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Probabilistic Safety Guarantees for Markov Decision Processes
Rafal Wisniewski , Senior Member, IEEE, and Manuela L. Bujorianu

Abstract—This article aims to incorporate safety specifications
into Markov decision processes. Explicitly, we address the mini-
mization problem up to a stopping time with safety constraints.
We establish a formalism leaning upon the evolution equation to
achieve our goal. We show how to compute the safety function with
dynamic programming. In the last part of this article, we develop
several algorithms for safe stochastic optimization using linear and
dynamic programming.

Index Terms—Dynamic programming (DP), linear programming
(LP), Markov decision processes (MDPs), safety.

I. INTRODUCTION

The point of departure is a Markov decision process (MDP) with a
finite number of states and actions. The overall objective of this article
is twofold: 1) to formulate stochastic safety as dynamic programming
(DP) and 2) to incorporate probabilistic safety guarantees into the
stochastic optimization of MDPs. To the best of our knowledge, a
method of directly unifying MDPs and safety is missing in the lit-
erature. Undoubtedly, several complementary approaches tackle safety
in optimization. They will be described in the related work paragraph.

a) Motivation: Recently, the subject of DP has enjoyed a resur-
gence [1], [2]. The explanation for this increase in popularity is
reinforcement learning (RL)—a powerful and prevalent method for
learning from data and subsequently generating optimal decisions [3].
In a nutshell, DP provides the mathematical structure for RL. Applica-
tions of DP can be found in robotics [4], autonomous vehicles [5],
drones [6], and water networks [7], to name a few examples. On
the other hand, [8] showed that for optimization problems, where the
constraints are formulated as cost functions, the principle of optimality
does not hold (for multichain MDPs), and the value function depends on
the initial distribution. Consequently, the solution of such optimization
problems cannot be solved by DP. On the contrary, linear programming
(LP) provides the means of solving constrained MDP problems [9]
and [10]. Specifically, in this work, we strive to combine the results on
constrained MDPs with safety [11]. Safety assigns the probability of
reaching the undesired states—the forbidden set. The intended result
is an optimization algorithm that keeps the system on the desired
safety level. Specifically, the probability that the process realizations
hit the forbidden states before reaching the target set remains below
a certain value p. This is the concept of p-safety introduced in [12].
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This definition of safety is related to the reach-avoidance problem
thoroughly studied in formal verification, where the problem of safety
can be formulated as a temporal logic specification [13].

b) Novelty: The approach of this article fruitfully combines ideas
from constrained MDP with the concept of p-safety. The p-safety repre-
sents a rigorous mathematical formalism that encapsulates most of the
probabilistic safety formulations in the literature: standard probabilistic
reachability problem, reach-avoidance problem, and bound probabilis-
tic reachability. The analytical reasoning in the current work leans upon
elements of probabilistic potential theory. Already in [14] and [15], it
has been shown that the analytical approach based on potential theory
provides straightforward proofs for the barrier certificate’s properties.

The list of original contributions of this work includes the following.
1) p-safety is reformulated as a DP problem.
2) The evolution equation, relating the initial, the hitting and the

occupation measures, is introduced into DP.
3) The safe MDP is formulated as optimization with constraints. The

resulting formulation involves two occupation measures for safety
and optimality, which are subsequently combined in LP.

c) Related work: The subject of minimizing an expected cost
without safety constraints is not new, and it is well-known that its
solution is obtained by solving Bellman’s equation [2] or LP [16].
The safety verification problem of stochastic systems has also been
addressed in the literature [17]. This article [11] has extended the
approach based on barrier certificates to discrete settings of Markov
chains (MCs). Pragmatic methods for safe DP and RL have been
addressed in [18]. In the abovementioned reference, safety is ensured
with a barrier function, which serves as a soft constraint to the system.
On the other hand, the work [19] proposes a supervisor that prevents
the applied control action from driving the system into unsafe regions.

Several approaches have been grafted on different model predic-
tive control (MPC) techniques in the context of safety learning. The
shielding approach [20], [21] welds a backup policy that is proven safe
and subsequently uses the backup policy to revoke the learned policy
to guarantee safety. Another approach is verifying safety on the fly
using MPC safety certification [22]. A similar research line is adaptive
RL [23], [24], where safety is computed for the next k steps and unsafe
actions are blocked. There is an intrinsic tradeoff when choosing the
number k of steps. If it is too small, an MDP might end up in a state
where all actions are unsafe even though a safe policy exists. If k is
too long, the complexity of the shielding algorithm for blocking unsafe
actions is too large.

