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Algebraic Reduction of Hidden Markov Models
Tommaso Grigoletto and Francesco Ticozzi

Abstract—The problem of reducing a hidden Markov
model (HMM) to one of smaller dimension that exactly re-
produces the same marginals is tackled by using a system-
theoretic approach. Realization theory tools are extended
to HMMs by leveraging suitable algebraic representations
of probability spaces. We propose two algorithms that re-
turn coarse-grained equivalent HMMs obtained by stochas-
tic projection operators: the first returns models that ex-
actly reproduce the single-time distribution of a given out-
put process, while in the second, the full (multitime) dis-
tribution is preserved. The reduction method exploits not
only the structure of the observed output but also its initial
condition, whenever the latter is known or belongs to a
given subclass. Optimal algorithms are derived for a class
of HMMs, namely observable ones.

Index Terms—Algebraic methods, linear systems,
Markov processes, model reduction.

I. INTRODUCTION

H IDDEN Markov processes (HMPs) are a ubiquitous class
of stochastic models that have extensive application in

modeling and prediction for speech [1], [2], biological sys-
tems [3], [4], [5], [6], and information and communication
systems [7], [8], [9]. Dedicated optimal control and estimation
methods have been developed for this class of models (see,
e.g., [10], [11], and [12]).

In the development of the realization theory for hidden
Markov models (HMMs), two related yet well-distinct problems
emerge: constructing an HMM from data and reducing an exist-
ing model, when possible, to an equivalent one of smaller size.
For an analysis and review of the first one, see, for example, [13],
[14], and more recent results in [15]. In this article, we shall
focus on the reduction problem. Besides its theoretical interest,
methods for model reduction are critical in effectively address-
ing problems in large-scale systems [16], [17], [18]. A char-
acterization of equivalent HMMs, that is, models that produce
the same output marginals of a given one, is proposed in [19].
Their treatment of equivalent HMMs is based on the definition
of effective spaces, which specify equivalence classes of HMMs,
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representing the HMM analog of minimal realizations spaces for
linear systems. In the same article, the authors pose the problem
of finding a minimal equivalent HMM. As a reduction to the
effective space does not guarantee to preserve the positivity of
the model, the problem has so far remained unsolved.

In this article, we show how effective spaces can be extended
so that the reduced model remains an HMM. In fact, we propose a
general approach to the model reduction problem that is based on
an algebraic description of probability spaces. While this is done
very frequently and almost implicitly, we take a deeper look into
the algebraic structures and the associated representations. In
particular, we shall need minimal algebraic models that represent
a set of random variables (r.v.) and conditional expectations.
Such an algebraic approach has been developed to generalize
the classical Kolmogorov description to the noncommutative
case so that it suitably covers quantum mechanics [20], [21],
[22], but it has proven useful in many other areas, from random
matrix theory (see, e.g., the insightful introduction [23]) to
algebraic statistics [24]. In our setting, the algebraic framework
and the induced matrix representations allow us to leverage on
observability and reachability ideas in the characterization of
equivalent models, as well as linear–algebraic algorithms that
compute reduced models. Our approach remains deeply rooted
in the system-theoretic analysis of the dynamical model and can
be seen as a way to construct reduced stochastic realizations
for an HMM. Furthermore, the proofs of effectiveness for the
proposed methods all hinge on a result of model reduction for
switched linear systems. In order to maintain the focus on HMM,
the latter is presented in Appendix A.

In what follows, we deal with reductions of a given HMM
that exactly reproduce the marginals of the original systems.
This allows us to clearly illustrate the working and theoretical
foundation of the method: extension to approximate reduction
will be the focus of upcoming work.

Similar problems have been studied from different perspec-
tives: in particular, the concept of lumpability of Markov pro-
cesses [25], which induces coarse-grained processes analogous
to those presented here, has been employed to characterize
a class of exactly reducible HMMs (two lumpable systems)
(see [26] and references therein). Other works, as [27] and
references therein, reframe the problem using cellular automata
for hidden information sources and study reductions of Markov
transition kernels within this abstract approach.

The differences between our approach and the existing results
are manifold, both in the tools used and the nature of the
results. In the proposed framework, we introduce and solve two
types of reduction problems: preserving only the single-time
marginal and the full (multitime) distribution of the outcomes.
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We show that the former, which is of interest in model reduction
of master equations for statistical models or mixing processes
and algorithms [28], can lead to further reduction and smaller
final models, as one might expect. In addition, our reductions
leverage not only the structure of the measured process, but also
the particular initial distribution of the HMM. We show that
the initial conditions are indeed critical for obtaining minimal
reductions in many situations, in particular, when the original
model is initialized in an equilibrium density. The method
hinges on the use of conditional expectations as projections for
obtaining a reduced representation of the dynamics. While the
idea is certainly not new to the control community, see e.g.
the derivation of Kalman filters [10], [29], in this work we
develop it in an algebraic framework. After representing a con-
ditional expectation as a linear operator, we construct stochastic,
nonsquare factorization of its dual with respect to the inner
product associated with the expectation: the factors are then
used to obtain the reduced probabilistic description, preserving
its stochastic character. Lastly, we make direct contact with
system-theoretic ideas in a linear-algebraic framework, which
allows for effective, practically implementable algorithms for
the reduction process. In fact, while the whole analysis could
be carried out in the infinite-dimensional case, we here restrict
to the finite case: in order to derive computable algorithms a
finite-dimensional approximation would be needed anyway.

The rest of this article is organized as follows. In Section II, we
review the fundamentals of the algebraic probabilistic models
needed for our aims. The approach is directly borrowed from
noncommutative probability [22], [30] and its use in quantum
theory, where the algebras used for embedding the probability
space need not be commutative (and are typically infinite
dimensional [21]), and can then be used to model quantum sys-
tems [20]. As remarked above, in this article, we only use com-
mutative finite-dimensional associative algebras, represented
as Rn endowed with its elementwise product. Section II-B is
focused on conditional expectations as linear maps on algebras,
their duals, and their representations. These are some of the key
tools in the development of our method. Section III is devoted
to introducing the notation and the problems of interest, namely
obtaining reduced models that reproduce either the single-time
marginals or the multitime marginals of a given HMM, while
Section IV presents some preliminary results that build upon [19]
from an explicit system-theoretic perspective. The main results
of the section are obtained specializing a switched-system
result that we derive in Appendix A to maintain the focus on
HMMs. The key ideas we leverage to obtain reduced HMMs are
described in Section V, where a class of reduction algorithms
for the single-time marginal problem is developed. Section VI
then extends and adapts these ideas to the multitime marginal
problem. A key point in our analysis is that, in order to develop
the algorithms, we must switch from the abstract quotient
spaces of [19] to a representative effective subspace. We show
that the choice of representative has a nontrivial effect on
the reduction itself. How to select this and other parameters
used in the algorithms is discussed in Section VII, where we
provide optimal choices for a class of models that includes
observable HMMs and Markov chains. The same choices prove
to be optimal in all the tested examples, also in the presence

of nonobservable components of the reachable space. Some
particularly instructive examples are given in Section VIII.
Finally, Section IX concludes this article.

A. Basic Notation

In the following, we typically denote vectors v ∈ Rn in bold-
face, and matrices in capitals V ∈ Rn×m. We denote 1 as the
vector of all ones, and 0 the vector of all zeros. The matrix trans-
pose of V is V T . Given a vector x ∈ Rn and the standard basis
{ei} forRn, we define its support as the vector space supp(x) =
span{ei|eTi x �= 0}. Given a vector space V ⊆ Rn, its sup-
port is defined as the vector space supp(V) = span{ei|∃x ∈
V s.t eTi x �= 0}. diag(·) is the operator that, given a vector v,
diag(v) returns a diagonal matrix with [diag(v)]i,i = vi.

II. ALGEBRAIC APPROACH TO PROBABILITY THEORY

The central idea in algebraic probability models is to represent
all the key ingredients of a classical probabilistic model as
elements of a suitable algebra A , endowed with a probability
functional (or state) p. In the following sections, we start from a
probability space (Ω,Σ,P) and briefly review how to construct
an algebraic representation (A , p),with A ⊆ Rn. Correspond-
ingly, we show that any pair (A , p) admits a classical represen-
tation. This allows for a natural probabilistic interpretation of
the proposed reduction method.

A. Fundamentals of Algebraic Probabilistic Models

1) Events and σ-Algebras: Throughout the rest of this
article, we will consider finite-dimensional probability spaces
(Ω,Σ,P). Without loss of generality, we can assume Ω =
{1, . . . , n}.

The first step in the construction entails the vector represen-
tation of events. The latter are in one-to-one correspondence to
indicator functions: let IE(ω) be the indicator function asso-
ciated with the event E. Since the probability space is finite
dimensional, we can further associate indicator functions to
vectors in Rn. In particular, each indicator of an elementary
event ω ∈ Ω can be associated with its corresponding vector
of the standard basis, i.e., eω ∈ Rn. Similarly, we can define
indicator vectors for any event E ∈ Σ as fE =

∑
ω∈E eω. For

these vectors, (fE)ω = 1 if ω ∈ E and zero otherwise. Notice
that fΩ = 1 and f ∅ = 0.

Let us denote with FΣ the set of indicator vectors of the
events of the σ-algebra Σ. Let ∧ denote the elementwise
product (v ∧w)i = viwi, let ∨ denote the modified sum
operation defined as v ∨w = v +w − v ∧w, and let
¬ denote the negation operation defined as ¬v = 1− v.
By construction, the set FΣ equipped with the operations
∧,∨, and ¬ is isomorphic to the σ-algebra Σ with ∩,∪, and ·.
In the following, we refer to FΣ as a vector σ-algebra, and we
will drop the subscript when unnecessary.

A vector partition of Ω is a subset P ⊆ F \ {0} such that
f i ∧ f j = 0, for all f i,f j ∈ P , i �= j and 1 = ∨fj∈Pf j . The
finest resolution in F is a partition res(F) such that f =
∨fj∈res(F)cjf j with cj ∈ {0, 1}, for all f ∈ F .
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Note that res(F) is not necessarily equal to the standard basis
of Rn since, in general, Σ is contained but not equal to the
power set of Ω. We shall also denote res(Σ) to indicate the
finest resolution of a classical σ-algebra.

