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Quantitative Resilience of
Generalized Integrators

Jean-Baptiste Bouvier , Kathleen Xu , and Melkior Ornik , Senior Member, IEEE

Abstract—When failure is not an option, systems are
designed to be resistant to various malfunctions, such as
a loss of control authority over actuators. This malfunction
consists in some actuators producing uncontrolled and,
thus, possibly undesirable inputs with their full actuation
range. After such a malfunction, a system is deemed re-
silient if its target is still reachable despite these unde-
sirable inputs. However, the malfunctioning system might
be significantly slower to reach its target compared to its
initial capabilities. To quantify this loss of performance,
we introduce the notion of quantitative resilience as the
maximal ratio over all targets of the minimal reach times for
the initial and malfunctioning systems. Since quantitative
resilience is then defined as four nested nonlinear opti-
mization problems, we establish an efficient computation
method for control systems with multiple integrators and
nonsymmetric input sets. Relying on control theory and on
two specific geometric results, we reduce the computation
of quantitative resilience to a linear optimization problem.
We illustrate our method on an octocopter.

Index Terms—Fault tolerant, linear systems, optimiza-
tion, quantitative resilience, reachability, time invariant.

I. INTRODUCTION

R ESISTANCE to malfunctions is usually acquired through
actuator redundancy and fault-tolerant controllers [1] us-

ing adaptive control [2] or active disturbance rejection [3].
Fault-tolerant theory typically considers either actuators lock-
ing in place [2], actuators losing effectiveness but remaining
controllable [1], or a combination of both [3]. However, after
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damage [4] or hostile takeover, some actuators may produce
undesirable inputs with their full actuation range over which
the controller has readings but no control. Such a malfunction
happened to the Nauka module as it docked to the International
Space Station [4] and has been previously discussed in [5] under
the name of loss of control authority over actuators.

In contrast to the robust control framework where the undesir-
able inputs may not be observable and have a small magnitude
compared to the actuators’ inputs [6], in the setting of loss of
control authority, undesirable inputs are observable and can have
a magnitude similar to the controlled inputs. As demonstrated
in [7], a robust controller generally cannot handle a loss of
control authority over actuators.

After a partial loss of control authority over actuators, a target
is resiliently reachable if, for any undesirable inputs of the
malfunctioning actuators, there exists a control driving the state
to the target [5]. However, the malfunctioning system might
need considerably more time to reach its target compared with
the initial system. To measure the delays caused by the loss of
control authority, we rely on the notion of quantitative resilience
introduced in [8]. Similar concepts have been previously de-
veloped for nuclear power plants [9], but were limited to their
specific applications.

We formulate quantitative resilience as the maximal ratio over
all targets of the minimal reach times for the initial and malfunc-
tioning systems. This formulation leads to a nonlinear minimax
optimization problem with an infinite number of constraints.
Our main contribution is to reduce the quantitative resilience of
systems with multiple integrators to a linear optimization prob-
lem. To do so, we combine two optimization results designed
specifically for this application [10] with the theorems of [11]
and [12] stating the existence of time-optimal controls. However,
these controls are bang-bang [13], [14] and, hence, cannot be
exactly implemented by physical actuators. As a first step toward
a more high-fidelity application, we then incorporate propellers’
dynamics to our octocopter model and quantify its resilience.

The contributions of this article are threefold. First, we pro-
pose an efficient method to compute the quantitative resilience
of linear systems with multiple integrators and nonsymmetric
inputs by simplifying a nonlinear problem of four nested op-
timizations into a single linear optimization problem. Second,
we establish necessary and sufficient conditions to verify if a
system is resilient to the loss of control over one of its actuators.
Finally, we provide all the proofs omitted from [8].

The rest of this article is organized as follows. Section II
introduces preliminary notions on resilience. We calculate the
optimal reach times for the initial and malfunctioning systems
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in Section III. The pinnacle of this work is the efficient method
to compute quantitative resilience in Section IV for the loss of
control over a single actuator. This metric also allows us to assess
whether a system is resilient, as detailed in Section V. We study
the quantitative resilience of systems with multiple integrators
in Section VI before applying our theory to an octocopter los-
ing control over one of its propellers in Section VII. Finally,
Section VIII concludes this article.

A preliminary version of this work was presented in [8],
where simpler dynamics were used. We now extend our theory to
linear systems with multiple integrators and general input sets.
Sections VI and VII are entirely novel, and we provide all the
proofs omitted from [8].

Notation: For a set X , we denote its boundary ∂X , its interior
int(X ) := X\∂X . The set of time functions taking value in X
is denoted F(X ) := {f : f(t) ∈ X for all t ≥ 0}. The set of
integers betweena and b included is [[a, b]]. The factorial ofk ∈ N

is denoted k!. Let R+ := [0,∞), and we use the subscript ∗ to
exclude zero, for instance, R+

∗ := (0,∞). The Euclidean norm
is ‖ · ‖ and the unit sphere is S := {x ∈ R

n : ‖x‖ = 1}. For
k ∈ N, the kth derivative of function f is denoted as f (k).

II. PRELIMINARIES AND PROBLEM STATEMENT

The control of a physical system usually involves steering
its position with inputs only affecting its acceleration [15].
With these systems in mind, we focus on generalized kth-order
integrators in R

n, i.e.,

x(k)(t) = B̄ū(t), ū(t) ∈ Ū , x(0) = x0, x
(l)(0) = 0 (1)

for all l ∈ [[1, k − 1]] and k ∈ N. Matrix B̄ ∈ R
n×(m+p)

is constant. The control set is the hyperrectangle Ū :=∏m+p
i=1 [ūmin

i , ūmax
i ] ⊆ R

m+p, with ū ∈ F(Ū).
After a malfunction, the system loses control authority over p

of its m+ p actuators. We then split B̄ into B and C, Ū into U
and W , and ū into the remaining control inputs u ∈ F(U) and
the undesirable inputs w ∈ F(W). Then, the initial conditions
are the same as in (1), but the dynamics become

x(k)(t) = Bu(t) + Cw(t), u(t) ∈ U , w(t) ∈ W

U :=
m∏
i=1

[
umin
i , umax

i

]
, W :=

p∏
i=1

[
wmin

i , wmax
i

]
. (2)

We now recall the definition of resilience from [7].
Definition 1: System (1) is resilient to the loss of p of its

actuators corresponding to the matrix C as above if for all the
undesirable inputs w ∈ F(W) and all target xgoal ∈ R

n, there
exists a control uw ∈ F(U) and a time T such that the state of
the system (2) reaches the target at time T , i.e., x(T ) = xgoal.

