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Linear Output Regulation for Unknown Stable Systems With Uncertain
Minimum-Phase Actuators

Cristiano Maria Verrelli and Patrizio Tomei

Abstract—Consider a linear stable system—described by the
transfer function P (s) of unknown parameters, unknown order,
and unknown relative degree—under a linear exosystem gener-
ating biased multisinusoidal references and/or disturbances with
at most q different known frequencies ωi, i = 1, . . . , q. It has
been recently established that a linear regulator with minimal order
(2q + 1) exists under the knowledge of the positive or negative
signs of i) P (0) and ii) either �(P (jωi)) or �(P (jωi)), for any
i = 1, . . . , q [j is the imaginary unit]. This technical note explores
the case in which the measurable input u to the aforementioned
system is provided by an unknown linear actuator. It is actually
shown that the regulator design can be naturally extended to such
a scenario, provided that the actuator process is minimum-phase,
of known relative degree ρ ≥ 1, and with known sign of the high-
frequency gain.

Index Terms—Linear actuator, linear output regulation, mini-
mum phase, stable system, uncertain system.

I. INTRODUCTION

When both output reference signals and disturbances are generated
by linear exogenous systems named exosystems, a popular approach
to achieve output tracking in linear systems relies on the formulation
of the problem as a linear output regulation problem [1], [6]. A fun-
damental result, in this framework, is the internal model principle:
given a stabilizable and detectable linear system, an output feedback
regulating control exists if and only if the spectrum of the exosystem
has no intersection with the set of the system zeroes. Furthermore,
the resulting compensator has to contain an internal model of the
reference/disturbance. In the case in which the process is uncertain
and the exosystem is known, a relevant question regards which types
of uncertainties [17] and which types of single-input, single-output
plants (see [9], [10] for multiple-input, multiple-output systems) allow
for the design of a feedback regulator that is able to cancel biased
multisinusoidal disturbances. It is definitely known that, as long as the
plant is stable, a suitably tuned integral control solves the problem for
constant disturbances, provided that the transfer function P (s) of the
system does not vanish at the origin (s = 0) of the complex plane [16]
(see [7] for a general design approach including nonlinear systems
and [12] for the design of a novel nonlinear PID control that guarantees
desired state limitations for a wide class of nonlinear systems): the sign
of the integral action strictly depends on the sign ofP (0) and the integral
gain has to be sufficiently small. On the other hand, if the exosystem
has order two, i.e., it generates sinusoidal references/disturbances with
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a single frequency ω, then a small-gain regulator exists, provided that
the system is stable and the phase of P (jω) has an uncertainty less than
180◦ [3], [4].1 The above results are then generalized in [13] to biased
multisinusoidal signals: if the plant is stable and the linear exosystem
generates references and/or disturbances containing at most q different
known (positive) frequencies ωi, i = 1, . . . , q, then a linear regulator
with minimal order (2q + 1) exists under the knowledge of the positive
or negative signs of i)P (0) and ii) either�(P (jωi)) or�(P (jωi)), for
any i = 1, . . . , q. Further developments can be found in [20] and [14].

The goal of this technical note is to present a natural extension of
the design of [13] to the case in which the measurable input u to the
system in [13] is provided by a minimum-phase linear actuator process
with unknown order, unknown parameters—except for the sign of the
high-frequency gain—and known relative degree ρ ≥ 1. Covering this
case is challenging and certainly deserves attention, since there is no
guarantee that the same sign-structure of the controller for the actuator-
free case can be still used to solve the problem in the presence of the
actuator, as illustrated by the following motivating example.