2) Random Variables: r.v.s are Σ-measurable functions
X(ω) : Ω → A ⊂ R, where A = {xi} is the finite set of out-
comes of X, called the alphabet. Let Ei = X−1(xi). An r.v.
X can also be represented as a linear combination of indicator
function X(ω) =

∑|A|
i=0 xiIEi

(ω).
Using the vector representationfEi

of indicator functions IEi

in the previous equation, each X can also be represented as a
vector

x =

|A|∑
i=1

xifEi
∈ Rn

such that {f i} ⊂ FΣ forms a partition of Ω. Notice that in
the vector formalism, the notion of FΣ-measurability is equiv-
alent to the condition x ∈ span{FΣ}. Here and elsewhere, the
boldface font x is used for (vector representations of) r.v.s,
while x denotes the corresponding outcome. As we show below,
span{FΣ} has the property of being an algebra, namely a
vector space (or subspace) that is closed under the elementwise
product ∧. An algebra is unital if it contains 1. The whole Rn

is then a unital algebra, and we denote its subalgebras using
the script font, e.g., A . A nonunital algebra A still contains
the vector 1A , which has entries 1 on the support of A and 0
otherwise and acts as the product identity in A .

The following proposition collects some known facts, which
clarify the relation betweenFΣ and A = span{FΣ} and proves
that it is indeed an algebra.

Proposition 1: If F ⊂ Rn is a vector σ-algebra, then A =
span{F} is the smallest subalgebra in Rn containing F , and it
is unital. Conversely, let A be any unital subalgebra in Rn and
idem(A ) := {f ∈ A |f ∧ f = f} ⊂ A be the set of idempo-
tent vectors in A . Then, idem(A ) is the smallestσ-algebra such
that every element in A is F-measurable and res(idem(A ))
forms an orthogonal basis for A .

A proof of this proposition is reported in Appendix B for
completeness. This proposition shows that, not only does the
space of FΣ-measurable r.v.s form a unital subalgebra, but,
more importantly, given any unital subalgebra A , it is possible
to find the minimal (vector) σ-algebra that makes every r.v. in
A measurable. For convenience, in the following, we refer to
res(idem(A )) as res(A ).

3) Probability and Expectations: Let now consider a prob-
ability measure P : Ω → [0, 1]. For any probability measure P[·]
on Σ we can define a vector as follows:

p :=
∑
ω∈Ω

P[ω]
〈fω,fω〉

fω.

Then, for any fE ∈ FΣ, it is immediate to verify that P[E] =
〈p,fE〉. In particular, notice that if we can write p :=∑

fr∈res(A ) prfr, we find that p can be interpreted as an r.v.
in the same algebra, p ∈ A .

A vector p is said to be a probability vector if pi ≥ 0 for
all i and 1Tp = 1. The set of probability vectors in A is de-
fined as D(A ) := {p ∈ A |pi ≥ 0 ∀i, 1Tp = 1}. Note that
D(A ) = D(Rn) ∩ A .

Consider an r.v. X , and let us denote again with f i the
indicator function associated with the outcome xi. We then
have P[X = xi] = 〈p,f i〉. Similarly, we can compute the ex-
pectation of an r.v. as E[x] =

∑
j xjP[Ej ] =

∑
j xj 〈p,f j〉 =

〈p,x〉.
In summary, we have shown that a unital subalgebra A can

subsume both the σ-algebra and the space of measurable r.v.s
of a given probability space. Moreover, it is equivalent to a
probability space when paired with a positive linear functional,
associated with the inner product with a probability vector p.
Conversely, given a pair (A ,p), we can always construct a
(classical) probability space associated with the pair. This can be
done by choosing Ω = {1, . . . , n} and the underlying σ-algebra
Σ associated with idem(A ) as in Proposition 1. Finally,p repre-
sents the probability distribution associated with the functional
P[E] = 〈p,fE〉.

B. Stochastic Maps and Conditional Expectations

Let us now focus on the maps between probability vectors.
Consider two unital subalgebras F of Rn and G of Rm. A

linear map between probability vectors P [·] : D(F ) → D(G ),
p �→ q = P [p] is called a stochastic map. Such a map can be
represented as a (column)-stochastic matrix P ∈ Rm×n, i.e., a
matrix such that (P )i,j ≥ 0 ∀i, j and 1T

mP = 1T
n .

In the following, the main task will be to find reduced de-
scriptions of linear dynamics associated with stochastic maps.
In doing this, we exploit the properties of a particular class of
stochastic maps: the duals of conditional expectations.

Recall that the conditional expectation of an r.v. given a σ-
algebraΣwith finest resolution res(Σ) can be written as follows:

E[X|Σ] =
∑

E∈res(Σ)

E[IEX]

E[IE ]
IE(ω). (1)

Let consider a vector r.v. x ∈ F ⊆ Rn, a unital algebra
A ⊆ F with {ai} = res(A ) and d = dim(A ) < n, and the
underlying probability measure p. Following the previous defi-
nition, we can define the conditional expectation for the vector
r.v. with respect to an algebra A

Ep[x|A ] :=

d∑
j=1

〈p,x ∧ aj〉
〈p,aj〉

aj .

Noticing that it is a linear operator acting on x, we can represent
it as a matrix E|A ,p ∈ Rn×n, namely

E|A ,p =
d∑

j=1

aj(p ∧ aj)
T

〈p,aj〉
. (2)

Consider the inner product of the conditional expectation of
x with a probability distribution q, which we have shown
to correspond to its expectation. The dual of the conditional
expectation is then a map on the probability distribution defined
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as 〈
q,E|A ,px

〉
=

〈
ET
|A ,pq,x

〉
which gives

ET
|A ,p =

d∑
j=1

(p ∧ aj)a
T
j

〈p,aj〉
. (3)

It is immediate to verify that ET
|A ,p is stochastic.

The conditional expectation and its adjoint are orthogonal
projectors with respect to a modified inner product. Notice that
p ∧ A = span{p ∧ ai} = diag(p)A .

Lemma 1: Let consider the modified inner product 〈v,w〉p =
Ep[v ∧w],with p > 0. Then, E|A ,p is the orthogonal projector
onto A with respect to the inner product 〈·, ·〉p and ET

|A ,p is
the orthogonal projector onto p ∧ A with respect to the inner
product 〈·, ·〉p−1 .

The proof of this lemma is reported in Appendix B for
completeness.

Remark 1: Note that the above lemma also implies thatE|A ,p

acts as the identity on A , while ET
|A ,p acts as the identity on

p ∧ A . Furthermore, they are orthogonal projections for the
standard inner product 〈·, ·〉 if (and only if) p ∈ D(A ) and is
positive, namely p =

∑
j λjaj ∈ Rn with λj > 0,

∑
j λj = 1.

In this case, we have E|A ,p = ET
|A ,p.

Consider the standard basis {ej} for Rd, where d is the
dimension of A . We can then construct a (full-rank) stochastic
factorization of ET

|A ,p.
Proposition 2: Define

J =
d∑

j=1

(p ∧ aj)e
T
j

〈p,aj〉
∈ Rn×d, R =

d∑
j=1

eja
T
j ∈ Rd×n. (4)

Then, J and R are stochastic matrices that satisfy JR = ET
|A ,p,

RJ = Id, ker(R) = A ⊥, and ker(JT ) = (p ∧ A )⊥.
Proof: J andR are clearly positive since both {aj} and {ej}

are vectors of zeros and ones and p is positive. J is clearly
stochastic,1T

nJ = 1T
d since1T

n (p ∧ aj) = 〈p,aj〉. On the other
hand, we have 1T

dR =
∑d

j=1 a
T
j = 1n, since A is unital.

We can then observe that aT
j (p ∧ ak) = 〈p,aj ∧ ak〉 =

〈p,aj〉 δj−k to conclude that RJ = Id. Finally, if we consider
x ∈ A ⊥, i.e., 〈x,aj〉 = 0 for all j, we obtain Rx = 0, and,
similarly, if x ∈ (p ∧ A )⊥, i.e., 〈x,p ∧ aj〉 = 0 for all j, we
obtain JTx = 0. �

This stochastic factorization induces a reduction in the prob-
abilistic description. In fact, we have that for each distribution
q and r.v. p:〈

q,E|A ,px
〉
=

〈
ET
|A ,pq,x

〉
= 〈JRq,x〉

=
〈
Rq, JTx

〉
= 〈q̌, x̌〉

where we define the reduced distribution as q̌ := Rq ∈ D(Rd)
and reduced r.v. x̌ := JTx ∈ Rd. This property shows that,
given a unital algebra A , it is possible to reduce the probabilistic
description of the set of measurable events to the space Rd

with d = dim(A ). For this reason, we name R the stochastic
reduction and J the stochastic injection.

In order to obtain smaller reduced models, it is useful to notice
that even if A is a nonunital subalgebra of Rn, namely, the
subalgebra has limited support, we can still use the reduction
via factorization. In particular, we can use definitions (2)–(4)
to define orthogonal (for a modified product) projections on the
algebra, their dual, and their factorization. We use the notation
E|A ,p for simplicity, even if these are not true conditional
expectations. One relevant difference, in this case, is highlighted
in the following.

Corollary 1: Let A be a nonunital subalgebra and p be such
that pi > 0 for all i; then, ET

|A ,p allows for a factorization

ET
|A ,p = JR with J and R, as defined above. Moreover, J is

stochastic, while R is stochastic over the support of A , i.e.,
1T
dR = 1T

supp(A ) and 1T
supp(A )J = 1T

d .
Proof: The proof is the same as that of Proposition 2 with the

only difference that
∑d

j=1 a
T
j = 1supp(A ) and 1T

supp(A )(p ∧
aj) = 〈p,aj〉 hold, since A is not unital. �

III. HMM AND PROBLEM DEFINITION

Throughout the rest of this article, we consider stochastic
processes that can be described as Markov processes or HMPs.