While a resilient system is, by definition, capable of reaching
any target after a partial loss of control authority, the malfunc-
tioning system might be considerably slower than the initial
system to reach the same target. We introduce the following
two reach times for the target xgoal ∈ R

n and the target distance
d := xgoal − x0 ∈ R

n.
Definition 2: The nominal reach time of order k, T ∗

k,N , is the
shortest time required for the state x of (1) to reach the target

xgoal under admissible control ū ∈ F(Ū)
T ∗
k,N (d) := inf

ū∈F(Ū)
{T ≥ 0 : x(T )− x0 = d} . (3)

Definition 3: The malfunctioning reach time of orderk,T ∗
k,M ,

is the shortest time required for the state x of (2) to reach
the target xgoal under admissible control u ∈ F(U) when the
undesirable input w ∈ F(W) is chosen to make that time the
longest

T ∗
k,M (d) := sup

w∈F(W)

{
inf

u∈F(U)
{T ≥ 0 : x(T )− x0 = d}

}
.

(4)
The causality issue arising from (4) is discussed at the end

of the section. By definition, if the system is controllable, then
T ∗
k,N (d) is finite for alld ∈ R

n, and if it is resilient, thenT ∗
k,M (d)

is also finite. The malfunctioning system (2) can take up to
T ∗
k,M (d)

T ∗
k,N (d) times longer than the initial system (1) to reach the

target d+ x0.
Definition 4: The quantitative resilience of order k of system

(2) is

rk,q := inf
d∈Rn∗

T ∗
k,N (d)

T ∗
k,M (d)

. (5)

For a resilient system, rk,q ∈ (0, 1]. The closer rk,q is to 1, the
smaller is the loss of performance caused by the malfunction.

Problem 1: How to calculate rk,q efficiently?
Indeed, a naive computation of rk,q requires solving four

nested optimization problems whose constraint sets are R
n
∗

and three infinite-dimensional function spaces. A brute force
approach to this problem is doomed to fail.

We will explore thoroughly the simple case k = 1 in the
following sections and generalize their results to k ∈ N in Sec-
tion VI. For k = 1, systems (1) and (2) are simplified into

ẋ(t) = B̄ū(t), ū(t) ∈ Ū , x(0) = x0 ∈ R
n (6)

ẋ(t) = Bu(t) + Cw(t), u(t) ∈ U , w(t) ∈ W. (7)

For brevity, in the case k = 1, we lose subscript 1 and write the
nominal reach time T ∗

N = T ∗
1,N as

T ∗
N (d) := inf

ū∈F(Ū)

{
T ≥ 0 :

∫ T

0

B̄ū(t) dt = d

}
(8)

with d = xgoal − x0. Similarly, we write the malfunctioning
reach time T ∗

M = T ∗
1,M as

T ∗
M (d) := sup

w∈F(W)

{
inf

u∈F(U)

{
T ≥0:

∫ T

0

[Bu(t)+Cw(t)] dt=d

}}
.

(9)
The quantitative resilience rq of a system following (7) is then

rq := inf
d∈Rn∗

T ∗
N (d)

T ∗
M (d)

= r1,q. (10)

We now discuss the information setting in the malfunctioning
system. The resilience framework of [5] and [7] assumes that u
has only access to the past and current values of w, but not to
their future. Then, the optimal control u∗ in (9) cannot anticipate
a truly random undesirable input w. Hence, this strategy is
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not likely to result in the global time-optimal trajectory of
Definition 3.

In fact, there would be no single obvious choice for
u∗(t, w(t)), rendering T ∗

M ill-defined and certainly not time
optimal, whereas T ∗

N is time optimal. In this case, our concept
of quantitative resilience becomes meaningless. The work [16]
states that to calculate u∗ without future knowledge of w∗, the
only technique is to solve the intractable Isaac’s equation. Thus,
the paper [16] derives only suboptimal solutions and concludes
that its practical contribution is minimal.

Instead, we follow [17] where the inputs u∗ and w∗ are both
chosen to make the transfer from x0 to xgoal time optimal in
the sense of Definition 3. The controller knows that w∗ will be
chosen to make T ∗

M the longest. Thus, u∗ is chosen to react
optimally to this worst undesirable input. Then, w∗ is chosen,
and to make T ∗

M the longest, it is the same as the controller had
predicted. Hence, from an outside perspective, it looks as if the
controller knew w∗ in advance, as reflected by (4).

We will prove in the following sections that with this informa-
tion setting, w∗ is constant. Then, the controller can more easily
and more reasonably predict what is the worst w∗ and build the
adequate u∗. With these two input signals, T ∗

M is time optimal
in the sense of Definition 3 and can be meaningfully compared
with T ∗

N to define the quantitative resilience of control systems.

III. OPTIMAL REACH TIMES

We start with the dynamical system (6) to calculate the nom-
inal reach time T ∗

N of (8). We easily show in Lemma 1 of the
Appendix that if system (6) is controllable, the optimal control
ū∗ of (8) exists and is constant

T ∗
N (d) = min

ū∈ Ū

{
T ≥ 0 : B̄ū T = d

}
. (11)

Since the input set Ū is bounded, the controllability of system (6)
is equivalent to rank(B̄) = n and 0 ∈ int(Ū) [18]. The multipli-
cation of variables ū and T makes (11) a bilinear optimization
problem. For easier computation, we solve instead the linear
optimization T ∗

N (d) = 1/max
ū∈ Ū

{λ : B̄ū = λd}.

We now study the malfunctioning system (7) to compute the
malfunctioning reach time T ∗

M of (9). As above, we easily prove
in Lemma 2 of the Appendix that if system (7) is resilient,
the optimal control u∗(w) of (9) exists and is constant for any
undesirable input w ∈ F(W)

T ∗
M (d)= sup

w∈F(W)

{
min

u∗(w)∈U

{
T : Bu∗(w)T+

∫ T

0

Cw(t) dt=d

}}
.

(12)
Tackling the supremum in (12) requires a different approach.

Proposition 1: If system (7) is resilient, then for all d ∈ R
n
∗ ,

the supremum T ∗
M (d) of (9) is a maximum achieved by a

constant undesirable input w∗ ∈ W .
Proof: For w ∈ F(W), let wc :=

∫ TM (w,d)

0
w(t)

TM (w,d) dt with

TM defined in (24). Then, for i ∈ [[1, p]], we havewmin
i ≤ wi(t)

≤ wmax
i . Integrating yieldswmin

i ≤wc
i ≤wmax

i , sowc ∈ W . Then,∫ TM (w,d)

0 Cw(t)dt = CwcTM (w, d) = d−Bu∗(w)TM (w, d).

Conversely, note that for all wc ∈ W and T > 0, we can de-
fine w(t) := 1

T w
c for t ∈ [0, T ] such that

∫ T

0 Cw(t) dt = Cwc

and w ∈ F(W). Thus, the constraint space of the supremum of
(9) can be restricted to constant inputs in W .

