4)

for all xi ∈ R
n, i = 1, 2.

Definition 2: Consider a continuous function g : Rn → R.
The function is said to be strongly convex in a setΩ ⊆ R

n if there
exists α > 0 such that g(x)− α

2 ‖x‖2 is convex or, equivalently,

g(x2) � g(x1) +
∂g

∂x
(x1) (x2 − x1) +

α

2
‖x2 − x1‖2 (5)

for all xi ∈ Ω, i = 1, 2. ◦
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Although the following technical lemma is stated for simplic-
ity in the case of convex functions, the claims may be extended
to the case of concave functions.

Lemma 1: Consider two strongly convex functions gi : R →
R. Suppose that g2 is nondecreasing. Then, the composition
g2 ◦ g1 is strongly convex. ◦

Proof: To begin with, recall that a function gi : R → R is
strongly convex if and only if there exists μi > 0 such that

gi (αx1 + (1− α)x2) � αgi(x1) + (1− α)gi(x2)

− α(1− α)

2
μi‖x1 − x2‖2 (6)

for all x1 ∈ R, x2 ∈ R and α ∈ [0, 1]. Thus, one has that

g2 ◦ g1 (αx1 + (1− α)x2)

= g2 (g1 (αx1 + (1− α)x2))

� g2 (αg1(x1) + (1− α)g1(x2))

� αg2 (g1(x1)) + (1− α)g2 (g1(x2))

− α(1− α)

2
μ2‖x1 − x2‖2 (7)

where the first inequality follows from the nondecreasing
property of g2 and strong convexity of g1, which ensures
that g1(αx1 + (1− α)x2) � αg1(x1) + (1− α)g1(x2). The
last inequality follows from strong convexity of g2 and implies
strong convexity of the function g2 ◦ g1 by inspecting the defi-
nition in (6). �

Finally, whenever g is a twice continuously differentiable
function mapping R

n to R, then g is convex if and only if
the Hessian matrix is positive semidefinite, while g is strongly
convex if and only if (∂2g(x)/∂x2) � αI > 0, for all x and
some α > 0.

III. CONVEXITY AND CONCAVITY OF FLOWS WITH RESPECT

TO INITIAL CONDITIONS AND TIME

The main objective of this section consists in characterizing
convexity and concavity properties of the flow ϕt with respect to
time and to the initial condition x ∈ R

n. Toward this end, and
to provide a concise statement of the result, let the functions
fi : R

n → R, i = 1, . . ., n be such that

f(x) :=

⎡
⎢⎢⎢⎣
f1 (x1, . . ., xn)
f2 (x1, . . ., xn)

...
fn (x1, . . ., xn)

⎤
⎥⎥⎥⎦ (8)

with f : Rn → R
n defined from (1). An identical partitioning is

assumed to hold also for the components of the resulting flow
ϕt : R

n → R
n, namely ϕt(x) = [ϕ1

t (x), . . ., ϕ
n
t (x)]

�.
Theorem 1: Consider the system (1). Let Ω be any arbitrary

compact subset of Rn. Suppose that the function fi : R
n → R,

for some i ∈ {1, . . ., n}, is strongly convex (concave) for all
x ∈ Ω. Then, the ith component of the flow ϕi

t is a strongly
convex (concave) function of x ∈ Ω, for all t ∈ [t�, tu) ⊂ Ix,
for any t� > 0, and for some tu > 0 such that ϕt(x) ∈ Ω. ◦

Proof: Note that the claims are shown explicitly in the case
of strongly convex vector fields, while the proof for the concave

case can be immediately obtained by relying on “symmetric”
arguments.1 To show the claim, note first that the fixed-point
characterization (3) of the flow implies that, for any pair (x, x′) ∈
R

n × R
n,

δϕi
t (x, x

′) := ϕi
t(x)− ϕi

t(x
′) +

∂ϕi
t

∂x
(x)(x′ − x)

= xi +

∫ t

0

fi (ϕs(x)) ds−x′
i−

∫ t

0

fi (ϕs (x
′)) ds

+

(
e�i +

∫ t

0

∂fi
∂x

(ϕs(x))
∂ϕs

∂x
(x)ds

)
(x′−x)

=

∫ t

0

(fi (ϕs(x))− fi (ϕs (x
′))

+
∂fi
∂x

(ϕs(x))
∂ϕs

∂x
(x) (x′ − x)

)
ds (9)

with ei ∈ R
n denoting the ith element of the canonical basis of

R
n and where the first equality is immediately obtained by the

property of the flow in (3) and by observing that (see also (27)
below and [35, Sec. 3.3])

∂ϕi
t

∂x
(x) = e�i +

∫ t

0

∂fi
∂x

(ϕs(x))
∂ϕs

∂x
(x)ds. (10)

The second-order (exact) Taylor expansion of the function x′ �→
fi(ϕs(x

′)) around the point x ∈ R
n is provided by

fi(ϕs(x
′)) = fi(ϕs(x)) +

∂fi
∂x

(ϕs(x))
∂ϕs

∂x
(x)(x′ − x)

+
1

2
(x′ − x)�

[
∂ϕs

∂x
(z)�

∂2fi
∂x2

(ϕs(z))
∂ϕs

∂x
(z)

+
∂

∂x

(
∂ϕs

∂x
(z)�

∂fi
∂x

(ϕs(λ))
�
) ∣∣∣∣∣

λ=z

]
(x′ − x)