Motivating example. Denote by L[f(t)](s) the Laplace transform
of the Laplace transformable signal f(t) : R≥0 → R in terms of the
complex variable s. Consider the second-order dynamic stable plant Σ
in [13] described by the transfer function

P (s) = 1/(s+ 1)2

subject to the action of the u-matched disturbance

d(t) = 1 + sin(t/2 + 0.3)− sin(2t)

as represented by the top scheme of Fig. 1, with the output refer-
ence being set to zero in the output tracking error expression: e(t) =
y(t)− yr(t). Since P (0) > 0, �(P (j/2)) = 0.48 > 0, �(P (2j)) =
−0.12 < 0, the dynamic output feedback controller (8) of [13] [version
(A)]:

L[u(t)](s) = −ε

[
1

s
+

s

(s2 + 1/4)
− s

(s2 + 4)

]
L[e(t)](s)

successfully applies, for sufficiently small (positive) ε, to guarantee ex-
ponential convergence to zero of the output regulation error e(t) = y(t)
in spite of the presence of d(t). Now assume that the input u(t) to the
systemΣ is instead provided by the uncertain (unmodeled) two-relative-
degree, stable, third-order dynamic, minimum phase actuator process
(see Fig. 1, scheme at the bottom, in the absence of the disturbance da)
whose transfer function is given by (ζ ∈ R>0)

F (s) = (s+ ζ)/(s+ 1)3.

The dynamic relationship between the output y(t) and the input v(t)
reads (subscript e stands for extended):

Pe(s) = F (s)P (s) = (s+ ζ)/(s+ 1)5

1Sufficient conditions are also presented in [5] to guarantee, through a
fractional-order derivative controller, the stability of the closed-loop system,
and consequently, the disturbance rejection even if the uncertainty on the phase
is greater than 180◦; see also [2] for the case of periodic disturbances.
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Fig. 1. Block diagram of the regulator problem in the original version
of [13] (at the top) and in the extended version of this note (at the
bottom), i.e., in the presence of an unmodeled actuator (d = Dw and
da = Ew are the system state disturbance and the actuator state dis-
turbance, respectively).

which still complies with the scenario in [13], since it describes an un-
certain linear stable system under the action of an exosystem generating
biased multisinusoidal references and/or disturbances with at most q
different known frequencies. Now, no information about �(Pe(j/2)),
�(Pe(2j)) is available. Indeed, �(Pe(j/2)) < 0 for any ζ > 41/76,
while �(Pe(2j)) > 0 for any ζ > 76/41, so that the previously de-
signed controller (exhibiting a positive sign for the second term and a
negative one for the third term within the square brackets) does not have
a sign-structure that follows the design rules of [13] when ζ > 41/76.
In particular, root locus analysis tools show how, for ζ = 2, L[u(t)](s)
with ε ∈ (0, 0.749) solves the problem in the absence of the actuator
dynamics, whereas no controller of the above sign-structure is able to
solve the problem in presence of the actuator.

II. PROBLEM STATEMENT

As in [13], consider the class of linear time-invariant systems with
one input and one output [A, b, c, D are matrices/vectors of suitable
dimensions]

ẋ = Ax+ bu+Dw

y = cx (1)

with x ∈ Rm and w ∈ R2q+1 (u ∈ R, y ∈ R). Further assume that the
output y has to track the reference yr = −rw (r is a row vector with
2q + 1 components), leading to the definition of the output regulation
error e = y + rw. Such an error is measured and has to be regulated
to zero. Both the system state disturbance d = Dw and the output ref-
erence yr = −rw rely on the vector w that is assumed to be generated
by the linear exosystem

ẇ = Rw (2)

characterized by the R-matrix with spectrum σ(R) =
{0,±jω1, . . . ,±jωq}, where ωi > 0 and ωi �= ωj , for any i �= j,
i, j = 1, . . . , q. In this regard, recall from [13] (see also [18]) that
necessary and sufficient conditions for the solution of the regulator
problem are as follows:
1) the pair (A, b) is stabilizable;
2) the pair (A, c) is detectable;
3) P (s) is such that P (λ) �= 0 for any λ ∈ σ(R);

with this last condition being equivalent to the existence of a unique pair
of matrices (Γr, γr) solution to the regulator equations:ΓrR = AΓr +
bγr +D, cΓr + r = 0 and which the state and input references, xr =
Γrw, ur = γrw, correspond to. Here, matrix A in (1) is additionally

supposed to be Hurwitz, with system (1) being assumed to be reachable
and observable, though no other information is available for system (1).
In particular, neither the matrices/vectorsA, b, c nor the orderm and the
relative degree ρs of (1) are assumed to be known. Let P (s) = c(sI −
A)−1b finally denote the proper transfer function of system (1). The
considered scenario and the corresponding output regulation problem—
including its notation—is thus coinciding with the one depicted in [13],
once the order 2q + 1 and the eigenvalues of the exosystem (2) are
considered to be known and the following assumptions are introduced:
i) P (0) is different from zero, with known sign; ii) for any ωi,
i = 1, . . . , q, either (A) �(P (jωi)) or (B) �(P (jωi)) is different from
zero, with known sign. The related controller is the linear regulator with
minimal order (2q + 1) that reads2:

R(s) = − ε
d1s

2q + · · ·+ d2q+1

s
∏q

i=1(s
2 + ω2

i )

p1
(
ω2
i

)
= (ω2

i )
−1[(−1)isgn{�(P (jωi))} (3)

− sgn{P (0)}] (A)

p1
(
ω2
i

)
= (ω2

i )
−1[−sgn{P (0)}] (B)

p2
(
ω2
i

)
= 0 (A)

p2
(
ω2
i

)
= (ωi)

−1(−1)i+1sgn{�(P (jωi))} (B)

p1(σ) = (−1)qd1σ
q−1 + (−1)q−1d3σ

q−2 + · · ·
− d2q−1

p2(σ) = (−1)q−1d2σ
q−1 + (−1)q−2d4σ

q−2 + · · ·
+ d2q

where d1, . . . , d2q+1—solutions to the equations above– - are the con-
stants defined in [13, Th. 3.3]. Now, differently from [13] (addressing
the scenario reported in Fig. 1, block diagram at the top), consider the
case (Fig. 1, block diagram at the bottom) in which the measurable
input signal u is generated by the (reachable and observable3) linear
actuator process—possibly perturbed by the actuator state disturbance
da = Ew, with E being a matrix of suitable dimension—described by
the equations

ż = Fz + γgv +Ew

u = hz (4)

with z ∈ Rn, v ∈ R. Without loss of generality, system (4) is assumed
to be in the observer canonical form, namely, exhibiting

F =

⎡
⎢⎢⎢⎢⎢⎣

−f1 1 0 · · · 0
−f2 0 1 · · · 0

...
...

...
. . .

...
−fn−1 0 0 · · · 1
−fn 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

g = [0, . . . , 1, gρ+1, . . . , gn]
T, h = [1, 0, . . . , 0].

For such a system, the order n and the matrices/vectors F , g, h are
unknown, along with the high-frequency gain γ. Only the sign of γ—
positive without loss of generality—and the relative degree ρ ≥ 1 of
the actuator process (4) are assumed to be known. Furthermore, the
zeroes of the transfer function H(s) = γh(sI − F )−1g, namely, the
roots of the polynomial πf (s) = sn−ρ + gρ+1s

n−ρ−1 + · · ·+ gn, are

2Such a controller is not guaranteed to have the same modular structure of
the dynamic output feedback controller [13, (8)].

3Stabilizable and detectable plants/actuators can be dealt with as well.
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assumed to belong to open left-side of the complex plane (minimum
phase assumption). Introduce the following definition.

Definition 2.1: Given the previously described linear system (1), (4)
under the action of the linear exosystem (2), the related linear output
regulation problem is solvable if there exists a linear proper dynamic
controller

L[v(t)](s) = Ge(s)L[e(t)](s)−Gu(s)L[u(t)](s) (5)

such that i) the closed-loop error system is exponentially stable when
w(0) = 0; and ii) the regulation error e(t) exponentially converges to
zero for any (x(0), z(0), w(0)), as t tends to infinity.

III. MAIN RESULT

The following theorem states the contribution of this note.
Theorem 3.1: Let k be a positive control gain. Let ai, i = 1, . . . ,

ρ− 1 (when ρ > 1) and aϕ be positive reals, with the polynomial
q(s) = sρ−1 + a1s

ρ−2 + . . .+ aρ−1 being Hurwitz (when ρ > 1). Let
d1, . . . , d2q+1 be the constants in (3). If a filter F(s) is set as

F(s) =
aρ−1k

ρ−1(sρ−1 + a1s
ρ−2 + · · ·+ aρ−1)

sρ−1 + a1ksρ−2 + · · ·+ aρ−1kρ−1
(6)

for ρ > 1 and F(s) = 1 for ρ = 1, then there exists a positive real k∗

such that, for any k ≥ k∗, the output regulation problem of Definition
2.1 for (1) and (4) under (2) is solvable by (5) with