A stochastic process {xt} is a collection of r.v.s taking values
in the finite alphabet Ax, indexed by time t. Without loss of
generality, we can assume Ax = {1, 2, . . . , n}. As the alphabet
is independent of time, we can choose a fixed resolution of
indicator vectors {f i}, with respect to whichxt is measurable at
all times, the standard basis for Rn being the most compact one.
With this choice, {xt} is a sequence in Rn. In the following,
we thus denote by x0:k a stochastic process with t = 0, . . . , k,
with x0:k ∈ Ak+1

x an ordered sequence of its outcomes, i.e.,
x0:k = x0, x1, . . . , xk, where xi ∈ Ax for all i and |x0:k| =
k + 1. Then, the joint probability of a sequence of outcomes
can be written as P[x0 = x0, . . . ,xk = xk] = P[x0:k = x0:k].
A stochastic process {xt} in Rn is an homogeneous Markov
process if

P[xt+1 = xt+1|x0:t = x0:t] = P[xt+1 = xt+1|xt = xt]

and such probability is independent of t for all pairs xt+1, xt.
In this case, we have that there exists an initial probability

vector p0 ∈ Rn and a stochastic matrix P ∈ Rn×n called the
transition probability matrix such that P[x0 = x0] = 〈p0,fx0

〉
and P[xt+1 = xt+1|xt = xt] = f

T
xt+1

Pfxt
, where fxt

repre-
sents the elementary event associated with the outcome xt.

The main focus of this article is partially observed HMPs,
better known as HMPs. The following definition adapts [13,
Defs. 9.2 and 9.3] to our setting.

Definition 1 (Hidden Markov processes): A stochastic
process {yt} in Rm taking values in Ay is an HMP if there exist
a Markov process {xt} in Rn taking values in Ax such that
{(yt,xt)} is jointly Markov and P[yt = yt,xt = xt|yt−1 =
yt−1,xt−1 = xt−1] = P[yt = yt,xt = xt|xt−1 = xt−1] for
all t.
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For HMPs, there exists an initial probability distribution p0
and a transition probability matrix P ∈ Rn×n defined as be-
fore, as well as a stochastic matrix C ∈ Rm×n, called emission
probability matrix, such that P[yt = yt|xt = xt] = e

T
yt
Cfxt

,
where {ei} is the standard basis for Rm and eyt

represents the
elementary event associated with yt.

Definition 2 (Hidden Markov models): We define an HMM
as the couple θ = (P,C).

The HMM θ and the initial distribution p0 completely char-
acterize the evolution of the probability distributions, leaving
n,m and the alphabets implicit. In fact, the marginal distribution
evolution can be modeled by{

p(t+ 1) = Pp(t)

q(t) = Cp(t)
(5)

associated with θ and initial condition p(0) = p0 and can then
be computed as

Pθ,p0
[yt = yt] = e

T
yt
CP tp0.

Notice that we made the dependence on the HMM θ and ini-
tial distribution p0 explicit whenever necessary to distinguish
distributions induced by different models.

We are ready to state the first of the problems we will address
in the following sections.

Problem 1 (Single-time marginals): Given an HMM θ =
(P,C) and a finite set of initial probability distributions S ⊂
D(Rn), find a reduced HMM θ̌ = (P̌ , Č) of dimension d ≤ n
and a linear map Ψ[·] : S → D(Rd), p0 �→ p̌0 such that

Pθ,p0
[yt = yt] = Pθ̌,Ψ[p0]

[yt = yt]

for all t ≥ 0 and for any initial conditions p0 ∈ S .
The second problem that we address targets multitime prob-

ability distributions.
Problem 2 (Multitime marginals): Given an HMM θ =

(P,C) and a finite set of initial probability distributions S ⊂
D(Rn), find a reduced HMM θ̌ = (P̌ , Č) of dimension d ≤ n
and a linear map Ψ[·] : S → D(Rd), p0 �→ p̌0 such that

Pθ,p0
[y0:k = y0:k] = Pθ̌,Ψ[p0]

[y0:k = y0:k]

for all sequences of the output process y0:k and for all initial
conditions p0 ∈ S .

Remark 2: Although Problem 2 is more natural than
Problem 1 for the typical HMM setting, the latter is also interest-
ing in particular cases, which include efficiently simulating an
unmeasured stochastic evolution, and reproducing the mixing
properties of lifted chains with more compact models. In fact,
while we derive solutions of Problem 2 that are also solutions
for Problem 1, the size of the effective multitime reduced model
is going to be in general significantly larger, as it must exactly
reproduce all transition probabilities—see also Proposition 3.

Remark 3: As we pointed out before, in Problems 1 and 2,
we have assumed that S is a finite set. This assumption can be
relaxed since, as we show below, the proposed solution works
for any initial condition contained in span{S}. For this reason,
when dealing with linear spaces of initial conditions, one can
study the problem where S are the generators of the set.

IV. PRELIMINARY RESULTS: A SYSTEM-THEORETIC

VIEWPOINT

Finding minimal realization of linear systems has been a
central problem in control and system theory, for which well-
established solutions are available. Nonetheless, when positivity
is required on the reduced model, the minimal realization prob-
lem is, to the best of our knowledge, still open. In this section,
we review some existing results, and extend and adapt them so
that they can be used in our scenarios. In particular, we shall
allow for nonminimal realizations in order to guarantee their
positivity.

A. Single-Time Marginal Problem

Let us start by considering model (5) with initial condition
p0 ∈ S . Let us define the nonobservable subspace as

N := ker

⎡⎢⎢⎢⎣
C
CP

...
CPn−1

⎤⎥⎥⎥⎦ . (6)

The subspace N can be characterized as the largest P -
invariant subspace contained in kerC [31], [32]. In the case
of HMM, the nonobservable subspace has another useful
property.

Lemma 2: For all x ∈ N , we have 1Tx = 0.
Proof: From the definition of nonobservable space, we have

thatx ∈ N if and only ifCP tx = 0 for all t ≥ 0. If we then left-
multiply by 1T on both sides, we obtain 1TCP tx = 1TP tx =
1Tx = 1T0 = 0 for all x ∈ N . �

Next, define R as the smallest linear space that contains all
probability distributions p(t) generated by the HMM for every
t ≥ 0 and any initial distribution p0 ∈ S:

R := span{P tp0|t ≥ 0,p0 ∈ S}. (7)

Remark 4: The space R is, in fact, the reachable subspace of
a state-space model in the typical form{

p̃(t+ 1) = P p̃(t) +Bu(t)

q(t) = Cp̃(t)
(8)

where B ∈ Rn×|S| is a matrix whose columns are the initial
conditions in S . This model reproduces the trajectories of (5) for
inputs corresponding to discrete impulses. The nonobservable
subspaces of (5) and (8) are the same, and the subspace R coin-
cides with the reachable subspace of model (8) and, thus, shares
the same properties: R is the smallest P -invariant subspace that
contains span{S}. In light of this, we call the R defined above
the reachable subspace.

Finally, we call effective subspace E any subspace

E ⊆ Rn such that (R∩N )⊕ E = R (9)

namely a completion of the intersection R∩N to the reachable
subspace R. Notice that the choice of E is not unique; in
fact, any representative of the quotient space R/(R∩N ) is a
suitable candidate for this choice. The most natural choice for the
effective subspace is of course the orthogonal complement (with
respect to the natural inner product) of R∩N in R, which we
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shall denote with E⊥. Any other orthogonal complement, with
respect to a modified inner product, would also be a suitable
choice for E .

Remark 5: The situation is reminiscent of the classical linear
state-space analysis proposed by Rosenbrock [33], where all
representatives of the quotient spaceR/(R∩N ) are equivalent
and associated with minimal realizations. In our case, however,
E needs to be further extended to ensure the positivity of the
reduced dynamical matrix, a notion that depends on the chosen
reference basis. For this reason, not all choices of the effective
subspace are equivalent. While we will show how the algorithm
we propose works with any choice of the effective subspace, in
Section VII, we will argue that the choice of the representative
E of R/(R∩N ) plays a key role in constructing an optimal
reduction.

As we just recalled, the restriction of model (8) to (any)
E corresponds to a minimal realization (yet not necessarily
positive or stochastic). Corollary 2 shows that the same reduction
method can be used for the HMM (5), while also allowing for
extensions of the effective space. In this case, the minimality
of the linear realization may be lost, but will later allow us
to enforce positivity. The proof relies on a related result for
general autonomous switching systems we present in detail in
Appendix A.

Corollary 2: Consider an effective subspace E for the HMM
(5) and a subspace V such that E ⊆ V with d = dim(V). Let ΠV
be the orthogonal projection onto V with respect to an arbitrary
inner product 〈·, ·〉, such that ΠV(R∩N ) ⊆ R ∩N . Let R :
Rn → Rd and J : Rd → V be two (nonsquare) factors of the
orthogonal projection, ΠV = JR.

Define the reduced model (P̌ , Č) = (RPJ,CJ) and the map
p̌0 = Rp0, for all p0 ∈ S . Then, the linear systems associated
with the pairs (P,C) and (P̌ , Č) reproduce the same marginal
distribution at a specific time instant, i.e.,

CP tp0 = ČP̌ tp̌0

for all t ≥ 0 and any initial condition p0 ∈ span{S}.
Proof: This result follows from the application of

Theorem 4 reported in Appendix A with only one Fi = P ,
H = C, and x(0) = p0. �

In the following sections, we shall construct V so that the
reduction is also an HMM.

B. Multitime Marginal Problem

For the multitime marginal problem, following on the seminal
work [19], we will consider C for our initial model to have
only zero or one entries, i.e., C ∈ {0, 1}m×n. The assumption
is not restrictive, as any HMP admits a realization withC of this
type [13, Th. 9.4].

The minimal reduction of the system producing the multitime
distribution can be obtained along the same lines. Calculating the
probability of a sequence of events is, however, more involved:
[19, Lemma 1] provides a closed form for such a computation.
We report it here for completeness.