(11)

for a certain z ∈ R
n that is convex combination of x and x′. By

inserting (11) into (9) it follows that

δϕi
t(x, x

′)=− 1

2
(x′−x)�

∫ t

0

[
∂ϕs

∂x
(z)�

∂2fi
∂x2

(ϕs(z))
∂ϕs

∂x
(z)

+
∂

∂x

(
∂ϕs

∂x
(z)�

∂fi
∂x

(ϕs(λ))
�
)∣∣∣∣∣

λ=z

]
ds(x′ − x)

=: − 1

2
(x′ − x)

�
∫ t

0

Ψ(z, s)ds (x′ − x) . (12)

Since, by assumption, fi is strongly convex, there exists α > 0
such that (∂2fi(x)/∂x

2) � αI > 0 for all x ∈ Ω. Furthermore,
since ϕ0(x) = x for all x ∈ Ω one has that

∂ϕ0

∂x
(x) = I (13)

while the components of the second derivative of the flow,
appearing in the last term of Ψ in (12) are equal to zero, i.e.,

∂2ϕj
0

∂xk∂x�
(x) = 0 (14)

1The same approach of limiting the proofs to the convex case is employed
throughout the manuscript.
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for j = 1, . . ., n, k = 1, . . ., n, and � = 1, . . ., n. Thus, by con-
tinuity of the involved functions with respect to time and initial
conditions and by compactness of the set Ω, there exist ᾱ > 0
and t̄ > 0 such that Ψ(z, s) > ᾱI for any z ∈ Ω and for all
s ∈ [0, t̄). Therefore, (12) implies that

δϕi
t(x, x

′) < −1

2
‖x′ − x‖2ᾱt � −1

2
‖x′ − x‖2α� (15)

with (constant) α� := ᾱt� > 0, for any t� ∈ (0, t̄) and for any
pair (x, x′) ∈ Ω× Ω, which in turn ensures strong convexity of
ϕi
t(x) for all t ∈ [t�, t̄). �
The conclusions of Theorem 1 are now specialized to the case

of scalar systems, namely (1) withn = 1. In this case, the claims
can be immediately extended to hold globally with respect to t
in Ix, while also providing a converse implication.

Corollary 1: Consider the system (1) with n = 1 and the
associated function x �→ ϕt(x) for fixed t � 0. Let Ω be any
arbitrary compact subset of R.

i) Suppose that the function f : R → R is strongly convex
(concave) in Ω. Then, the flow ϕt is a strongly con-
vex (concave) function of x ∈ Ω for all t > 0 such that
ϕt(x) ∈ Ω.

ii) Suppose that the flow ϕt(x) is a convex (concave) func-
tion of x for all t ∈ Ix such that ϕt(x) ∈ Ω. Then, the
function f : R → R is convex (concave) for all x ∈ Ω. ◦

Proof: i) Strong convexity (concavity) ofϕt(x) for all x ∈ Ω
and all t ∈ (t�, tu) has been shown in the proof of Theorem 1.
Fix now τ ∈ (t�, tu) and τ ′ ∈ (t�, tu) with the property that
τ + τ ′ > tu. Hence, ϕτ and ϕτ ′ are strongly convex functions
of x. It then follows, by Lemma 1 and by recalling that the flow
ϕt of (1) with n = 1 is nondecreasing with respect to x, that
the composition ϕτ ◦ ϕτ ′(x) = ϕτ (ϕτ ′(x)) is strongly convex
(concave). Therefore, by relying on the semigroup property
of the flow, one has that the flow ϕτ+τ ′(x) = ϕτ (ϕτ ′(x)) is
strongly convex, with τ + τ ′ > tu. By iterating the same argu-
ment it follows that ϕt is strongly convex for all t ∈ Ix such that
ϕt(x) remains in Ω.

ii) The second claim is proved by contradiction. To this
end, suppose that ϕt is a convex function of x, whereas the
hypothesis is contradicted. Since the latter entails that, ∀x ∈ Ω,
(d2f(x)/dx2) � 0, negating the hypothesis implies the exis-
tence of x̃ ∈ Ω such that (d2f(x̃)/dx2) is strictly negative. As
a consequence, by continuity of the second-order derivative
there exist δ > 0 and a nonempty open interval (x, x̄) ⊂ R

such that (d2f(x̃)/dx2) < −δ for all x ∈ (x, x̄). Since ϕt(x)
is convex, the inequality (15) must hold. However, for any x′

such that the intermediate point z belongs to (x, x̄) it follows
that for any 0 < ε1 < δ and ε2 > 0 there exists s̄ such that
(i) (d2f(ϕs(z))/dx

2) < −ε1, (ii) (dϕs(z)/dx) > 1− ε2, (iii)
(df(ϕs(z))/dx)(d

2ϕs(z)/dx
2) < ε2 for all s ∈ (0, s̄). Items

(ii) and (iii) hold by continuity of the involved functions and
by recalling that

dϕs(z)

dx

∣∣∣
s=0

= 1 ,
df(ϕs(z))

dx

d2ϕs(z)

dx2

∣∣∣
s=0

= 0 .

Fig. 1. Graph of the flow x �→ ϕt(x) of the differential (16) for various
values of the time t in the interval [0, 1]. The dashed arrows indicate the
sequence of flows for increasing time.