Ge(s) = F(s)

[
−aϕ

k
· d1s

2q + · · ·+ d2q+1

s
∏q

i=1(s
2 + ω2

i )

]

Gu(s) =
4
√
kF(s). (7)

Proof: The proof is divided into eight separate parts. The first one
concerns the μ-filtered transformation ζ for (4) in the case in which
ρ > 1: the aim is to get, on the basis of the Hurwitz nature of the
polynomial sρ−1 + a1s

ρ−2 + · · ·+ aρ−1, a new ζ-subsystem [namely,
(17)] with relative degree equal to one with respect to the new input
μ1. Such a step has to be skipped when ρ = 1. The second step
regards a suitable scaling of the μ-dynamics with the aim of making a
power-increasingk-dependent scaling factor appear in the lower system
level [refer to (20)]. The third step concerns the explicit definition of
intermediate reference signals for system (1) and the ζ-subsystem,
with the former being taken from [13] and the latter relying on the
minimum-phase properties of the actuator system. The fourth step
regards a suitable change of coordinates highlighting the zero-dynamics
for the ζ-system [namely, (17)] and the related definition of additional
control signals [namely, (27)]. The fifth step regards the definition of
the tracking errors and the derivation of the related error system. The
sixth step concerns the presentation of the key idea (inspired by [19]),
that is the derivation of an equivalent disturbance that just acts on the
upper error system [namely, (21)]; such an equivalent disturbance has
to be counteracted by the multisinusoidal generator of the controller
[namely, the block of estimators (20)]. The seventh step regards the
derivation of the state space representation for the intermediate signal
z1,ref , which is instrumental to derive the entire error system in the state
space. The last step finally uses a composite Lyapunov function for the
entire error system [namely, (41)], which is obtained as the sum of the
sub-Lyapunov functions for each linear error subsystem.

A. Filtered Transformation for (4) When ρ > 1

For ρ > 1, introduce the linear stable filter of order ρ− 1 (μ =
[μ1, . . . , μρ−1]

T):

μ̇ = Mμ− bcv (8)

where the first column coefficients of the matrix M within the expres-
sions:

M =

⎡
⎢⎢⎢⎢⎢⎣

−a1 1 0 · · · 0
−a2 0 1 · · · 0

...
...

...
. . .

...
−aρ−2 0 0 · · · 1
−aρ−1 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦ , bc =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ (9)

define the Hurwitz polynomial:

q(s) = sρ−1 + a1s
ρ−2 + · · ·+ aρ−1. (10)

Then, introduce the filtered transformation

ζ = z − γTμ (11)

with T being an n× (ρ− 1) constant matrix to be chosen hereafter,
with the aim of making the new ζ-subsystem own relative degree equal
to one with respect to the new input μ1 (see [15] for an analogous
transformation). To this purpose, from (4) and (8) compute

ζ̇ = Fz + γ(g − Tbc)v − γTMμ+Ew (12)

and, according to (4), decompose F as

F = Fu + Fc (13)

where

Fu =

⎡
⎢⎢⎢⎣

−f1 0 · · · 0
−f2 0 · · · 0

...
...

. . .
...

−fn−1 0 · · · 0
−fn 0 · · · 0

⎤
⎥⎥⎥⎦

Fc =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

so that (12) becomes

ζ̇ = F1z1 + Fcζ + γ(FcT − TM)μ+ γ(g − Tbc)v

+Ew (14)

with F1 denoting the first column of Fu. Choose T , with its entire first
row being made of zero elements, in order to simultaneously satisfy

(FcT − TM) = ḡ[1, 0, . . . , 0], T bc = g (15)

where the coefficients of ḡ = [1, ḡ2, . . . , ḡn]
T are extracted from the

Hurwitz polynomial [recall (16)]

π(s) = q(s)× πf (s)
.
= sn−1 + ḡ2s

n−2 + · · ·+ ḡn. (16)