d) Approach in this work: We take the starting point of an
MDP with a (stationary) policy that, for each state, provides the
probability of choosing a particular control action. Nonetheless, we
face a challenge. To compute the optimal path to the target states, we
need a random time when the process reaches the target set before
hitting the forbidden set. Our solution to this challenge is to use the
evolution equation [25], which relates the occupation measure with the
hitting probability. The occupation measure corresponds to the expected
number of the states’ visits. When examining the hitting probability,
we consider two sets: the set of target states and the set of forbidden
states. Consequently, a safety function Sπ is derived from the evolution
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equation. The safety function provides the probability of hitting the
forbidden set. It is shown that the safety function is the solution of
Bellman’s equation and can be computed by an iterative procedure
analogous to the one used for computing the value function in DP. In
the second part of this article, we combine stochastic optimization with
safety guarantees. Consequently, we formulate the optimization with a
constraint: minimizing the value function Vπ subject to keeping system
p-safe, Sπ ≤ p. Here, the cost and the safety are the expected values of
accumulated rewards up to stopping times. To this end, we reformulate
LP in [10] to address the time horizon specified by the two stopping
times.

In the final section, we relax the concept of safety. Subsequently, we
develop a local optimization algorithm, meaning that the control action
at each state i is computed only using the information available from
its neighbors.1 We introduce a local concept of safety—relative safety.
Equipped with this new concept, we define an optimization problem.

e) Organization of this article: We shed light on the prelim-
inary objects of this work: MCs and MDPs in Sections II and III.
Specifically, the focus in these sections is on formulating the evolu-
tion equation for the occupation measure and hitting measures. The
stochastic optimization with stopping time is the matter of Section IV.
It is shown in Section V that the safety function can be computed as
the accumulated cost of the probability of getting to the unsafe set.
Hence, the safety function is the solution to Bellman’s equation. The
main result—an algorithm for safe MDP is developed in Sections VI.

A. Notation

For a countable set U and a set R, we write RU := R|U | for the
Cartesian product of |U | copies of R. We use IU to denote the identity
matrix on U , and 1U to denote the vector of ones on U . For two vectors
v,w ∈ Rm, we will use the Hadamard product v ◦ w defined by (v ◦
w)(i) = v(i)w(i). The notation v ≥ 0 denotes v(i) ≥ 0 for all i ∈
{1, . . .,m}. The Kronecker delta denoted by δj is δj(i) = 1 for i = j,
otherwise it is 0.

II. MCS AND EVOLUTION EQUATION

Let X be a countable set of states denoted by letters i, j, ... A
probability distribution ν onX , (ν(j))j∈X , is thought of as a row vector
ν ∈ RX

≥0 (with
∑

j∈X νj = 1). A function f : X → R is defined as a
column vector f = (f(j))�j∈X .

Suppose that (Xt) := (Xt)t∈N is a discrete-time (homogeneous)
MC with transition probabilities

pij := P[Xt+1 = j|Xt = i] = P[X1 = j|X0 = i]. (1)

The transition matrix P of (Xt) is P := (pij)i,j∈X . The k-step tran-
sition probabilities are P[Xk = j|X0 = i] = (P k)ij , where P k =
PP . . .P is the k-fold matrix product.

Let H be an arbitrary subset of X , which will be kept fixed. We
will call H the taboo set. Later in this article, the taboo set will be
the complement of the union of the sets of all the goal states and
the forbidden states. We restrict the transition probabilities of the MC
(Xt) to the set H . These are the taboo transition probabilities [26].
We collect the taboo transition probabilities into the transition matrix
Q = (pij)i,j∈H . In this case, the transition matrix Q is substochastic,
i.e., the sum of row entries

∑
j∈H pij ≤ 1.

1By a neighbors of i, we understand a state with nonzero transition probability
from the state i.

We introduce the occupation (green) operator of H

G :=

∞∑
k=0

Qk. (2)

G is well defined if the states in H are transient, i.e., for all i ∈ H , we
have P [Xk = i for infinitely many k|X0 = i] = 0.

From (2), it follows that:

G = IH +QG = IH +GQ (3)

i.e., G = (IH −Q)−1. Recall IH is the identity matrix on H .

A. Evolution of the MC

To study the reach-avoidance problem (reach the target set while
avoiding the forbidden set), we examine the process up to the first
hitting time of a target set or a forbidden set. We associate a reward to
each state and ask two questions: What is the cost of getting to the target
set, and what is the probability that the process reaches the forbidden
set before the target set? To this end, we will use the evolution equation
relating the occupation measure and the hitting probability, which we
characterize first.