The claim is shown by observing that any selection of εi with
the property that −ε1(1− ε2)

2 + ε2 < 0 would violate the in-
equality (15), reformulated according to (12), for any 0 < t < s̄,
hence contradicting convexity of ϕt(x). �

Example 1: Consider the scalar nonlinear system

ẋ = x2 (16)

with x(t) ∈ R. Since d2f(x)/dx2 = 2 > 0, the underlying vec-
tor field f is a strongly convex function of the state in R.
Therefore, by Corollary 1 the flow ϕt(x) of the differential (16),
which is described by the function

ϕt(x) =
x

1− tx
(17)

is a strongly convex function of the initial condition x ∈ R.
Indeed, the second-order derivative of the flow with respect to
the initial condition yields

d2ϕt

dx2
(x) =

2t

(1− tx)3

which is positive definite for all t ∈ (0, 1/x) if x > 0 and for all
t > 0 if x < 0. The Fig. 1 shows the graph of the function x �→
ϕt(x) as in (17) for several values of time uniformly distributed
in the interval [0, 1] and for x ∈ [−0.5, 0.5], hence such that
1− tx > 0. �

Remark 1: As entailed by the statement Theorem 1, whenever
a scalar vector field f is strongly convex in a neighborhoodΩ1 of
a certain point x◦

1 ∈ R and strongly concave in a neighborhood
Ω2 of x◦

2, then the convexity and concavity properties of the flow
ϕt hold in Ω1 and Ω2, respectively. This aspect is illustrated via
the following example. �

Example 2: Consider the scalar nonlinear system

ẋ = −x3 (18)

with x(t) ∈ R. It is straightforward to observe that the vector
field f is a locally strongly convex function in a neighborhood
of any x < 0 and a locally strongly concave function around any
x > 0. As implied by Corollary 1 similar properties are inherited
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Fig. 2. Graph of the flow x �→ ϕt(x) of the differential (18) for various
values of the time t in the interval [0, 20]. The dashed arrows indicate
the sequence of flows for increasing time.

by the corresponding flow ϕt, the graph of which is depicted in
Fig. 2 for various values of time uniformly distributed in the
interval [0, 20]. �

Finally, the convexity and concavity properties of the func-
tion t �→ ϕt(x)—namely convexity (concavity) of the flow with
respect to time for a given initial condition—are characterized
in the following statement.

Theorem 2: Consider the system (1) and fix x◦ ∈ R
n. Sup-

pose that, for some integer i ∈ {1, . . ., n},〈
∂fi(x

◦)
∂x

, f(x◦)
〉

> 0 (< 0, resp.). (19)

Then the ith component of the flow ϕi
t is a strongly convex

(concave, resp.) function of t ∈ R, locally around x◦. ◦
Proof: The claim is proved by computing the second-order

derivative of the scalar function ϕi
t(x) for fixed x ∈ R

n. In fact,
one has that the first-order derivative with respect to time is, by
definition of flow, such that

∂ϕi
t

∂t
(x) = fi(ϕt(x)). (20)

Therefore, the second-order derivative is obtained as

∂2ϕi
t

∂t2
(x) =

∂fi
∂x

(ϕt(x))
� ∂ϕt

∂t
(x)

=
∂fi
∂x

(ϕt(x))
�f(ϕt(x)). (21)

The proof is then concluded by observing that the condition (19)
ensures that the second-order derivative (21) is strictly positive
(negative, resp.) in a neighborhood of t = 0, by continuity with
respect to time and by observing that ϕ0(x) = x by definition
of flow. �

The section is concluded by discussing two technical lemmas
that are instrumental for relating the properties of convexity
(concavity) of a vector field with those of stability of an underly-
ing equilibrium point, which is the main objective of Section IV.

Lemma 2: Consider the system (1). Suppose that there exists
a set U ⊆ R

n, containing the origin, such that fi : Rn → R is
a strongly convex function in U , for some i. Then for any x0 ∈
U \ {0} and any t� > 0 there existα > 0 and tu > 0, depending

on x0, with the property that

ϕi
t(x0)− ∂ϕi

t

∂x
(0)x0 � α

2
‖x0‖2 > 0 (22)

for all t ∈ [t�, tu] such that ϕt(x0) ∈ U . ◦
Proof: By Theorem 1, strong convexity of fi implies strong

convexity of x �→ ϕt(x) for any sufficiently small t strictly
greater than any (even arbitrarily small) t� and for x in the set
U ⊂ R

n. Therefore, by definition of strong convexity of ϕt and
by adapting the definition in (5) and (15), it follows that

ϕt(x
′)− ϕt(x)− ∂ϕt

∂x
(x)(x′ − x) � α

2
‖x′ − x‖2 (23)

for a certain strictly positiveα. Moreover, the inequality (23) im-
mediately yields (22) by letting x′ = x0, x = 0 and by recalling
that ϕi

t(x) = ϕi
t(0) = 0 for all t � 0.

Lemma 3: Consider the system (1). Suppose that there exists
a set U ⊆ R

n, containing the origin, such that fi : Rn → R is a
strongly concave function in U , for some i. Then for any x0 ∈
U \ {0} and any t� > 0 there existα > 0 and tu > 0, depending
on x0, with the property that

ϕi
t(x0)− ∂ϕi

t

∂x
(0)x0 � −α

2
‖x0‖2 < 0 (24)

for all t ∈ [t�, tu] such that ϕt(x0) ∈ U . ◦
The proof of Lemma 3 can be obtained by following argu-

ments identical to those of Lemma 2, hence it is omitted.

IV. STABILITY PROPERTIES OF CONVEX OR CONCAVE

VECTOR FIELDS

The connection between the properties of convexity or con-
cavity of the underlying vector field and of stability of an
equilibrium point is discussed in this section by building on
the results introduced in the previous section.