Such a choice, which leads to Tρ−1 = g, FcTj = Tj−1 for j =
2, . . . , ρ− 1 [Tl are the columns of T , l = 1, . . . , ρ− 1], is actually
feasible, owing to the structure of Fc and M , g in (9) and (4), respec-
tively. In accordance with (13)–(15) and with the definition of F1, we
get

ζ̇ = Fζ + γḡμ1 +Ew

u = hζ. (17)
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B. Scaling for (8) and (9) When ρ > 1

Define the change of coordinates4 (i = 3, . . . , ρ− 1):

μ̄1 = μ1

μ̄2 = μ2 + (k − 1)a1μ1

μ̄i = μi + (ki−1 − 1)ai−1μ1 +
i−2∑
j=1

aj(k
j − 1)μ

(i−j−1)
1 (18)

and design the control input

v = v̄ − (kρ−1 − 1)aρ−1μ1 −
ρ−2∑
j=1

aj(k
j − 1)μ

(ρ−j−1)
1 (19)

in which v̄ is yet to be defined. On the basis of (8) and (18)–(19), we
get [μ̄ = [μ̄1, . . . , μ̄ρ−1]

T]

˙̄μ =

⎡
⎢⎢⎢⎢⎢⎣

−a1k 1 0 · · · 0
−a2k

2 0 1 · · · 0
...

...
...

. . .
...

−aρ−2k
ρ−2 0 0 · · · 1

−aρ−1k
ρ−1 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦ μ̄+

⎡
⎢⎢⎢⎣
0
...
0
1

⎤
⎥⎥⎥⎦ v̄

.
= M̄μ̄+ bcv̄. (20)

Notice that no filter is required when ρ = 1. In that case, q(s) = 1,
π(s) = πf (s), ḡ = g, and ζ, μ1 are replaced by z, v, respectively.

C. Intermediate Reference Signals

Consider (1) and define the tracking error x̃ = x− xr , where the
reference state xr , by definition, satisfies ẋr = Axr + bur , yr = cxr ,
in terms of the reference input ur . The x̃-error system thus reads

˙̃x = Ax̃+ b(z1 − ur)

e = cx̃. (21)

Denote by z1,ref and μ1,ref the two reference signals that play the role
of intermediate controls in (21) and (17), respectively. In particular,
define z1,ref for (21) as the control input that solves the problem of [13]
for subsystem (1) with input u = z1 and satisfies

L[z1,ref(t)](s) = −ε̄
d1s

2q + · · ·+ d2q+1

s
∏q

i=1(s
2 + ω2

i )
L[e(t)](s)

.
= Gref(s)L[e(t)](s) (22)

with ε̄ being any sufficiently small positive number such that all the
poles of Gref(s)P (s)/(1 +Gref(s)P (s)) have negative real part. On
the other hand, design μ1,ref for (17) on the basis of the u-feedback as

μ1,ref = −k1u+ ν (23)

in which ν is yet to be designed.

D. Change of Coordinates (Zero-Dynamics for the ζ-System)

In accordance with [21] (see [11, Definition 6.4]; see also [8]), there
exists a sufficiently large positive real k∗

1 such that, for any k1 ≥ k∗
1 in

(23), the triple (F − k1γḡh, γḡ, h) is strictly positive real. To highlight
it, introduce the change of coordinates in [15] ηi = ζi+1 − ḡi+1z1,
i = 1, . . . , n− 1, yη = z1 and let η denote the column vector whose

4f (l) denotes the lth derivative of the general time function f .

components are η1, . . . , ηn−1. The ζ-system in (17), when expressed
in such new coordinates, becomes

η̇ = ΓGη + βGyη + Zww

ẏη = η1 − (f1 + k1γ − ḡ2)yη + γν

+ γ(μ1 − μ1,ref) + zww (24)

where Zw and zw (coming from the (η, yη)-change of coordinates)
are a suitable matrix and a suitable row vector, respectively; ΓG is
the Hurwitz (n− 1)× (n− 1) matrix in companion form (4) with
characteristic polynomial π(s); βG is the column vector with the
n− 1 components ḡ3 − ḡ22 − f2 + f1ḡ2, . . . , ḡn − ḡn−1ḡ2 − fn−1 +
f1ḡn−1,−ḡnḡ2 − fn + f1ḡn. Now, on the basis of (24), the input νref ,
which is able to guarantee yη ≡ z1,ref when w = 0, μ1 = μ1,ref and
initial conditions are compatible, takes the explicit expression