We define the function ϕ(w) := Bu∗(w) + Cw for w ∈ W .
When applying the constant inputs w and u∗(w), dynamics (7)
become ẋ = ϕ(w). Because (Bu∗(w) + Cw)TM (w, d) = d,
we have ϕ(w) = 1

TM (w,d)d and ϕ is continuous in w according
to Lemma 3 in the Appendix. Set W is compact and x0 ∈ R

n is
fixed. Then, [12, Th. 1] states thatAW :={(x1, T ):

∫ T

0 ϕ(w)dt=
x1−x0, for w∈W} is compact. Note that T ∗

M (d) = sup{T :
(xgoal, T ) ∈ AW} is the supremum of a continuous function
over the compact set AW , so T ∗

M (d) is a maximum achieved
on W . �

Then, the malfunctioning reach time becomes

T ∗
M (d) = max

w∈W

{
min
u∈U

{T ≥ 0 : (Bu+ Cw)T = d}
}
. (13)

We will show that the maximum of (13) is achieved by an
extreme undesirable input, i.e., at the set of vertices of W ,
denoted by V . However, we cannot directly apply the bang-bang
principle, as it has been mostly derived for systems with a linear
dependence on the input [11], [13], [14], while ϕ introduced in
Proposition 1 is not linear in w. The works [12], [19], and [20]
consider a nonlinear ϕ, but they require conditions that are not
satisfied in our case. Thus, we need a new optimization result,
namely [10, Th. 2.1], which applies to polytopes.

Definition 5: A polytope in R
n is a compact intersection of

finitely many half-spaces.
We define X := {Cw : w ∈ W} and Y := {Bu : u ∈ U}.

Since U and W are polytopes, so are X and Y [21].
Proposition 2: If system (7) is resilient, then dimY = n and

−X ⊆ int(Y).
Proof: Following Proposition 1, we know that for all x ∈ X

and all d0 ∈ R
n, there exist y ∈ Y and T ≥ 0 such that (x+

y)T = d0. Since d0 can be freely chosen in R
n, we must have

dimY = n.
Take d0 = x ∈ X , x 	= 0. Then, there exists y1 ∈ Y and T1 >

0 such that (x+ y1)T1 = x. Hence, λ1x ∈ Y with λ1 := −1 +
1/T1. Now, take d0 = −x. Then, there exists y2 ∈ Y andT2 > 0
such that (x+ y2)T2 = −x. Hence, λ2x ∈ Y with λ2 := −1−
1/T2. Since λ2 ≤ −1 ≤ λ1 and Y is convex, we have −x ∈ Y .

If x = 0, this process fails because we would get T = 0 when
taking d = 0. Instead, take d0 ∈ S. Then, there exist T > 0 and
y ∈ Y such that yT = d0. Repeating the same for−d0 and using
the convexity ofY as in the previous paragraph, we obtain0 ∈ Y .
Thus, −X ⊆ Y .

Assume that there exists −x1 ∈ −X ∩ ∂Y . For d = −x1,
TM (x1,−x1) = min

y ∈Y
{T ≥ 0 : (x1 + y)T = −x1}, with TM

introduced in (24). Since T ≥ 0, the optimal y (called y∗) must
makex1 + y positively collinear with−x1. Thus,y∗ is positively
collinear with−x1 and the largest it can be is y∗ = −x1 because
−x1 ∈ ∂Y . Then, the constraint in TM (x1,−x1) is 0T = −x1.
The lack of solution contradicts the resilience of the system.
Thus, −X ∩ ∂Y = ∅, i.e., −X ⊆ int(Y). �
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We now prove that the maximum of (13) is achieved on V .
Proposition 3: If system (7) is resilient, then for all d ∈ R

n
∗ ,

the maximum of (13) is achieved with a constant input w∗ ∈ V .
Proof: Replacing 1

T by λ in (13) leads to T ∗
M (d) = 1/

min
x∈X

{max
y ∈Y

{λ > 0 : x+ y = λd}}. Since λ ≥ 0, we write λ =

|λ| = ‖λd‖/‖d‖ = ‖x+ y‖/‖d‖. Then

T ∗
M (d) =

‖d‖
min
x∈X

{
max
y ∈Y

{‖x+ y‖ : x+ y ∈ R+d}
} . (14)

Following Proposition 2, we can apply [10, Th. 2.1] and conclude
that the argument of the minimum in (14) is at a vertex x∗ of X .
Since the transformation between W and X is linear, x∗ = Cv
with v ∈ V a vertex of W [21]. Therefore, the maximum of (13)
is achieved on V . �

We have then reduced the outer constraint set of (9) from
an infinite-dimensional function set F(W) to a finite set V of
cardinality 2p, with p the number of malfunctioning actuators.
Then

T ∗
M (d) = max

w∈V

{
min
u∈U

{T ≥ 0 : (Bu+ Cw)T = d}
}
. (15)

Because u is chosen to counteract w and make Bu+ Cw
collinear with d ∈ R

n, while w is chosen freely in W , the
minimum of (15) cannot be restricted to the vertices of U . We
will now prove that both reach times are linear in the target
distance.

Proposition 4: For any d ∈ R
n and λ ≥ 0, we have

T ∗
N (λd) = λ T ∗

N (d) and T ∗
M (λd) = λ T ∗

M (d).
Proof: The case λ = 0 is trivial since T ∗

N (0) = T ∗
M (0) =

0, so consider λ > 0. The nominal reach time for d is
T ∗
N (d), so there exists ūd ∈ Ū such that B̄ūdT ∗

N (d) = d. Then,
B̄ ūd λT ∗

N (d) = λd. The optimality of T ∗
N (λd) to reach λd leads

to T ∗
N (λd) ≤ λT ∗

N (d).
Similarly, there exists ūλd ∈ Ū such that B̄ūλdT

∗
N (λd) = λd,

so B̄ ūλd
T ∗
N (λd)

λ
= d. The optimality of T ∗

N (d) to reach d yields

T ∗
N (d) ≤ T ∗

N (λd)

λ
. Thus, λT ∗

N (d) ≤ T ∗
N (λd).