A. Nonlinear Systems Without Linear Terms

The first statements deal with the case in which the vector field
of the nonlinear system (1) does not possess linear terms locally
around the equilibrium point at x = 0, that is the linearization
of the system (1) around the origin is

˙δx =
∂f

∂x
(x)

∣∣∣
x=0

δx := Aδx (25)

with A = 0. In particular, the following statement shows that
strong convexity (concavity) of a component of the vector field
prevents asymptotic stability of the underlying equilibrium point
(see Fig. 3 for a graphical illustration).

Theorem 3: Consider the nonlinear system (1) and suppose
that A = 0 in (25). Suppose that there exist an integer i ∈
{1, . . ., n} and a nonempty open set U ⊂ R

n, containing the
origin, with the property that fi : Rn → R is either a strongly
convex or a strongly concave function for all x ∈ U . Then, the
origin cannot be an asymptotically stable equilibrium point of
system (1). ◦

Proof: Consider the case of strongly convex functions. To
begin with suppose that there exists a component fi of the
vector field f in (1) that is locally strongly convex with respect
to x. Then, by the results of Theorem 1, the same property is
inherited by the flow ϕi

t with respect to the initial condition
x0 ∈ U . Moreover, by Lemma 2, the inequality (22) holds for
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Fig. 3. Graphical description of the statement of Theorem 3. The
gray region defines the set U . The trajectories ensuing from the initial
conditions x0 and x′

0 show that the equilibrium may be stable but not
attractive or vice-versa, respectively.

any t � t� in some nonempty interval [t�, tu] ⊂ Ix0
, where t�

can be arbitrarily small, and for any x ∈ U . Consider then the
time evolution of the sensitivity matrix

Sx0
(t) :=

∂ϕt

∂x0
(x0) (26)

Sx0
: R → R

n×n, describing the partial derivative of the flow
with respect to the initial condition. It can be shown (see, e.g.,
[35, Sec. 3.3]) that the sensitivity matrix Sx0

satisfies

ẋ(t) = f(x(t)), x(0) = x0

Ṡx0
(t) = ∂f

∂x (x(t))Sx0
(t), Sx0

(0) = I.
(27)

Therefore, the sensitivity matrixS0(t), i.e., the time evolution of
the derivative of the flow from the zero initial condition satisfies
Ṡ0(t) = (∂f(0)/∂x)S0(t) = AS0(t), since ϕt(0) = 0 for all
t � 0. Thus, since by assumption A = 0, it follows that S0 ≡ I .
Let x̄0 = [ 
 . . . 
 μ 
 . . . 
 ]� ∈ U , where
denotes
a generic real number and μ > 0, in the ith position of x̄0,
denotes an arbitrary positive constant. Then, since (∂ϕi

t/∂x)(0)
is equal to the ith row of the sensitivity matrix S0(t), namely
(∂ϕi

t/∂x)(0) = e�i S0(t) = e�i , where ei denotes the ith element
of the canonical basis of Rn, it follows from (22) that

ϕi
t(x̄0) � e�i x̄0 +

α

2
‖x̄0‖2 � e�i x̄0 +

α

2
μ2 > x̄i

0 (28)

for all t ∈ [t�, tu]. Thus, for all x0 ∈ U such that xi
0 > 0, one

has that ϕi
t(x0) > xi

0, locally with respect to time. Therefore,
stability of the equilibrium point with respect to a value of
ε, in the (ε, δ)-argument for Lyapunov stability, selected with
the property that U ⊆ Bε(0) would require that ϕt(x0) ∈ U for
all t � 0. However, the latter property in turn implies that the
origin cannot be attractive, since ϕi

t is increasing, for any time,
in the set U . Conversely, attractivity of the equilibrium point
implies that ϕt(x0) must necessarily leave U at a certain time,
hence contradicting stability. Therefore, the proof is concluded
by noting that the two properties of stability and attractivity of
the origin cannot hold simultaneously. �

Remark 2: The arguments employed in the proof of
Theorem 3 suggest the intuition and the rationale behind the

Fig. 4. Graphical interpretation of the statement of Corollary 2 with
i = 1. The light gray region defines a positively invariant set C ⊂ K+

1 ,
while Sε(C) is described by the dark gray region. The trajectory ensuing
from x0 cannot leave the light (yellow) region by invariance of C and by
strong convexity of the component f1(x).

corresponding formal statement: the property of convexity (con-
cavity, resp.) of fi steers away from the origin the ith component
of the state trajectory xi for positive (negative, resp.) initial con-
ditions xi(0). This behavior motivates the following refinement
of the sufficient conditions for instability stated in Theorem
3, the proof of which follows immediately from that of the
latter. �

To provide a concise statement of the result, let K+
i ⊂ R

n be
the half-space defined as K+

i := {x ∈ R
n : xi � 0}. Similarly,

defineK−
i ⊂ R

n asK−
i := {x ∈ R

n : xi � 0}. Moreover, given
a closed set C, containing the origin, consider the set operator S
defined as the set Sε(C) := {x ∈ R

n : Bε(x) ⊂ C}. Intuitively,
Sε(C) yields a set reduced by a factor ε with respect to the set
C (see Fig. 4 for a graphical description of the sets C (light gray
region) and Sε(C) (dark gray region)).

Corollary 2: Consider the nonlinear system (1) and suppose
that A = 0 in (25). Suppose that there exist a closed cone C,
containing the origin and with nonempty interior, positively
invariant2 for the system (1), and an integer i ∈ {1, . . ., n} such
that either of the following conditions holds.

i) C ⊂ K+
i and for any ε > 0 the function fi : R

n → R is
strongly convex in the set Sε(C);

ii) C ⊂ K−
i and for any ε > 0 the function fi : R

n → R is
strongly concave in the set Sε(C).

