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Algorithms With Localized Information
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Abstract—Emerging applications in the Internet of
Things (IoT) and edge computing/learning have sparked
massive renewed interest in developing distributed ver-
sions of existing (centralized) iterative algorithms often
used for optimization or machine learning purposes. While
existing work in the literature exhibits similarities, for the
tasks of both algorithm design and theoretical analysis,
there is still no unified method or framework for accom-
plishing these tasks. This article develops such a general
framework for distributing the execution of (centralized)
iterative algorithms over networks in which the required
information or data is partitioned between the nodes in the
network. This article furthermore shows that the distributed
iterative algorithm, which results from the proposed frame-
work, retains the convergence properties (rate) of the orig-
inal (centralized) iterative algorithm. In addition, this article
applies the proposed general framework to several interest-
ing example applications, obtaining results comparable to
the state of the art for each such example, while greatly sim-
plifying and generalizing their convergence analysis. These
example applications reveal new results for distributed
proximal versions of gradient descent, the heavy ball
method, and Newton’s method. For example, these results
show that the dependence on the condition number for the
convergence rate of this distributed heavy ball method is at
least as good as that of centralized gradient descent.

Manuscript received 4 October 2022; revised 25 April 2023; accepted
7 May 2023. Date of publication 25 May 2023; date of current version 5
December 2023. The work of Carlo Fischione was supported in part
by the Digital Futures Research Center in KTH, in part by the SSF
Project SAICOM, and in part by the VR Project MALEN. The work of
Sindri Magnússon was supported by Digital Futures and the Swedish
Research Council (Vetenskapsrådet) under Grant 2020-03607. Recom-
mended by Associate Editor Y. Wang. (Corresponding author: Thomas
Ohlson Timoudas.)

Thomas Ohlson Timoudas is with RISE Research Institutes of Swe-
den, Division Digital Systems, Computer Science, 164 40 Kista, Sweden
(e-mail: thomas.ohlson.timoudas@ri.se).

Silun Zhang is with the Laboratory for Information and Decision Sys-
tems, Massachusetts Institute of Technology, Cambridge, MA 02139
USA (e-mail: silunz@mit.edu).

Sindri Magnússon is with the Department of Computer and System
Science, Stockholm University, 114 19 Stockholm, Sweden (e-mail:
sindrimagn@gmail.com).

Carlo Fischione is with the Digital Futures, KTH Royal Institute of
Technology, 100 44 Stockholm, Sweden (e-mail: carlofi@kth.se).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TAC.2023.3279901.

Digital Object Identifier 10.1109/TAC.2023.3279901

Index Terms—Agents and autonomous systems, com-
munication networks, distributed algorithms, optimization
algorithms.

I. INTRODUCTION

THE need for machine learning and optimization in Internet
of Things (IoT) applications and edge computing systems

has pushed a renewed interest into iterative algorithms that
solve, for example, machine learning or optimization problems
by distributed computations. Many recent developments of dis-
tributed iterative algorithms have adapted and further developed
ideas from, for example, network consensus [1], dynamic av-
erage consensus and consensus tracking [2], [3], distributed
optimization [4], [5], [6], and distributed learning [7], [8]. Con-
crete examples can be found throughout the vast literature on
multiagent systems and consensus, having broad applications
such as networked synchronization [9], [10], [11], formation
control [12], [13], [14], multidimensional scaling [15], sensor
fusion [16], [17], and signal recovery [18].

The idea of investigating the convergence properties of dis-
tributed iterative algorithms drawing on the massive wealth of
existing work in the nondistributed (also referred to as central-
ized) setting, and combining it with a network consensus proto-
col, appears to be potentially quite fruitful. Yet, the development
of such distributed algorithms from existing centralized ones
still requires significant work, both for the algorithm design,
and to establish their theoretical convergence properties, even
though many examples share many characteristics from both
aspects [19], [20]. There is an urgent need to standardize this
process and the methods to transform centralized iterative al-
gorithms into distributed ones, and to simplify the development
of new distributed algorithms for future networked applications,
while taking advantage of the significant existing work on cen-
tralized algorithms.

Such a unified framework would have additional benefits.
For instance, many emerging IoT applications have very dif-
ferent requirements compared to traditional distributed settings,
e.g., relying on massive wireless networks and/or (provisional)
mesh networks without a central coordinator, with intermittent
and/or limited communication in terms of bandwidth and data
rates [21], [22]. Additionally, the data needed for many appli-
cations is generated by several different nodes with different
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ownership. As a result, these applications tend to emphasize
higher degrees of decentralization and autonomy, data privacy,
energy conservation, and interference mitigation. These network
and communication considerations add another layer to the
distributed algorithm design. A unified framework for distribut-
ing (centralized) iterative algorithms could also facilitate the
analysis and integration of such an added communications layer,
independently of the specifics of the “base” algorithm that is
being distributed.

We shall now define the class of algorithms that we consider
in this article. In many applications, a (the) solution x∗ ∈ R

d

to a given problem can be found as a fixed point of an iterative
algorithm

x(t+ 1) = Φ(x(t)) = F (x(t), Dx(t)) (1)

given by a mapping Φ, where F : Rd × R
m → R

d and D :
R

d → R
m are some operators. Here, x(t) is an iterate that is

updated according to the algorithm F (·), and Dx(t) is some
additional information, possibly depending on x(t), required to
execute the algorithm, e.g., a gradient or a Hessian matrix. We
shall refer to the operator D as the “data” operator. However,
D does not (necessarily) represent a concrete data set, but
rather some additional information derived from such a data
set. Examples of algorithms that can be expressed in this form
include vanilla/proximal gradient methods, Newton’s method,
and dynamic programming [23], [24].

Now that the class of algorithms under consideration has been
made clear, we shall clarify the network setting—how the data
are distributed throughout the network. In many of the emerging
IoT applications, the data will not be located at a single node,
but rather distributed between multiple nodes in the network.
For instance, in networks where all the nodes exploit data in
the same manner, Dx(t) is often the average of local data
operators [25]

D(x) =
1

n

n∑
i=1

Di(x) (2)

where Di(x) is the local data (operator) of node i, e.g., Di(x)
is the local gradient or Hessian matrix for the node i, evaluated
at the point x. In highly dense and/or mesh networks, it may
not be feasible to transmit all the local data Dix(t) to a central
coordinator, e.g., due to power/interference constraints, or the
need to route data through many nodes. In such cases, especially
in the absence of a central coordinator, it may be therefore
necessary to compute the solution using the algorithm in (1), in
a distributed fashion, without access to the full data (operator)
D, using instead local estimates of D based on communication
between network neighbors (i.e., consensus/gossip).

The goal of this article is to develop a general method for dis-
tributing the execution of such iterative (centralized) algorithms
in networks.

A. Related Work

In recent years, the study of distributed learning and opti-
mization has seen tremendous interest and advances. In fact,
many problems in engineering, learning, and coordination of
networked agents can be formulated (at least in part) as an

optimization problem. Early work on decentralized algorithms
to solve such optimization problems include primal-dual ap-
proaches for resource allocation in networks [26], and incre-
mental subgradient methods, by which the nodes sequentially
broadcast their local (sub)gradients to the others, followed
by a common gradient update, in a round-robin fashion [27],
in random sequence [28], or more complicated deterministic
sequence [29]. These ideas were further developed to better
scale in networks with many nodes in [6], allowing nodes in
(decentralized) mesh networks to transmit their local gradients
and perform updates in parallel (and only to their direct network
neighbors), using ideas from consensus (and in particular dy-
namic average consensus and consensus tracking [2], [3]) that
had proved successful in applications to multiagent control [10],
[11], and sensor fusion [16].

One major drawback of the early distributed subgradient
method introduced in [6], is that it requires decaying step sizes.
While suitable (and sufficient) for nonsmooth objective func-
tions, this requirement results in sublinear convergence rates
even for strongly convex objective functions – in contrast to the
(nondistributed) standard gradient descent. The authors in [30]
and [31] analyzed the effects of using a (sufficiently small)
constant step size, and found that the (mean) squared error in
fact decreases linearly, but only up to a certain, nonzero error
bound (which increases with the step size). Subsequent work
showed that it was possible to modify this algorithm to attain
linear convergence rates in the strongly convex case.

Interestingly, several different approaches to achieve a linear
convergence rate have been developed in recent years, and can
be mainly divided into the following two approaches:

1) adaptive correction terms using previous iterates, e.g.,
EXTRA [32]; and

2) gradient tracking methods, e.g., Aug-DGM [33],
DIG [34], and [35].

These ideas have also been adapted to the context of yet other
optimization algorithms, such as Nesterov gradient descent [36],
the heavy ball method [37], (inexact) Newton–Raphson [38],
projected/proximal gradient descent [20], [39], [40], [41], and
mirror descent [42]. Alongside these developments, decentral-
ized versions of many other algorithms have been (indepen-
dently) developed based on similar ideas, such as dual averag-
ing [43], ADMM [44], [45], and forward-backward Bregman
splitting schemes [46].

Many of these algorithms in the literature are very similar,
with differences in order of operations, what exactly is commu-
nicated in the consensus steps, and/or differences due to the par-
ticular algorithm that is being decentralized. In particular, they
all rely on ideas developed in earlier work on dynamic average
consensus and consensus tracking [2], [3]. As a result, recent
work has attempted to reconcile these in a unified algorithmic
framework. In particular, [19], [20], [41], [47] have proposed
general frameworks that unify algorithm design and convergence
proofs for several different variations of distributed gradient
descent, and their proximal versions, in the literature. A general
separation principle for designing decentralized optimization
algorithms, by combining a base optimization algorithm with
consensus tracking, is proposed in [48]. Additionally, a unified
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convergence analysis approach is proposed, and demonstrated
on decentralized versions of gradient descent and ADMM, by
regarding the gradient operators as a feedback regulator in a
closed-loop dynamical system. These works provided a view to
separate the ingredients of optimization and consensus average
in distributed optimization algorithms, which depicts a divide
and conquer strategy in distributed optimization, i.e., separating
the development of new consensus dynamics, e.g., [2], [3], with
the optimization iterations. In this article, we continue such a
path to separate network collaborations within a class of general
contraction iterations.