Lemma 3: Given an HMM θ and an initial probability distri-
bution p0, the probability of a sequence of outcomes is given

by

Pθ,p0
[y0:k = y0:k] = 1TP y0:k

C p0

where

P y0:k

C = P y1:k

C diag(eTy0
C)

P y1:k

C =

1∏
i=k

P yi

C , P yi

C = diag(eTyi
C)P, i > 0.

In the above lemma, the multiplication by the diagonal ma-
trices diag(eTyt

C) accounts for the conditioning of pt on the
outcome yt = yt.Without the latter, we obtain the formulas for
the single marginals.

In order to exploit system-theoretic tools, it is useful to
write the probability of a sequence of outcomes as the output
of a dynamical model. The dynamical model we are going
to present next resembles the “observables representations of
HMMs” described in [34]. Call ψ(t) = P(y0:t = y0:t). We can
obtain its evolution as the output of a discrete-time, autonomous,
switching, linear system described by{

φ(t+ 1) = P yt

C φ(t)

ψ(t) = 1Tφ(t)
(10)

with initial condition φy0
(1) = diag(eTy0

C)p0, P yt

C defined as
in the previous lemma and whereψ(t) represents the probability
associated with the sequence of events y0:t. Clearly, the output
ψ(t) depends on the sequence ofP yt

C , which, in turn, depends on
the outcomes of the sequence. The output at any time k > 0 can
be computed as ψ(y0:k) = 1T

∏1
i=k P

yi

C φy0
(1), while for l =

0, we haveψ(y0) = 1Tφy0
(1), thus recovering the formulas of

the lemma.
Given a finite set S of initial distributions of interest, the

corresponding set of initial conditions for this model is Φ =⋃
y0

diag(eTy0
C)S .

Following the approach of [19] in a system-theoretic setting,
we can define the reachable, nonobservable, and effective sub-
spaces for the multitime problem. To avoid confusion with the
previous definitions, we call these the conditioned subspaces and
denote them with a C subscript. Given an HMM (P,C) and a set
of initial conditions S , we define the conditioned nonobservable
subspace as

NC := {v ∈ Rn|1TP y0:l

C v = 0, ∀y0:l} (11)

and the conditioned reachable subspace as

RC := span{P y0:l

C p0, ∀y0:l, ∀p0 ∈ S}. (12)

We can then define the conditioned effective subspace EC as
a completion of the intersection RC ∩ NC to the conditioned
reachable subspace RC , i.e., EC ⊕ (RC ∩ NC) = RC . As before,
the choice of EC is not unique, as any representative of the
quotient space RC/(RC ∩ NC) is a suitable choice.
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The properties of these spaces have been described in [19,
Lemma 3, Sec. 3]. We recap them in the following lemma for
the reader’s convenience.

Lemma 4: NC and RC are P -invariant, diag(eTi C)-invariant
for all i, and, thus, P y0:l

C -invariant for all sequences y0:l.
A result similar to Cayley–Hamilton theorem holds and lets

us compute the spaces by using a finite number of generators

NC = {v ∈ Rn|1TP y0:l

C v = 0, ∀y0:l s.t. l < n} (13)

RC = span{P y0:l

C p0, ∀p0 ∈ S, ∀y0:l s.t. l < n}. (14)

We can then notice that NC is the nonobservable subspace of
model (10) (see, e.g., [35]), RC is its reachable subspace, and EC
is its effective subspace. The second statement holds trivially,
while the first holds because NC is diag(eTi C)-invariant for
all i. The third follows by combining the first two.

A useful property of the propagator P y0:k

C is proved in the
following lemma.

Lemma 5: The sum over all sequences y0:k of the same length
k of P y0:k

C is equal to the kth power of P, i.e.,∑
y0:k

P y0:k

C = P k.

Proof: The statement is simply proved by observing that∑
yi
diag(eyi

C) = I for all i and summing over all the possible
strings y0:k, starting from the first character. �

The following proposition shows that, in general, solving the
multitime marginal case requires a larger model than the single-
time case defined before.

Proposition 3: We have

kerC ⊇ N ⊇ NC

S ⊆ R ⊆ RC

and also

E ⊆ EC .

The proof of this lemma can be found in Appendix B.
Remark 6: This result clarifies the relation as well as the

distinction between Problems 1 and 2. In fact, Proposition 3
shows that, at least in principle, there could be a larger reduc-
tion if we are only interested in describing only the evolution
of the marginal distribution at a specific time. Moreover, the
conditioned effective subspace contains the effective subspace,
thus showing, due to Corollary 2, that a solution for Problem 2
is also a solution for Problem 1.

We now propose a class of effective model reductions for the
multitime marginal problem.

Corollary 3: Consider any conditioned effective subspace
EC and subspace V such that EC ⊆ V with d = dim(V), and
let ΠV be the orthogonal projection onto V with respect to an
inner product 〈·, ·〉, such that ΠV(RC ∩ NC) ⊆ RC ∩ NC . Let
R : Rn → Rd and J : Rd → V be two (nonsquare) factors of
the orthogonal projection, ΠV = JR.

Let us then consider the reduced model ({P̌ yi

C },1T
m) =

({RP yi

C J},1T
nJ) and the map φ̌(1) = Rφ(1) for allφ(1) ∈ Φ.

Then, the two models described by (10) and denoted by the
couples ({P yi

C },1T
n ) and ({P̌ yi

C },1T
m) reproduce the same prob-

ability of a sequence of outcomes, i.e.,

1T
n

0∏
j=k

P
yj

C φ(1) = 1T
m

0∏
j=k

P̌
yj

C φ̌(1)

for any sequencey0:k and any initial conditionφ(1) ∈ span{Φ}.
Proof: This result follows from the application of Theorem 4

reported in Appendix A with Fi = diag(eTyi
C)P ,H = 1T , and

x(0) = diag(eTy0
C)p0. �

Remark 7: At this point, one may notice that Corollary 3 pro-
vides a reduction for model (10), which includes the condition-
ing as part of the dynamics and, in general, may not translate di-
rectly into a reduction of (5) in the HMM form (P̌ , Č, Š). Never-
theless, we anticipate here that the algorithm we propose in Sec-
tion VI for the multitime case provides a model in HMM form,
thanks to Lemma 4. Thanks to Proposition 3 and Corollary 2,
the obtained model also reproduces the single-time marginals.

Remark 8: The two main results in this section, Corollaries 2
and 3, as well as the underlying Theorem 4 shown in Ap-
pendix A, have been stated for time-invariant dynamics for the
sake of simplicity. While it is possible to generalize the analysis
to time-dependent systems, in that case, Cayley–Hamilton-type
results do not apply, and consequently, the computation of
reachable and nonobservable spaces may become impractical.

V. SINGLE-TIME SOLUTION

In this section, we illustrate how to obtain solutions to
Problem 1 appropriately choosing V in Corollary 2. We first
discuss the intuition behind the method, next present the pro-
posed solution in form of a parametric algorithm, and prove that,
under appropriate constraints, the algorithm indeed provides a
solution. Finally, in Section VII, we propose a way to choose
the relevant parameters.

A. Intuition

The core idea behind the method stems from the fact that
in order to define an HMM, we need an underlying probability
space and, as we have seen in Section II, any probability space is
associated with an algebra. This directly suggests that, in order
to preserve the (stochastic) HMM structure in the reduction, it
is natural to restrict the model to an algebra whose dual contains
the effective subspace and then use the dual of the conditional
expectation to obtain a stochastic reduction.

More in detail, consider the two stochastic reduction matrices
R andJ obtained in Section II-B as factors of the dual of a condi-
tional expectationET

|A ,p,which is an orthogonal projection onto
p ∧ A with respect to the inner product 〈·, ·〉p−1 . Then, accord-
ing to Corollary 2, we know that as long as E ⊆ V = p ∧ A ,
and ET

|A ,p leaves R∩N invariant; then, the reduced model
reproduces the same marginal distribution as the original one.

In order to chooseA such thatE ⊆ p ∧ A , we can∧-multiply
left and right byp−1 obtainingp−1 ∧ E ⊆ A . Letalg(X )denote
the minimal subalgebra of Rn containing the set X . Then,
if we define A := alg(p−1 ∧ E), we ensure that E ⊆ p ∧ A
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is satisfied and that the reduced model reproduces the same
marginal at a single time.

To make this idea more concrete, we provide a simple illustra-
tive example, which also highlights the importance of choosing
the distribution p to be used in ET

|A ,p.
Example 1: Let us consider the following HMM:

P =

⎡⎢⎣2/5 0 1/5

0 2/5 1/5

3/5 3/5 3/5

⎤⎥⎦ , S =

⎧⎪⎨⎪⎩
⎡⎢⎣1/51/5

3/5

⎤⎥⎦
⎫⎪⎬⎪⎭

C =

[
1 1 0

0 0 1

]
.

Notice that p0 is an equilibrium and Pp0 = p0; thus, the output

distribution is equal to q(t) =
[
2/5 3/5

]T
∀t ≥ 0. We can

then compute the following.

R = span

⎧⎪⎨⎪⎩
⎡⎢⎣1/51/5

3/5

⎤⎥⎦
⎫⎪⎬⎪⎭ , N = span

⎧⎪⎨⎪⎩
⎡⎢⎣ 1

−1

0

⎤⎥⎦
⎫⎪⎬⎪⎭

and R∩N = span{0}, and we can, thus, choose E = R. If we
then choose p = 1, we obtain

A = alg(R) = span

⎧⎪⎨⎪⎩
⎡⎢⎣11
0

⎤⎥⎦ ,
⎡⎢⎣00
1

⎤⎥⎦
⎫⎪⎬⎪⎭ .

Thus, the relative factors of the dual of the conditional expecta-
tion are

R =

[
1 1 0

0 0 1

]
, J =

⎡⎢⎣1/2 0

1/2 0

0 1

⎤⎥⎦
and the associated reduced HMM is

P̌ =

[
2/5 2/5

3/5 3/5

]
, Č =

[
1 0

0 1

]
, p̌0 =

[
2/5

3/5

]
which correctly reproduces the output marginal distribution

q(t) =
[
2/5 3/5

]T
, ∀t ≥ 0.