Then, the origin is an unstable equilibrium point of (1). ◦
Proof: The claim is explicitly shown in the case of convexity,

namely assuming that item (i) holds, while case (ii) can be imme-
diately derived by considering identical arguments for concave
functions. Therefore, select x0 ∈ C and ε with the properties
that x0,i is positive and x0 belongs to the interior of Sε(C).
Note that the corresponding trajectory of the system (1) cannot
leave the set Sε(C) ∩ {x ∈ C : xi � x0,i} from the boundary

2The set C is positively invariant for (1) if x(0) ∈ C implies that x(t) ∈ C for
all t � 0.
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defined by xi = x0,i, by strong convexity of the function fi
in Sε(C), while it cannot leave C from any other boundary, by
invariance of C with respect to (1). Thus, the trajectories ensuing
from initial conditions in C cannot converge to the origin since
ϕi
t > x0,i for all t > 0. Thus, instability of the equilibrium at the

origin is concluded by iterating the reasoning in (28) with respect
to a sequence of times {tj}∞j=1, such that tj ∈ [t�, tu], and by

defining at each iteration the initial condition x̃j
0 recursively as

ϕtj−1
(x̃j−1

0 ), with x̃0
0 = x̄0. The latter selection ensures that

ϕi∑N
j=1 tj

(x̄0) = ϕi
tN
(x̃N

0 ) � e�i x̃
N
0 +

α

2
‖x̃N

0 ‖2

= ϕi
tN−1

(x̃N−1
0 ) +

α

2
‖x̃N

0 ‖2

� e�i x̃
N−1
0 +

α

2
‖x̃N−1

0 ‖2 + α

2
‖x̃N

0 ‖2

...

� e�i x̄0 +
α

2

N∑
j=1

‖x̃j
0‖2 >

α

2
Nμ2 (29)

hence showing the claim. �
Example 3: Consider a nonlinear system described by the

equations

ẋ1 = − x1x
2
2 + x3

1 + x3
2

ẋ2 = αx1x2 − x2
2 (30)

with α ∈ R. Consider the function f1(x) = −x1x
2
2 + x3

1 + x3
2

and note that the corresponding Hessian matrix is

∂2f1
∂x2

(x) =

[
6x1 −2x2

−2x2 6x2

]
the determinant of which is given by the polynomial 4x2(9x1 −
x2). Therefore, the function f1 is strongly convex in Sε(C), for
any ε > 0 and C = {x ∈ K+

1 : x2 � 0, 9x1 − x2 � 0}. More-
over, by inspecting the dynamics in (30) it can be observed that
the setCα := {x ∈ K+

1 : x2 � 0, αx1 − x2 � 0} is invariant for
the system (30), for any α ∈ (0, 9). In fact, on the boundary
described by x2 = αx1 one has that ẋ2 = 0 and ẋ1|x2=αx1

=
(1− α+ α3)x3

1 � 0 for any α ∈ (0, 9) and for all x ∈ K+
1 .

Hence, Corollary 2 implies that the origin is an unstable equilib-
rium point of (30) for any α ∈ (0, 9). Fig. 5 depicts the vector
field of the system (30) together with a trajectory characterized
by x0 ∈ C, light (yellow) region. �

Remark 3: The conditions stated in Corollary 2 resem-
ble those of the celebrated Chetaev instability theorem (see,
e.g., [35]), without however requiring the need for the explicit
computation of a function V : Rn → R with certain properties,
namely positive on a set that contains the origin on its boundary
and, in a neighborhood of the origin, strictly increasing over
time along the trajectories of the underlying system. It is worth
observing that, differently from Chetaev’s theorem, the property
of invariance of the set is not implied by the properties of
the function V , hence it is explicitly assumed in Corollary 2.
Nonetheless, the proof of Corollary 2 suggests that the tra-
jectories cannot leave the set C from the boundary described
by xi = 0, in fact xi = x0,i, (due to convexity or concavity
properties of the function fi in C). Therefore, if xi = 0 is a

Fig. 5. Phase plot of the system (30) with α = 1. The light (yellow)
region describes the set C defined in Example 3.

boundary of the set C, then one may simply verify that the
trajectories cannot leave from the remaining boundaries of the
set C, as illustrated below. �

Example 4: Consider a nonlinear system described by the
equations

ẋ1 = − x1x
2
2 − x5

1

ẋ2 = x3
1 + x3

2 − x3
3

ẋ3 = − x3
3x

2
1. (31)

The Hessian matrix of the function f2(x) is given by
(∂2f2(x)/∂x

2) = 6 diag(x1, x2,−x3), hence the function is
convex in the set C = {x ∈ R

3 : x1 � 0, x2 � 0, x3 � 0} and
strongly convex in Sε(C) for any ε > 0. Note that the set C is
invariant for (31), since the trajectories cannot leave C from the
boundary described by x2 = 0, on which ẋ2 = x3

1 − x3
3 � 0 in

C (as expected from the comment at the end of Remark 3), as
well as from the boundaries defined by x1 = 0 and x3 = 0, on
which ẋ1 = 0 and ẋ3 = 0, respectively. Therefore, Corollary 2
allows concluding that the origin is an unstable equilibrium point
of the system (31). �

The discussion in Remark 3 hints at the connections between
the instability results based on convexity properties of the vector
field and the well-known instability sufficient conditions based
on the construction of a Chetaev’s function. The following
statement suggests a possible systematic construction of the
latter function whenever a certain component of the underlying
vector field is strongly convex in a set that contains the origin.