B. Summary of Our Contributions

We summarize our main contributions as follows.
� Given a general class of iterative algorithms designed for

centralized settings, we formalize and develop a frame-
work for distributing its execution in (mesh) networks, for
which the information necessary for such an execution is
spread throughout the network.

� We prove that, if the original algorithm has a linear conver-
gence rate, then the distributed algorithm also has a linear
convergence rate (with a different constant factor), for a
general class of algorithms.

� As a special case, we show that our framework provides a
unified method and analysis distributing multiple different
first-order gradient methods (e.g., standard gradient de-
scent, (proximal) heavy ball, proximal gradient descent),
as well as second-order Newton methods.

� These results show, for instance, that the dependence on
the condition number (the ratio between the smoothness
and strong convexity parameters) of the convergence rate
of our distributed (proximal) heavy ball method is no
worse than for centralized gradient descent—an improve-
ment on the existing state of the art.

� In this work, the analysis of proximal distributed versions
follow immediately from the corresponding analysis of
the nonproximal case. Accordingly, we can show that the
proximal distributed version of (any) such algorithm en-
joys the same convergence rate as the distributed version of
the non- algorithm (analogous to the centralized setting).

C. Structure of this Article

Section II introduces the problem formulation, together with
a list of assumptions we will use to analyze the problem and
prove our theoretical results. The proposed distributed solution
(algorithm) is given in Section III. Section IV contains our theo-
retical main results about the convergence (rate) of the proposed
algorithm. The main results are applied to several examples from
optimization in Section V. The results in Section V demonstrate
the wide applicability of our framework, and also establish some
new results for specific example algorithms. The proofs of the
main theoretical results are given in Section VI.

D. Notation

In the rest of this article, without extra indication, all vectors
are regarded as real-valued row vectors. The exception to this

rule is that 1k always denotes a column vector in R
k×1, whose

components are all 1. Given n vectors v1, . . . , vn ∈ R
d, we

denote by v ∈ R
d the average of the vectors:

v =
1

n

n∑
i=1

vi.

Given a matrix A ∈ R
m×n, we denote by A·,i and Aj,· the ith

column and jth row of matrix A, respectively. The transpose of
A is denoted by AT.

For vectors, ‖ · ‖2 denotes the Euclidean norm, and for ma-
trices it denotes the induced operator norm, which is defined
by

‖A‖2 = max
v �=0

‖Av‖2
‖v‖2 .

The norm ‖ · ‖F denotes the Frobenius norm of matrices, i.e.,

‖A‖F =

√∑
i,j

a2ij

for matrices A = (aij).
The map I refers to “the” identity map, and the domain of the

map is given by the context.

II. PROBLEM FORMULATION

As mentioned in the introduction, many interesting applica-
tions involve finding fixed point solutions to an iterative algo-
rithm of the form (1), which could be equivalently expressed as
the (iterative) algorithm

x(t+ 1) = F (x(t), y(t))

y(t+ 1) = Dx(t+ 1). (3)

Recall that F : Rd × R
m → R

d is some operator, given by the
algorithm of the problem application, and that the data operator
D : Rd → R

m models some additional input data, which may
depend on the current iterate x(t), required to execute the
algorithm. Note that many optimization algorithms can fit the
form given in (3). In Section V, the correspondence between
concrete examples and the abstract algorithm formulation in (3)
is demonstrated, see Section V-A for proximal gradient descent
method, Section V-B for heavy ball method, and Section V-C
for Newton’s method.

The premise of this article is as follows: suppose that n
distinct agents (called nodes) have the common goal of finding
the solution (fixed point) x∗ to an iterative algorithm of the
form (1)

x(t+ 1) = Φ(x(t)) = F (x(t), Dx(t)).

We shall assume that this iterative algorithm is linearly con-
vergent, i.e., that Φ : Rd × R

d has a unique fixed point x∗

satisfying ‖Φ(x)− x∗‖ ≤ r‖x− x∗‖, for some 0 ≤ r < 1 and
every x ∈ R

d. The exact technical assumptions used in this
article are given in Section II-A.

We will furthermore assume that the data D is distributed
between these n nodes in the network, such that each node
i = 1, . . . , n has a local data operator Di : R

d → R
m, and that

these local data operators average to D

Dx =
1

n

n∑
i=1

Dix (4)
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for every x ∈ R
d. For example, Dix might be the local gradient

or Hessian matrix of node i at the point x. The assumption in (4)
is in general not very restrictive, see Remark 4 and the discussion
following it, in Section II-A. In particular, it is assumed that no
single node knows the (global) data operator D(·) – however, it
is assumed that all of the nodes know the operator F (i.e., how
to combine the local data in the algorithm).

Communication between the nodes is restricted to the edges
of a fixed (constant) undirected (network) graph G = (V, E)
(which may be arbitrary), in which the vertices V = {1, . . . , n}
represent the agents, and the edges in E represent (bidirectional)
communication links. We assume that the graph is connected,
but it can otherwise have arbitrary topology. Two nodes i, j ∈ V
are called neighbors if and only if there is an edge (i, j) ∈ E , and
we write j ∈ N (i) if there is an edge from node i to j. In this
network model, two agents i, j ∈ V are able to communicate if
and only if they are neighbors. Since each node has access to
its own data, we assume that (i, i) ∈ E for every i ∈ V . Given a
graphG withn nodes, a mixing matrix for the graphG is a doubly
stochastic1 matrix W = (wij) ∈ R

n×n, whose elements satisfy
wij > 0 if and only if (i, j) ∈ E . Suppose that σ is the second
largest eigenvalue of W (1 is the largest one). For such matrices,
one can show that

‖Wx− 1

n

n∑
i=1

xi1‖2 ≤ σ‖x− 1

n

n∑
i=1

xi1‖2

for any (column) vector x = (x1, . . . , xn) ∈ R
n×1. We are now

ready to state the main problem (inspired by a conjecture in [35])
to which this article is devoted.

Problem 1: Develop an iterative distributed (decentralized)
algorithm to find the solution (fixed point) x∗ of (3) that main-
tains a linear convergence rate,2 such that communication is
restricted to the edges (links) in E .

It would be interesting to pose and solve the same problem for
other convergence rates, such as sub-linear. In Section V, we fur-
ther explore this problem in the context of several common opti-
mization algorithms, and how our results apply to them, such as:

1) standard (and proximal) gradient descent;
2) the heavy ball method;
3) Newton’s method.

To develop distributed solutions (algorithms) to this problem,
and establish their theoretical properties, we must first pin
down the structures and assumptions we impose on the original
algorithm (3).

A. Assumptions

In this work, we consider algorithms that converge linearly.
More formally, we make the assumption.

Assumption 1: There is a constant r ∈ [0, 1), and a unique
fixed point x∗ ∈ R

d of Φ, i.e., x∗ = Φ(x∗), such that

‖Φ(x)− x∗‖2 ≤ r‖x− x∗‖2 (5)

1Every component of the matrix is nonnegative, and moreover each row’s
components sum to one, and each column’s components sum to one.

2The iterative algorithm in (3) has a linear convergence since r ∈ [0, 1). The
convergence rate of the distributed algorithm may have different constants.

for every x ∈ R
d. Moreover, let 0 ≤ δ be a constant satisfying

‖Φ(x)− x‖2 ≤ δ‖x− x∗‖2 (6)

for every x ∈ R
d.

Remark 1: Note that any contraction mapping Φ(x) satisfies
(5), which is therefore weaker than assuming that Φ(x) is a
contraction. Moreover, the assumption (5) also implies that the
underlying algorithm Φ(·) has a linear convergence rate.

The more general algorithms with other convergence rates
are left for the future study. Here, we conjecture that for any
algorithms with a sublinear convergence rate, a similar decen-
tralization method exists as proposed in this article.

Remark 2: Furthermore, for any mapping Φ that satisfies
(5), the assumption in (6) naturally holds 3 with δ = 1 + r ≤ 2
(which is not sharp, in general). The reason we still indicate
(6) explicitly, is because the convergence rate we obtain for our
proposed algorithm depends on δ—a smaller δ gives a better
convergence rate.

While we expect it to be possible to extend our results to algo-
rithms that are convergent in the Lyapunov-sense, i.e., with re-
spect to a Lyapunov function, that would require a substantially
more complicated proof. Therefore, we leave it as a possible
future extension of our work.

We also need to impose some smoothness conditions on the
algorithm and data operator. Specifically, we assume that both
of the functions F and D are Lipschitz continuous. Lipschitz
continuity for F can be stated as follows:

Assumption 2: There are positive real numbers Lx and Ly ,
such that the function F : Rd × R

m → R
d satisfies both

‖F (x, y)− F (z, y)‖2 ≤ Lx‖x− z‖2
and

‖F (x, y)− F (x, u)‖2 ≤ Ly‖y − u‖2
for any points x, z ∈ R

d, and y, u ∈ R
m.

Additionally, we need to assume that the local data operators
Di are Lipschitz continuous, to ensure that the consensus step
converges.

Assumption 3: There is a positive real number LD, such that,
for every 1 ≤ i ≤ n, the map Di : R

d → R
m satisfies

‖Dix−Diz‖2 ≤ LD‖x− z‖2
for any points x, z ∈ R

d. Moreover, (4) holds.
Remark 3: The Lipschitz condition in Assumption 3 could

be stated in a weighted L2-norm to allow more flexibility when
applying our framework to algorithms with complex data de-
pendencies. We have opted for this simpler case, to keep the
notation in the proofs to a minimum.