A similar proof does not work for T ∗
M because of the minimax

structure of (15).
For d ∈ R

n
∗ and w ∈ W , we define x = Cw and y∗(x, d) :=

argmin
y ∈Y

{T ≥ 0 : (y + x)T = d}. Note that Bu∗(w) + Cw =

y∗(x, d) + x, with u∗ defined in Lemma 2. Then, with TM
introduced in (24), we have (Bu∗(w) + Cw)TM (w, d) = d,
i.e., y∗(x, d) = 1

TM (w,d)d− x. For λ > 0, we define α(λ) :=
λ

TM (w,λd) − 1
TM (w,d) , such that y∗(x, λd)− y∗(x, d) = α(λ)d.

The polytope Y in R
n has a finite number of faces, so we can

choose d ∈ R
n
∗ not collinear with any face of Y . Since Y is con-

vex, the ray {y∗(x, d) + αd : α ∈ R} intersects with ∂Y at most
twice. Since y∗(x, d) ∈ ∂Y , one intersection happens at α = 0.
If there exists another intersection, it occurs for some α0 	= 0.
Since y∗(x, λd) ∈ ∂Y , we have y∗(x, d) + α(λ)d ∈ ∂Y . Then,
α(λ) ∈ {0, α0} for all λ > 0.

According to Lemma 3, TM is continuous in d, soα is contin-
uous in λ, but its codomain is finite. Therefore,α is constant, and
we know that α(1) = 0. So, α is null for all λ > 0, leading to
TM (w, λd) = λTM (w, d) for all λ > 0 and d not collinear with

any face of ∂Y . Since the dimension of each face of ∂Y is at most
n− 1 in R

n and TM is continuous in d, the homogeneity of TM
holds on the whole of Rn. Note that T ∗

M (d) = max
w∈W

TM (w, d).

Thus, λT ∗
M (d) = T ∗

M (λd). �
Combining the results obtained for the nominal and the mal-

functioning dynamics, we can now evaluate the quantitative
resilience of the system.

IV. QUANTITATIVE RESILIENCE

Focusing on the loss of control over a single actuator, we
will simplify tremendously the computation of rq by noting that
the effects of the undesirable inputs are the strongest along the
direction described by the malfunctioning actuator.

Theorem 1: If system (7) is resilient andC is a single column
matrix, the ratio of reach times is maximizing along C, i.e.,
max
d∈Rn∗

T ∗
M (d)

T ∗
N (d) = max{T ∗

M (C)

T ∗
N (C) ,

T ∗
M (−C)

T ∗
N (−C) }.

Proof: Using Proposition 4, we reduce the constraint set of
(10) from R

n
∗ to S. We use the same process that yielded (14),

but we start from (11) where we split B̄ into B and C

1

T ∗
N (d)

= max
ū∈ Ū

{
λ : B̄ū = λd

}
= max

u∈U,w∈W
{λ : Bu+ Cw = λd}

= max
x∈X , y ∈Y

{‖y + x‖ : y + x ∈ R
+d

}
. (16)

We can now gather (14) with d ∈ S and (16) into

T ∗
M (d)

T ∗
N (d)

=

max
x∈X , y ∈Y

{‖x+ y‖ : x+ y ∈ R
+d}

min
x∈X

{
max
y ∈Y

{‖x+ y‖ : x+ y ∈ R+d}
} .

Because C is a single column, dimX = 1. Then, following
Proposition 2, we conclude with the Maximax Minimax Quo-
tient Theorem of [10]. �

Theorem 1 is the strongest result of this work as it solves the
nonlinear fractional optimization of rq over d ∈ S. Its proof is
brief because all the heavy lifting is done in [10].

Since the sets U and W are not symmetric, in general,
T ∗
M (C)

T ∗
N (C) 	= T ∗

M (−C)

T ∗
N (−C) . Thus, to calculate the quantitative resilience

rq , we need to evaluate T ∗
N (±C) and T ∗

M (±C), i.e., solve four
optimization problems. The computation load can be halved with
the following result.

Theorem 2: If system (7) is resilient andC is a single nonzero
column, then rq = min{r+C , r−C}, with

r+C :=
wmin + λ+

wmax + λ+
, r−C :=

wmax − λ−

wmin − λ− (17)

and λ± := max
υ ∈U

{λ : Bυ = ±λC}.

Proof: Let ū ∈ Ū ,u ∈ U , andw ∈ W be the arguments of the
optimization problems (11) and (15) for d = C 	= 0. We write
ū = (uB , uC) ∈ U ×W . Then

B̄ū T ∗
N (C) = BuB T

∗
N (C) + CuC T

∗
N (C) = C

BuT ∗
M (C) + CwT ∗

M (C) = C. (18)
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We consider the loss of a single actuator; thus, W =
[wmin, wmax] ⊆ R which makes CwT ∗

M (C) and CuCT
∗
N (C)

collinear with C. From Proposition 3, we know that w ∈ ∂W .
Since w maximizes T ∗

M (C) in (18), we obviously have w =
wmin. On the contrary, uC is chosen to minimize T ∗

N (C) in (18),
so uC = wmax.

According to (18),BuB andBu are collinear withC, and they
are chosen to minimize T ∗

N (C) and T ∗
M (C), respectively. Thus,

u and uB are the vectors in U that maximize the norm ofBu and
BuB and make them positively collinear with C, i.e., u=uB =
argmin

υ ∈U
{τ : Bυτ = C}. Using λ = 1

τ , we render this problem

linear

λ+ = max
υ ∈U

{λ : Bυ = λC}

u = uB = argmax
υ ∈U

{λ : Bυ = λC} .
By combining all the results, (18) simplifies into

C(λ+ + wmax)T ∗
N (C) = C

C(λ+ + wmin)T ∗
M (C) = C.

Since C is a nonzero column, T ∗
N (C)

T ∗
M (C) =

λ++wmin

λ++wmax = r+C .
Following the same reasoning for d = −C, we obtain

C(−λ− + wmin)T ∗
N (C) = −C

C(−λ− + wmax
)
T ∗
M (C) = −C

with λ− = max
υ ∈U

{λ : Bυ = −λC}. Then, T ∗
N (−C)

T ∗
M (−C) =

wmax−λ−
wmin−λ− =

r−C . Following Theorem 1

rq = min

{
T ∗
N (C)

T ∗
M (C)

,
T ∗
N (−C)
T ∗
M (−C)

}
= min

{
r+C , r

−
C

}
.