On the other hand, if we were to choose p = p0, we would
obtain a different result. In fact, in that case, we have

A = alg(p−1 ∧R) = span

⎧⎪⎨⎪⎩
⎡⎢⎣11
1

⎤⎥⎦
⎫⎪⎬⎪⎭ .

Thus, the relative factors of the dual of the conditional ex-

pectation are R =
[
1 1 1

]
and J =

[
1/5 1/5 3/5

]T
,

and those of the associated reduced HMM are P̌ = 1, Č =[
2/5 3/5

]
, and p0 = 1, which also reproduces the output

marginal distribution and is clearly minimal (optimal reduction).
This shows that the choice of p is important if we are interested
in minimizing the dimension of the reduced model.

Algorithm 1: HMM Reduction for Problem 1.

Input : (P,C), S .
Parameters: p, Γ.
1 Compute R and N using (6) and (7);
2 Compute E = Γ(R,N );
3 Compute A := alg(p−1 ∧ E);
4 Compute ET

|A ,p using (3);

5 If ET
|A ,p(R∩N ) � R∩N : redefine

A := alg(p−1 ∧R) and recompute ET
|A ,p;

6 Compute the factors R and J of ET
|A ,p with the definition

given in (4);
Output : (P̌ , Č) = (RPJ,CJ) and R.

B. Proposed Solution

We now formalize the proposed method to solve Problem 1
in the following algorithm. Let Γ(R,N ) be a map that selects
an effective space E given some R,N .

Notice that this algorithm depends, in addition to its inputs, on
two parameters: the first one, p, is a positive vector; the second
one, is the map Γ that selects the effective subspace. We will
discuss more in detail the choice of the effective subspace in
Section VII.

We are finally ready to prove that Algorithm 1 solves the
single-time marginal problem.

Theorem 1: For any choice of E and p positive, i.e., pi > 0
∀i, Algorithm 1 provides a solution to Problem 1.

Proof: To prove the statement, we have to prove that: i) the
reduced model θ̌ = (P̌ , Č) and the linear map R provide the
same marginal distribution at any time as the original model;
and ii) the reduced model θ̌ is an HMM, andRp0 is a probability
vector.

We shall start by proving the first point. We do so leveraging
Corollary 2. First of all, we have that, for any vector p such
that pi > 0 for all i, the inner product 〈·, ·〉p is positive definite
and thus well defined. Moreover, by definition of the algebra
A , we have that, for any choice of the effective subspace E ,
we have E ⊆ p ∧ A so, by choosing V = p ∧ A , and using
the restriction and injection map defined in (4), i) follows from
Corollary 2 if case ET

A ,p(R∩N ) ⊆ R ∩N .

IfET
A ,p(R∩N ) � R∩N , pick Ñ = {0} so that R∩ Ñ =

{0} and Theorem 4 applies with V = alg(p ∧R).
Regarding ii), we have that, if A is unital, then Proposition 2

ensures that J and R are stochastic, and thus, RPJ and CJ are
stochastic andRp0 is a probability vector for any p0 probability
vector. If A is not unital, because of Corollary 1, we have
that J is stochastic (and thus CJ is stochastic), but R is only
stochastic over supp(A ), i.e., 1T

dR = 1T
supp(A ). We next show

that this condition is sufficient to show that the reduced model
is stochastic.

We shall first notice that supp(E) = supp(A ) � Rn. Let
assume that dim(supp(E)) = k. Then, we can consider a per-
mutation (that is a double-stochastic change of basis) T such
that Tx = [ x′ 0T

n−k ]T for all x ∈ E , with x′ ∈ Rk. Then,
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since E is P -invariant[
x′

0n−k

]
=

[
P11 P12

P21 P22

]
︸ ︷︷ ︸

TPTT

[
x′

0n−k

]
∈ E

and thusP21 = 0. This shows that supp(E) isP -invariant. Since
P , T , and TT are stochastic, TPTT is also stochastic. This
implies that1T

k P11 = 1T
k . Then, we have1T

supp(A )T
TTPTT =

[
1T
k 0T

n−k

] [ P11 P12

0 P22

]
=

[
1T
k 0T

n−k

]
or, in other words 1T

supp(A )P = 1T
supp(A ). We can also verify

that P̌ is stochastic by verifying the following chain of equiva-
lences:1T

dRPJ = 1T
supp(A )PJ = 1T

supp(A )J = 1T
d , where the

last equality comes from Corollary 1. Finally, to prove thatRp0
is a probability vector, we can observe that 1T

np0 = 1TΠEp0 +
1TΠR∩Np0︸ ︷︷ ︸

=0

= 1 and then reuse the reasoning above. �

Remark 9: In the proof of Theorem 1, we stated that a positive
vector p is necessary to have a well-defined inner product 〈·, ·〉p.
This assumption, however, can be relaxed to the following: p is
positive over supp(E) = supp(A ), i.e., pi > 0 for all i such
that eTi x �= 0 for some x ∈ E . This is due to the fact that the
values of pwhere E has no support has no role in the projection.

Although such p defines a positive-semidefinite inner prod-
uct over Rn, it provides a positive-definite inner product over
supp(S), and this is sufficient to define the orthogonal projection
onto A . Consider, for example, the following case: assume
supp(A ) � Rn; then, let ps be a positive vector over the
supp(A ), and let pn be a positive vector over the remain-
ing support, i.e., s.t. p := ps + pn, supp(p) = Rn. We can
then notice that p ∧ x = ps ∧ x and 〈y,x〉p = 〈y,x〉ps

for all
x ∈ supp(A ) and y ∈ Rn. This implies that

ET
|A ,p =

d∑
j=1

(p ∧ aj)a
T
j

〈aj ,aj〉p
=

d∑
j=1

(ps ∧ aj)a
T
j

〈aj ,aj〉ps

= ET
|A ,ps

.

The role of the positivity of p will be further discussed in
Section VII.

VI. MULTITIME SOLUTION

The solution of Problem 2 follows the same ideas presented
in the previous section. In fact, the algorithm we propose to
solve Problem 2 is identical to the previous algorithm but for
the involved subspaces. We now present our proposed method
to solve Problem 2. This method takes the form of the following
Algorithm, where Γ is defined as in the previous section.

We are finally ready to prove that Algorithm 2 solves the
multitime marginal problem.

Theorem 2: For any choice of EC and p positive, i.e., pi > 0
∀i, Algorithm 2 provides a solution to Problem 2.

Proof: The proof of this theorem follows the lines of the proof
of Theorem 1. In fact, the proof of the fact that the reduced HMM
θ̌ is stochastic and Rp0 is a probability vector is identical to the
one given in Algorithm 1. The only difference in the two proofs
regards proof of the fact that the reduced model θ̌ with initial

Algorithm 2: HMM Reduction for Problem 2.

Input : (P,C), S .
Parameters: p, Γ.
1 Compute RC and NC using (13) and (14);
2 Compute EC = Γ(RC ,NC);
3 Compute AC = alg(p−1 ∧ EC);
4 Compute ET

|AC ,p
using (3);

5 If ET
|AC ,p

(RC ∩ NC) � RC ∩ NC : redefine
AC := alg(p−1 ∧RC) and recompute ET

|AC ,p
;

6 Compute the factors R and J of ET
|AC ,p

with the
definition given in (4);

Output : (P̌ , Č) = (RPJ,CJ) and R

condition Rp0 provides the same probability of a sequence of
events as the model θ with initial condition p0.

From Corollary 3, we have that (Rdiag(eTi C)PJ,1
TJ) with

initial condition Rdiag(eTi C)p0 generates the same probabil-
ity as the original model. Since RC and NC are both P and
diag(eTi C)-invariant, Corollary 5 applies, thus leading to the
reduced HMM θ̌ = (RPJ,CJ) and initial conditions Rp0. �

VII. CHOOSING THE ALGORITHM’S PARAMETERS

In this section, we discuss what is the best choice of the
parameters for Algorithms 1 and 2. As the structure of the two
algorithms is identical, we only discuss the optimal choice of
E and p: the results can be extended directly to EC . The notion
of optimality is related to the dimension of the reduced system,
meaning: we want to find a choice of E and p positive such
that the reduced model returned by Algorithm 1 has minimal
dimension. This is equivalent to finding E and p such that
alg(p−1 ∧ E) has minimal dimension.

A. Optimal Distributions for Observable HMMs

We shall start the discussion by finding the optimal choice ofp
assuming that an effective subspace E is given. Before we prove
the main result of this section, we shall first state the following
useful result.

Lemma 6: Given a vector space W ⊆ Rn with generators
{wi}, W = span{wi}, there exists a vector w :=

∑
i λiwi,

with λi �= 0 for all i and such that supp(w) = supp(W).
The proof of this lemma can be found in Appendix B.
Theorem 3: Let consider a vector space W ⊆ Rn and a

vector w as in Lemma 6. Then, there exists a unique algebra
A ∗ of minimal dimension such that W ⊆ x ∧ A ∗ for some
x ∈ Rn. Moreover, A ∗ = alg(w−1 ∧W), and it is unital over
the support of W , i.e., 1supp(W) ∈ A ∗.

Proof: The existence of such a w is proved in Lemma 6.
Since A = Rn satisfies W ⊆ x ∧ A , for all x ∈ Rn and its

possible subalgebras are finite (corresponding to the partition of
n), A ∗ exists. To prove that it is a unique solution, we proceed
by contradiction. Let assume that there exist two different alge-
bras A ,B ⊆ Rn with minimal dimension dim(A ) = dim(B)
and two vectors a, b ∈ Rn such that W ⊆ a ∧ A and W ⊆
b ∧ B. From Proposition 1, we know that A = span{aj} and
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B = span{bj}, where {ai} and {bi} are the finest resolutions
in idem(A ) and idem(B), respectively. Clearly, if ai = bi for
all i, then A = B, which yields a contradiction. Therefore,
we assume that there exists an index j such that aj �= bi for
all i. We can then notice that for all v ∈ W , we can write
v =

∑
i μia ∧ ai =

∑
i νib ∧ bi.

For j such that aj �= bi or all i, we can then write

aj ∧ v = μja ∧ aj =
∑
i

νiaj ∧ b ∧ bi.