Remark 4: If D is instead given by a weighted sum D =∑
aiDi, one may use the transformation Di �→ n

ai
Di to bring

D onto the form D = 1
n

∑
Di in (4), without changing the

information content of D.
In many applications, it is natural to assume that (4) holds,

e.g., in joint optimization problems in which the global objective
function is the sum (or average) of local objective functions.
This assumption is in general not very restrictive, since the local

3By the triangle inequality, ‖Φ(x)− x‖2 ≤ ‖Φ(x)− x∗‖2 + ‖x∗ − x‖2 ≤
(1 + r)‖x∗ − x‖2.
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operators can in many cases be embedded into a direct product
space, so that D = 1

n (D1, . . . , Ds), and then combined inside
the function F .

Lastly, we impose the following requirement on the commu-
nication graph.

Assumption 4: The network graph G is connected, and the
second largest eigenvalue σ of the mixing matrix W = (wij)
satisfies 0 ≤ σ < 1.

This is a standard assumption, and is necessary to ensure that
the local data can spread to every node (and that the nodes can
reach consensus).

III. PROPOSED DISTRIBUTED SOLUTION

The main idea to decentralize an (iterative) algorithm in a
network is balancing the original iteration with the data spread-
ing and synchronization amongst the nodes. For an algorithm
given by the mapping Φ(·), such a balance of two simultaneous
procedures, iteration, and synchronization, is often facilitated
by linear interpolation of Φ

Φθ = (1− θ) I+θΦ (7)

where I is the identity mapping, and the interpolation weight
θ varies between 0 and 1, i.e., 0 < θ ≤ 1. Note that a point x
is a fixed point of Φ if and only if it is also a fixed point of
Φθ, and that Φ1 = Φ. Essentially, θ is a “step size”—decreasing
it means taking a smaller “step” in the update direction deter-
mined by Φ− I, which can be used to increase the relative
strength of a synchronization step (e.g., consensus) between
nodes. This is also a common construction in the study of
nonexpanding operators - for example, the parameter θ is the
(normalized) step size used to ensure convergence of gradient
descent methods.

The linear interpolation for the mappingF (·, ·) similarly reads

Fθ(x, y) = x− θ(x− F (x, y)) = (1− θ)x+ θF (x, y). (8)

Notice that we interpolate only with respect to the first variable,
but not the second one (the input data variable). Using the above
interpolations, the corresponding iterative algorithm is given by

x(t+ 1) = Φθ(x(t)) = Fθ(x(t), Dx(t))

which has exactly the same solutions (fixed points) as the orig-
inal one in (3) using Φ.

Our proposed solution to 1, given by Algorithm 1, only
relies on (parallel) local execution of the algorithms, using
local estimates of the global data operators D, followed by a
consensus (communication and combination) step. The con-
sensus step, which is an extension of consensus tracking and
gradient tracking in the literature, essentially “diffuses” the
local data operators Di throughout the network, to compute
(delay-compensated) local estimates that converge to the global
operator D. This is the reason for the name of the algorithm—
interleaved network consensus and local iteration compensa-
tion, or INCLIC.

Algorithm 1: (INCLIC) Interleaved network consensus and
local iteration compensation.

Input: The mixing matrix W = (wij), and the parameter
θ ∈ (0, 1] for the interpolation.
1: Initialization: Each agent i ∈ [n] initializes its local

state variables xi(0) (any initial value is allowed) and
yi(0) = Dixi(0).4

2: At each iteration t = 0, 1, . . . , each agent i performs
the following process (in parallel):

Step 1 (Locally) compute the intermediate variable

ξi(t+ 1) = Fθ(xi(t), yi(t)).

Step 2 Send the local variable ξi(t+ 1) to every network
neighbor j ∈ N (i). Upon receiving the local
variables of every network neighbor j ∈ N (i),
(locally) compute the state variable

xi(t+ 1) =
∑
j∈Ni

wijξj(t+ 1).

Step 3 (Locally) compute the intermediate variable

φi(t+ 1) = yi(t) +Dixi(t+ 1)−Dixi(t).

Step 4 Send the local variable φi(t+ 1) to every network
neighbor j ∈ N (i). Upon receiving the local
variables of every network neighbor j ∈ N (i),
(locally) compute the data estimate variable

yi(t+ 1) =
∑
j∈Ni

wijφj(t+ 1).

Step 5 Store the variables xi(t+ 1) and yi(t+ 1) for the
next iteration.

Step 6 (Repeat): Increase the iteration counter by one, i.e.,
set t := t+ 1, and go to Step 1.5

3: END

To this end, introduce the local variables xi(t), representing
the local iterate at time t of the node i ∈ V , and the local variables
yi(t), representing the local estimate of the data operator D
at time t of the node i. Each node i ∈ V first initializes the
local variables, in such a way that xi(0) ∈ R

d may be chosen
arbitrarily, and then setting each yi(0) = Dixi(0).

At each new iteration t+ 1, each node will first update their
local variables, and then send these updated values to its neigh-
bors in the communication graph G. First, the nodes update the
x-variable, as in Steps 1 and 2. The local iterate xi of each node
i ∈ V (recall thatV is the set of nodes) will be updated as follows:

xi(t+ 1) =
∑
j∈V

wijFθ(xj(t), yj(t)) (9)

using the interpolated operator Fθ given in (8), where the coef-
ficients wij are the elements of the mixing matrix W = (wij).
Recall that each wij is nonnegative, and that wij is nonzero
if and only if i and j are neighbors in G. Moreover, for each
i = 1, . . . , n, it holds that

∑
j∈V wij = 1.

4The operatorDi is the local operator of agent i, meaning that the initialization
step requires no communication between agents.

5The algorithm can be terminated at any time, upon reaching a certain number
of iterations or certain accuracy.
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We note that, even though we apply the consen-
sus/combination step after evaluating the algorithm F , as in
(9), our results still remain valid (but with slightly different
constants) if instead using the update rule

xi(t+ 1) = Fθ

⎛⎝∑
j∈V

wijxj(t), yj(t)

⎞⎠
which applies the algorithm after the consensus step. These two
different update rules are in fact almost equivalent, in the sense
that “shifting” an orbit generated by the second update rule by
W gives the same result as using the first rule, but with the initial
points xi(0) “shifted” by W .

Then, in Steps 3 and 4, the local estimates yi of the global
data operators will be similarly updated as

yi(t+ 1) =
∑
j∈V

wij (yj(t) +Djxj(t+ 1)−Djxj(t)) .

Introducing the difference Djxj(t+ 1)−Djxj(t), or some
variation thereof, in the update step is an important approach to
preserve convergence rate, e.g., as used in distributed gradient
descent [34], [35].

The above steps can be more compactly expressed by intro-
ducing the stacked state (matrix)

x(t) = (x1(t)
T, . . . , xn(t)

T)T ∈ R
n×d

and the stacked data state estimates

y(t) = (y1(t)
T, . . . , yn(t)

T)T ∈ R
n×m.

We notice that the spectral properties of W carry over to the
stacked state matrices; specifically, for any matrix M ∈ R

n×n′

with arbitrary n′, it holds that

‖W (M − 1n1
T
nM)‖2F =

n′∑
j=1

‖W
(
M·,j − 1

n
1n1

T
nM·,j

)
‖22

≤ σ

n′∑
j=1

‖M·,j − 1

n
1n1

T
nM·,j‖22

= σ‖M − 1

n
1n1

T
nM‖2F. (10)

We note that inequality (10) implies that the consensus-based
information spreading in the network has a linear convergence
rate. This is a bottleneck for any decentralization methods based
on consensus, even the original centralized algorithm has a
superlinear convergence rate (see Remark 1 and the conjecture
following it).

We further extend the operators D and Fθ to the stacked state
form, through the induced operators D̂ : Rn×d → R

n×m and
F̂θ : Rn×d × R

n×m → R
n×d, given by

D̂x(t) =
(
Dx1(t)

T, . . . , Dxn(t)
T
)T

, and

F̂θ(x(t), y(t)) =
(
Fθ(x1(t), y1(t))

T, . . . , Fθ(xn(t), yn(t))
T
)T

respectively. We also introduce the operator

Φ̂(x(t)) =
(
Φ(x1(t)), . . . ,Φ(xn(t))

)T
= F̂ (x(t), D̂x(t))

and the stacked local data operator

Dlocx(t) =
(
D1x1(t)

T, . . . , Dnxn(t)
T
)T

which is simply the matrix whose rows are given by the local
data operators evaluated at the local iterate, i.e., Dixi(t).

With the above stacked states, Algorithm 1 can then be
compactly expressed as

x(t+ 1) = WF̂θ(x(t), y(t))

y(t+ 1) = W (y(t) +Dlocx(t+ 1)−Dlocx(t)) . (11)

In the next section, we will show that, with proper tuning of the
interpolation variable θ (the step size), the distributed algorithm
given in (11)—that is, Algorithm 1—converges linearly to the
same fixed point as the original algorithm.

IV. MAIN THEORETICAL RESULTS

Our main results show that, given the assumptions in Sec-
tion II, and with proper tuning of the interpolation parameter θ in
the proposed distributed Algorithm 1 in Section III, Algorithm 1
converges exponentially (see the statement of the results for
the exact definition). That is, Algorithm 1 maintains the same
convergence properties as the original algorithm in (3).

We defer the proofs of the results to Section VI, to simplify
the presentation in this section. These results will be further
applied to important examples and applications in optimization,
see Section V.

Throughout this section, we will assume that the operators F
and D, that fully determine the original algorithm, are given.
Moreover, we shall assume that these operators satisfy Assump-
tions 1–4. To state our results, we need to introduce the system
matrix

Γ = Γ(F ) :=

⎡⎢⎣ σLx σLy 0

2σLD(1 + Λ) σ(1 + Λ) σLDδ

2Λ Ly r

⎤⎥⎦ (12)

where we have set Λ = LyLD, and the constants r, δ, Lx, Ly ,
LD, and σ are the ones given in Assumptions 1–4. The impor-
tance of this matrix Γ will become clear in the statements of the
results and their proofs. In particular, the convergence rate of
Algorithm 1 is bounded from above by the spectral radius of Γ.