νref = [ż1,ref − ηref,1 + (f1 + k1γ − ḡ2)z1,ref ] /γ (25)

with ηref,1 being the first component of the vector ηref obeying the
ordinary differential equation

η̇ref = ΓGηref + βGz1,ref . (26)

In accordance with the last row of (20) and with (25), impose in (19)
and in (23) the signals

v̄ = aρ−1k
ρ−1μ1,ref

ν = (f1 + k1γ − ḡ2)z1,ref/γ. (27)

E. Tracking Errors and Related Error System

Introduce the tracking errors:

μ̃1 = μ1 − μ1,ref

μ̃j = μ̄j −
j−1∑
i=1

aik
iμ

(j−1−i)
1,ref − μ

(j−1)
1,ref , j = 2, . . . , ρ− 1 (28)

and their kj−1-scaled version

μ̃
[s]
j = μ̃jk

1−j , j = 1, . . . , ρ− 1 (29)

so that, from (20), the ordinary differential equation satisfied by the
column vector μ̃[s] with components μ̃[s]

1 , . . . , μ̃
[s]
ρ−1 reads

˙̃μ[s] = kMμ̃[s] − bc

ρ−1∑
j=1

aρ−1−jk
1−jμ

(j)
1,ref (30)

with k—in front of the stable matrix M of (9)—allowing us to resort
to the classical high-gain design techniques. On the other hand, define
the tracking errors:

ỹη = yη − z1,ref , η̃ = η − ηref . (31)

From (24) to (26) and the second expression in (27), they satisfy the
error system (η̃1 is the first component of η̃):

˙̃η = ΓGη̃ + βGỹη + Zww

˙̃yη = η̃1 − (f1 + k1γ − ḡ2)ỹη − [ż1,ref − ηref,1]

+ γ(μ1 − μ1,ref) + zww. (32)

F. Key Idea (Equivalent Disturbance on the Upper Error
System)

Let us proceed to allow the multisinusoidal generator of the
controller—namely, the block of estimators (22)—to successfully coun-
teract an equivalent disturbance being forced to appear just within the
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Fig. 2. Time profile for the output y(t).

Fig. 3. Time profiles for the input v(t), disturbance d(t), and intermediate signal u(t).

x̃-system (21). To this purpose, by recalling the role of the intermediate
reference signal z1,ref , system (21) is rewritten as

˙̃x = Ax̃+ b(z1,ref +

equivalent disturbance︷ ︸︸ ︷
ζss,1 − ur )

+ b(

new error ỹη−ζss,1︷ ︸︸ ︷
z1 − z1,ref − ζss,1) (33)

where ζss = [ζss,1, ζ
T
ss,η]

T = [ζss,1, ζss,η,1, . . . , ζss,η,n−1]
T is the un-

compensated steady-state solution to (32), (26), and (30), i.e., the vector
satisfying

ζ̇ss,η = ΓGζss,η + βGζss,1 + Zww

ζss,1 = (f1 + k1γ − ḡ2)
−1 [ζss,η,1 − u̇r + ηr,1

+γμ̃
[s]
r,1 + zww

]
(34)

with ηr,1 being the first component of the ηr-generator

η̇r = ΓGηr + βG(ur − ζss,1) (35)

and μ̃
[s]
r,1 being the first component of the μ̃

[s]
r -generator

˙̃μ[s]
r = kMμ̃[s]

r − bc

ρ−1∑
j=1

aρ−1−jk
1−jμ

(j)
1,r. (36)

Here, μ1,r , according to (23) and the definition of the equivalent distur-
bance in (33), is the multisinusoidal component of μ1,ref—component
generated by the exosystem (2)—given by

μ1,r = −k1ur + (f1 + k1γ − ḡ2)(ur − ζss,1)/γ. (37)

The structure of system (34)–(37) guarantees that, for sufficiently large
k1 andk, the solution to (34)–(37) is a multisinusoidal signal generated5

by (2).

