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The Curious Case of Integrator Reach Sets,
Part I: Basic Theory

Shadi Haddad and Abhishek Halder , Senior Member, IEEE

Abstract—This is the first of a two part paper investi-
gating the geometry of the integrator reach sets, and the
applications thereof. In this Part I, assuming box-valued
input uncertainties, we establish that this compact convex
reach set is semialgebraic, translated zonoid, and not a
spectrahedron. We derive the parametric as well as the
implicit representation of the boundary of this reach set.
We also deduce the closed-form formula for the volume and
diameter of this set, and discuss their scaling with state
dimension and time. We point out that these results may be
utilized in benchmarking the performance of the reach set
overapproximation algorithms.

Index Terms—Convex geometry, integrator, reach set,
set-valued uncertainty.

I. INTRODUCTION

INTEGRATORS with bounded controls are ubiquitous in
systems-control. They appear as Brunovsky normal forms for

the feedback linearizable nonlinear systems. They also appear
frequently as benchmark problems to demonstrate the perfor-
mance of the reach set computation algorithms. Despite their
prominence, specific results on the geometry of the integrator
reach sets are not available in the systems-control literature.
Broadly speaking, the existing results come in two flavors. On
the one hand, very generic statements are known, e.g., these
reach sets are compact convex sets whenever the set of initial
conditions is compact convex, and the controls take values from
a compact (not necessarily convex) set [1]. On the other hand,
several numerical toolboxes [2], [3] are available for tight outer
approximation of the reach sets over computationally benign
geometric families, such as ellipsoids and zonotopes. The lack
of concrete geometric results imply the absence of ground truth
when comparing the efficacy of different algorithms, and one
has to content with graphical or statistical (e.g., Monte Carlo)
comparisons.

Building on the preliminary results in [4], this article under-
takes a systematic study of the integrator reach sets. In particular,
we answer the following basic questions.

Q1. What kind of compact convex sets are these (Section IV)?
Q2. How big are these sets (Section V)?
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Q3. How these results on the geometry of integrator reach sets
can be applied in practice (Section VI)?

We consider the integrator dynamics having d states and m
inputs with relative degree vector r = (r1, r2, . . . , rm)� ∈ Zm

+
(vector of positive integers). In other words, we consider a
Brunovsky normal form with m integrators where the jth inte-
grator has degree rj for j ∈ [m] := {1, . . . ,m}. The dynamics
is

ẋ = Ax+Bu, x ∈ Rd, u(·) ∈ U ⊂ Rm (1)

where r1 + r2 + · · ·+ rm = d, the set U is compact, and

A :=blkdiag(A1, . . .,Am) , B :=blkdiag(b1, . . ., bm) (2a)

Aj :=
(
0rj×1 | erj1 | erj2 |. . .| erjrj−1

)
, bj := e

rj
rj . (2b)

In (2a), the symbol blkdiag(·) denotes a block diagonal matrix
whose arguments constitute its diagonal blocks. In (2b), the
notation 0rj×1 stands for the rj × 1 column vector of zeros,
and e�k denotes the kth basis (column) vector in R� for k ≤ �.
The symbol (. . .|. . .|. . .) denotes horizontal concatenation.

Notice that an integrator that replaces the ones appearing
in the system matrices with arbitrary nonzero reals, is al-
ways reducible to the normal form (1) and (2) by renaming
the variables. For instance, for any a, b ∈ R \ {0}, the system
ẋ1 = ax2, ẋ2 = bu1, is equivalent to ẋ1 = x̃2, ˙̃x2 = ũ1, where
x̃2 := ax2, ũ1 := abu1.

LetR(X0, t) denote the forward reach set of (1) at time t > 0,
starting from a given compact convex set of initial conditions
X0 ⊂ Rd, i.e.,

R (X0, t) :=
⋃

measurable u(·)∈U⊂Rm

{
x(t) ∈ Rd | (1) and (2) hold,

x(t = 0) ∈ X0 compact convex, U compact} . (3)

In words, R(X0, t) is the set of all states that the controlled
dynamics (1) and (2) can reach at time t > 0, starting from the
set X0 at t = 0, with measurable control u(·) ∈ U compact.
Formally

R (X0, t) = exp(tA)X0 �
∫ t

0

exp ((t− τ)A)BU dτ

= exp(tA)X0 �
∫ t

0

exp (sA)BU ds (4)
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where� denotes the Minkowski sum. The set-valued integral [5]
in (4) is defined for any point-to-set function F (·), as∫ t

0

F (s)ds := lim
Δ↓0

�t/Δ�∑
i=0

ΔF (iΔ) (5)

where the summation symbol Σ denotes the Minkowski sum,
and �·� is the floor operator; see, e.g., [1]. Our objective is to
study the geometry of (4) in detail.