The first equality implies that over the support of each aj , every
v must be proportional to a ∧ aj . The second equality, on the
other hand, due to the fact that aj �= bj implies that at least two
of the products aj ∧ b ∧ bi must be nonzero. In order for the
nontrivial sum to be always proportional to a ∧ aj , it must be
that the coefficients νi always appear in a fixed ratio. Hence,
the corresponding bi can be substituted by their sum and, still,
generate the full W when multiplied by a suitable vector b. This
shows that B could not be a minimal algebra unless ai = bi for
all i, up to a reordering.

Let A ∗ be the unique algebra of minimal dimension such
that W ⊆ x ∧ A ∗ for some w. From Proposition 1, we know
that A ∗ = span{aj}, where {ai} is the finest resolution in
idem(A ∗). In particular, {aj} forms an orthogonal basis for A ∗

and its elements have completing mutually orthogonal supports,
i.e., supp(ak) ⊥ supp(aj) for k �= j and

∑
j aj = 1supp(W).

We can then observe that x ∧ A ∗ = span{x ∧ aj} and that
the vectors x ∧ aj have complementary mutually orthogonal
supports. Then, for W ⊆ x ∧ A ∗ to hold, it must be that w =∑

j μjx ∧ aj for all w ∈ W .
By the above discussion, we can writewi =

∑
j μ

i
jx ∧ aj for

each generator of W . Notice that, for all j, μi
j �= 0 for at least

one i. Let us then use the definition ofw given in the statement,
and substituting the form of the wi we just reported, we ob-
tainw =

∑
j σjx ∧ aj with σj =

∑
i λiμ

i
j . From the argument

above, from the fact that λi �= 0 for all i and from the fact that,
by hypothesis,w has maximal support, we have that σj �= 0 for
all j. Because of the structure of {x ∧ aj}, we have that

(aj ∧w)−1 = aj ∧w−1 = σ−1
j (x ∧ aj)

−1 = σ−1
j x

−1 ∧ aj

and thusw−1 =
∑

j σ
−1
j x

−1 ∧ aj . From this, we have that the
vector space w−1 ∧W is generated by vectors of the type

w−1 ∧wi =
∑
j,k

σ−1
j μi

kx
−1 ∧ aj ∧ x ∧ ak =

∑
j

σ−1
j μi

jaj .

This proves that w−1 ∧W ⊆ A ∗ and that any vector v ∈
w−1 ∧W can be written as v =

∑
i viw

−1 ∧wi =
∑

j ξjaj

with ξj :=
∑

i viσ
−1
j μi

j . Let us then consider any two vectors
v,u ∈ w−1 ∧W and compute their ∧-product

v ∧ u =

⎛⎝∑
j

ξjaj

⎞⎠ ∧

⎛⎝∑
j

ξ̂jaj

⎞⎠ =
∑
j

ξj ξ̂jaj .

This implies that alg(w−1 ∧W) ⊆ A ∗. On the other hand, it
trivially holds thatW ⊆ w ∧ alg(w−1 ∧W). But then, since we
assumed that A ∗ was the unique algebra of minimal dimension

such that W ⊆ x ∧ A ∗ for somex, it must hold that alg(w−1 ∧
W) = A ∗.

Finally, sincew ∈ W , thenw−1 ∧w = 1supp(W) ∈ (w−1 ∧
W) ⊆ A ∗. �

Remark 10: Theorem 3 shows that, given any choice of the
effective subspace, we can construct a vector w such that the
algebra alg(w−1 ∧ E) has minimal dimension. However, not all
such w are positive over the support of E . As a matter of fact,
it could happen that some choices of E do not contain any non-
negative vector, whilew = p being nonnegative is fundamental
to construct a stochastic reduction.

Theorem 3 is nonetheless sufficient to determine the optimal
reduction for a class of HMMs, namely those for which R is
“observable,” i.e., R∩N = ∅.

Proposition 4: Let {ri} be an N -dimensional set of positive
generators of R and let p :=

∑
ri/N . Then, if R∩N = {0},

A := alg(p−1 ∧R) provides the optimal reduction.
Proof: By hypothesis, we haveR∩N = ∅.This implies that

E = R. Then, using Theorem 3, we have that p =
∑

i ri/N
provides the minimal dimension for alg(p−1 ∧R) and, thus,
the optimal reduction. �

Notice that this result applies in particular to fully observable
HMMs, i.e., when the pair (P,C) is observable, and thus to
finite-state Markov chains. In fact, the latter can be seen as
HMMs with C = I . The corresponding optimal reduction is
then a maximally lumped version of the original process [25].

B. Effective Subspace for the General Case

In order to address the general case, in addition to a distribu-
tion p, we also need to choose an effective subspace. Example 2
illustrates that not all effective spaces are equivalent and lead
to different dimensions for the reduced model, making this
choice critical toward the optimality of the reduction. A natural
candidate effective subspace is E⊥, the orthogonal complement
(with respect to the natural inner product 〈x,y〉 = xTy) of
R∩N in R. Let {εi}i=1,...,d be the set of generators of E⊥.
Then, any choice of the effective subspace can be described
as E = span{εi + ni}i=1,...,d, where {ni}i=1,...,d is a set of
vectors in N .

We next show that the choice of the orthogonal complement
E⊥ always allows for finding a positive vector w = p as in the
statement of Theorem 3 and, hence, a valid stochastic reduction.
The following proposition is instrumental to this aim.

Proposition 5: Let p ∈ Rn be a probability vector, and let V
be a vector space such that 1Tv = 0 for all v ∈ V . Let ΠV be
the orthogonal projector on V with respect to the standard inner
product 〈·, ·〉. Then, q := p−ΠVp is a probability vector.

Proof: Let us start by defining w := 1/2− p. We can then
write p = 1/2−w to notice that pi ∈ [0, 1] if and only if
−1/2 ≤ wi ≤ 1/2, that is if and only if ||w||∞ ≤ 1/2. More-
over, we have that 1Tp = 1 if and only if 1Tw = (n− 2)/2.
We can then compute q:

q = 1/2−w −ΠV1/2 + ΠVw

= 1/2− (I −ΠV)︸ ︷︷ ︸
=:ΠV⊥

w = 1/2−ΠV⊥w



7384 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 12, DECEMBER 2023

where we used the hypothesis that 1Tv = 0 for all v ∈ V to say
that ΠV1 = 0. Then, since ΠV⊥ is an orthogonal projection and,
thus, a contraction in norm, we have that ||ΠV⊥w||∞ ≤ ||w||∞.
Then, using the argument above, we have that q is a nonnegative
vector with qi ∈ [0, 1]. Finally, we have that 1Tq = 1T1/2−
1Tw = n/2− (n− 2)/2 = 1. �

The result we are after is then obtained as a corollary of the
previous one.

Corollary 4: Let E⊥ be the orthogonal complement ofR∩N
to R. Let {ri} be an N dimensional set of probability vec-
tors such that R = span{ri}. Then, εi := ri −ΠR∩Nri are
such that E⊥ = span{εi}. Moreover, ε =

∑
i εi/N satisfies

supp(ε) = supp(E) and εi ≥ 0 for all i.
Proof: From Lemma 2, we have that 1Tx = 0 for allx ∈ N ,

and thus, by applying the proposition above on every generator
of R, we have that the set {εi} is a set of probability vectors.
Being ε a convex combination of probability vectors, it is itself
a probability vector, and it shares the same support as E . �

Other choices are possible, and the choice of the effective
subspace can influence the dimension of the reduced model, as
illustrated in the following example.

Example 2: Consider the following spaces:

R = span

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣
1/2

1/2

0

0

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣
0

0

1

0

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣
0

0

0

1

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ , N = span

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣

0

0

1

−1

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Then, we clearly have that R∩N = N . Let us denote with E⊥
the orthogonal complement of R∩N to R, i.e.,

E⊥ = span

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣
1/2

1/2

0

0

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣

0

0

1/2

1/2

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

We can easily notice that E⊥ is a unital algebra. Let us now
consider another completion E of R∩N to R. In general, we
can write

E = span

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣

1

1

a

−a

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣

0

0

1 + b

1− b

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

for some values a, b ∈ R. We can then consider two
cases. First, if a = 0 and b �= 0, we can choose v =[
1 1 1 + b 1− b

]T
, thus obtaining alg(v−1 ∧ E) = E⊥.

On the other hand, if we have a �= 0 and b �= 0, we can

choosew =
[
1 1 a+ 1 + b −a+ 1− b

]T
(assuming that

a+ b �= ±1), thus obtaining

alg(w−1 ∧ E) = span

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣
1

1

0

0

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣
0

0

1

0

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣
0

0

0

1

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

This example shows that the choice of the effective subspace
can affect the size of the reduced model.

VIII. EXAMPLES

Example 3: Let consider the HMM provided in [19, Example
3]

P =

⎡⎢⎢⎢⎢⎣
1/3 1/6 1/4 1/4 0
1/6 1/3 0 1/4 1/4
1/3 1/6 1/4 1/4 0
1/6 1/6 1/6 0 1/2
0 1/6 1/3 1/4 1/4

⎤⎥⎥⎥⎥⎦ , S =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣
1/5

1/5

1/5

1/5

1/5

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
C =

⎡⎣ 1 1 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤⎦ .
We shall start by studying the single-time marginal problem.

We can observe thatp0 ∈ S is an equilibrium forP and thusR =

span{S} and also that N = span{
[
1 −2 1 0 0

]T
}.

Clearly, the intersection contains only the zero vector,R∩N =
{0}, and thus, the effective subspace can be taken as the
reachable one: E⊥ = R. If we then take p = p0, we obtain
A = alg(p−1 ∧ E) = span{1}. The corresponding stochastic
reduction and injection matrices are R = 1T and J = p, which
provide the (trivial) reduced model

P̌ =
[
1
]
, Š =

{[
1
]}

, Č =
[
3/5 1/5 1/5

]T
.