Suppose that τ is a stopping time, for instance, τ = τE is the first
hitting time of some set E, i.e., τE := min{t ≥ 0| Xt ∈ E}. The
remaining part of this article assumes that the stopping time τ is finite
almost surely (a.s.). Specifically, if the states in X \E are transient,
τE < ∞ a.s.

Suppose that D is a subset of X . Let ρ<τ (D) be a random variable
that describes the amount of time the MC spends in D before time τ
has passed

ρ<τ (D) :=

τ−1∑
t=0

I{Xt∈D}. (4)

The (state) occupation measure γ<τ for (Xn) is defined as the expec-
tation of ρ<τ (·) in (4), i.e., γ<τ (D) := Eρ<τ (D)

γ<τ (D) = E

τ−1∑
t=0

I{Xt∈D} = E

∞∑
t=0

I{Xt∈D}I{t<τ}

= E

∞∑
t=0

I{Xt∈D,t<τ} =
∞∑

t=0

P[t < τ,Xt ∈ D]. (5)

As its name suggests, γ<τ is a measure.
We define the integral w.r.t. γ<τ of a vector function f as

〈γ<τ , f〉 := E

τ−1∑
t=0

f(Xt). (6)

The abovementioned equation will be instrumental for computing the
accumulated cost of the process until stopping time τ .

The (state) hitting measure λτ (D) is the expected time that the
process lies in a set D ⊂ X at the time τ

λτ (D) := P[Xτ ∈ D] =
∞∑

t=0

P[τ = t,Xt ∈ D]. (7)

We define the hitting operator corresponding to the stopping time τ as
the integral of a function f with respect to λτ as

〈λτ , f〉 = E(f(Xτ )). (8)

Specifically, let E and U be disjoint subsets of X . We think about E
as a target set and U as a forbidden set. Suppose that τ = τU∪E , the
first hitting time of the union of U and E. Then 〈λτU∪E , IU 〉 is the
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probability that the process hits the forbidden set before the target set.
This relation will be instrumental for the computation of safety.

When the initial state is i, we employ the probability Pi, and use the
notations γi

<τ and λi
τ . Similarly, for the initial probability μ, we use

Pμ, and the notations γμ
<τ and λμ

τ .
The occupation measure and the hitting probability are connected

by the adjoint or evolution equation [25]

λμ
τ = μ+ γμ

<τL (9)

where L is the generator, L = P − IX . The measure triplet
(μ, γμ

<τ , λ
μ
τ )with γμ

<τ (i) = 0 for i ∈ X \H and λμ
τ (j) = 0 for j ∈ H

uniquely characterizes the given Markov process [27].

III. MDPS AND EVOLUTION EQUATION

We suppose that (Ut) is a process with values in a countable set U
of actions, and study the conditional probabilities P[Xt+1 = j| Xt =
i, Ut = u] for i, j ∈ X , and u ∈ U . We remark that Markov property
holds for the MDPs, and introduce transition probabilities

piuj = P[Xt+1 = j|Xt = i, Ut = u]

where (i, u, j) ∈ X × U × X .
By a Markov policy, we understand the family of stochastic kernels

(πiu(t))(i,u)∈X×U

πiu(t) = P[Ut = u|Xt = i].

We think about the policy π as the to-be-designed stochastic control.
In this work, we entirely restrict our attention to stationary policies; the
Markov policy is stationary if πiu does not depend on the time, i.e.,

πiu = P[Ut = u|Xt = i] = P[U0 = u|X0 = i].

To conclude, the stationary policy π is seen as the (possibly infinite-
dimensional) matrix

π := (πiu)(i,u)∈X×U (10)

with entries between 0 and 1, corresponding to the probability that at
the state i, the control action has the value u.

Let D be the standard simplex in RU

D :=

{
α = (αu)u∈U |αu ≥ 0,

∑
u∈U

αu = 1

}
. (11)

So, for each fixed i, the probabilities (πiu)u∈U belong to D. We will
write π ∈ DX (the Cartesian product of |X | copies of the set D)
even though we mean its matrix representation (πiu)(i,u)∈X×U with∑

u∈U πiu = 1, for each i ∈ X .
For a stationary policy π, using the law of total probabilities the

transition probability of the induced chain are

pij(π) =
∑
u∈U

πiupiuj . (12)

For the policy π, we define the transition probability matrix

P (π) = (pij(π))(i,j)∈X×X .

A straightforward calculation shows that the operator P (π) on vector
functions f has the following expression:

P (π)f =
∑
u∈U

πu ◦ (P (u)f)

where ◦ is the Hadamard product, P (u) := (piuj)i,j∈X and πu :=
(πiu)i∈X is thought of as a row measure associated to each actionu ∈ U .
This “factorization” will be a key tool for obtaining most expressions
in the following sections.