This article significantly expands our preliminary works [4],
[6], here we consider multi-input integrators as opposed to the
single-input case considered in [4]. Even for the single-input
case, while Haddad and Halder [4, Th. 1] derived an exact
formula for the volume of the reach set, that formula involved
limit and nested sums, and in that sense, was not really a
closed-form formula [7]—certainly not amenable for numerical
computation. In this article, we derive closed-form formula
for the general multi-input case when the input uncertainty is
box-valued, i.e., U is hyperrectangle. In the same setting, this
article addresses previously unexplored directions, the scaling
laws for the volume and diameter of integrator reach sets, exact
parametric and implicit equations for the boundary, and the
classification of these sets.

The rest of this article is organized as follows. After reviewing
some preliminary concepts in Section II, we consider the integra-
tor reach set resulting from box-valued input set uncertainty in
Section III. The results on taxonomy and the boundary of the cor-
responding reach set are provided in Section IV. The results on
the size of this set are collected in Section V. The application of
these results for benchmarking the reach set overapproximation
algorithms are discussed in Section VI. Section VII concludes
this article and outlines the directions pursued in its Part II. All
proofs are deferred to the Appendix.

II. PRELIMINARIES

A. State Transition Matrix

For 0 ≤ s < t, the state transition matrix Φ(t, s) associated
with (2) is

Φ(t, s) ≡ exp(A(t− s))

= blkdiag (exp(A1(t− s)), . . . , exp(Am(t− s)))

with each diagonal block is upper triangular. Specifically, the
jth diagonal block of size rj × rj is written element-wise as

exp(Aj(t− s)) :=

⎧⎨⎩
(t− s)�−k

(�− k)!
for k ≤ �

0 otherwise
(6)

where k is the row index, � is the column index, and k, � ∈ [rj ]
for each j ∈ [m]. The diagonal entries in (6) are unity.

1) Support Function: The support function hK(·) of a com-
pact convex set K ⊂ Rd, is given by

hK(y) := sup
x∈K

〈y,x〉, y ∈ Rd (7)

where 〈·, ·〉 denotes the standard Euclidean inner product. Ge-
ometrically, hK(y) gives the signed distance of the supporting
hyperplane of K with outer normal vector y, measured from the
origin. Furthermore, the supporting hyperplane at xbdy ∈ ∂K is

〈y,xbdy〉 = hK(y), and we can write

K =
{
x ∈ Rd | 〈y,x〉 ≤ hK(y) for all y ∈ Rd

}
.

For compact K1,K2 ⊂ Rd,

K1 ⊆ K2 if and only if hK1
(·) ≤ hK2

(·). (8)

The support function hK(y) is convex in y. For more details on
the support function, we refer the readers to [8, Ch. V].

The support function hK(y) uniquely determines the set
K. Given matrix-vector pair (Γ,γ) ∈ Rd×d × Rd, the support
function of the affine transform ΓK + γ is

hΓK+γ(y) = 〈y,γ〉+ hK(Γ�y). (9)

Given a function f : Rd → R ∪ {+∞}, its Legendre–
Fenchel conjugate is

f ∗(y) := sup
x∈domain(f)

{〈y,x〉 − f(x)}, y ∈ Rd. (10)

From (7) to (10), it follows that hK(y) is the Legendre–Fenchel
conjugate of the indicator function

1K(x) :=
{
0 if x ∈ K
+∞ otherwise.

Since the indicator function of a convex set is a convex function,
the biconjugate 1∗∗

K (·) = h∗
K(·) = 1K(·). This will be useful in

Section IV.
To proceed further, we introduce some notations. Since U is

compact, let

αj := min
u∈U

uj , βj := max
u∈U

uj , j ∈ [m] (11)

that is, αj and βj are the component-wise minimum and maxi-
mum, respectively, of the input vector. Furthermore, let

μj :=
βj − αj

2
, νj :=

βj + αj

2
(12)

and introduce

ξ(s) :=

⎛⎜⎝ μ1ξ1(s)
...