We note that, in general, convergence of the distributed
Algorithm 1 can only be guaranteed using some degree of
interpolation, i.e., that 0 < θ < 1. This is analogous to how the
step size must be tuned for gradient descent methods, and in
those cases θ actually corresponds directly to the step size. Our
first result, Theorem 1, establishes a sufficient condition for the
distributed Algorithm 1 to converge, and in particular achieve
linear convergence, without any interpolation, i.e., with θ = 1. In
fact, this same result can be applied to the interpolated algorithm
Fθ, to derive sufficient conditions on the interpolation parameter
that ensure convergence of the distributed Algorithm 1. That is
our second result, Theorem 2.

Our third result Theorem 3 is a specialization of Theorem 2,
which lets us derive a better upper bound for the interpolation
parameter θ. This is the result that will be used later in Section V,
where we apply our results to different optimization algorithms.
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Lastly, Theorem 4 shows that our results can be immediately
applied to establish convergence for their proximal counterparts.
This result demonstrates that convergence for the proximal
versions of these algorithms can be be derived directly from
their nonproximal originals, with the same convergence rate,
just like in the nondistributed (centralized) case. With no further
ado, we present our first result:

Theorem 1 (No interpolation case): Suppose that the maps
F, {Di}i, and W satisfy Assumptions 1–4. If the spectral radius
ρ = ρ(Γ) of Γ is strictly less than one, i.e.,

ρ(Γ) < 1 (13)

then Algorithm 1 with θ = 1 converges to the unique solution
x∗ with exponentially rate ρ. In particular, there is a positive
constant C, independent of the initial value of x(0), such that

‖x(t)− 1nx
∗‖F ≤ Cρt (‖x(0)− 1nx

∗‖F
+‖x(0)− 1nx(0)‖F + ‖y(0)− 1ny(0)‖F) (14)

for any t > 0 and initial value x(0), if y(0) = Dlocx(0).
In general, the convergence condition (13) may not hold and

(the distributed) Algorithm 1 may fail to converge. However, the
next result shows that it is always possible to tune θ ∈ (0, 1] so
that Algorithm 1 converges linearly. It follows from Theorem 1,
by considering the interpolated operator Fθ, which satisfies
the assumptions with the constants rθ = (1− θ) + θr, δθ =
θδ, Lx;θ = (1− θ) + θLx, Ly;θ = θLy, and Λθ = Ly;θLD =
θΛ. See the proof in Section VI-B for details.

Theorem 2: Under the same assumptions as in Theorem 1,
Algorithm 1 converges exponentially fast for any θ ∈ (0, 1) that
satisfies all of the conditions

θ <

(
1− σ

2Λ + σ(Lx − 1) + 2σLD

√
Ly(1 + Λ)

)2

θ <

(
1− σ

σΛ + (1 + σ)
√
Ly

)2

, and

θ <

(
1− r

σδLD

√
Ly

)2

. (15)

That is, for any interpolation parameter satisfying these condi-
tions, the bound (14) in Theorem 1 holds with ρ replaced by
ρθ = ρ(Γ(Fθ)), the spectral radius of Γ(Fθ).

We note that the conditions (15) given in Theorem 2 are in
general not optimal for choosing the interpolation parameter θ,
as discussed in the following remark.

Remark 5: The conditions in (15) were derived using an upper
bound of the spectral radius, obtained through application of
Gershgorin’s circle theorem. These conditions are therefore, in
general, not sharp.

With the additional assumption that 0 ≤ Lx ≤ 1, which holds
in many interesting examples, it is possible to obtain signifi-
cantly better convergence rates, as in the following result.

Theorem 3: Under the same assumptions as in Theorem 1,
assuming in addition that 0 ≤ Lx ≤ 1, it follows that Algo-
rithm 1 converges exponentially fast for any 0 < θ ≤ 1 that

further satisfies

θ ≤ min

{
1,

(1− σ)2

2Λ + (1− σ)2A

}
where

A = 1− r + σ

(
4Λ + 1− Lx +

5Λδ

2(1− r)

)
with convergence rate

ρθ = 1− θ
1− r

2
.

That is, the bound (14) in Theorem 1 holds with ρ replaced by
this ρθ, which is an upper bound on the spectral radius of Γ(Fθ).

In many applications, such as proximal algorithms for regu-
larization in learning, or constrained optimization, the map F
is a composition of a “base” map with a proximal operator,
such as a projection. In many cases, the proximal operator is
a nonexpanding map, for example projection onto a convex
set. For the next result, we shall assume that the map Φ is a
contraction, i.e., that it satisfies

‖Φ(x)− Φ(z)‖2 ≤ r‖x− z‖2, ∀x, z ∈ R
d. (16)

Given a nonexpanding6 operator P : Rd → R
d, set G(x, y) =

P ◦ F (x, y) and consider the composition

ΦG(x) = P ◦ Φ(x) = P ◦ F (x,Dx) = G(x,Dx) (17)

which is again a contraction map with a unique fixed point x̃∗

(which is in general different from the fixed point x∗ of the
original map Φ, e.g., as in projective gradient descent when the
constraint set does not contain the stationary point). In this case,
the following result established convergence ofΦG directly from
convergence of Φ.

Theorem 4: Let operators F,D, and W be given, which
satisfy Assumptions 1–4. Additionally, assume that Φ is a con-
traction map, as in (16). Then Theorems 1–3 all hold mutatis
mutandis for the operators G and ΦG, defined in (17), in place
of F and Φ, and with the same conditions on θ and convergence
rate ρ.

Moreover, the maps G and ΦG given in (17) satisfy Assump-
tions 1–4, with the exact same constants as the maps F and Φ,
for any nonexpanding map P : Rd → R

d.
Remark 6: The assumption that Φ is a contraction in Theo-

rem 4 ensures that the composition P ◦ Φ is also a contraction
with a unique fixed point. If Φ is only assumed to satisfy the
weaker Assumption 1, i.e., linear convergence, the composition
may have (among other complications) more than one fixed
point.

V. APPLICATIONS TO DISTRIBUTED OPTIMIZATION AND

MACHINE LEARNING

We now illustrate our theoretical results on distributed op-
timization algorithms. Consider a network with n agents, each
with its own local differentiable objective function fi : Rd → R.
Additionally, suppose that they have a common closed, properly

6P is nonexpanding if ‖Pu− Pv‖2 ≤ ‖u− v‖2 for any pair of vectors
u, v ∈ R

d
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convex function g : Rd → R ∪ {∞}, which may be nondiffer-
entiable. The goal of the nodes is to jointly solve the optimization
problem

minimize
x

f(x) + g(x) =
1

n

n∑
i=1

fi(x) + g(x). (18)

Such problems are often solved using proximal gradient descent
(or some variation thereof), i.e., the update rule

z(t+ 1) = proxηg (z(t)− η∇f(z(t))

= arg minz

{
ηg(z) +

1

2

∥∥z − (z(t)− η∇f(z(t))
∥∥2
2

}
.

The typical function of g is to represent regularization terms
and/or problem constraints. In the constrained optimization case,
the proximal operator would be a projection operator. When
g ≡ 0, the proximal operator is the identity operator. Therefore,
this problem formulation contains (nonconstrained) smooth op-
timization as a special case.

Throughout this section we assume that f : Rd → R
d is L-

smooth and μ-strongly convex, i.e., for any pair x, y ∈ R
d

μ‖x− y‖2 ≤ ‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2. (19)

We will also assume that each fi is L-smooth and convex.
However, they need not be μ-strongly convex individually, as
long as their average f is. That is, only some of them, but not
all, must be strongly convex.

In this strongly convex case, it turns out that the proximal
operator proxηg is nonexpansive if 0 < η ≤ 2/(μ+ L). This is
the only property of the proximal operator that we will use in
the rest of this section. The constant

κ =
L

μ

is known as the condition number of the problem. Under these
assumptions on f , there is a unique global minimum x∗ (sat-
isfying ∇f(x∗) = 0), and many (centralized) algorithms for
solving Problem (18) converge linearly. We will now show how
several of these algorithms can be transformed into distributed
algorithms, using our framework, while also maintaining the
essential convergence properties of the original algorithm. We
will also compare our results to the state of the art for each
specific example. Note in the following subsections how the
proximal cases will follow immediately from the nonproximal
version (directly using the nonexpansiveness property).

A. Proximal Gradient Descent

Standard gradient descent can be represented by setting

F (x, y) = F (x, y; η) = x− ηy, and Di(x) = ∇fi(x) (20)

where η is the familiar step size, and D = 1
n

∑n
i=1 Di(x) =

∇f(x). Note that there are also other ways of representing it.
If the step size η satisfies 0 ≤ η ≤ 2/(μ+ L), (standard)

gradient descent is a contraction map with contraction factor
r = 1− ημ, see [23]. It therefore follows that F,D, and Φ
satisfy Assumptions 1–3 with r = 1− ημ, Lx = 1, Ly = η,
LD = L, and δ = 1 + r ≤ 2 (here, we simply use the worst
bound for δ). Proximal gradient descent is simply the compo-
sition of F with the proximal operator proxηg, which in this

case is a nonexpanding map. The resulting distributed version
of proximal gradient descent is then

xi(t+ 1) =

k∑
i=1

wij

(
(1− θ)xi(t)+θ proxηg (xi(t)−ηyi(t))

)
yi(t+ 1) =

k∑
i=1

wij (yi(t)+∇fi(xi(t+ 1))−∇fi(xi(t))) .

Since the gradient descent operator is a contraction (for the
chosen step sizes), Theorem 4 applies. Therefore, the conver-
gence rate for this distributed proximal gradient descent is the
same as we would get for the distributed nonproximal version.
Therefore, we only need to analyze the special case of standard
(nonproximal) gradient descent to obtain the convergence rate
also for the proximal version.