We next focus on the multitime marginal problem. We have
that NC = N , while the conditioned reachable is equal to

RC = span

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣
1/5

1/5

1/5

0

0

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣

0

0

0

1/5

0

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

1/5

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣

1

−2

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

This implies that the intersection RC ∩ NC = NC and thus

EC⊥ = span

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣
1

1

1

0

0

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣
0

0

0

1

0

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣
0

0

0

0

1

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

Then, we can notice that EC is a unital algebra, and by takingp =
1/5, we obtain the stochastic reduction and injection matrices

R =

⎡⎢⎣1 1 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤⎥⎦ , J =

⎡⎢⎢⎢⎢⎢⎢⎣
1/3 0 0

1/3 0 0

1/3 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
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that leads to the reduced model

P̌ =

⎡⎢⎣2/3 3/4 1/4

1/6 0 1/2

1/6 1/4 1/4

⎤⎥⎦ , Š =

⎧⎪⎨⎪⎩
⎡⎢⎣3/51/5

1/5

⎤⎥⎦
⎫⎪⎬⎪⎭

Č =

⎡⎢⎣1 0 0

0 1 0

0 0 1

⎤⎥⎦ .
Example 4: Consider the HMM defined by

P =

⎡⎢⎢⎣
1/2 0 1/3 1/4
0 1/3 1/3 1/4

1/2 0 1/3 0
0 2/3 0 1/2

⎤⎥⎥⎦ , S =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣
1

0

0

0

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣
0

1

0

0

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

C =

[
1/4 1/4 1/2 7/16
3/4 3/4 1/2 9/16

]
.

In this case, we are only interested in the single-time marginal
problem. We can notice that R = Rn and thus

R∩N = N = span

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣

1

−1

0

0

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣
−1

0

−3

4

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Then, we can consider the effective subspace as the orthogonal
complement of N , i.e.,

E⊥ = span

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣
4/9

4/9

0

1/9

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣

0

0

4/7

3/7

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Then, we can define p := 1/4 to obtain

A = alg(p−1 ∧ E⊥) = span

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣
1

1

0

0

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣
0

0

1

0

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣
0

0

0

1

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Notice that, in this case, the dimension of the algebra is greater
than the effective subspace. We, thus, obtain the stochastic
reduction and injection matrices

R =

⎡⎢⎣1 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎦ , J =

⎡⎢⎢⎢⎣
1/2 0 0

1/2 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎦
that leads to the reduced model

P̌ =

⎡⎢⎣5/12 2/3 1/2

1/4 1/3 0

1/3 0 1/2

⎤⎥⎦ , Š =

⎧⎪⎨⎪⎩
⎡⎢⎣10
0

⎤⎥⎦
⎫⎪⎬⎪⎭

Č =

[
1/4 1/2 7/16

3/4 1/2 9/16

]
.

Suppose that, instead of the orthogonal complement, we were
to consider the following space as an effective subspace:

E = span

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣

6

5/2

3/2

−1

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣

2

5/6

25/2

−25/3

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

We can immediately notice that there is no convex combination
of the generators of E such that it is positive; however, if we

consider v =
[
8 10/3 14 −28/3

]T
, we have that

A = alg(v−1 ∧ E) = span

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣
1

1

0

0

⎤⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎣
0

0

1

1

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

thus showing that a smaller algebra could be found for the re-
duction, if we were to consider vectors that are not nonnegative.

IX. CONCLUSION AND FUTURE WORK

In this article, we exploited system-theoretic ideas and al-
gebraic representation of probability spaces to obtain effective
reductions of HMMs that preserve the marginals of the original
output process, in either the single- or multitime case. While
optimal reductions are explicitly characterized for a class of
HMMs, including observable ones, the freedom of choice in the
effective subspace makes finding the optimal reductions more
challenging in the general case. Nonetheless, we provided an
algorithm that produces reduced HMMs of minimal dimen-
sion in all the considered examples. Based on the analytical
and numerical examples we examined, we formulated the fol-
lowing conjecture on the optimality of the natural orthogonal
complement.

Conjecture 1: Let E⊥ be defined as the (standard) orthog-
onal complement of N ∩R to R, and let p be defined as in
Corollary 4. Then, given any other choice of E andw nonnega-
tive, we have

dim(alg(p−1 ∧ E⊥)) ≤ dim(alg(w−1 ∧ E)).

Remark 11: If the effective subspace is already an al-
gebra with respect to a p inner product, then dim(E⊥) =
dim(alg(p−1 ∧ E⊥)), since dim(E⊥) = dim(E) and dim(E) ≤
dim(alg(w−1 ∧ E)) by Theorem 3; then, the choice of E⊥ is
optimal. Also notice that removing the assumption that w is
nonnegative makes the statement false. A counterexample is pre-
sented at the end of Example 4. However, havingw nonnegative
is necessary in order to obtain a stochastic model.

Proving the conjectured minimality may require novel math-
ematical ideas: the choice of E and EC that minimize the size of
the generated algebras is equivalent to identifying the represen-
tative of the quotient space that can be described with the least
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number of indicator vectors, and a way to relate this notion to
orthogonality to N does not seem straightforward to find.

Other natural developments of the proposed framework in-
clude a relaxation of the method so that it allows for approximate
preservation of the marginals, thus yielding reductions in practi-
cal situations where noise and partial knowledge might make the
exact equivalence we require in this work too stringent, due to
the fact that controllable pairs are a dense set [36]. In addition, in
many algorithms used to estimate HMMs from data, e.g., [34],
the dimension of the “hidden” state space (i.e., n) is assumed
to be known. When this is not the case, one could estimate an
HMM with a larger than necessary number of hidden variables
and, then, use an approximate reduction scheme to reduce the
estimated model to one of more manageable size. Future work
will also be devoted to the adaptation and application of the
method to approximate coarse-graining of large-scale systems,
to address otherwise untreatable problems [16], [17], [18].

The algebraic approach also naturally extends to the noncom-
mutative domain, and our method will be extended to quantum
systems, in particular quantum walks and open systems in gen-
eral. Analogies between HMM and quantum walks have been
already noted in [37], as well as [38] and [39], which extend the
result of [19] to include quantum walks. Finally, the algebraic
viewpoint makes our results potentially interesting toward the
solution of outstanding open problems in realization theory and
model reduction for positive systems [40].

APPENDIX A
REDUCTION RESULT FOR SWITCHING

AUTONOMOUS SYSTEMS

This appendix is dedicated to introducing a general condi-
tion ensuring exact model reduction for switching autonomous
systems. Both the single- and multitime marginals can be de-
scribed by the dynamics of this type. Consider a discrete-time,
autonomous, switching, linear system⎧⎪⎨⎪⎩

x(t+ 1) = Fix(t)

y(t) = Hx(t)

x(0) ∈ I

denoted by the triplet ({Fi}, H, I). The evolution at any time
clearly depends on the sequence of evolutions Fi activated.
Let us denote by y(s0:l) the output of the system at time
l associated with a sequence s0:l = sl, . . . , s0 of length l of
selected evolution Fsk . The output at any time l > 0 can be
computed asy(s0:l) = H

∏0
j=l Fsjx0, while for t = 0, we have

y(0) = Hx0.
Let R ⊆ Rn be a linear subspace such that I ⊆ R and is

Fi-invariant, i.e., FiR ⊆ R, for all i. Let Ñ ⊆ Rn be a linear
subspace such that Ñ ⊆ kerH and is Fi-invariant, i.e., FiÑ ⊆
Ñ , for all i. Let us then define E to be any completion of R∩ Ñ
to R, i.e., R = (R∩ Ñ )⊕ E .

Theorem 4: Consider any subspace V such that E ⊆ V with
m = dim(V) and let ΠV be the orthogonal projection onto V
with respect to an inner product 〈·, ·〉 . Assume that ΠV(R∩

Ñ ) ⊆ R ∩ Ñ , and let R : Rn → Rm and J : Rm → V be two
factors of the orthogonal projection, ΠV = JR.

Let consider the reduced model ({F̌i}, Ȟ, Ǐ) =
({RFiJ}, HJ,RI). Then, the reduced model reproduces
the same output as the original model, i.e.,

H
0∏

j=l

Fsjx0 = Ȟ
0∏

j=l

F̌sj x̌0

for any sequence s0:l and any initial condition x0 ∈ span{I}
and the relative x̌0 = Rx0.

Proof: Let W1 be the completion of R∩ Ñ to Ñ , i.e., Ñ =
W1 ⊕ (R∩ Ñ ); let W2 be the completion of (R∩ Ñ )⊕ E ⊕
W1 to Rn, i.e., Rn = W1 ⊕W2 ⊕ E ⊕ (R∩ Ñ ); and let T be
the remainder subspace, such that Rn = V ⊕ T and thus T ⊆
(Ñ ∩ R)⊕W1 ⊕W2. Let us also denote by ΠT the orthogonal
projector onto T with respect to the considered inner product
〈·, ·〉.

We can notice that, for any sequence s0:l, we have that
Ȟ

∏0
j=l F̌sj x̌0 = HΠV

∏0
j=l FsjΠVx0, and thus, the state-

ment can also be put in the form

H

⎡⎣ 0∏
j=l

Fsj −ΠV

0∏
j=l

FsjΠV

⎤⎦x0 = 0

for any sequence s0:l and for anyx0 ∈ I. To prove the statement,
we will, thus, show that for any sequence s0:l and for any initial
condition x0 ∈ I, we have⎡⎣ 0∏

j=l

Fsj −ΠV

0∏
j=l

FsjΠV

⎤⎦x0 ∈ Ñ ∩ R.

We will prove this statement by induction.
Let us then consider the case of t = 0. We have to prove [I −

ΠV ]x0 ∈ Ñ ∩ R. Then, by noticing that (I −ΠV)x0 = ΠT x0

and that ΠT x0 ∈ Ñ ∩ R, the statement is proved in the case
t = 0.

Then, assume that

v :=

⎡⎣ 0∏
j=l−1

Fsj −ΠV

0∏
j=l−1

FsjΠV

⎤⎦x0 ∈ Ñ ∩ R

and we want to prove that⎡⎣ 0∏
j=l

Fsj −ΠV

0∏
j=l

FsjΠV

⎤⎦x0 ∈ Ñ ∩ R.