μmξm(s)

⎞⎟⎠ , ξj(s) :=

⎛⎜⎜⎜⎜⎜⎜⎝
srj−1/(rj − 1)!

srj−2/(rj − 2)!
...
s

1

⎞⎟⎟⎟⎟⎟⎟⎠ (13)

for j ∈ [m]. Also, let

ζ(t0, t) =

⎛⎜⎜⎜⎝
μ1ζ1(t0, t)

μ2ζ2(t0, t)
...

μmζm(t0, t)

⎞⎟⎟⎟⎠ , ζj(t0, t) :=

∫ t

t0

ξj(s) ds ∈ Rrj

(14)

for j ∈ [m]. When t0 = 0, we simplify the notations as

ζ(t) := ζ(0, t), ζj(t) := ζj(0, t) for all j ∈ [m]. (15)

Using (13) and following (7), we deduce Proposition 1 stated
next (proof in Appendix A).

Proposition 1 (Support function for compactU ): For compact
convex X0 ⊂ Rd, and compact U ⊂ Rm, the support function
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of the reach set (4) is

hR(X0,t) (y) = sup
x0∈X0

m∑
j=1

〈yj , exp (tAj)xj0〉

+

∫ t

0

sup
u∈closure(conv(U))

m∑
j=1

{〈yj , ξj(s)〉 uj} ds

(16)

where conv(·) denotes the convex hull.
2) Polar Dual: The polar dual K◦ of any nonempty set K ⊂

Rd is given by

K◦ := {y ∈ Rd | 〈y,x〉 ≤ 1 for all x ∈ K}. (17)

From this definition, it is immediate that K◦ contains the
origin, and is a closed convex set. The bipolar (K◦)◦ =
closure(conv(K ∪ {0})). Thus, if K is compact convex and
contains the origin, then we have the involution (K◦)◦ = K.
From (7) and (17), notice that K◦ is the unit support function
ball, i.e.,K◦ = {y ∈ Rd | hK(y) ≤ 1}. In Section IV-D, we will
mention some properties of the polar dual of the integrator reach
set.

3) Vector Measure: Let F be a σ-field of the subsets of
a set. A countably additive mapping μ̃ : F → Rd is termed a
vector measure. Here, “countably additive” means that for any
sequence {Ωi}∞i=1 of disjoint sets in F such that their union is in
F , we have μ̃(∪∞

i=1Ωi) =
∑∞

i=1 μ̃(Ωi) < ∞. Some of the early
investigations of vector measures were due to Liapounoff [9] and
Halmos [10]; relatively recent references are [11] and [12].

4) Zonotope: A zonotope Z ⊂ Rd is a finite Minkowski
sum of closed line segments or intervals {Ii}ni=1 where these
intervals are imbedded in the ambient Euclidean space Rd.
Explicitly, for some positive integer n, we write

Z := I1 � · · ·� In

=

{
x ∈ Rd | x =

n∑
i=1

xi, xi ∈ Ii, i ∈ [n]

}
.

Thus, a zonotope is the range of an atomic vector measure.
Alternatively, a zonotope can be viewed as the affine image of
the unit cube. A compact convex polytope is a zonotope if and
only if all its two dimensional faces are centrally symmetric [13,
p. 182]. For instance, the cross polytope {x ∈ Rd | ‖x‖1 ≤ 1},
is not a zonotope. Standard references on zonotope include [14],
[15], [16, Ch. 2.7].

The set of zonotopes is closed under affine image and
Minkowski sum, but not under intersection. In the systems-
control literature, a significant body of work exists on compu-
tationally efficient overapproximation of reach sets via zono-
topes [17], [18], [19] and its variants, such as zonotope bun-
dles [20], constrained zonotopes [21], complex zonotopes [22],
and polynomial zonotopes [23], [24].