Set η = 2/(μ+ L), so that 1− r = 2μ/(μ+ L) ≤ 2 and
Λ = 2L/(μ+ L) ≤ 2. Since the conditions of Theorem 3 are
satisfied, Algorithm 1 converges with rate

ρθ = 1− θ
μ

μ+ L

under the condition that

θ ≤ min

{
1,

(1− σ)2

2ηL+ 2(1− σ) (ημ+ σ(4ηL+ 5κ))

}
.

As a side remark, notice that setting σ = 0 (corresponding
to a fully connected network graph) recovers the centralized
convergence rate. This condition is certainly met if

θ =
(1− σ)2

14(1 + κ)

giving the convergence rate

ρθ = 1− (1− σ)2

14(1 + κ)2
.

In the case, when g ≡ 0, i.e., smooth convex optimization, the
proximal operator is the identity operator and the distributed
algorithm reduces to the algorithms proposed in [33], [34], and
[35] (the order of the consensus step W varies, but from a
dynamical point of view they are essentially equivalent). Our
results are consistent with their results, i.e., the existing state
of the art, for this particular class of distributed algorithms, and
static network graphs with doubly stochastic W . However, it
should be noted that [34] also treats varying graphs, and that [35]
also treats the nonstrongly convex case, both of which are beyond
the present study.

While [32], [33], [34], and [35] do not treat treat the proximal
case, distributed proximal gradient descent algorithms are also
developed in [20], [39], [40], and [41], but their algorithm de-
signs differs from ours. Note that our analysis does not explicitly
involve subgradients, but directly uses on the nonexpansiveness
property of the proximal operator.

B. Proximal Heavy Ball Method

The heavy ball method is given by the update rule

x(t+ 1) = x(t)− α∇f(x(t)) + β(x(t)− x(t− 1)) (21)

where the constant β ∈ [0, 1) represents the momentum
strength, and can be tuned according to the problem [49, Sec.
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3.2]. By setting z(t) = (z1(t), z2(t))
T = (x(t+ 1), x(t))T ∈

R
2d, the update rule in (21) can be alternatively expressed as

z(t+ 1)=Dz(t) :=

[
(1+β)I −βI

I 0

]
z(t)−

[
α∇f(z1(t))

0

]
(22)

i.e., with F (x, y) = y. The mean value theorem yields the in-
equality

‖Du−Dv‖2 ≤
∥∥∥∥
[
(1 + β)I − α∇f(ζ) −βI

I 0

]∥∥∥∥ · ‖u− v‖2

for some appropriate ζ. Let λi denote the eigenvalues of ∇f(ζ).
It can be seen that the eigenvalues of the matrix above are imag-
inary (nonreal) pairs with modulus β, if maxi(1−

√
αλi)

2 ≤
β ≤ 1. In particular, this holds if

β = max
(
|1−√

αμ|, |1−
√
αL|

)
.

Setting

α =
4(√

L+
√
μ
)2

it then follows that ‖Du−Dv‖2 ≤ r‖u− v‖2, with r = 1−√
αμ = 2/(

√
κ+ 1) ∈ [0, 1). Thus, the Assumptions 1–3 are

satisfied with r = 1−√
αμ, Lx = 0, Ly = 1, LD = r, and δ =

1 + r ≤ 2 (we simply use the worst bound), and it follows that
Λ = r. Notice that

r

1− r
=

√
κ− 1

2
.

According to the proposed decentralized algorithm, the proximal
heavy ball method is given by

zi(t+ 1) =

k∑
i=1

wij

(
(1− θ)zi(t) + θ proxηg (Dzi(t))

)
yi(t+ 1) =

k∑
i=1

wij (yi(t) +Dzi(t+ 1)−Dzi(t)) (23)

where Dz(·) is defined in (22). Again, since the heavy ball
method is a contraction for this choice of α and β, Theorem 4
gives that the proximal version of the distributed heavy ball
method enjoys the exact same convergence rate as the nonproxi-
mal version. Therefore, we only need to analyze the nonproximal
version. To the best of our knowledge, this is the first example of a
distributed proximal heavy ball method, with linear convergence
guarantees, in the literature.

Theorem 3 applies to show that the distributed heavy ball
method resulting from Algorithm 1 (and its proximal version)
converges with the rate

ρθ = 1− (1− σ)2

14
√
κ

2

(
√
κ+ 1)

, for θ =
(1− σ)2

14
√
κ

which has the same dependence on the condition number as
centralized (nondistributed) standard gradient descent. That is,
distributed heavy ball method is as good as centralized standard
gradient descent. This also proves conclusively that the heavy
ball method performs better than, or at least as good as, standard
gradient descent, also in the distributed setting. To the best of our
knowledge, this is the first time this has been proved analytically.

A similar distributed heavy ball method is introduced in [37],
but it does not treat the proximal case. Since the convergence
rate in [37] is given by a complicated expression, it is difficult to
compare it to our work. It seems as if the convergence rate in [37]
is inversely proportional to the number of nodes, while ours is
not. Since our convergence rate is very explicit and simple, that
is another benefit of our approach. However, we should mention
that [37] also treats a wide range of parameters α and β.

C. Proximal Newton’s Method

Let PSDd(μ) denote the subset of positive definite matrices
with smallest eigenvalue μ > 0, i.e., matrices A that satisfy
xTAx ≥ μxTx. Note that this space is closed under taking
weighted averaging, and therefore preserved by the consensus
step. Define F : Rd × R

d × PSDd(μ) → R
d by

F (x, y1, y2) = x− ηy−1
2 y1

where the step size η ∈ (0, 1]. Assuming that each function fi
is also twice continuously differentiable, Newton’s method can
be represented by F together with the two data operators

Di,1(x) = ∇fi(x), and Di,2 = ∇2fi(x).

To simplify the rest of the analysis, and ensure that Newton’s
method is contractive, assume that each Hessian ∇2fi is con-
stant.7 That is

∇2fi = Ai

for some (strictly) positive definite matrix Ai. Note that the ma-
trices Ai can vary between nodes. This special case corresponds
to least square minimization, which is a common problem in
practical applications.

To fit this example into our current framework, represent
(y1, y2) and (D

(1)
i , D

(2)
i ) (for each i) as a single vector variable

y, and a single data operator Di, by combining and stacking the
columns of the vector y1 and the matrix y2 on top of one another
to create a d(d+ 1)-dimensional vector (and analogously for the
data operators). If we can show thatF is Lipschitz continuous, it
follows that it can be extended globally with the same Lipschitz
coefficients, by Kirszbraun theorem (see, e.g., [51, p. 201]).

The operator F is clearly 1-Lipschitz in the x-component.
Since the second variable y2 is a matrix in PSDd(μ), F satisfies
the Lipschitz conditions

‖F (x, y1, y2)− F̃ (x, u1, y2)‖2 ≤ η

μ
‖y1 − u1‖2.

and

‖F (x, y1, y2)− F (x, y1, u2)‖22 ≤ η‖u−1
2 (u2 − y2)y

−1
2 ‖2F

≤ ηd

μ2
‖y2 − u2‖2F.

The last inequality follows since ‖A‖2 ≤ ‖A‖F ≤ √
rank(A) ·

‖A‖2 for any matrix A.
In this case, the relevant constants are r = 1− η, δ = η, Lx =

1, Ly = η/μ ·max(1, d/μ), LD = L. Setting η = 1, and the

7Note that such an assumption is an evident way to avoid the sublinear
convergence regions. Because only in the neighborhood of the optimal solution,
the Newton’s method converges super-linearly and damped Newton’s method
linearly (see [50, Sec. 9.5] for reference).
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distributed proximal Newton’s method becomes

xi(t+ 1) =

k∑
i=1

wij

(
(1− θ)xi(t) + θ proxηg

(
xi(t)

−∇2fi(xi(t))
−1∇fi(xi(t))

))

yi(t+ 1) =

k∑
i=1

wij (yi(t) +Dzi(t+ 1)−Dzi(t))

where Dzi(t) = (∇fi(xi(t)),∇2fi(xi(t)) ∈ R
d×(d+1). Then

applying Theorem 3, we get the convergence rate for the dis-
tributed (proximal) Newton’s method as

ρθ = 1− (1− σ)2

44κmax
(
1, d

μ

) , for θ =
(1− σ)2

22κmax
(
1, d

μ

) .
We remark that, by extending our results to weighted norms, or
multivariable data, the factor d/μ can be removed, and replaced
by a term depending on the Lipschitz constant of the Hessian.

VI. PROOF OF THE MAIN THEOREMS

In the rest of this section, it is assumed that the operators
F,D,Φ, and W satisfy Assumptions 1–4. To simplify notation,
introduce the shorthand notation

X(t) = ‖x(t)− 1nx(t)‖F
Y (t) = ‖y(t)− 1ny(t)‖F, and

Z(t) = ‖x(t)− 1nx
∗‖F

where x∗ is the fixed point of the mapping Φ(·). We see that
global convergence of the local values xi(t) to the solution is
controlled by Z(t). The following three key lemmas bound the
time evolution of these variables X,Y, and Z in terms of one
another. Their proofs appear in the last three subsections of this
section.