A. State-Action Occupation Measure

For a target set E. Let the taboo set H = X −E. At the outset, we
recall the notion of a reward

ρ : H × U → R.

The function ρ induces a process (ρt) by

ρt = ρ(Xt, Ut). (13)

Let Rπ := (Rπ(i))i∈H with the components Rπ(i) =∑
u∈U πiuρ(i, u).
We suppose that the process (Ut) is generated by a policy π, which

will be characterized in the following. Let τ be a stopping time, for
example the first hitting time of a set. The cost for the policy π up to
time τ is

Vπ(i) := Eπ

[
τ−1∑
t=0

ρt|X0 = i

]
(14)

and the vector Vπ := (Vπ(i))i∈H .
The aim of DP is to evaluate the cost function Vπ , and subsequently

to find a minimizing stationary policy. To meet this aim, this article will
use the evolution equation defined in the last section. All the objects
used below will depend on the policyπ; herein, the expectation, the tran-
sition matrix, occupation measure, and hitting probability. Therefore,
to enhance readability, we occasionally suppress π from the notation.
At the outset, notice that in (14), since τ is a random variable, the
expectation operator cannot be moved under the summation symbol,
as it is customarily done in standard DP and RL (see [2] and [3]). In
the realm of altering policies, we enhance the evolution equation to
capture the frequencies of visiting the states and actions. We examine
the process (Xt, Ut) with initial distribution μ of (X0, U0). Moreover,
because of policy stationarity, the initial distribution of U0 has no effect
onXt norUt for t > 0. Letμ(·) = ∑

u∈U μ(·, u). To this end, we define
a state-action occupation measure by

γμ
<τ (i, u) :=

∞∑
t=0

Pμ[Xt = i, Ut = u, t < τ ]

and a state-action hitting measure by

λ
μ

τ (i, u) := Pμ[Xτ = i, Uτ = u]

for (i, u) ∈ X × U . Then, the expectation of a function f : X × U →
R is

Eμ

[
τ−1∑
t=0

f(Xt, Ut)

]
=

∑
u∈U

〈f(·, u), γμ
<τ (·, u)〉. (15)

For a given π = (πiu)(i,u)∈X×U , the state-action and state occupation
measures are linked as follows:

γμ
<τ (i) = γμ(i,U) =

∑
u∈U

γμ
<τ (i, u), and (16)

πi,uγ
μ
<τ (i) = γμ

<τ (i, u). (17)

The (17) follows from:

πi,uγ
μ
<τ (i) = P[U0 = u|X0 = i]

∞∑
t=0

P[Xt = i, t < τ ]

=

∞∑
t=0

P[Ut = u|Xt = i, t < τ ]P[Xt = i, t < τ ]

=
∞∑

t=0

P[Xt = i, Ut = u, t < τ ] = γμ
<τ (i, u)
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where we have used the information that the policy is stationary,P[Ut =
u|Xt = i] = P[U0 = u|X0 = i].

Similarly, the state-action hitting measure and the state hitting mea-
sure are related by (16) and (17) with γ<τ and γ<τ substituted by λτ

and λτ .
We return to the evolution (9).
Lemma 1: The evolution equation for the state-action measures is∑

u∈U
λ
μ

τ (·, u) = μ(·) +
∑
u∈U

γμ
<τ (·, u)L(u). (18)

Proof: The state occupation measure satisfies (9). Left-hand side of
(18), follows from (16); whereas, the right-hand side is the consequence
of the following computation:

[γμ
<τ |H(Q(π)− I)](j) =

∑
i∈H

γμ
<τpij(π)−

∑
i∈H

γμ
<τδj(i)

=
∑
i∈H

γμ
<τ (i)

∑
u∈U

πiupiuj − γμ
<τ (j)

=
∑
u∈U

∑
i∈H

γμ
<τ (i)πiupiuj −

∑
u∈U

γμ
<τ (j, u)

=
∑
u∈U

∑
i∈H

γμ
<τ (j, u)(piuj − δj(i))

=

[∑
u∈U

γμ
<τ |H(·, u)(Q(u)− I)

]
(j).

�
The evolution (18) can be reformulated as

∑
u∈U

[
λ
μ

τ (i, u)− μ(i, u)− γμ
<τ (i, u)L(u)

]
= 0.

Hence, the evolution equation for the state-action measure is an average
of the evolution equations over constant actions.

IV. STOCHASTIC OPTIMIZATION WITH STOPPING TIME

We shall call a policy π transient on H if the MDP Xt with the
policy π is transient, i.e.,

Pπ [Xt ∈ H for infinitely many t | X0 ∈ H] = 0.