5) Variety and Ideal: Let p1, . . . , pn ∈ R[x1, . . . , xd], the
vector space of real-valued d-variate polynomials. The (affine)
variety VR[x1,...,xd](p1, . . . , pn) is the set of all solutions
of the systemp1(x1, x2, . . . , xd) = . . . = pn(x1, x2, . . . , xd) =
0. Given p1, . . . , pn ∈ R[x1, . . . , xd], the set

I :=

{ n∑
i=1

αipi | α1, . . . , αn ∈ R[x1, . . . , xd]

}

is called the ideal generated byp1, . . . , pn. We write this symbol-
ically as I = 〈〈p1, . . . , pn〉〉. Roughly speaking, 〈〈p1, . . . , pn〉〉
is the set of all polynomial consequences of the given system of
n polynomial equations in d indeterminates. We refer the readers
to [25, Ch. 1] for detailed exposition of these concepts.

III. BOX-VALUED INPUT UNCERTAINTY

In the rest of this article, we characterize the exact reach set (3)
when input setU ⊂ Rm is box-valued, and remark on the quality
of approximation for the same when U is arbitrary compact.

When U ⊂ Rm is box-valued, denote the reach set (3) as R�,
i.e., with a box superscript.1 In this case, each of the m single
input integrator dynamics with rj dimensional state subvectors
for j ∈ [m], are decoupled from each other. Then, R�(X0, t) ⊂
Rd is the Cartesian product of these single input integrator reach
sets: Rj(X0, t) ⊂ Rrj for j ∈ [m], i.e.,

R� = R1 ×R2 × · · · × Rm. (18)

In what follows, we will sometimes exploit that (18) may also be
written as2 a Minkowski sum R1 � · · ·�Rm. Notice that the
decoupled dynamics also allows us to write a Minkowski sum
decomposition for the set of initial conditions

X0 = X10 � · · ·� Xm0

and accordingly, the initial condition subvectors xj0 ∈ Xj0 ⊂
Rrj for j ∈ [m]. Thus, x0 = (x10, . . . ,xm0)

�.
Since the support function of the Minkowski sum is equal to

the sum of the support functions, we have

hR�(X0,t)
(y) =

m∑
j=1

hRj(Xj0,t)(yj). (19)

This leads to the following result (proof in Appendix B), which
will come in handy in the ensuing development.

Theorem 1 (Support function for box-valuedU ): For compact
convex X0 ⊂ Rd, and box-valued input uncertainty set given by

U := [α1, β1]× [α2, β2]× · · · × [αm, βm] ⊂ Rm (20)

the support function of the reach set (4) is

hR�(X0,t)
(y) =

m∑
j=1

{
sup

xj0∈Xj0

〈yj , exp (tA)xj0〉

+ νj〈yj , ζj(t)〉+ μj

∫ t

0

|〈yj , ξj(s)〉| ds
}
.

(21)

The formula (21) upper bounds (16) resulting from the
same initial condition and arbitrary compact U ⊂ Rm with
{αj , βj}mj=1 related to U via (11). Thus, from (8), the reach
set R� with box-valued input uncertainty will overapproximate
the reach setR associated with arbitrary compactU , at any given
t > 0, provided {αj , βj}mj=1 are defined as (11).

When U is compact but not box-valued, then we can quantify
the quality of the aforesaid overapproximation in terms of the

1For the single input (m = 1) case, we drop the box superscript.
2In general, the Minkowski sum of a given collection of compact convex sets

is not equal to their Cartesian product. However, the “factor sets” in (18) belong
to disjoint mutually orthogonal rj dimensional subspaces, j = 1, . . . ,m, which
allows writing this Cartesian product as a Minkowski sum.
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two-sided Hausdorff distance metric dist (·, ·) between the con-
vex compact sets R�,R ⊂ Rd, expressible [13, Th. 1.8.11] in
terms of their support functions hR�(·), hR(·) as

dist
(
R�,R

)
= sup

‖y‖2=1

∣∣hR�(y)− hR(y)
∣∣. (22)

Thanks to (8), the absolute value in (22) can be dispensed since
R ⊆ R� with set equality if U is box, in which case hR�(·) =
hR(·) and dist = 0.

It is known that [26, Prop. 6.1] the setR(X0, t) resulting from
a linear time invariant dynamics such as (1) and (2) remains
invariant under the closure of convexification of the input set
U . Therefore, it is possible that R = R� and dist = 0 even
when the compact set U is nonconvex. For instance, the reach
set R(X0, t) resulting from some compact convex X0 ⊂ Rd and
dynamics (1) and (2) with the nonconvex input uncertainty set
{−1, 1}m, is identical toR�(X0, t) resulting from the sameX0,
same dynamics, and the box-valued input uncertainty set (20)
with αj = −1, βj = 1 for all j ∈ [m].