�
We introduced quantitative resilience as the solution of four

nonlinear nested optimization problems, and with Theorem 2,
we reduced rq to the solution of two linear optimization prob-
lems. We can, thus, quickly calculate the maximal delay caused
by the loss of control of a given actuator.

V. RESILIENCE CONDITIONS

So far, all our results need the system to be resilient. However,
we know that verifying the resilience of a system with inputs of
finite energy is not an easy task [7], and thus, we can assume
that it is not trivial either with our component bounded inputs.

Proposition 5: A system following (6) is resilient to the loss
of control over a column C if and only if it is controllable and
both T ∗

M (C) and T ∗
M (−C) are finite.

Proof: If system (6) is resilient, then it is controllable a
fortiori, and Proposition 1 yieldsT ∗

M (C) andT ∗
M (−C) are finite.

On the other hand, assume that system (6) is controllable and
max{T ∗

M (C), T ∗
M (−C)} is finite. Let w ∈ W and d ∈ R

n
∗ . By

controllability of system (6), there exists ū ∈ Ū and λ > 0 such
that B̄ū = λd. We split B̄ into B and C, and ū into ud and wd.
Then, ud ∈ U and B̄ū = Bud + Cwd = λd. In the caseC = 0,
this equation yields Bud = λd = Bud + Cw, so the system is
resilient.

For C 	= 0, we will first show that for any w ∈ W , we
can find u ∈ U such that Bu+ Cw = 0. Because T ∗

M (C)
and T ∗

M (−C) are finite, TM (w,±C) is positive and fi-
nite for all w ∈ W = [wmin, wmax], with TM (·, ·) defined
in (24). Take w ∈ W . Then, there exist uw+ ∈ U and
uw− ∈ U such that (Buw+ + Cw)TM (w,C) = C and (Buw− +

Cw)TM (w,−C) = −C. Define α := TM (w,C)
TM (w,C)+TM (w,−C) ∈

(0, 1) and u := αuw+ + (1− α)uw− . Then, u ∈ U because U is
convex. Notice that

Bu+ Cw = α
(
Buw+ + Cw

)
+ (1− α)

(
Buw− + Cw

)
=

TM (w,C)

TM (w,C) + TM (w,−C)
C

TM (w,C)

+
TM (w,−C)

TM (w,C) + TM (w,−C)
−C

TM (w,−C) = 0.

We want to make a convex combination of u and ud to build
the desired control. If w ∈ ∂W , the resulting control will not
be stronger than the adversary. Therefore, we need to show
that even if w is a little bit outside of W , we can still coun-
teract it. Let ε := min( 1

2TM (wmin,C) ,
1

2TM (wmax,−C) ) > 0. Now,
take w′ ∈ (wmax, wmax + ε]. There exists u− ∈ U and u+ ∈
U such that (Bu+ + Cwmax)TM (wmax, C) = C and (Bu− +
Cwmax)TM (wmax,−C) = −C. Then, we can define T+ > 0
such that

Bu++ Cw′= Bu++ Cwmax+ C(w′ − wmax)

= C

(
1

TM (wmax, C)
+ w′ − wmax

)
=

C

T+
.

Since w′ − wmax ≤ 1/2TM (wmax,−C), we can similarly de-
fine T− > 0 such that

Bu− + Cw′= − C

(
1

TM (wmax,−C)−(w′−wmax)

)
=

−C
T− .

We take α = T+

T++T− ∈ (0, 1), which yields u′ = αu+ + (1−
α)u− ∈ U by convexity. Then, Bu′ + Cw′ = 0. With a simi-
lar approach, we can build another u′ to counteract any w′ ∈
[wmin − ε, wmin).

Since W is convex, w ∈ W , and wd ∈ W , we can take
w′ ∈ [wmin − ε, wmax + ε] such that there exists γ ∈ (0, 1) for
whichw = γwd + (1− γ)w′. We buildu′ ∈ U as above to make
Bu′ + Cw′ = 0. By convexity of U , u := γud + (1− γ)u′ ∈
U . Then

Bu+ Cw = γ (Bud + Cwd) + (1− γ) (Bu′ + Cw′) = γλd.

Since γ > 0, we have γλ > 0, making the system resilient to the
loss of column C. �

The intuition behind Proposition 5 is that a resilient system
has two properties: the ability to reach any state prior to a
malfunction, i.e., controllability, and the ability to do so after the
malfunction despite the worst undesirable inputs, i.e., T ∗

M (±C)
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Algorithm 1: Resilience Algorithm for System (6).

is finite. We can now derive resilience from a computation,
making it easier to verify.

Corollary 1: System (6) is resilient to the loss of control over
a nonzero column C if and only if it is controllable, and r+C and
r−C from Theorem 2 are in (0, 1].

Proof: IfC = 0, the controllability is equivalent to resilience
and r+C = r−C = 1. If C 	= 0 and system (6) is resilient, then
by Proposition 5, both T ∗

M (±C) are finite and system (6) is
controllable, so both T ∗

N (±C) are finite too. Trivially, T ∗
N ≤

T ∗
M , so we have both r+C =

T ∗
N (C)

T ∗
M (C) ∈ (0, 1] and r−C =

T ∗
N (−C)

T ∗
M (−C) ∈

(0, 1] according to Theorem 2.
On the other hand, assume that the system is control-

lable and that wmin+λ+

wmax+λ+ and wmax−λ−
wmin−λ− ∈ (0, 1]. If wmin + λ+ < 0,

then wmax + λ+ ≤ wmin + λ+ because r+C ∈ (0, 1]. This leads
to the impossible conclusion that wmax ≤ wmin. If wmin +
λ+ = 0, then r+C = 0. Therefore, wmin + λ+ > 0. Let u ∈ U
such that Bu = λ+C. For w ∈ W , we define Tw := 1

w+λ+ , so
that (Bu+ Cw)Tw = C. Note that Tw is positive and finite be-
cause w + λ+ ≥ wmin + λ+ > 0. Since T ∗

M (C) ≤ max
w∈W

Tw =

1
wmin+λ+ , T ∗

M (C) is finite.
The same reasoning holds for r−C . We can show that wmax −

λ− < 0 and that Tw := 1
λ−−w > 0 for all w ∈ W . With u ∈ U

such that Bu = −λ−C, we have (Bu+ Cw)Tw = −C. Then,
T ∗
M (−C) ≤ max

w∈W
Tw = 1

λ−−wmax , so T ∗
M (−C) is finite. Then,

Proposition 5 states that the system is resilient. �
We now have all the tools to assess the quantitative resilience

of system (6). We summarize the main steps of this process in
Algorithm 1.