A. DP With Stopping Time

The following result shows that the cost Vπ restricted to H can be
computed as a potential of “charge” Rπ .

Proposition 1: For an MDP (Xt) with the state-action space (X ,U)
and a target set E ⊂ X , let π be a transient policy on H := X \E. Let
τ := τE be the first hitting time corresponding to E, and let ρ be the
reward.

Then, the cost function Vπ in (14) restricted to H is

Vπ = G(π)Rπ

where G(π) is the kernel associated to H and π is given by (2).
We remark that the first assumption of π being transient ensures that

the optimization problem is feasible for the policy π. If the probability
of staying in the taboo set H was not 0 then the system would never
reach the target set E.

Proof: Write P := Pπ , and E := Eπ . Notice that

Rπ(j) =
∑
u∈U

πjuρ(j, u) =
∑
u∈U

ρ(Xt, u)P[Ut = u|Xt = j]

= E[ρ(Xt, Ut)|Xt = j] = E[ρt|Xt = j], ∀j ∈ H.

We claim that

Vπ(i) = E

[
τ−1∑
t=0

ρt|X0 = i

]
= E

[
τ−1∑
t=0

Rπ(Xt)|X0 = i

]
. (19)

The claim follows from:

Vπ(i) =
∞∑

k=0

E

[
k∑

t=0

ρt|X0 = i

]
P[τ = k + 1|X0 = i]

=
∞∑

k=0

k∑
t=0

E [ρt|X0 = i]P[τ = k + 1|X0 = i]. (20)

We observe that

E [ρt|X0 = i] =
∑
j∈X

E[ρt|Xt = j]P[Xt = j|X0 = i]

=
∑
j∈X

Rπ(j)P[Xt = j|X0 = i] = E [Rπ(Xt)|X0 = i] .

Inserting this equation in (20) shows the claim, i.e., (19).
From (6), we conclude that

Vπ(i) = E

[
τ−1∑
t=0

Rπ(Xt)|X0 = i

]
= 〈γ<τ , Rπ〉.

In the second part of the proof, we will use the evolution (9), to evaluate
〈γμ

<τ , R(π)〉. We claim that

0 = 〈μ|H , G(π)f |H〉 − 〈γμ
<τ |H , f |H〉

for any f such that f(e) = 0 for all e ∈ E, and for any initial measure
μ. The claim leads us to the conclusion

0 = G(π)Rπ − Vπ.

To prove the claim, without loss of the generality, suppose that the states
are numbered such that the first states belong to H and the remaining
to E. Then the (possibly infinite-dimensional) transition matrix P :=
P (π) is decomposed as

P =

[
Q PH

E

PE
H PE

E

]
, and L =

[
Q− IH PH

E

PE
H PE

E − IE

]

where Q := P (π)|H . We define a matrix

G̃ =

[
G 0
0 0

]

where G is the green operator defined in (2). By the relation (3), we
have

LG̃ = −
[
IH 0
0 0

]

and λμ
τ |HG = μ|HG− γμ

<τ |H . On the other hand, τ is the first hitting
time of E, therefore λμ

τ |H = 0. In conclusion

0 = μ|HG− γμ
<τ |H . (21)

Suppose that f =
[
f |H f |E

]T
=

[
f |H 0

]T
. From (9), it follows

that:

0 = 〈μ|H , Gf |H〉 − 〈γμ
<T |H , f |H〉.

This proves the claim as f |H is arbitrary. We conclude that Vπ =
G(π)Rπ . �

We strive to solve the following optimization problem:

V∗(i) = min
π∈DH

Vπ(i) (22)
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whereH is the taboo set, andDH is the Cartesian product of |H| copies
of the simplex D. V ∗ is called the value function.

From (3), we obtain that G(π) = IH +G(π)Q(π), hence

Vπ = Rπ +Q(π)G(π)Rπ

and the result is the celebrated well-known formula in DP

Vπ = Rπ +Q(π)Vπ (23)

with the boundary condition Vπ(e) = 0 for e ∈ E.
Let Δ(π) := I −Q(π) be the discrete Laplacian operator on the

taboo set H , and then we write (23) as

Δ(π)Vπ = Rπ.

Let us recall some standard results of DP [2], which will be instrumental
in the following sections. Suppose that there is at least one transient
policy π. The optimal cost V∗ restricted to the set H satisfies Bellman’s
equation

V = min
π∈DH

[Rπ +Q(π)V ] . (24)

Furthermore, the function V∗|H is the (coordinatewise) limit of the
sequence (V n) defined by

V n+1 = min
π∈DH

[Rπ +Q(π)V n] (25)

with an arbitrary initial condition V 0 ≥ 0.