Likewise, for the same compact convex X0 ⊂ Rd, the reach
set R(X0, t) resulting from (1) to (2) with the nonconvex input
set {u ∈ Rm | ‖u‖p ≤ 1}, 0 < p < 1, is the same as that result-
ing from the cross-polytope {u ∈ Rm | ‖u‖1 ≤ 1}. More gen-
erally, for 0 < p < ∞, suppose Rp(X0, t) results from the unit
p norm ball input uncertainty set {u ∈ Rm | ‖u‖p ≤ 1}. Let
M�(τ) := exp(τA)B = blkdiag(ξ1, . . . , ξm). If R�(X0, t)
results from the same X0, same dynamics, and input uncertainty
set (20) with αj = −1, βj = 1 for all j ∈ [m], then using [27,
Th. 1], (22) simplifies to

dist
(
R�,Rp

)
= sup

‖y‖2=1

∫ t

0

(‖M(τ)y‖1−‖M(τ)y‖q) dτ (23)

where q is the Hölder conjugate of max{1, p}, i.e., 1
max{1,p} +

1
q = 1, and 1 < q ≤ ∞. In this case, the positive value (23)

quantifies the quality of strict overapproximation Rp ⊂ R� for
0 < p < ∞. The objective in (23) being positive homogeneous,
admits lossless constraint convexification ‖y‖2 ≤ 1, and the
corresponding maximal value3 for moderate dimensions d, can
be found by direct numerical search.

IV. TAXONOMY AND BOUNDARY

For X0 ⊂ Rd compact convex, it is well-known [1, Sec. 2]
that the reach set R given by (3) is compact convex for all t > 0
provided U is compact. However, it is not immediate what kind
of convex set R is, even for singleton X0 ≡ {x0}.

In this section, we examine the question “what type of
compact convex set R�({x0}, t) is” when U is box-valued
uncertainty set of the form (20). In the same setting, we also
derive the equations for the boundary ∂R�({x0}, t).

Notice that for nonsingleton X0, the taxonomy question is
not well-posed since the classification then will depend on X0.
Also, setting X0 ≡ {x0} in (4), it is apparent that R({x0}, t) is
a translation of the set-valued integral in (4). Thus, classifying
R({x0}, t) amounts to classifying the second summand in (4).

3As such, (23) has a difference of convex objective, and by the Weierstrass
extreme value theorem, the maximum is achieved.

A. R�({x0}, t) is a Zonoid

A zonoid is a compact convex set that is defined as the range of
an atom free vector measure (see Section II-A3). Affine image
of a zonoid is a zonoid. Minkowski sum of zonoids is also a
zonoid. We refer the readers to [28], [29], [30], [31, Sec. I]
for more details on the properties of a zonoid. By slight abuse
of nomenclature, in this article, we use the term zonoid up to
translation, i.e., we refer to the translation of zonoids as zonoids
(instead of using another term such as “zonoidal translates”).

Let us mention a few examples. Any compact convex sym-
metric set in R2 is a zonoid. In dimensions three or more, all �p
norm balls for p ≥ 2 are zonoids.

An alternative way to think about the zonoid is to view it as
the limiting set (convergence with respect to the two-sided Haus-
dorff distance, see, e.g., [4, Appendix B]) of the Minkowski sum
of line segments, i.e., the limit of a sequence of zonotopes [14],
[15], [28]. Formally, given a Hausdorff convergent sequence of
zonotopes{Zj}, the zonoid Z∞ is

Z∞ := lim
j→∞

Zj , where Zj :=

n(j)∑
i=1

[aij , bij ] , aij , bij ∈ Rd

for some aij ≤ bij (element-wise vector inequality), and a
suitable mapping n : Z+ → Z+. Our analysis will make use
of this viewpoint in Section V-A. Our main result in this section
is the following.

Theorem 2: The reach set R� given by (3) with X0 ≡ {x0}
and U given by (20), is a zonoid.