Lemma 1: Suppose that Assumptions 1–3 hold. Then, for
every t ≥ 0, it holds that

‖x(t+ 1)− 1nx
∗‖F ≤ r‖x(t)− 1nx

∗‖F
+ Ly‖y(t)− 1ny(t)‖F + 2Λ‖x(t)− 1nx(t)‖F. (24)

Lemma 2: Suppose that Assumptions 2 and 4 hold. Then, for
every t ≥ 0, it holds that

‖x(t+ 1)− 1nx(t+ 1)‖F
≤ σLx‖x(t)− 1nx(t)‖F + σLy‖y(t)− 1ny(t)‖F. (25)

The latter can be bounded instead as follows.
Lemma 3: Suppose that Assumptions 1–4 hold. Then, for

every t ≥ 0, it holds that

‖y(t+ 1)− 1ny(t+ 1)‖F
≤ σ(1 + Λ)‖y(t)− 1ny(t)‖F
+ 2σLD(1 + Λ)‖x(t)− 1nx(t)‖F
+ σLDδ‖x(t)− 1nx

∗‖F. (26)

Recall that the main results in this article depend on the system
matrix

Γ = Γ(F ) =

⎡⎢⎣ σLx σLy 0

2σLD(1 + Λ) σ(1 + Λ) σLDδ

2Λ Ly r

⎤⎥⎦ (27)

given in Section IV. Lemmas 1–3 altogether imply the recur-
rence relations ⎡⎢⎣X(t+ 1)

Y (t+ 1)

Z(t+ 1)

⎤⎥⎦ ≤ Γ

⎡⎢⎣X(t)

Y (t)

Z(t)

⎤⎥⎦ (28)

where “≤” means elementwise less than or equal to. With this
recurrence relation, we are now ready to prove the results in
Section IV, starting with Theorem 1.

A. Proof of Theorem 1

The recurrence relation in (28) shows that the convergence of
the algorithm is controlled by the spectral radius of the matrixΓ,
given in (27). Since Ly and LD are positive, the matrix Γ is an
irreducible nonnegative matrix. Therefore, the spectral radius of
Γ is a simple eigenvalue ofΓ, by the Perron–Frobenius Theorem
(see, e.g., [52, Th. 8.4.4]). Thus, if ρ = ρ(Γ) is its spectral
radius, then there is a constant C which is independent of the
initial values X(0), Y (0), and Z(0), such that X(t), Y (t), and
Z(t) are all bounded by⎛⎜⎝X(t)

Y (t)

Z(t)

⎞⎟⎠ ≤ Cρt

⎛⎜⎝X(0) + Y (0) + Z(0)

X(0) + Y (0) + Z(0)

X(0) + Y (0) + Z(0)

⎞⎟⎠ .

Thus, they all converge to 0 exponentially fast (with rate ρ),
provided that the spectral radius is strictly less than one, i.e.,
ρ < 1. This concludes the proof.

B. Proof of Theorem 2

Suppose that F satisfies Assumptions 1 and 2, with the
constants 0 ≤ r < 1, 0 ≤ δ, 0 ≤ Lx, and 0 ≤ Ly . Consider the
interpolated operator Fθ, and note that the maps {Di}i and the
mixing matrix W (and hence also Assumptions 3 and 4) are
unaffected by the interpolation. The interpolation formula

Φθ(x) = θΦ(x) + (1− θ)x

directly shows that Φθ satisfies Assumption 1 with the constants
rθ = (1− θ) + θr = 1− θ(1− r) and δθ = θδ. Similarly, the
interpolation formula

Fθ(x, y) = x− θ(x− F (x, y)) = (1− θ)x+ θF (x, y)

directly shows that Fθ satisfies Assumption 2 with the constants
Lx;θ = (1− θ) + θLx = 1 + θ(Lx − 1) and Ly;θ = θLy , re-
spectively. Therefore, Theorem 1 also applies to Fθ, with Λθ =
Ly;θLD = θΛ. For each θ, the system matrix Γ in (12) is then
given by

Γθ = Γ(Fθ) =

⎡⎢⎣ σLx;θ σLy;θ 0

2σLD(1 + Λθ) σ(1 + Λθ) σLDδθ

2Λθ Ly;θ rθ

⎤⎥⎦ .
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While it is possible to directly compute the eigenvalues of this
matrix, as the roots of a third degree polynomial, the resulting
expressions are impractical. Instead, we shall bound them from
above.

WhenLy = 0, notice that the nondiagonal elements of the top
row are both zero, and therefore thatΓθ has the eigenvalues λ1 =
σ, λ2 = σ(1 + θ(Lx − 1)), and λ3 = 1− θ(1− r). These are
all nonnegative, and since both σ and r are strictly less than one
by assumption, both of the eigenvalues λ1 and λ3 are strictly less
than one. Thus, if Ly = 0, the spectral radius is less than one
only if λ2 < 1, i.e., if either Lx ≤ 1 (0 ≤ Lx by assumption) or

θ < min

{
1,

1− σ

σ|Lx − 1|
}

.

When 0 < Ly , we instead introduce the change of variables
Ỹ =

√
Ly;θY , and shall use Gershgorin’s circle theorem to

bound the spectral radius of the system matrix. With this co-
ordinate change, we see that⎡⎢⎣X(t+ 1)

Ỹ (t+ 1)

Z(t+ 1)

⎤⎥⎦ ≤ Γ̃θ

⎡⎢⎣X(t)

Ỹ (t)

Z(t)

⎤⎥⎦
with

Γ̃θ =

⎡⎢⎣ σLx;θ σ
√
Ly;θ 0

2σ
√
Ly;θLD(1 + Λθ) σ(1 + Λθ) σ

√
Ly;θLDδθ

2Λθ

√
Ly;θ rθ

⎤⎥⎦ .

Applying Gershgorin’s circle theorem, it follows that the eigen-
values of Γ̃θ (and hence also its spectral radius, since the eigen-
values are all positive) are bounded from above by the greatest
of its column sums. It follows that the algorithm converges
(linearly) for any 0 < θ that satisfies:

2Λθ + σ
(
Lx;θ + 2

√
Ly;θLD(1 + Λθ)

)
< 1√

Ly;θ + σ
(√

Ly;θ + (1 + Λθ)
)

< 1

rθ + σ
√
Ly;θLDδθ < 1 .

After some straight-forward algebraic manipulations, recalling
that 0 < θ ≤ 1, and thus, also θ ≤ √

θ, we arrive at the weaker
conditions

θ <

(
1− σ

2Λ + σ(Lx − 1) + 2σLD

√
Ly(1 + Λ)

)2

θ <

(
1− σ

σΛ + (1 + σ)
√
Ly

)2

θ <

(
1− r

σδLD

√
Ly

)2

. (29)

Notice that the condition θ < max(1, (1− σ)/(Lx − 1)), for
the case when Ly = 0, is also implied by the above conditions
(specifically, the first one). Therefore, the conditions in (29)
ensure that the spectral radius is strictly less than 1, for all cases.
The statement now follows from Theorem 1, which concludes
the proof.

C. Proof of Theorem 3

The following proof involves many detailed computations,
which is why we have divided it into two smaller steps.

Step 1. Bounding the spectral radius of the matrix Γ.
Lemma 4: Assuming that 0 ≤ Lx ≤ 1, the spectral radius

ρ(Γ) of the matrix

Γ =

⎡⎢⎣ σLx σLy 0

2σLD(1 + Λ) σ(1 + Λ) σLDδ

2Λ Ly r

⎤⎥⎦
is bounded by

ρ(Γ) ≤ max

{
1 + r

2
,
1

2
σ
(
1+Λ+Lx+

√
q(Λ)

)
+

5σΛδ

(1− r)

}
with

q(Λ) := (3Λ− Lx + 1)2 + 4Λ(1 + Lx).

Proof: Since the matrix is nonnegative, its spectral radius
coincides with its largest real eigenvalue, which must be non-
negative. It is therefore sufficient to consider only nonnegative
real solutions to its characteristic equation, which is given by

p(λ) := (λ − σLx) (λ − σ(1 + Λ)) (λ − r)− 2σ2Λ2δ

− σΛδ (λ − σLx)− 2σ2Λ(1 + Λ)(λ − r) = 0.

Gather the terms containing the factor λ − r, and rewrite

p(λ) = (λ − r)
(
(λ − σLx) (λ − σ(1 + Λ))− 2σ2Λ(1 + Λ)

)
− σ2Λ2δ − σΛδ (λ − σLx + σΛ) = 0 .

Set

q(Λ) := (3Λ− Lx + 1)2 + 4Λ(1 + Lx)

and notice that

(λ − σ) (λ − σ(1 + Λ))− 2σ2Λ(1 + Λ)

=

(
λ − 1

2
σ(1 + Λ + Lx +

√
q(Λ)

)
×
(

λ − 1

2
σ(1 + Λ + Lx −

√
q(Λ)

)
.

Now, let K ≥ 0 be some parameter to be decided, and set

λ = max

{
1 + r

2
,
1

2
σ
(
1 + Λ + Lx +

√
q(Λ)

)
+K

}
< 0.

Since we assume that 0 ≤ Lx ≤ 1, it follows that 0 ≤ 3Λ−
Lx + 1 ≤ √

q(Λ), and therefore that:

p(λ) ≥ (λ − σ (Lx − Λ))

· [(λ − r)

(
λ − 1

2
σ
(
1 + Λ + Lx +

√
q(Λ)

)
− σΛδ

]
− σ2Λ2δ.

We shall now derive a condition to ensure that 0 < p(λ), when-
ever λ < λ. Since the spectral radius coincides with the largest
positive real root of p (see the discussion in the beginning of this
proof), this would then bound the spectral radius by λ. Since
σ(1 + Lx)/2 ≤ λ, it holds for every λ > λ that

p(λ) ≥ 1

4
σ(1− Lx + Λ)) [(1− r)K − σΛδ]− σ2Λ2δ.
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That is, 0 < p(λ), provided that

1

(1− r)

[
4σ2Λ2δ

σ(1− Lx + Λ))
+ σΛδ

]
≤ K

which can be weakened to

5σΛδ

(1− r)
=

1

(1− r)

[
4σ2Λ2δ

σΛ
+ σΛδ

]
≤ K

since 0 ≤ 1− Lx. Thus, the spectral radius is bounded by λ,
which concludes the proof. �

The next step is to derive conditions on the constants in Γ
that ensure that the spectral radius is less than one. This means
deriving conditions for the interpolation parameter θ.