G. State Space Representation for z1,ref

Now, write z1,ref as generated by

z1,ref = −ε̄hΠΠ

Π̇ = RcΠ+ de (38)

5If w = 0, then ζss ≡ 0.
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with Π ∈ R2q+1, (Rc, d, hΠ) in form

Rc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 · · · 0 0
−θ1 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0

−θ2 0 0 0
. . . 0 0

...
...

...
...

. . .
...

...
−θq 0 0 0 · · · 0 1
0 0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

d = [d1, . . . , d2q+1]
T, hΠ = [1, 0, . . . , 0]

and θi, i = 1, . . . , q, being the coefficients of the polynomial∏q
i=1(s

2 + ω2
i ) = s2q + θ1s

2q−2 + · · ·+ θq . On the other hand, the
multisinusoidal component z1,r = −ζss,1 + ur of z1,ref generated by
(2) similarly satisfies

z1,r = −ε̄hΠG

Ġ = RcG (39)

from suitable initial conditions.

H. Lyapunov Analysis (Entire Error System)

In accordance with the previous step, introduce the tracking errors:

ỹe = ỹη − ζss,1, η̃e = η̃ − ζss,η, Π̃ = Π−G

Δe = ηref − ηr, μ̃[s]
e = μ̃[s] − μ̃[s]

r (40)

so that, from (26), (30), (32)–(39), the error system in the new error
coordinates (40) takes the form (e = cx̃, hη = [1, 0, . . . , 0]T)

˙̃x = Ax̃− bε̄hΠΠ̃ + bỹe

˙̃Π = RcΠ̃ + de

˙̃ηe = ΓGη̃e + βGỹe

˙̃ye = hη η̃e − (f1 + k1γ − ḡ2)ỹe + γμ̃
[s]
e,1 + ε̄hΠde

+ ε̄hΠRcΠ̃− hηΔe

Δ̇e = ΓGΔe − βGε̄hΠΠ̃

˙̃μ[s]
e = kMμ̃[s]

e − bc

ρ−1∑
j=1

aρ−1−jk
1−jμ

(j)
1,e (41)

where μ1,e = μ1,ref − μ1,r owns jth time derivative

μ
(j)
1,e = − k1ỹ

(j)
e +

(
f1 − ḡ2

γ

)(
ε̄hΠR

j
cΠ̃

−
j−1∑
i=0

ε̄hΠR
i
cde

(j−1−i)

)
. (42)

Let S denote the block-matrix [A,−bε̄hΠ; dc,Rc] characterizing the
exponential stability, in accordance with [13], of the upper linear
subsystem with variables (x̃, Π̃) and perturbed by ỹe. Now use the
composite quadratic Lyapunov function that is obtained as the sum of
the sub-Lyapunov functions for each linear error subsystem, namely, i)
the quadratic Lyapunov function of [15] for the (η̃e, ỹe)-subsystem and
ii) the quadratic Lyapunov functions including the solutions to the Lya-
punov equations PjAj +AT

j Pj = −I for j = x,G, μ and Ax = S,
AG = ΓG, and Aμ = M . The time derivative of such Lyapunov func-
tion, not reported here for the sake of brevity, is made negative definite

by sufficiently large values of k1 [stabilizing the (η̃e, ỹe)-subsystem
and forcing the solution to (34)–(37) to be a multisinusoidal signal]
and by sufficiently large values of k, as a function of k1 at least of
order O(k>3

1 ) for k1 → +∞, as well as by sufficiently small values
of ε̄ [stabilizing the upper linear subsystem with variables (x̃, Π̃) and
concurrently allowing k to dominate the related mixed terms]. The
expression (5)–(7) is finally reporting the Laplace transform of the
state-space controller (8)–(9), (19), (23), (27), (38), once k1 is set as
4
√
k and aϕ/k replaces the sufficiently small ε̄(f1 + k1γ − ḡ2)/γ.
Remark 3.1: The controller presented in Theorem 3.1 is a two-tier

controller. The first tier is constituted by a high-gain linear controller
that makes the actuator output follow the nominal control signal being
generated by the second tier. Such a second tier is a small-gain controller
that is designed at the first stage without accounting for the actuator
dynamics. More specifically, controller (5)–(7) is a linear combination
of Ge(s) and Gu(s), with Ge(s) acting on the regulation error e with
poles at {0,±jω1, . . . ,±jωq} and Gu(s) relying on the variable u.
While the former has a gain that reduces as k increases, a high-gain
action characterizes the latter as k increases.