To appreciate Theorem 2 via the limiting viewpoint mentioned
before, let us write

R� ({x0}, t) = exp(tA)x0 +

m∑
j=1

νjζj(t)︸ ︷︷ ︸
first term

�
m∑
j=1

lim
n→∞

n∑
i=0

t

n
μjξj(ti) [−1, 1]︸ ︷︷ ︸

second term

(24)

where all summation symbols denote Minkowski sums. The first
term in (24) denotes a translation. In the second term, the outer
summation over index j arises by writing the Cartesian product
(18) as the Minkowski sum R1 � . . .�Rm. Furthermore, uni-
formly discretizing [0, t] into n subintervals [(i− 1)t/n, it/n),
i = 1, . . . , n, we write

∫ t

0 exp(sAj)bj [−μj , μj ]ds as the limit
of the Minkowski sum over index i. Geometrically, the innermost
summands in the second term denote nonuniformly rotated and
scaled line intervals in Rj . In other words, the second term in
(24) is a Minkowski sum of m sets, each of these sets being the
limit of a sequence of sets {Zn} comprising of zonotopes

Zn :=
n∑

i=0

t

n
μjξj(ti) [−1, 1]

which are the Minkowski sum of n+ 1 line segments. Since
limn→∞ Zn is a zonoid, the second term in (24) is a Minkowski
sum of m zonoids, and is, therefore, a zonoid [28, Th. 1.5]. The
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entire right hand side of (24), then, is translation of a zonoid,
and hence a zonoid.

Remark 1: If X0 ⊂ Rd is not singleton, but instead a zonoid,
then R�(X0, t) is still a (translated) zonoid. To see this, notice
from (4) and (21) that

R� (X0, t) = exp(tA)X0 �R� ({0}, t) (25)

and that exp(tA)X0, being linear image of a zonoid, is a
zonoid [28, Lemma 1.4]. Thus, (25) being Minkowski sum of
zonoids, is a zonoid too [28, Th. 1.5], up to translation.

In the following, we derive formulae for the boundary (Propo-
sition 2 and Section IV-C) and volume (Theorem 5) of the
integrator reach set with X0 = {x0} (singleton set). From (25),
it is clear that one cannot expect similar closed-form formu-
lae for arbitrary compact (or even arbitrary compact convex)
X0. In this sense, our closed-form formulae are as general
as one might hope for. For a specific nonsingleton X0, one
can use these formulae to first derive the boundary (resp.
volume) of R�({0}, t), and then use (25) to get numerical
estimates for the boundary (resp. volume) of R�(X0, t) (cf.
Remark 2).

B. R�({x0}, t) is Semialgebraic

A set in Rd is called basic semialgebraic if it can be written
as a finite conjunction of polynomial inequalities and equalities,
the polynomials being in R[x1, . . . , xd]. Finite union of basic
semialgebraic sets is called a semialgebraic set. A semialgebraic
set need not be basic semialgebriac; see, e.g., [32, Example 2.2].

Semialgebraic sets are closed under finitely many unions
and intersections, complement, topological closure, polyno-
mial mapping including projection [33], [34], and Cartesian
product. For details on semialgebraic sets, we refer the read-
ers to [35, Ch. 2]; see [36, Appendix A.4.4] for a short
summary.

In Proposition 2 as follows, we derive a parametric represen-
tation of xbdy ∈ ∂R�({x0}, t), the boundary of the reach set.
Then, we use this representation to establish semialgebraicity of
R�({x0}, t) in Theorem 4 that follows.

Proposition 2: For relative degree vector r = (r1, . . . , rm)�,
and fixed x0 ∈ Rd comprising of subvectors xj0 ∈ Rrj where
j ∈ [m], consider the reach set (4) with singletonX0 ≡ {x0} and
U given by (20). For j ∈ [m], define μ1, . . . , μm and ν1, . . . , νm
as in (11) and (12). Let the indicator function 1k≤� := 1 for
k ≤ �, and := 0 otherwise. Then, the components of

xbdy =

⎛⎜⎜⎜⎜⎝
xbdy
1

xbdy
2
...

xbdy
m

⎞⎟⎟⎟⎟⎠ ∈ ∂R� ({x0}, t) , xbdy
j ∈ Rrj , j ∈ [m]

admit parametric representation in terms of the parameters
(s1, s2, . . . , srj−1) satisfying 0 ≤ s1 ≤ s2 ≤ . . . ≤ srj−1 ≤ t.
This parameterization is given by

xbdy
j (k) =

rj∑
�=1

1k≤�
t�−k

(�− k)!
xj0(�) +

νj t
rj−k+1

(rj − k + 1)!