Step 2. Conditions to ensure that the spectral radius of Γ is
less than one.

In this step, we will replace F by its interpolated opera-
tor Fθ, replacing all relevant coefficients by their interpolated
counterparts. Recall (for the details, see the beginning of the
proof of Theorem 2) that the interpolated operator Fθ satis-
fies Assumptions 1–2 with Lx;θ = (1− θ) + θLx, Ly;θ = θLy ,
rθ = (1− θ) + θr and δθ = θδ. Assumptions 3 and 4 are unaf-
fected by interpolation.

Using Lemma 4, we can bound the spectral radius of the
system matrix Γθ = Γ(Fθ), for any given 0 < θ ≤ 1, by

max

{
1 + rθ

2
,
1

2
σ
(
1+Λθ+Lx;θ+

√
qθ(Λθ)

)
+

5σΛθδθ
(1− rθ)

}
with

qθ(Λθ) := (3Λθ − Lx;θ + 1)2 + 4Λθ(1 + Lx;θ).

Now, let us impose the condition that the spectral radius is in
fact bounded (from above) by (1 + rθ)/2, so that

σ
(
1 + Λθ + Lx;θ +

√
qθ(Λθ)

)
+

5σΛθδθ
2(1− rθ)

≤ 1 + rθ. (30)

Using the interpolation formulas for the constants, we can
rewrite qθ(Λθ) as

qθ(Λθ) = θ2(3Λ + 1− Lx)
2 + 4θΛ(2 + θ(Lx − 1))

≤ θ2(3Λ + 1− Lx)
2 + 8θΛ.

Since
√
a+ b ≤ √

a+
√
b for positive real numbers, andLx;θ ≤

1 the condition in (30) can be weakened as

σ

(
2 + θΛ + θ(3Λ + 1− Lx) +

√
8θΛ +

5θΛδ

2(1− r)

)
≤ 2− θ(1− r).

Rearranging, we get

θ

2

(
1− r+σ

(
4Λ+1− Lx+

5Λδ

2(1− r)

))
+
√
θ2Λ ≤ 1− σ

which is satisfied if
√
θ ≤ −√

2Λ +
√

2Λ + (1− σ)2A
A

where we have set

A = 1− r + σ

(
4Λ + 1− Lx +

5Λδ

2(1− r)

)
.

This is certainly satisfied if θ satisfies
√
θ ≤ 1− σ√

2Λ + (1− σ)2A
≤ 1

A

∫ 2Λ+(1−σ)2A

2Λ

dx

2
√
x

=
−√

2Λ +
√

2Λ + (1− σ)2A
A

or if

0 < θ ≤ (1− σ)2

2Λ + (1− σ)2A
.

That is, the spectral radius is bounded by

1 + rθ
2

= 1− θ
1− r

2
under these conditions on θ. This proves Theorem 3.

D. Proof of Theorem 4

Recall that P is a nonexpanding map, and that G is given by

G(x, y) = P ◦ F (x, y).

Since P is nonexpanding, and Φ is a contraction, this G induces
a contraction map

ΦG(x) = G ◦ Φ(x) = G(x,Dx)

i.e., an algorithm of the original form (3). Since ΦG is a contrac-
tion, it has a unique fixed point x̃∗, which in general is different
from the fixed point x∗ of Φ.

Since P is nonexpanding, one immediately sees that ΦG

together with this fixed point x̃∗ satisfies Assumption 1 with
the same constants r and δ as the original Φ (induced by F ).
Again, since P is nonexpanding, it also follows that G satisfies
Assumption 2 with the same constants Lx and Ly as F . As-
sumptions 3 and 4 are unaffected by the addition of the operator
P , and are therefore satisfied for G with the same constants as
for F .

Therefore, the map G satisfies the conditions in Theorems 1–
3, with the same constants as F . As a result, their conclusions
apply mutatis mutandis to this map G.

E. Preparations for the Proofs of the Three Key Lemmas

Before proving the three key lemmas, Lemmas 1–3, we state
and prove a few smaller lemmas that isolate certain computations
and inequalities that appear in multiple places in their proofs.

Recall that each yi(0) is initialized to Dixi(0) in the dis-
tributed Algorithm 1. This guarantees that the average of the
estimates y(t) actually equals to the average of the local data
operators, as shown in the next lemma.

Lemma 5: Since each yi(0) = Dixi(0), it holds that

y(t) =
1

n

n∑
i=1

Dixi(t)

for every t ≥ 0.
Proof: Since W preserves averaging, we see that

y(t+ 1) =
1

n

n∑
i=1

φi(t+ 1)

=
1

n

n∑
i=1

(yi(t) +Dixi(t+ 1)−Dixi(t))

= y(t) +
1

n

n∑
i=1

(Dixi(t+ 1)−Dixi(t)) .
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By induction, it follows that:

y(t+ 1) = y(0) +
1

n

n∑
i=1

(Dixi(t+ 1)−Dixi(0)) .

Due to the initialization yi(0) = Dixi(0), it follows that y(0) =
1
n

∑n
i=1 Dixi(0). Thus, the first and last terms cancel each

other. �
The following lemma bounds the difference between yi(t)

and the “true” (global) data operator for the local xi(t). This
essentially controls “how far” the local updates are from the
original update rule (applied to the local values xi(t)).

Lemma 6: Under Assumption 3, the inequality

‖y(t)− D̂x(t)‖F ≤ ‖y(t)− 1ny(t)‖F
+ 2LD‖x(t)− 1nx(t)‖F

holds, where D̂x(t) =
(
Dx1(t)

T , . . . , Dxn(t)
T
)T

.

Proof: We can bound the Frobenius norm of y(t)− D̂x(t)
by expanding

‖y(t)− D̂x(t)‖F ≤ ‖y(t)− 1ny(t)‖F
+ ‖1ny(t)− 1nDx(t)‖F
+ ‖1nDx(t)− D̂x(t)‖F. (31)

Since y(t) = 1
n

∑n
i=1 Dixi(t) (by Lemma 5) and D =

1
n

∑n
i=1 Di, the second term can be bounded as

‖1ny(t)− 1nDx(t)‖2F =

n∑
k=1

‖ 1
n

n∑
i=1

Dixi(t)−Dix(t)‖22

≤
n∑

k=1

1

n

n∑
i=1

L2
D‖xi(t)− x(t)‖22

= L2
D

n∑
k=1

1

n
‖x(t)− 1nx(t)‖2F

= L2
D‖x(t)− 1nx(t)‖2F .

Taking square roots immediately yields

‖1ny(t)− 1nDx(t)‖F ≤ LD‖x(t)− 1nx(t)‖F .

As for the last term in (31), we have

‖1nDx(t)− D̂x(t)‖2F =

n∑
k=1

‖Dx(t)−Dxk(t)‖22

≤
n∑

k=1

L2
D‖x(t)− xk(t)‖22

= L2
D‖x(t)− 1nx(t)‖2F .

Again, taking square roots gives us the inequality

‖1nDx(t)− D̂x(t)‖F = LD‖x(t)− 1nx(t)‖F .

The statement now follows. �
The next lemma controls how far the local updates are from

the original update rule (applied to the local values xi(t)).
Lemma 7: Under Assumption 2 and 3, it holds that

‖F̂ (x(t), y(t))− Φ̂(x(t))‖F ≤ Ly‖y(t)− 1ny(t)‖F
+ 2Λ‖x(t)− 1nx(t)‖F .

Proof: Writing it out, we have

‖F̂ (x(t), y(t))− Φ̂(x(t))‖2F

=

n∑
k=1

‖F (xk(t), yk(t))− F (xk(t), Dxk(t))‖22

≤ L2
y

n∑
k=1

‖yk(t)−Dxk(t)‖22

= L2
y‖y(t)− D̂x(t)‖2F .

Taking square roots, the conclusion follows from Lemma 6. �

F. Proofs of Lemmas 1–3

We are now ready to prove the three key lemmas.
Proof of Lemma 1: Consider first

x(t+ 1)− 1nx
∗ = Wξ(t+ 1)− 1nx

∗ .

Since W1nx
∗ = 1nx

∗ (each column lies in the subspace R1n,
which is fixed byW ), and‖W‖2 ≤ 1 (this follows from Hölder’s
inequality, since all columns and rows have only positive ele-
ments and sum to one), we have

‖x(t+ 1)− 1nx
∗‖F ≤ ‖ξ(t+ 1)− 1nx

∗‖F.
Moreover, since ξ(t+ 1) = F̂ (x(t), y(t)), we have

‖ξ(t+ 1)− 1nx
∗‖F ≤ ‖Φ̂(x(t))− 1nx

∗‖F
+ ‖F̂ (x(t), y(t))− Φ̂(x(t))‖F.

The first term satisfies

‖Φ̂(x(t))− 1nx
∗‖2F =

n∑
k=1

‖Φ(xk(t))− x∗‖22

≤ r2‖x(t)− 1nx
∗‖2F.

Combining this inequality with Lemma 7 in the Appendix, the
assertion follows. �

Proof of Lemma 2
Recall that we want to prove that

‖x(t+ 1)− 1nx(t+ 1)‖F ≤ σLx‖x(t)− 1nx(t)‖F
+ σLy‖y(t)− 1ny(t)‖F.

Since averaging and W commute (due to the subspace 1n being
invariant underW ), it follows that 1nx(t+ 1) = W1nξ(t+ 1),
and thus:

x(t+ 1)− 1nx(t+ 1) = Wξ(t+ 1)−W1nξ(t+ 1).