Proposition 1: Consider the nonlinear system (1) and sup-
pose that A = 0 in (25). Suppose that there exist an integer
i ∈ {1, . . ., n} and a non-empty open set U ⊂ R

n, containing
the origin, with the property that fi : R

n → R is strongly
convex3 for all x ∈ U . Then there exists r > 0 such that
V : Rn → R defined as

V (x) := xi + ‖x‖2 (32)

3The case of strongly concave function can be immediately obtained by
changing the sign of the first term of the function (32).
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is a Chetaev function for (1) in Br(0) ∩ K+
i . ◦

Proof: To begin with, note that the function V is such that
V (0) = 0 and V (x) > 0 for any x ∈ K+

i , in which xi � 0 by
definition and which is invariant for (1). Then, since fi(x) is
a strongly convex function of x ∈ U and the latter contains
the origin, by suitably adapting the inequality (5) letting x2

therein be replaced by a generic x and x1 by 0 ∈ U , it fol-
lows that fi(x) � (α/2)‖x‖2 for some α > 0. The inequality
is obtained by recalling that, in addition, (∂fi/∂x)(0) = 0. The
time-derivative of the function V along the trajectories of the
system (1) is then given by

V̇ = fi(x) + 2x�f(x) � α

2
‖x‖2 + 2x�f(x).

Therefore, by recalling that f does not possess linear terms in
x, there exists r > 0 such that V̇ > 0 for all x ∈ Br(0) ∈ K+

i ,
which proves the claim. �

B. Nonlinear Systems With Linear Terms and Critical
Cases

Consider now the general case in whichA is different from the
zero matrix. As it is well known, in such a scenario, the spectrum
of the matrix A plays a crucial role in determining stability or
instability properties of the equilibrium point for the original
nonlinear system. In fact, it can be shown that the equilib-
rium point is locally exponentially stable whenever σ(A) ⊂ C

−.
Conversely, the presence of an eigenvalue λ ∈ σ(A) with the
property that Re(λ) > 0 implies that the equilibrium point of
the nonlinear system is unstable. However, it is well known that
the stability properties of the equilibrium point are not entirely
captured by the behavior of the linearized model. In the so-
called critical cases—namely whenever σ(A) ⊂ C

− ∪ C
0 and

σ(A) ∩ C
0 �= ∅—the stability analysis must necessarily include

the study of the nonlinear behavior of the system.
Theorem 4: Consider the nonlinear system (1) and suppose

thatσ(A) ⊂ C
− ∪ C

0 in (25). Suppose that there exist an integer
i ∈ {1, . . ., n} and a nonempty open set U ⊂ R

n, containing
the origin, with the properties that

i) fi : R
n → R is either a strongly convex or a strongly

concave function for all x ∈ U .
ii) e�i exp(At) = [ 0 . . . mii(t) . . . 0 ], with mii :

R → R such that mii(t) = 1 for all t � 0.
Then, the origin cannot be an asymptotically stable equilib-

rium point of system (1). ◦
Proof: Consider the case of convex functions. For all x0 ∈

U such that xi
0 > 0, one has that ϕi

t(x0) > e�i exp(At)x0 =
[0. . .mii(t). . .0]x0 =xi

0, locally with respect to time, hence
showing that the ith component of the state cannot converge
to the equilibrium point, by relying on arguments identical to
those in the proof of Theorem 3. �

Example 5: Consider a nonlinear system described by

ẋ1 = − γx1 + x2 − x3
1

ẋ2 = − x1x2 − x2
1 − x2

2 (33)

with γ > 0. It can be observed that f2(x1, x2) = −x1x2 − x2
1 −

x2
2 is a strongly concave function on R

2, while item (ii) of the

Fig. 6. Phase plot of the system (33) with γ = 1 for several initial
conditions.

Fig. 7. Phase plot of the system (33) with γ = 0.1 for several initial
conditions.

statement of Theorem 4 holds since

A =

[−γ 1
0 0

]
hence e�2 exp(At) = [0 1], which satisfies the structure of
the item (ii) of the statement with m22 ≡ 1. Therefore, by
Theorem 4, it can be concluded that the origin is an unstable
equilibrium point of (33) for any γ > 0 and any initial condition
of the form (x1

0, x
2
0), with negative x2

0 and arbitrary x1
0 ∈ R

induces a diverging evolution for ϕ2
t (x0). Figs. 6 and 7 depict

the phase plot of the system (33) for two different values of
the parameter γ, namely γ = 1 and γ = 0.1, respectively. As
expected, the trajectories ensuing from initial conditions with
the property that x0,2 < 0 diverge, whereas for positive values
convergence to the origin depends on the value of γ, hence on the
rate of convergence of the state x1, as shown by the comparison
of Figs. 6 and 7. �

Remark 4: Whenever the matrix A possesses real, sim-
ple, eigenvalues in C

− ∪ C
0, the inequality in item (ii) holds
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for all time if and only if Ai = 0, namely the ith row
of the matrix A, is equal to zero. In fact, let V ∈ R

n×n

be such that A = V−1diag(λ1, . . ., λn)V—hence exp(At) =
V−1diag(exp(λ1t), . . ., exp(λnt))V := V−1ΛV—and denote
the columns of V and the rows of V−1 with vi and
wi, respectively, namely V = [v1 v2 . . . vn] and V−1 =
[w�

1 w�
2 . . . w�

n ]
�. Therefore,

Sii
0 (t) = e�i V−1ΛVei = wiΛvi

=
n∑

j=1

wjivjiexp(λjt) (34)

henceSii
0 (0) = wivi = 1, by definition of matrix inverse. More-

over by inspecting (34) it appears that Sii
0 (t) < 1 for t > 0

unless λi = 0 and vi = w�
i = ei. Thus, since vi is an eigenvector

associated with the eigenvalue λi it follows that Avi = λivi,
hence Avi = Aei = Ai = 0. �

V. CONNECTIONS WITH BROCKETT’S THEOREM ON

CONTINUOUS STABILIZABILITY

The main objective of this section consists in extending the
previous conditions based on convexity and concavity of the
underlying vector field to the setting of controlled system. This
is achieved in particular by establishing connections with the
conditions stated in Brockett’s theorem [32]. Toward this end,
consider a nonlinear control system described by the equations

ẋ = f(x, u), x(0) = x0 (35)

with f continuously differentiable around the origin and such
that f(0, 0) = 0—hence assume for simplicity that the uncon-
trolled system possesses an equilibrium at the origin—with
x(t) ∈ R

n denoting the state and u(t) ∈ R
m describing the

controlled input. In particular, Brockett [32] provided necessary
conditions for the existence of a smooth time-invariant feedback
control input u : Rn → R

m such that the origin is a locally
asymptotically stable (LAS) equilibrium for the closed-loop
system ẋ = f(x, u(x)). The following statements attempt at
connecting items (ii) and (iii) of Brockett’s theorem (see [32, Th.
1] for more details) with properties of convexity and concavity of
the components of f(x, u). Such a connection possesses then an
interesting consequence in permitting a constructive verification
of such items, which may be particularly useful especially in the
case of item (ii) of such a theorem. To this end, consider the
linearization of system (35) around the origin, namely

˙δx =
∂f

∂x

∣∣∣∣
(0,0)

δx+
∂f

∂u

∣∣∣∣
(0,0)

δu := Aδx+Bδu. (36)

Theorem 5: Consider the nonlinear control system (35) and
suppose that A = 0 in (36). Suppose that there exists an integer
i ∈ {1, . . ., n} with the properties that fi : Rn → R is either a
strongly convex or a strongly concave function of x and that
(∂fi/∂u) ≡ 0. Then, the origin cannot be locally stabilized via
a continuously differentiable, time-invariant feedback control
law. ◦

Proof: The condition on the gradient of the function fi with
respect to u ensures that the former does not in fact depend
on the latter, hence fi(x, u) ≡ fi(x). Moreover, since x = 0 is
an equilibrium point of ẋ = f(x, 0), it follows that necessarily
fi(0) = 0. Therefore, strong convexity (concavity, resp.)
implies that the image of the function fi belongs to the set of

positive (negative, resp.) real numbers. In fact, by considering
the exact second-order expansion of the function fi : R

n → R

one has that

fi(x) = fi(0) +
∂fi
∂x

(0)x+
1

2
x� ∂2fi

∂x2
(z)x

=
1

2
x� ∂2fi

∂x2
(z)x > 0 (< 0, resp.) (37)

for all x ∈ R
n, where z belongs to the line segment between the

origin and x, with the first equality obtained by recalling that the
origin is an equilibrium point and that A = (∂f/∂x)(0, 0) = 0.
Thus, since the component fi can only take positive (negative,
resp.) values, the mapping (x, u) �→ f(x, u) cannot be surjective
to any open set containing the origin. �

Remark 5: The statement and the proof of Theorem 5 entail
that the property of convexity, or equivalently of concavity, of the
vector field prevents item (iii) of [32, Th. 1] from being verified.
Nonetheless, it is worth observing that the same condition is also
sufficient to imply that item (ii) cannot be satisfied, by relying
on the results and discussions of Section IV-A. Moreover, the
conditions stated in Theorem 5 can be further relaxed to a local
version, namely by requiring that the function fi be strongly
convex (or concave) in a certain neighborhood U of the origin,
together with the property that it does not depend on u. In fact,
by relying on the results of Theorem 3, the state trajectory x
must first leave U to potentially converge to the origin, hence
the origin cannot be an asymptotically stable equilibrium point
for any selection of the control input u (see also the following
example). �

Example 6: Consider the nonlinear system described by

ẋ1 = u

ẋ2 = − αx3
2 + β

(
x2
1 + x2

2

)
(38)

with α > 0 and β ∈ R, β �= 0, arbitrary coefficients. Note that
f2(x1, x2) = −αx3

1 + βx2
1 + x2

2 is a strongly convex (concave,
resp.) function on a neighborhood of the origin in R

2 provided
β is positive (negative, resp.). Therefore, the hypotheses of
Theorem 5 are satisfied with i = 2, and hence the origin cannot
be stabilized by a continuously differentiable feedback control
law. �

The following statement provides a direct extension of Corol-
lary 2 to the case of controlled nonlinear systems.

Corollary 3: Consider the nonlinear control system (35) and
suppose that A = 0 in (36). Suppose that there exist a closed
cone C ⊂ R

n, containing the origin and with nonempty inte-
rior, invariant for (35), and an integer i ∈ {1, . . ., n} such that
(∂fi/∂u) ≡ 0 and either of the following conditions holds.

i) C ⊂ K+
i and for any ε > 0 the function fi : R

n → R is
strongly convex in the set Sε(C);

ii) C ⊂ K−
i and for any ε > 0 the function fi : R

n → R is
strongly concave in the set Sε(C).