± μj

(rj−k+1)!

{
(−1)rj−1 trj−k+1+2

rj−1∑
q=1

(−1)q+1 s
rj−k+1
q

}
(26)

where xbdy
j (k) denotes the kth component of the jth subvector

xbdy
j for k ∈ [rj ].
The following is a consequence of the ± appearing in (26).
Corollary 3: The single input integrator reach set

Rj({x0}, t) ⊂ Rrj has two bounding surfaces for each
j ∈ [m]. In other words, there exist pupper

j , plower
j : Rrj → R

such that

Rj ({x0}, t) = {x ∈ Rrj | pupper
j (x) ≤ 0, plower

j (x) ≤ 0}
with boundary ∂Rj({x0}, t) = {x ∈ Rrj | pupper

j (x) = 0} ∪
{x ∈ Rrj | plower

j (x) = 0}.
During the proof of Theorem 4 as follows, it will turn out that

in fact pupper
j , plower

j ∈ R[x1, . . . , xrj ] for all j ∈ [m]. In words,
pupper
j , plower

j are real algebraic hypersurfaces for all j ∈ [m].
Let us exemplify the parameterization (26) for the case r =

(r1, r2)
� = (2, 3)�. In this case⎛⎜⎝xbdy

1 (1)

xbdy
1 (2)

⎞⎟⎠=

⎛⎝x10(1)+tx10(2)+ν1(t
2/2)± μ1

(
s21−t2/2

)
x10(2) + ν1t± μ1(2s1−t)

⎞⎠
(27)

⎛⎜⎜⎜⎜⎜⎝
xbdy
2 (1)

xbdy
2 (2)

xbdy
2 (3)

⎞⎟⎟⎟⎟⎟⎠=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x20(1) + tx20(2) + (t2/2)x20(3)

+ν2(t
3/6)± μ2

(
t3/6+2s31/6−2s32/6

)
x20(2)+tx20(3)+ν2(t

2/2)± μ2

(
t2/2

+2s21/2− 2s22/2
)

x20(3) + ν2t± μ2 (t+ 2s1 − 2s2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(28)

In (27), taking plus (resp. minus) signs in each of component
gives the parametric representation of the curve pupper

1 = 0 (resp.
plower
1 = 0). These curves are as in [4, Fig. 1(a)], and their union

defines ∂R1. We note that the parameterization (27) appeared
in [37, p. 111].

Likewise, in (28), taking plus (resp. minus) signs in each of
component gives the parametric representation of the surface
pupper
2 (x) = 0 (resp. plower

2 = 0). The resulting setR2 is the triple
integrator reach set, and is shown in Fig. 1.

Now we come to the main result of this section.
Theorem 4: The reach set R� given by (3) with X0 ≡ {x0}

and U as in (20), is semialgebraic.
Let us illustrate the bounding curves and surfaces for (27)

and (28), respectively, in the implicit form. Eliminating the
parameter s1 from (27) reveals that pupper

1 , plower
1 are parabolas.

In particular

pupper
1 (xbdy

1 (1),xbdy
1 (2)) =

1

4

(
xbdy
1 (2)− x10(2)− ν1t

μ1
+ t

)2

− xbdy
1 (1)− x10(1)− tx10(2)− ν1

t2

2

μ1
− t2

2
(29)
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Fig. 1. “Almond-shaped” integrator reach set R({x0}, t) ⊂ R3 with
d = 3, m = 1, x0 = (0.1, 0.2, 0.3)�, U ≡ [α, β] = [−1, 1] at t = 2.1. The
wireframes correspond to the upper and lower surfaces.

and the formula for plower
1 (xbdy

1 (1),xbdy
1 (2)) follows mutatis

mutandis.
Similarly, eliminating the parameters s1, s2 from (28) reveals

that pupper
2 , plower

2 are quartic polynomials.
A natural question is whether one can generalize such implic-

itizations to arbitrary state dimensions. This is what we address
next.