Taking the Frobenius norm results in the inequality

‖x(t+ 1)− 1nx(t+ 1)‖F ≤ σ‖ξ(t+ 1)− 1nξ(t+ 1)‖F.
Note that ξ(t+ 1)− F (x(t), y(t)) is the average of the rows
in ξ(t+ 1)− 1nF (x(t), y(t)). Therefore, Lemma 8 in the Ap-
pendix gives us

‖ξ(t+ 1)− 1nξ(t+ 1)‖F
= ‖ξ(t+ 1)− 1nF (x(t), y(t))

− 1n

(
ξ(t+ 1)− F (x(t), y(t))

) ‖F
≤ ‖ξ(t+ 1)− 1nF (x(t), y(t)) ‖F.
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Recalling that ξ(t+ 1) = F̂ (x(t), y(t)), we can further expand

‖ξ(t+ 1)− 1nξ(t+ 1)‖F
≤ ‖F̂ (x(t), y(t))− F̂ (1nx(t), y(t))‖F

+ ‖F̂ (1nx(t), y(t))− 1nF (x(t), y(t)) ‖F.
The first of these terms satisfies

‖F̂ (x(t), y(t))− F̂ (1nx(t), y(t)) ‖2F

≤
n∑

k=1

‖F (xk(t), yk(t))− F (x(t), yk(t)) ‖22

≤
n∑

k=1

L2
x‖xk(t)− x(t)‖22 = L2

x‖x(t)− 1nx(t)‖2F.

Similarly, the second term satisfies

‖F̂ (1nx(t), y(t))− 1nF (x(t), y(t)) ‖2F

≤
n∑

k=1

‖F (x(t), yk(t))− F (x(t), y(t)) ‖22

≤
n∑

k=1

L2
y‖yk(t)− y(t)‖22

= L2
y‖y(t)− 1ny(t)‖2F.

Taking square roots of each of these inequalities and adding
them together, the conclusion follows. �

Proof of Lemma 3: Recall that we wish to prove

‖y(t+ 1)− 1ny(t+ 1)‖F
≤ σ(1 + Λ)‖y(t)− 1ny(t)‖F

+ 2σLD(1 + Λ)‖x(t)− 1nx(t)‖F
+ σLDδ‖x(t)− 1nx

∗‖F.
Set g(t) = Dloc(x(t+ 1))−Dloc(x(t)), so that the ith row of
g(t+ 1) is given by gi(t+ 1) = Dixi(t+ 1)−Dixi(t). Since
y(t) = 1

n

∑n
i=1 Dixi(t), by Lemma 5, it follows that g(t+ 1) =

y(t+ 1)− y(t). We can therefore expand

y(t+ 1)− 1ny(t+ 1) = W (y(t)− 1ny(t))

+W (g(t+ 1)− 1ng(t+ 1))

so that

‖y(t+ 1)− 1ny(t+ 1)‖F ≤ σ‖y(t)− 1ny(t)‖F
+ σ‖g(t+ 1)− 1ng(t+ 1)‖F.

Using Lemma 8, we can bound

‖g(t+ 1)− 1ng(t+ 1)‖F ≤ ‖g(t+ 1)‖F.
Using Assumption 3, we can further bound

‖g(t+ 1)‖2F ≤
n∑

k=1

‖Dkxk(t+ 1)−Dkxk(t)‖22

≤
n∑

k=1

L2
D‖xk(t+ 1)− xk(t)‖22

≤ L2
D‖x(t+ 1)− x(t)‖2F.

Since 1nx(t) is preserved by W (each column of 1nx(t) is in
R1n), it follows that (W − I)1nx(t) = 0, and we may expand

x(t+ 1)− x(t) = Wξ(t+ 1)− x(t)

= W (ξ(t+ 1)− x(t)) + (W − I) (x(t)− 1nx(t)) .

Since ‖W‖2 ≤ 1 and ‖W − I‖2 ≤ 2, we have

‖x(t+ 1)− x(t)‖F ≤ ‖ξ(t+ 1)− x(t)‖F + 2‖x(t)
− 1nx(t)‖F.

Thus far, this means that

‖y(t+ 1)− 1ny(t+ 1)‖F ≤ σ‖y(t)− 1ny(t)‖F
+σLD (‖ξ(t+ 1)− x(t)‖F + 2‖x(t)− 1nx(t)‖F) .

Recall that ξ(t+ 1) = F̂ (x(t), y(t)), and Φ̂(x(t)) =

F̂ (x(t), D̂x(t)). Expand

‖ξ(t+ 1)− x(t)‖F ≤ ‖Φ̂(x(t))− x(t)‖F
+ ‖F̂ (x(t), y(t))− Φ̂(x(t))‖F.

Lemma 7 gives us the following inequality for the second term:

‖F̂ (x(t), y(t))− Φ̂(x(t))‖F ≤ Ly‖y(t)− 1ny(t)‖F
+ 2Λ‖x(t)− 1nx(t)‖F.

Recall that ‖Φ(xk(t))− xk(t)‖2 ≤ δ‖xk(t)− x∗‖2. It there-
fore follows that:

‖Φ̂(x(t))− x(t)‖2F =
n∑

k=1

‖Φ(xk(t))− xk(t)‖22

≤ δ2
n∑

k=1

‖xk(t)− x∗‖22

= δ2‖x(t)− 1nx
∗‖2F.

Finally, after taking square roots, we have obtained the bound

‖ξ(t+ 1)− x(t)‖F ≤ δ‖x(t)− 1nx
∗‖F

+ Ly‖y(t)− 1ny(t)‖F
+ 2Λ‖x(t)− 1nx(t)‖F.

Putting it all together, we end up with

‖y(t+ 1)− 1ny(t+ 1)‖F,Ly

≤ σ(1 + Λ)‖y(t)− 1ny(t)‖F
+ 2σLD(1 + Λ)‖x(t)− 1nx(t)‖F
+ σLDδ‖x(t)− 1nx

∗‖F
which is the inequality in the statement. �

VII. CONCLUSION

In this article, we developed a general framework for decen-
tralizing a contractive iteration for multiple connected nodes in
networks, which maintains the convergence rate of the origi-
nal centralized iterative algorithm. Three examples, distributed
proximal gradient descent, heavy ball method, and Newton’s
method, are given to demonstrate the proposed framework.

For future work, we will study the general decentralization
method for the algorithms with a superlinear convergence rate,
and for the ones with a sublinear convergence rate.
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APPENDIX A

The following lemma is a general statement for the Frobenius
norms of matrices related to the averaging operator. Lemma 8:
For any matrix x = (xT

1, . . . , x
T
n)

T ∈ R
n×d, i.e., for which row

i is given by the vector xT
i ∈ R

d, it holds that

‖x− 1n
1

n

n∑
i=1

xi‖F ≤ ‖x‖F.

Proof: By the definition of the Frobenius norm, it holds that

‖x− 1n
1

n

n∑
i=1

xi‖2F

=

n∑
k=1

〈
xk − 1

n

n∑
i=1

xi, xk − 1

n

n∑
i=1

xi

〉

= ‖x‖2F−2

n∑
k=1

〈
xk,

1

n

n∑
i=1

xi

〉
+

n∑
k=1

〈
1

n

n∑
i=1

xi,
1

n

n∑
i=1

xi

〉

= ‖x‖2F − 2n

〈
1

n

n∑
i=1

xi,
1

n

n∑
i=1

xi

〉
+ n〈 1

n

n∑
i=1

xi,
1

n

n∑
i=1

xi〉

= ‖x‖2F − n

〈
1

n

n∑
i=1

xi,
1

n

n∑
i=1

xi

〉

= ‖x‖2F − ‖1n
1

n

n∑
i=1

xi‖2F ≤ ‖x‖2F.

Thus, the assertion follows. �
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[6] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp. 48–61,
Jan. 2009.

[7] J. B. Predd, S. B. Kulkarni, and H. V. Poor, “Distributed learning in wireless
sensor networks,” IEEE Signal Process. Mag., vol. 23, no. 4, pp. 56–69,
Jul. 2006.

[8] J. B. Predd, S. R. Kulkarni, and H. V. Poor, “A collaborative training
algorithm for distributed learning,” IEEE Trans. Inf. Theory, vol. 55, no. 4,
pp. 1856–1871, Apr. 2009.

[9] R. O. Saber and R. M. Murray, “Agreement problems in networks with
directed graphs and switching topology,” in Proc. IEEE 42nd Int. Conf.
Decis. Control, 2003, vol. 4, pp. 4126–4132.

[10] W. Ren, R. W. Beard, and E. M. Atkins, “A survey of consensus prob-
lems in multi-agent coordination,” in Proc. Amer. Control Conf., 2005,
pp. 1859–1864.

[11] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation
in networked multi-agent systems,” Proc. IEEE Proc. IRE, vol. 95, no. 1,
pp. 215–233, Jan. 2007.

[12] J. A. Fax and R. M. Murray, “Information flow and cooperative control
of vehicle formations,” IEEE Trans. Autom. Control, vol. 49, no. 9,
pp. 1465–1476, Sep. 2004.

[13] S. Zhang, F. He, Y. Hong, and X. Hu, “An intrinsic approach to formation
control of regular polyhedra for reduced attitudes,” Automatica, vol. 111,
2020, Art. no. 108619.

[14] S. Zhang, W. Song, F. He, Y. Hong, and X. Hu, “Intrinsic tetrahedron
formation of reduced attitude,” Automatica, vol. 87, pp. 375–382, 2018.

[15] J. A. Costa, N. Patwari, and A. O. Hero III, “Distributed weighted-
multidimensional scaling for node localization in sensor networks,” ACM
Trans. Sensor Netw., vol. 2, no. 1, pp. 39–64, 2006.

[16] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor
fusion based on average consensus,” in Proc. 4th Int. Symp. Inf. Process.
Sensor Netw., 2005, pp. 63–70.

[17] R. Olfati-Saber, “Distributed Kalman filter with embedded consensus
filters,” in Proc. IEEE 44th Conf. Decis. Control, 2005, pp. 8179–8184.

[18] Q. Ling and Z. Tian, “Decentralized sparse signal recovery for compressive
sleeping wireless sensor networks,” IEEE Trans. Signal Process., vol. 58,
no. 7, pp. 3816–3827, Jul. 2010.
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