Then, the origin of the system (35) cannot be locally asymp-
totically stabilized by a continuously differentiable feedback
control law. ◦

Proof: The claim is shown by relying on arguments identical
to those employed in the proof of Theorem 5, combined with
invariance of the set C for any u ∈ R

m. In fact, considering for
simplicity the case of a strongly convex function fi, the condi-
tions of the statement imply that the flow of the ith component of
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the state ϕi
t is lower-bounded for any time by the corresponding

initial condition e�i x0 for any x0 ∈ C. Thus, there cannot be a
selection of the control input that satisfies item (ii) of [32, Th.
1]. �

The claims of Corollary 3 are illustrated by means of the
following example.

Example 7: Consider a nonlinear control system described
by

ẋ1 = x3
1 − x3

2

ẋ2 = x2u. (39)

Note that, since (∂2f1(x)/∂x
2) = 6 diag(x1,−x2), the func-

tion f1 is strongly convex inSε(C1)with C1 := {x ∈ K+
1 : x2 �

0}, i.e., C1 defines the fourth quadrant. Moreover, f1 is strongly
concave in Sε(C2) with C2 := {x ∈ K−

1 : x2 � 0}, namely the
second quadrant. It is interesting to observe that C1 and C2 are
invariant and, by relying on the comment at the end of Remark 3,
it is sufficient to verify that the trajectories cannot cross the
boundary described byx2 = 0, since therein ẋ2 = 0 for any con-
tinuous u. Therefore, by Corollary 3 the zero equilibrium point
of (39) cannot be stabilized by any continuously differentiable
feedback control. �

Finally, consider the case of input-affine nonlinear systems
described by the equation

ẋ = f(x) + g(x)u, x(0) = x0. (40)

The following statement relates in a more constructive fashion
the property of convexity (or, equivalently, concavity) of a com-
bination of the components of the vector field with the existence
of a continuously differentiable stabilizing feedback.

Theorem 6: Consider the nonlinear input-affine control sys-
tem (40) and suppose that ∂f(0)/∂x = 0. Suppose that there
exists a continuously differentiable function λ : Rn → R such
that

i) ∂λ
∂x (x)f(x) is a strongly convex (concave) function of
x;

ii) ∂λ
∂x (x)g(x) = 0, for all x ∈ R

n.
iii) for any r > 0 there exists xr ∈ Br(0) such that λ(xr) >

0 (λ(xr) < 0).
Then, the origin cannot be locally asymptotically stabilized

by any continuously differentiable feedback control law. ◦
Proof: By defining the virtual output s := λ(x), s(t) ∈ R,

one has that the time evolution of s is described by the scalar
differential equation

ṡ =
∂λ

∂x
ẋ =

∂λ

∂x
(x)f(x)

which follows from items (i) and (ii) of the statement. Since the
latter vector field is strongly convex (or concave) by assumption,
the flow ϕs

t (x0) is in turn strongly convex (or concave) by
Theorem 1. Therefore, unboundedness of the output trajectories
with respect to s = λ(x) can be concluded by relying on the
results of Section IV-A and by the existence of an initial condi-
tion, arbitrarily close to the origin, such that s(0) is positive (or
negative, resp.). �

Remark 6: The above interpretation establishes connections
between the intuition of Theorem 6 and the notion of Control
Chetaev Function, discussed in [30]. Furthermore, the choice of
a linear combination of the components as the virtual output s :=

λ�x, namely provided (i’) λ�f(x) is strongly convex (concave)
and (ii’) λ�g(x) = 0 for all x ∈ R

n, may be further related to
item (iii) of [32, Th. 1]. In fact, a necessary condition for the
existence of a continuously differentiable stabilizing feedback
is that the system of (algebraic) equations f(x) + g(x)u = ξ
admit a solution for some (x, u) and for any sufficiently small
ξ ∈ R

n. Moreover, if the latter condition holds, then necessarily
for any λ ∈ R

n also the (scalar algebraic) equation λ�(f(x) +
g(x)u) = μ must have a solution for any μ ∈ R, sufficiently
small. In fact, any μ can be obtained as λ�ξ = μ, via a suitable
selection of the (arbitrary) ξ ∈ R

n. Note now that if there exist
a vector λ ∈ R

n with the properties in items (i’) and (ii’) above,
then the (scalar) equation λ�f(x) = μ cannot be satisfied for any
μ > 0 in the case of concavity (since the function λ�f(x) is zero
at the origin and with the properties that λ�(∂f(0)/∂x) = 0 and
strongly concave) and any μ < 0 in the case of convexity, via a
symmetric argument. This aspect is illustrated by the following
example. �

Example 8: Consider a nonlinear system described by

ẋ1 = − x3
1 + x2

2 + u

ẋ2 = x2
1 + x3

1 − u. (41)

Since λ�x with λ = [1 1]� satisfies the conditions of item (i)
(since λ�f(x) = x2

1 + x2
2 is strongly convex inR2) and item (ii)

(since λ�g(x) = u− u = 0), it follows by Theorem 6 that the
zero equilibrium of the system (41) cannot be stabilized by any
smooth feedback control law. �

VI. CONCLUSION

In this article, the connection between the properties of sta-
bility and instability of equilibrium points in nonlinear systems
and the property of convexity/concavity (of the components) of
the underlying vector field has been explored. In particular, it
has been shown that the properties of convexity (concavity) of
the underlying vector field and of the corresponding flow, as a
function of the initial condition and for fixed (sufficiently small)
time, are equivalent. Such a result, which is interesting per se, has
been then instrumental for stating and proving several instability
theorems. Finally, an interpretation of the celebrated Brockett’s
theorem in terms of convexity and concavity of a component
of the vector field has been established. The theoretical results
have been illustrated by means of several numerical examples.
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