B. Linear Programming

We follow the idea of [9] showing that the value function (22) is the
largest among the functions V : E → R satisfying the inequality

Δ(π)V ≤ Rπ for all π ∈ DH .

Such functions are called subharmonic vectors in the MDP context.
Lemma 2: The value function satisfies

V∗ = supV (26)

where V := {V ∈ RH | Δ(π)V ≤ Rπ for all π ∈ DH}, and sup is to
be understood coordinatewise.

We use the action-state evolution (18) to formulate LP. At the outset,
we define

V μ
π := Eμ

[
τ−1∑
t=0

rπ(Xt)

]

where as before, τ is the first hitting time of E, τ = τE . Furthermore,
we let V μ

∗ = minπ∈DH V μ
π .

Lemma 3: Suppose that X0 has the initial distribution μ with the
support in H , then

V μ
∗ = min

∑
u∈U

〈ρ(·, u), αμ(·, u)〉

over the measure α on H × U that satisfies

0 = μ(·) +
∑
u∈U

αμ(·, u)(Q(u)− I). (27)

Furthermore, the policy is given by

πi,u =
αμ(i, u)

αμ(i)
(28)

where αμ(i) =
∑

u∈U α
μ(i, u).

Proof: From (15), we have

V μ
π =

∑
u∈U

〈ρ(·, u), γμ
<τ (·, u)〉.

The state action evolution equation∑
u∈U

λ
μ

τ (·, u) = μ(·) +
∑
u∈U

γμ
<τ (·, u)L(u)

uniquely characterizes the process (Xt, Ut). Subsequently, noticing
that the support of λ

μ

τ (·, u) is in the complement of H , from (21) in the
proof of Proposition 1

0 = μ(i) +
∑
u∈U

∑
j∈H

γμ
<τ (j, u)(pjui − δi(j)) for i ∈ H.

By substituting γμ
<τ byαμ, the equality (27) follows. Finally, the policy

(28) follows from (16) and (17). �

V. SAFETY

We formulate safety as a DP problem. In the previous section, we
have considered the terminal setE and its complement, the taboo setH .
We extend this situation by adding an extra set U , the set of forbidden
states. We suppose that U is disjoint from E. Now, the taboo set is
H = X \ (U ∪E).

The definition of safety is taken from [11]. For each state in X ,
the safety function gives the probability that the realizations hit the
forbidden set U before reaching the target set E.

We consider the problem of finding a policy π such that the safety
function satisfies the following condition:

Sπ(i) := Pi[τU < τE ] = P[τU < τE | X0 = i] ≤ p

where τA is the first hitting time of a set A. We have again suppressed
the policy π in the notation, P = P(π).

To compute the safety function Sπ , we apply the evolution (9) with
the initial distribution μ concentrated at i, and τ = τE∪U equal to the
first hitting time of E ∪ U

〈λi
τ , f〉 = f(i) + 〈γi

<τ ,L(π)f〉 for all f : X → R.

We observe that the safety function Sπ(i) = λi
τ (U). We unfold the

evolution equation∑
k∈U∪E

λi
τ (k)f(k) = f(i) +

∑
j∈H

γi
<τ (j)(L(π)f)(j). (29)

Since the function f is arbitrary, for the specific choice of f such that
f(j) = 0 for j ∈ E, f(j) = 1 for j ∈ U , and (L(π)f)(j) = 0 for j ∈
H , we have

∑
k∈U λi

τ (k) = f(i).
In conclusion, the safety functionSπ is the solution s of the following

problem:

(L(π)s)(j) = 0, ∀j ∈ H (30a)

s(j) = 1, ∀j ∈ U (30b)

s(j) = 0, ∀j ∈ E. (30c)

The problem (30) is known as the Dirichlet problem. Its solution is
unique. Since (30) is linear in s, we formulate it in terms of matrices.
To this end, we suppose the state are numbered in the following order:
the states in H are first, then in U , and finally in E. We decompose
P := P (π) as follows:

P =

⎡
⎢⎣

Q PU
H PE

H

PH
U PU

U PE
U

PH
E PU

E PE
E

⎤
⎥⎦ . (31)

Lemma 4: Suppose that the MDP (Xt) with a policy π is being
transient on H . Let

Kπ := PU
H (π)1U (32)
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where 1U is the column vector of 1 s of length |U |. Then, the safety
function is given by

Sπ|H = G(π)Kπ (33)

and it is the solution of the following Poisson equation:

Sπ|H = Q(π)Sπ|H +Kπ. (34)

Furthermore, the sequence (Sn
π ) defined by

Sn+1
π = Q(π)Sn

π +Kπ (35)

for an arbitrary S0
π converges pointwise to Sπ|H .