By rewriting this in (15) shown at the bottom of the next page,
we can observe that it is equal to the sum of three parts. We can
then notice that:

1) v ∈ Ñ ∩ R, ΠVv ∈ Ñ ∩ R by assumption; thus,
PΠVv ∈ Ñ ∩ R and also ΠVPΠVv ∈ Ñ ∩ R;

2)
∏0

j=l−1 Fsjx0 ∈ R by hypothesis, ΠT
∏0

j=l−1 Fsjx0 ∈
Ñ ∩ R, and FslΠT

∏0
j=l−1 Fsjx0 ∈ Ñ ∩ R;
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3)
∏0

j=l−1 Fsjx0 ∈ R by hypothesis, ΠV
∏0

j=l−1 Fsjx0 ∈
R, FslΠV

∏0
j=l−1 Fsjx0 ∈ R, and ΠRFsjΠV

∏0
j=l−1

Fsjx0 ∈ Ñ ∩ R.
Finally, since all three summands belong to Ñ ∩ R, their

sum also belongs to the same subspace, and the statement is
proved. �

In order to apply the result to our multitime problem, we need
a straightforward extension.

Corollary 5: Under the assumptions of Theorem 4, let us
further assume that Fi are factorized as Fi = DiA, that R and
Ñ are A-invariant and Di-invariant for all i, and also that I =⋃

iDiS for some set S .
Then, the matrices {F̌i} of the reduced model can be taken to

be F̌i = ĎiǍ with Ďi = RDiJ , Ǎ = RAJ..
The proof of this corollary follows exactly that of

Theorem 4, where HΠV
∏0

j=l(ΠVDsjAΠV)ΠVDix0 is substi-

tuted by HΠV
∏0

j=l(ΠVDsjΠVAΠV)ΠVDiΠVx0, and in the

induction, we leverage the fact that Ñ ,R and thus Ñ ∩ R are
invariant for ΠV , A, and Di, for all i.

APPENDIX B
PROOFS

This appendix collects some proofs that were not included in
the main text to improve readability.

Proof of Proposition 1: Let us start with the first part of the
statement. The fact that A is closed under linear combinations
and 1 ∈ A follows directly from the definition of A . The clo-
sure of A under elementwise product follows from the closure
of F under the same operation. In particular, let us consider
x,y ∈ A ; then, x ∧ y =

∑
i,j xiyjf i ∧ f j , and since f i ∈ F

for all i, f i ∧ f j ∈ F and, thus, x ∧ y ∈ A . Therefore, A is
an algebra, namely, the set of F-measurable r.v.s, and it is the
minimal one by construction.

We can then consider the second part of the statement.
First of all, notice that the vectors that are idempotent for the
elementwise product are composed only of zeros and ones.
Let us then consider a general element x ∈ A , and let xi∗ =
maxi=1,...,n |xi|. We can then compute x′ = x/xi∗ ∈ A that

will have value 1 in the positions wherex has value xi∗ , possibly
values −1 in the position where x has value −xi∗ , and values
in the range (−1, 1) in all the others positions. We can then
define x′′ = 0.5(x′ + x′ ∧ x′) ∈ A that will have value 1 in
the positions where x has value xi∗ and values in the range
(−1, 1) in all the others positions. Finally, the first idempotent
element of the desired set is f1 = limn→∞(x′′)n ∈ A with
elementwise power. Notice that f1 will have 1 in the same
positions as x′ and zeros in all the others. This implies that f1

is idempotent. By iterating the procedure on x− xi∗f1, and so
on, we obtain the whole set of idempotent elements {f i} ⊂ A
such that x =

∑
i xif i up to a reordering of the coefficients xi.

We shall denote by idem(x) the function that, given an element
x, returns the set of idempotent elements {f i} that generate
x. We then have that idem(A ) ⊇ ∪x∈A idem(x) by definition,
while to prove idem(A ) ⊆ ∪x∈A idem(x), it suffices to notice
that each element of idem(A ) is also an element of A . This
implies idem(A ) = ∪x∈A idem(x). Then, by construction, we
have span{idem(A )} = A .

We shall then notice that F = idem(A ) contains the el-
ements, 0,1 ∈ A, and is closed under the operations ∧, ∨,
and ¬. This shows that idem(A ) is a σ-algebra. Then, since
A = span{idem(A )}, then any element in A is idem(A )-
measurable. Moreover, idem(A ) is minimal because subtract-
ing any element from it would make that element (seen as a r.v.)
nonmeasurable. We, thus, have F = idem(A ).

Finally, res(F) ⊂ F is such thatf i ∧ f j = 0, for allf i,f j ∈
res(F) i �= j. This implies that 〈f i,f j〉 = δi−j , which means
that is a set of orthogonal vectors. Moreover, f = ∨fj∈Sf j

with S ⊆ res(F) for all f ∈ F \ {0} or, equivalently, f =∑
j cjf j with cj ∈ {0, 1} for all f ∈ F . This implies that

A = span{res(A)}, and thus, res(A ) is an orthogonal basis
for A and dim(A ) = |res(A )|. �

Proof of Lemma 1: First of all, note that the modified inner
product can be written in many equivalent forms: 〈v,w〉p =
Ep[v ∧w] = 〈p,v ∧w〉 = 〈p ∧ v,w〉 = 〈v,p ∧w〉.

Let us then consider E|A ,p. We can notice that
image(E|A ,p) = A and that E2

|A ,p = E|A ,p. The fact that
E|A ,p is self-adjoint with respect to the inner product 〈·, ·〉p,
that is

〈
v,E|A ,pw

〉
p
=

〈
E|A ,pw,v

〉
p

, remains to be proven.

⎡⎣ 0∏
j=l

Fsj −ΠV

0∏
j=l

FsjΠV

⎤⎦x0 =

⎡⎣(ΠV +ΠT )Fsl(ΠV +ΠT )
0∏

j=l−1

Fsj −ΠV

0∏
j=l

FsjΠV

⎤⎦x0

=

⎡⎣[ΠVFslΠV +ΠT FslΠV + FslΠT ]
0∏

j=l−1

Fsj −ΠVFslΠVΠV

0∏
j=l−1

FsjΠV

⎤⎦x0

= ΠVFslΠV

⎛⎝ 0∏
j=l−1

Fsj −ΠV

0∏
j=l−1

FsjΠV

⎞⎠x0︸ ︷︷ ︸
v

+

⎡⎣[ΠT FslΠV + FslΠT ]
0∏

j=l−1

Fsj

⎤⎦x0

= ΠVFslΠVv +ΠT FslΠV

0∏
j=l−1

Fsjx0 + FslΠT

0∏
j=l−1

Fsjx0 (15)
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Such an equality can be rewritten, using equivalent forms of
the modified inner product above, as

〈
v,p ∧ p ∧ E|A ,pw

〉
=〈

p ∧ p ∧ E|A ,pv,w
〉
. That is equivalent to prove thatp ∧ E|A ,p

is self-adjoint with respect to the standard inner product, which
can be verified by simply computing it.

Identical reasoning can be done for ET
|A ,p. Note that

image(ET
|A ,p) = p ∧ A , that (ET

|A ,p)
2 = ET

|A ,p, and that
p−1 ∧ E|A ,p is self-adjoint with respect to the standard inner
product, and the statement is proved. �

Proof of Proposition 3: Both kerC ⊇ N and S ⊆ R are
well-known properties. We have to prove that N ⊇ NC and
R ⊆ RC .

Regarding the reachable space, we have that
span{P y0:lp0, ∀y0:l s.t. l = k,∀p0 ∈ S} ⊇ span{P kp0, ∀p0
∈ S} for all k ≥ 0. This is proven directly using Lemma 5.

For the nonobservable subspace, we have

⎡⎢⎢⎣
1Tdiag(e0)PP

y0:l−1

C
...

1Tdiag(em)PP y0:l−1

C

⎤⎥⎥⎦ = CPP y0:l−1

C p0.

Then, we have that ker[CPP y0:l−1

C ] = ker[CP l] for all y0:l−1

of length l, for any length l. Once again, this is proved by
using Lemma 5. Consider a vector v ∈ ker[CPP y0:l−1

C ] for all
y0:l−1. Then, we have CPP y0:l−1

C v = 0 summing both sides
of this equation over all sequences y0:l−1 of length l − 1, and
using Lemma 5, we obtain CP |y0:l−1|+1v = 0, thus proving the
statement.

The statement on the effective subspaces follows directly from
the other two. �

Proof of Lemma 6: We shall start by constructing a vector
w̃ such that supp(w̃) = supp(W). Starting from it, we then
construct a vectorw such that it is a linear combination of every
generator.

By definition of support of a vector space, for each ei ∈
supp(W), there exists a vector xi ∈ W such that eTi xi �= 0,
forming a set {xi}. Without loss of generality, we assume
i = 0, . . . ,m with m = dim(supp(W)). We can then define
w̃0 = x0 and iteratively compute w̃i = w̃i−1 + λixi with λi /∈
{−eTj w̃i−1/e

T
j xi, ∀j|eTj xi �= 0} ∪ {0}. Since this set is finite,

it is always possible to choose a suitable λi ∈ R for each i.
At the end of the iteration process, we obtain w̃ = w̃m =∑m

i=0 λixi ∈ W . To prove supp(w̃) = supp(W), we can sim-
ply observe that eTj w̃ =

∑m
i=0 λie

T
j xi �= 0 by construction for

all ej ∈ supp(W). On the other hand, for every ej /∈ supp(W),
eTj xi = 0 for all i, and thus, eTj w̃ = 0.

This w̃ must be described as a linear combination of some
of the generators, say w̃ =

∑
i∈S λiwi, for some set of indices

S. We can then use the same procedure as before: takewi such
that i /∈ S, by choosing any λi /∈ {−eTj w̃/eTj wi, ∀j|eTj wi �=
0} ∪ {0}, we have supp(w̃ + λiwi) = supp(W). Iterating this
procedure on the remaining vectors {wi|i /∈ S}, we obtainw =
w̃ +

∑
i/∈S λiwi such that supp(w) := supp(W). �
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