VI. SYSTEMS WITH MULTIPLE INTEGRATORS

We can now extend the results obtained for driftless systems
to generalized higher order integrators.

Proposition 6: If system (6) is controllable, then the infimum
of (3) is achieved with the same constant control input ū∗ ∈ Ū
as T ∗

N in (8), and T ∗
k,N (d) = k

√
k! T ∗

N (d) for all d ∈ R
n.

Proof: If d = 0, then T ∗
k,N (d) = 0 = T ∗

N (d), so the result
holds. Let d 	= 0. By assumption, system ẏ(t) = B̄ū(t) with
y(0) = 0 is controllable. Following Lemma 1, there exists a
constant optimal control ū ∈ Ū such that y(T ∗

N (d))− y(0) =
d = B̄ūT ∗

N (d), with T ∗
N (d) > 0. Then, applying the control

input ū to (1) on the time interval [0, t1] leads to

x(t1)− x0 =

∫ t1

0

∫ t2

0

. . .

∫ tk

0

x(k)(tk+1) dtk+1 . . . dt2

=

∫ t1

0

∫ t2

0

. . .

∫ tk

0

B̄ū dtk+1 . . . dt2 = B̄ū
tk1
k!

=
d

T ∗
N (d)

tk1
k!

since x(l)(0) = 0 for l ∈ [[1, k − 1]] and B̄ū = d
T ∗
N (d) ∈ R

n is

constant. By taking t1 = k
√
k! T ∗

N (d), we obtain x(t1)− x0 =
d. Thus, the state xgoal is reachable in finite time t1, so the system
(1) is controllable and T ∗

k,N (d) ≤ t1.
Assume for contradiction purposes that there exists ũ ∈

Ū such that the state of (1) can reach xgoal in a
time τ < t1. Since ũ can be time varying, we build
û := k!

τk

∫ τ

0 . . .
∫ tk
0 ũ(tk+1) dtk+1 . . . dt2. Since ũ ∈ Ū , ũi(t) ∈

[ūmin
i , ūmax

i ] for all i ∈ [[1,m+ p]] and t ∈ [0, τ ]. Because ūmin
i

and ūmax
i are constant, one can easily obtain through k successive

integrations that ûi ∈ [ūmin
i , ūmax

i ] for all i ∈ [[1,m+ p]]. Thus,
û is an admissible constant control input. Then, we apply ũ to
(1) on the time interval [0, τ ], and we obtain

x(τ)− x0 = d =

∫ τ

0

. . .

∫ tk

0

B̄ũ(tk+1) dtk+1 . . . dt2 = B̄û
τk

k!

so B̄û = k!d
τk . Applying the control input û to the system ẏ(t) =

B̄ū(t) on the interval [0, T ] with T := τk

k! leads to

y(T ) =

∫ T

0

ẏ(t) dt =

∫ T

0

B̄û dt = B̄ûT =
k!d

τk
τk

k!
= d.

Thus, y can reach d in a time T = τk

k! <
tk1
k! = T ∗

N (d), which
contradicts the optimality of T ∗

N (d). In other words, t1 is the
minimal time for the state of (1) to reach xgoal. Therefore, the
infimum of (3) is achieved with the same constant input ū ∈ Ū
as T ∗

N (d) in (8), and T ∗
k,N (d) = k

√
k! T ∗

N (d). �
A result similar to Proposition 6 holds for the malfunctioning

reach time of order k.
Proposition 7: If system (7) is resilient, then system (2) is

resilient for all k ∈ N. The supremum and infimum of (4) are
achieved with the same constant inputs u∗ ∈ U and w∗ ∈ W as
T ∗
M in (9), and T ∗

k,M (d) = k
√
k! T ∗

M (d) for d ∈ R
n.

Proof: We use the same calculations as in Proposition 6 but
with Bu∗(w) + Cw instead of B̄ū and TM (w, d) instead of
T ∗
N (d). Then, u∗ from Lemma 2 produces the best control input
u∗(w) for any w ∈ W for system (2).

We go again through the proof of Proposition 6, but this
time we use Bu∗(w∗) + Cw∗ and T ∗

M (d). We conclude that
T ∗
k,M (d) = k

√
k! T ∗

M (d) and that w∗ from Proposition 1 is also
the worst undesirable input for system (2). �

We can now evaluate the quantitative resilience of order k.
Theorem 3: If system (6) is resilient, then for all k ∈ N,

system (1) is resilient and rk,q = k
√
rq .

Proof: Based on Propositions 6 and 7,
T ∗
k,M (d)

T ∗
k,N (d) =

k
√

k! T ∗
M (d)

k
√

k! T ∗
N (d)

= k

√
T ∗
M (d)

T ∗
N (d) , so rk,q = k

√
rq . �
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Fig. 1. Octocopter layout; image modified from [23].

For a resilient system rq ∈ (0, 1], then rk,q ≥ rq . Thus, adding
integrators to a resilient system increases its quantitative re-
silience. By studying ẋ(t) = B̄ū(t), we can then calculate the
quantitative resilience of any system of the form x(k)(t) =
B̄ū(t) for k ∈ N. We will now apply our theory to a numerical
example.

VII. RESILIENCE OF AN OCTOCOPTER

Resilience of unmanned aerial vehicles (UAVs) to propeller
failure is crucial to their operations over populated areas [22].
Because quadcopters have four inputs for six degrees of freedom,
they are underactuated and, thus, cannot be resilient to the loss
of control authority over one of their propellers [22]. Instead,
we consider the octocopter from [23] represented in Fig. 1. Its
design decouples the rotational and the translational dynamics,
allowing to keep a payload horizontal, which is crucial for pizza
delivery for instance.

In Sections VII-A and VII-B, we will first quantify the re-
silience of this UAV model to the loss of control over one of
its propellers. Since propellers cannot operate in a bang-bang
fashion, we will then add propellers’ dynamics to the UAV
model in Section VII-C. Because of this modification, the UAV
dynamics are not driftless. Hence, most of our theory does
not apply but still provides good intuition on the quantitative
resilience of this octocopter model.