Proof: Applying the transition matrix (31) to the Dirichlet prob-
lem (30) we get (33). Then (33) and (3) imply (34).

We regard (35) as a discrete-time dynamical systems, and observe
that the eigenvalues of Q(π) are in the open unit disk. Consequently,
the sequence (Sn

π ) converges to G(π)Kπ . �
The value of Kπ at a state i ∈ H is the probability of reaching one

of the forbidden states in U in a single time-step. The characterization
of the safety function in (33) corresponds to the probability of reaching
U after staying entirely in the set H .

Safety function can be computed as the expectation of a cumulative
reward. Suppose μ is the initial distribution of the process (Xt), X0 ∼
μ. We consider the safety function

Sμ
π := Pμ[τU < τE | X0] = 〈μ, Sπ〉.

Corollary 1: Supposeμ is the initial distribution of the process (Xt)
and the support of μ is in H . The safety function Sπ(μ) is given by

Sμ
π = Eμ

τ−1∑
t=0

κ(Xt, Ut) (36)

where τ = τU∪E , and κ(i, u) =
∑

j∈U piuj , for all i ∈ H .
Proof: From (32)

Kπ(i) =
∑
j∈U

pij(π) =
∑
j∈U

∑
u∈U

πiupiuj =
∑
u∈U

πiu

∑
j∈U

piuj

=
∑
u∈U

πiuκ(i, u).

On the other hand, form Lemma 4,Sμ
π = G(π)Kπ . From Proposition 1,

Sμ
π (i) = Eπ[

∑τ−1
t κt|X0 = i] with κt = κ(Xt, Ut). �

Corollary 1 allows to formulate the safe optimization as a constrained
MDP. Specifically, from Lemma 3, the safety function Sμ

π is computed
from

Sμ
π =

∑
i∈H

γμ
<τ (i)κ(i, π(i)) (37)

where γμ
<τ is the occupation measure, the solution of the evolution

equation

0 = μ(j) +
∑
i∈H

γμ
<τ (i)(pij(π)− δj(i)), j ∈ H. (38)

The measure γμ
<τ (restricted to H) corresponds to the occupation

measure of H , when there is no escape. Subsequently, the function
κ is the reward to go into the set U .

VI. SAFETY GUARANTEE IN STOCHASTIC OPTIMIZATION

We combine safety and stochastic optimization. The objective is
to reach the goal states in the subset E ⊂ X with minimal expected
cumulative reward subject to the safety constraints of reachingE before
the set U of unsafe states with a probability below a prior level p. In

other words, for 0 ≤ p ≤ 1, and an initial distribution μ of X0 with μ
supported on H , we strive to find the minimum V ∗ of the cost

V μ
π := Eμ

π

[
τE−1∑
t=0

ρ(Xt, Ut)

]
(39)

on H subject to Sμ
π ≤ p, and over the stationary (mixed) policies π ∈

DX\E . First, we reformulate the safety function in the constraint as the
cost

Sμ
π = Eμ

π

τ−1∑
t=0

κ(Xt, Ut) (40)

with τ := τE∪U , and κ(i, u) :=
∑

j∈U piuj .
We notice the stopping times in the cost function (39) and in the

constraint (40) are not the same; furthermore, τ = τU∪E ≤ τE almost
surely. As before, we define the (state-action) occupation measures and
hitting measures for both stopping times. We use simplified notation,
where we suppress the names of the stopping times and the initial
measure

γA(i, u) =

∞∑
t=0

Pμ[Xt = i, Ut = u, t < τ ]

γB(i, u) =
∞∑

t=0

Pμ[Xt = i, Ut = u, τ ≤ t < τE ]

and

λ
A
(i, u) = Pμ[Xτ = i, Uτ = u]

λ
B
(i, u) = Pμ[XτE = i, UτE = u]

for (i, u) ∈ X × U . Consequently, there are two evolution equations:
the first one governs the measures with the index A, and the second
with the index B∑

u∈U
λ
A
(j, u) = μ(j) +

∑
u∈U

∑
i∈X

γA(i, u)(piuj − δj(i))

∑
u∈U

λ
B
(j, u) =

∑
u∈U

λ
A
(j, u)

+
∑
u∈U

∑
i∈X

γB(i, u)(piuj − δj(i)). (41)

Both λ
A

and λ
B

are zero on H , λ
B

is additionally zero on U . By
summing the two evolution equations in (41), we observe that γ :=
γA + γB satisfies the following evolution equation:∑

u∈U
λ
B
(·, u) = μ(·) +

∑
u∈U

γ(·, u)L(u).