Remark 3.2: The choice regarding the functions 4
√
k and k/aϕ (aϕ

is an additional positive gain) is not mandatory. In fact, the last steps
of the proof keeps on holding true even when the expressions of 4

√
k

and k/aϕ in the statement of Theorem 3.1 are replaced by the most
general: i) ϕ1(k) : (0,+∞) → (0,+∞), restriction6 to (0,+∞) of
a K∞—class function of k that satisfies limk→+∞ ϕ1(k)

3/k = 0; ii)
ϕ2(k) : (0,+∞) → (0,+∞), restriction to (0,+∞) of a K∞—class
function of k.

Remark 3.3: Controller (5)–(7) involves 2 + ρ+ 2q gains, namely,
k; ai, i = 1, . . . , ρ− 1; aϕ; d1, . . . , d2q+1, whose explicit role is de-
termined by the previously reported proof. First, ai, i = 1, . . . , ρ− 1,
within F(s) [such that the polynomial q(s) = sρ−1 + a1s

ρ−2 + · · ·+
aρ−1 is Hurwitz] are the positive reals characterizing the stable filter
(9) of order ρ− 1; aϕ characterizes the law which the gain aϕ/k
reduces with k through; d1, . . . , d2q+1 are the coefficients in (3) that
characterize controller (3) solving the output regulator problem in the
actuator-free case; k is the (possibly high) gain in the scaling transfor-
mation (18) that also comprehensively collects the actions of k1 in (23)
and ε in (22). Second, the aforementioned (Ge(s), Gu(s))-structure
of the controller makes the proposed approach directly extend [13]
(namely, the actuator-free case). Indeed, once the action of the filter
F(s) is neglected, (7) has the same structure—with aϕ/k playing the
role of ε—of the controller in [13] solving the regulation problem for
(1) under the input u, whereas the filter in (8) and (9) [that lead to
the definition of F(s) and is different from the one in [15]], complies
with the scaling action imposed, as of (20), onto the filter dynamics,
which allows us to apply the classical high-gain analysis tools to the
μ̃
[s]
e -subsystem.

IV. MOTIVATING EXAMPLE (CONTINUED)

Consider the motivating example of Section I for ζ = 2 under the
same disturbance d(t). Theorem 3.1 now applies. The performance of
the resulting controller (5)–(7) with

F(s) =
a1k(s+ a1)

s+ a1k

Ge(s) = −aϕ

k
F(s)

[
1

s
+

s

(s2 + 1/4)
− s

(s2 + 4)

]
Gu(s) =

4
√
kF(s)

6The restriction of a function is a new function, obtained by choosing a smaller
domain for the original function.
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anda1 = 2,k = 16,aϕ = 5 (all the initial conditions of the process and
the controller are set to zero) is illustrated by Figs. 2 and 3, which report
the time profiles for y(t), v(t), d(t), u(t), respectively. Exponential
convergence to zero of y(t) is achieved, with u(t) being able to nullify
asymptotically the effect of the disturbance d(t). Anyway, the rate of
convergence relies on the stability properties of the upper subsystem
that are dominated by the design of [13], as well as by the conservative
choice of aϕ/k playing the role of the sufficiently small ε in (3).

V. CONCLUSION

The regulator design approach of [13] has been extended to cover
the case in which the measurable input to the process (1) is provided
by the linear minimum-phase actuator (4) with known sign of the
high-frequency gain and known relative degree ρ ≥ 1. The resulting
control (5), reported in Theorem 3.1, is a linear combination of Ge(s)
and Gu(s), with Ge(s) acting on the regulation error e with poles
at {0,±jω1, . . . ,±jωq} and Gu(s) relying on the variable u. The
presented scenario covers the case of an uncertain (unmodeled) actuator
process, in which no complete knowledge of the information on the
transfer function of the overall system is given, while just partial
knowledge of such information—i.e., restricted to the transfer function
of the original plant—is provided.
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