A. Rotational Dynamics

The roll, pitch, and yaw angles of the octocopter are gathered
inY := (φ, θ, ψ). The propeller i ∈ [[1, 8]] spinning at an angular
velocityωi produces a force fi = kω2

i , with the thrust coefficient
k = 10−5 N·s−2. The airflow created by the lateral rotors pro-
duces the extra vertical forces f9, . . . , f12 in Fig. 1. From [23],
f9+i = bf5+i for i ∈ [[0, 3]]with the coupling constant b = 0.64.
The rotational equations are linearized around Ẏ = 0 and be-
come Ÿ = B̄rΩ, with Ω ∈ R

8 gathering the squared angular
velocities of the propellers ω2

1 , . . . , ω
2
8 and

B̄r=

⎡
⎢⎣

lk
Ix

0 0

0 lk
Iy

0

0 0 d
Iz

⎤
⎥⎦
⎡
⎢⎣−1 0 1 0 0 0 b −b

0 1 0 −1 b −b 0 0

−1 1 −1 1 0 0 0 0

⎤
⎥⎦

with an arm length l = 40 cm, drag coefficient d =
3× 10−7 m·s2, inertias Ix = Iy = 1

2Iz = 44× 10−3 kg·m2,
mass m = 1.64 kg, and maximal angular velocity ωmax =
838 rad·s−1 [15]. Since the input sets are nonsymmetric: ūi :=
ω2
i ∈ [0, ω2

max], and the dynamics are given by a double integra-
tor, the theory of [8] cannot deal with this UAV model. Using
Theorem 2, we calculate the quantitative resilience of the system
v̇Y (t) = B̄rū(t) with vY := Ẏ for the loss of control over
each single propeller: rmin = [0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1].
Based on Corollary 1, the UAV is, thus, resilient to the loss of
control over any single propeller in terms of angular velocity and
rq = min{r±C}. Following Theorem 3, we deduce that Ÿ (t) =

B̄rū(t) is also resilient and r2,q =
√
rq =

√
0.1 = 0.32. Then,

1
r2,q

= 3 and 1
rq

= 10 mean that after the loss of control over
any single propeller, the UAV might take as much as three times
longer to reach a given orientation, while it might be ten times
slower to reach a given angular velocity.

B. Translational Dynamics

Since the rotational dynamics are resilient, we know that
the controller can maintain the UAV horizontal even after the
loss of control over a propeller. From now on, we will then
assume θ = φ = 0◦. To prevent obfuscating the following anal-
ysis, we assume that this orientation is maintained no matter
the inputs u and w. In addition, the yaw angle does not affect
the translational dynamics, so we also take ψ = 0◦. Then, the
translational dynamics of the octocopter are equivalent to that
of a point-mass model, and they are fully decoupled from the
rotational dynamics, as desired by design [23]. The position of
the UAV is X := (x, y, z) and satisfies

mẌ =

⎡
⎢⎣

k(ω2
5 − ω2

6)

k(ω2
7 − ω2

8)

k
∑4

i=1 ω
2
i + bk

∑8
i=5 ω

2
i −mg

⎤
⎥⎦ .

The horizontal propellers (ω1, . . . , ω4) are designed to sustain
the weight of the drone, while the lateral ones (ω5, . . . , ω8) are
smaller and should mostly be used for lateral displacements.
Thus, we define the inputs ūi := kω2

i − mg
4 ∈ [−mg

4 , kω
2
max −

mg
4 ] for i ∈ [[1, 4]] and ūi := kω2

i ∈ [0, kω2
max] for i ∈ [[5, 8]].

Then, the translational dynamics become

Ẍ(t) = B̄tū(t), Ẋ(0) = X(0) = 0 ∈ R
3 (19)

with B̄t =
1
m

⎡
⎢⎣0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1

1 1 1 1 b b b b

⎤
⎥⎦.

After the loss of control authority over a propeller, we split
B̄t and ū into B, C and u, w as before. The initial state is the
same, and the malfunctioning dynamics are

Ẍ(t) = Bu(t) + Cw(t). (20)

For system v̇ = B̄tū, with v := Ẋ , Theorem 2 yields

r+C =
[
0.766 0.766 0.766 0.766 0 0 0 0

]
,

r−C =
[
0.564 0.564 0.564 0.564 0 0 0 0

]
.
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Fig. 2. Time evolution of ż. For “no failure,” v̇ = B̄tū
min. For “loss of

ω1,” v̇ = Bu+Cw with C the first column of B̄t, w = kω2
max −mg/4

and u = umin. For “loss of ω5,” v̇ = Bu+Cw with C the fifth column of
B̄t, w = kω2

max and u = umin except ū6 = kω2
max to keep the UAV on the

z-axis.

Then, according to Corollary 1, the system of dynamics v̇ =
B̄tū is only resilient to the loss of any one of the first
four propellers. Following Theorem 2, rq = min{r+C , r−C} =
[0.564 0.564 0.564 0.564 0 0 0 0]. Since Theorem 3 only applies
to resilient systems, we use it on the first four propellers r2,q =√
rq = [0.75 0.75 0.75 0.75]. Then, 1

rq
= 1.77 and 1

r2,q
= 1.33

mean that the after the loss of a horizontal propeller, the UAV
might need 1.77 times longer to reach a given velocity but only
1.33 times longer to reach a desired position.

Let us now evaluate how the loss of a propeller impacts the
vertical velocity. We take d = (0, 0,−1) and compute

T ∗
M (d)

T ∗
N (d)

= [1.77 1.77 1.77 1.77 2.26 2.26 2.26 2.26] . (21)

The first four values are the same as 1/rq because the direction
the worst impacted by the loss of a horizontal propeller is alongd.
We now simulate various loss of controls and aim to fly vertically
the UAV along d = (0, 0,−1).

As illustrated in Fig. 2, to reach the velocity v = (0, 0,−1),
the nominal system needs 0.102 s, while the malfunctioning ones
need 0.181 and 0.231 s after the loss of ω1 and ω5, respectively.
Then, the reach times increased by factors 1.77 and 2.26, exactly
the values calculated in (21) as the choice of inputs in the
simulation is optimal.

We now study T ∗
N (d) and T ∗

M (d) for the velocity targets
d(β) = (0, cosβ, sinβ) for all β ∈ [0, 2π]. After the loss of
ω1, 1

rq
= 1.77, so T ∗

M (d) ≤ 1.77 T ∗
N (d) for any d ∈ R

n, as
illustrated in Fig. 3.

Note that d( 3π2 ) = (0, 0,−1), and as calculated in (21), we
have T ∗

M (d( 3π2 )) = 1.77 T ∗
N (d( 3π2 )), as shown in Fig. 3. The

lack of input symmetry results in T ∗
M (β) 	= T ∗

M (β + π), as
shown in Fig. 3. Such a situation could not be handled by the
preliminary work [8].