In conclusion, the cost and the constraint are expressed in terms of the
occupation measures that are

V μ
π =

∑
(i,u)∈(H∪U)×U

γ(i, u)ρ(i, u)

subject to the inequality constraint

Sμ
π =

∑
(i,u)∈H×U

γA(i, u)κ(i, u) ≤ p.

To conclude, safe stochastic optimization is formulated as the following
linear program.

Proposition 2: Suppose that there is a transient policy π ∈ DX\E

then the minimum of V μ
π over stationary policies π ∈ DX\E is the
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solution of the following linear program:

min
π∈DX\E

V μ
π = min

∑
i∈H∪U

∑
u∈U

(γA(i, u) + γB(i, u))ρ(i, u)

subject to

0 ≤ γA and 0 ≤ γB

0 = γA(j, u), for j ∈ U ∪E and u ∈ U
0 = γB(j, u), for j ∈ U and u ∈ U

0 = μ(j) +
∑
u∈U

∑
i∈H

γA(i, u)(piuj − δj(i)), for j ∈ H

0 =
∑
u∈U

∑
i∈H∪U

γB(i, u)(piuj − δj(i)), for j ∈ H

0 =
∑
u∈U

(
∑
i∈H

(
γA(i, u) + γB(i, u)

)
(piuj − δj(i))

+
∑
i∈U

γB(i, u)(piuj − δj(i))), for j ∈ U

p ≥
∑

(i,u)∈H×U
γA(i, u)κ(i, u).

The optimal policy is given by

πi,u =
γA(i, u) + γB(i, u)

γ(i)
(42)

where γ(i) =
∑

u∈U (γ
A(i, u) + γB(i, u)).

Proof: The constraints follow from (41) noticing that the

supports, supp(λ
A
) ⊆ U ∪E, supp(λ

B
) ⊆ E, supp(γA) ⊆ H , and

supp(γB) ⊆ H ∪ U .
Furthermore, the last equality constraint is the consequence of the

following two qualities, for j ∈ U :

0 =
∑
u∈U

λ
A
(j, u) +

∑
u∈U

∑
i∈H∪U

γB(i, u)(piuj − δj(i))

and ∑
u∈U

λ
A
(j, u) =

∑
u∈U

∑
i∈H

γA(i, u)(piuj − δj(i)).

The policy (42) follows from the observation that:

γμ
<τ (i, u) = γA(j, u) + γB(j, u)

and from (16) and (17). �

A. Illustration

We provide a simple example illustrating how to use Proposition 2.
Consider MDP in Fig. 1, where the state-space X consists of seven
states. The initial state is 1. The unsafe set U = {4, 5}, the target set
E = {6, 7}, and the taboo set H = X \ (E ∪ U) = {1, 2, 3}. There
are two actions 1 and 2, i.e., U = {1, 2}. We suppose that the reward
ρ(i, u) = 1 for all states and actions. The decision variables in Proposi-
tion 2 are the occupation measures γA(i, u) ≥ 0 and γB(i, u) ≥ 0. The
reward κ(i, u) becomes 1 for (i, u) ∈ {(2, 2), (3, 2)}, q for (i, u) =
(3, 1), and 0 for other state-action pairs. We minimize the sum

γA(1, 1) + · · ·+ γA(3, 2) + γB(1, 1) + · · ·+ γB(5, 2)

subject to

0 = 1− γA(1, 1)− γA(1, 2)

0 = γB(1, 1) + γB(1, 2)

Fig. 1. Unsafe states are 4 and 5; whereas, the goal states are 6 and
7. At each state there two action 1 and 2, i.e., U = {1, 2}.

0 = γc(1, 2)− γc(2, 1)− γc(2, 2) with c ∈ {A,B}
0 = γc(1, 1)− γc(3, 1)− γc(3, 2) with c ∈ {A,B}
0 = γA(2, 2) + γB(2, 2)− γB(4, 1)− γB(4, 2)

0 = (γA(3, 1) + γB(3, 1))(q) + (γA(3, 2) + γB(3, 2))

− γB(5, 1)− γB(5, 2)

p ≥ γA(2, 2) + qγA(3, 1) + γA(3, 2).

VII. CONCLUSION

In this work, we have formulated the problem of stochastic optimiza-
tion for MDPs with safety guarantees. First, we have expressed safety
as the accumulated cost of the probability of getting into the unsafe set.
Subsequently, we have used the evolution equation to devise a linear
program for computing the optimal stationary policy that adheres to
safety specifications.
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