C. High-Fidelity Dynamics of the Propellers

So far in this work, all the inputs were bang-bang because our
definition of quantitative resilience asks for time-optimal trans-
fers. The inputs of the translational dynamics (19) encode the
propellers’ angular velocities, which cannot physically change

Fig. 3. Evolution of T ∗
N (d) and T ∗

M (d) for a velocity target d(β) =
(0, cosβ, sinβ).

Fig. 4. Exponential convergence of ū1 and w to their bang-bang com-
mands ūc

1 = ūmax
1 = kω2

max − mg
4 and wc = ūmin

1 = − mg
4 .

in a bang-bang fashion. Thus, in order to provide a more realistic
model and display the capabilities of our work, we follow [24]
and add first-order propellers’ dynamics

Ẍ(t) = B̄tū(t), ˙̄u(t) =
1

τ
(ūc(t)− ū(t)) (22)

with ūc ∈ R
8 a new, possibly bang-bang, command signal.

System (22) is not driftless, hence preventing a direct application
of our theory. Instead, we proceed heuristically, building on
the intuition provided by our theory to tackle this high-fidelity
model.

The time constant τ = 0.1 s is chosen to match the propeller
response in [25, Fig. 3]. After the loss of control over the first
propeller, we split B̄t and ū as before such that

Ẍ(t) = Bu(t) + Cw(t),

{
u̇(t) = 1

τ (uc(t)− u(t))
ẇ(t) = 1

τ (wc(t)− w(t))
(23)

with the bang-bang command signals uc and wc. We will now
study how the actuators’ dynamics impact the resilience of the
UAV in the vertical direction d = (0, 0, 1).

Since the inputs ū in (22) and (u,w) in (23) have a nonzero
rise time, as shown in Fig. 4, the vertical velocities żN of (22)
and żM of (23) react smoothly and slower than their bang-bang
counterparts, as illustrated in Fig. 5. For t ≥ 0.4 s, ū and (u,w)
have converged to their commands ūc and (uc, wc), and thus,
the two slopes of żN (t) in (19) and (22) are equal, as shown in
Fig. 5, and so are that of żM (t) in (20) and (23).
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Fig. 5. Vertical velocities żN (t) and żM (t) of the nominal and malfunc-
tioning systems demonstrating the impact of the propellers’ dynamics in
(22) and (23).

Fig. 6. Vertical positions zN (t) and zM (t) of the nominal and malfunc-
tioning systems demonstrating the impact of the propellers’ dynamics in
(22) and (23).

The slower reaction time caused by the dynamics of the
propellers is also reflected on the vertical positions zN and zM
in Fig. 6.

Because of the specific geometry of the system, the opti-
mal inputs for direction d = (0, 0, 1) were trivial to determine.
Then, we calculate the ratio of reach times for systems (22)
and (23) as T ∗

M (d)

T ∗
N (d) = 1.12 and for systems (19) and (20) as

T c∗
M (d)

T c∗
N (d) = 1.14. Hence, modeling the dynamics of the propellers

increases slightly the resilience of the vertical dynamics.
However, the time-optimal commands ūc for (22) and

(uc, wc) for (23) can be time varying for other directions d ∈ R
3

[11], and determining these optimal commands requires com-
plex algorithms [17], [26] because the dynamics are no more
driftless. In addition, the Maximax Minimax Quotient Theorem
of [10] does not hold, which invalidates Theorem 1 and pre-
vents the exact calculation of rq without calculating T ∗

M (d)

T ∗
N (d) for

all d ∈ R
3. A stronger theory will be needed to tackle linear

nondriftless systems.

VIII. CONCLUSION

This article introduced the notion of quantitative resilience
for linear systems with multiple integrators and nonsymmetric
input sets. Relying on bang-bang control theory and on two

specific optimization results, we transformed a nonlinear prob-
lem consisting of four nested optimizations into a single linear
optimization. This simplification leads to a computationally
efficient method for verifying the resilience and calculating
the quantitative resilience of driftless systems with multiple
integrators.

There are three promising avenues of future work. First, we
want to extend Theorems 1 and 2 to the simultaneous loss of
multiple actuators. Second, we aim at developing the theory of
quantitative resilience for nondriftless linear systems. Finally,
we want to extend our notion of resilience from the system’s
state to its output. This would allow, for instance, to assess the
resilience of a drone with respect to its position, pitch, and roll
angles, while disregarding its yaw angle as in [22].

APPENDIX

SUPPORTING LEMMATA

Lemma 1: If system (6) is controllable, then for all d =
xgoal − x0 ∈ R

n, the infimum T ∗
N (d) of (8) is a minimum

achieved by a constant control input ū∗ ∈ Ū .
Proof: According to [11, Th. 4.3], there exists a time-optimal

control ū∗ ∈ F(Ū). Following the Pontryagin maximum princi-
ple [11], ū∗ is bang-bang but does not switch since the dynamics
are driftless. Thus, the infimumT ∗

N in (8) is a minimum achieved
by a constant control input. �

Lemma 2: If system (7) is resilient, then for all d ∈ R
n
∗ and

all w ∈ F(W), the infimum TM (w, d) of (9) is a minimum
achieved by a constant control input u∗(w) ∈ U and

TM (w, d) :=min
u∈U

{
T ≥ 0 :

∫ T

0

[Bu(t) + Cw(t)] dt = d

}
.

(24)
Proof: The infimum of (9) is TM (w, d) = inf

u∈F(U)
{T ≥ 0 :∫ T

0 Bu(t) dt = z}, with z := d− ∫ T

0 Cw(t) dt ∈ R
n a con-

stant vector for w fixed. Since system (7) is resilient, any
z ∈ R

n is reachable. Following Lemma 1 and [11, Th. 4.3], a
constant time-optimal control exists and the infimum of (9) is a
minimum. �

Lemma 3: For a resilient system following (7), function
TM (w, d) := min

u∈U
{T ≥ 0 : (Bu+ Cw)T = d} is continuous

in w ∈ W and d ∈ R
n
∗ .

Proof: With X := {Cw : w ∈ W}, Y := {Bu : u ∈ U},
and λ = 1/T , we obtain TM (x, d) = 1/max

y ∈Y
{λ ≥ 0 : x+ y =

λd}. Since ‖d‖ > 0 and λ ≥ 0, we have λ = ‖λd‖/‖d‖ = ‖x+
y‖/‖d‖. Let d1 := d/‖d‖; then, TM (x, d) = ‖d‖/max

y ∈Y
{‖x+

y‖ : x+ y ∈ R
+d1}, and [10, Lemma 5.2] states that TM is

continuous in w and d. �
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