C. Implicitization of ∂R�({x0}, t)
To derive the implicit equations for the bounding algebraic

hypersurfaces pupper
j , plower

j ∈ R[x1, . . . , xrj ] for all j ∈ [m], we
need to eliminate the parameters (s1, s2, . . . , srj−1) from (26).
For this purpose, it is helpful to write (26) succinctly as

ρ±j,k =

rj−1∑
q=1

(−1)q+1 s
rj−k+1
q , k ∈ [rj ] (30)

where

ρ±j,k :=
(rj − k + 1)!

2μj

{
xbdy
j (k)−

rj∑
�=1

1k≤�
t�−k

(�− k)!
xj0(�)

}

− 1

2

{
± (−1)rj−1 trj−k+1 +

νj
μj

trj−k+1

}
. (31)

To simplify the rather unpleasant notation ρ±j,k, we will only
address the m = 1 case. In (30), this allows us to replace rj
by d, and to drop the subscript j from the ρs. This does not
invite any loss of generality in terms of implicitization since
post derivation, we can replace d by rj to recover the respective
pjs.

With slight abuse of notation, we will also drop the super-
script ± from the ρs in (30). Recall that the plus (resp. minus)
superscript in the ρs indicates pupper

j (resp. plower
j ). From (31), it

is clear that in either case, the ρj,k is affine in xbdy
j (k), which

is the kth coordinate of the boundary point for the jth block.
Importantly, for k ∈ [rj ], the quantity ρj,k does not depend
on any other component of the boundary point than the kth
component. Again, the plus-minus superscripts can be added
back postimplicitization.

Thus, the notationally simplified version of (30) that suffices
for implicitization, is

ρk =

d−1∑
q=1

(−1)q+1 sd−k+1
q , k = 1, . . . , d (32)

which is a system of d homogeneous polynomials in variables
(s1, s2, . . . , sd−1). The objective is to derive the implicitized
polynomial ℘(ρ1, ρ2, . . . , ρd) associated with (32).

When d = 2, the parameterization (32) becomes

ρ1 = s21, ρ2 = s1

and we get degree 2 implicitized polynomial

℘(ρ1, ρ2) = ρ22 − ρ1 = 0. (33)

For k = 1, 2, substituting for the ρ1, ρ2 in (33) from (31) with
appropriate plus-minus signs recovers (29).

When d = 3, the parameterization (32) becomes

ρ1 = s31 − s32, ρ2 = s21 − s22, ρ3 = s1 − s2

elementary algebra gives degree 4 implicitized polynomial

℘(ρ1, ρ2, ρ3) = ρ43 − 4ρ3ρ1 + 3ρ22 = 0. (34)

As before, for k = 1, 2, 3, substituting for the ρ1, ρ2, ρ3 in (35)
from (31) with appropriate plus-minus signs recovers (30). How-
ever, for d = 4 or higher, it is practically impossible to derive
the implicitization via brute force algebra.

A principled way to implicitize (32) is due to Zaimi [38], and
starts with defining λk := ρd−k+1 for k = 1, . . . , d. Introduce
the sequence Ak(s1, s2, . . . , sd−1) via the generating function
(see, e.g., [39, Ch. 1])

F (τ) =
∑
k≥0

Akτ
k =

(1− s1τ)(1− s3τ) · · ·
(1− s2τ)(1− s4τ) · · · . (35)

Taking the logarithmic derivative of (35), and then using
the generating functions (1− sqτ)

−1 =
∑

k≥0(sqτ)
k for all

q = 1, . . . , d− 1, yields

F ′(τ)
F (τ)

= −s1
∑
k≥0

(s1τ)
k+ s2

∑
k≥0

(s2τ)
k− s3

∑
k≥0

(s3τ)
k+ · · · .

(36)

Integrating (36) with respect to τ , we obtain

F (τ) = exp

(
−

d∑
k=1

λk

k
τk

)
. (37)

Equating (35) and (37) allows us to compute Ak as a degree k
polynomial of the λs.

On the other hand, since the generating function (35) is a
rational function with denominator polynomial of degree δ :=
�d−1

2 �, the following Hankel determinant vanishes:4

det[Ad−2δ+i+j ]
δ
i,j=0 = 0. (38)

Substituting the Aks obtained as degree k polynomials of the
λs into (38) gives an implicit polynomial in indeterminate
(λ1, . . . , λd) of degree (δ + 1)(d− δ). Finally, reverting back
the λs to the ρs result in the desired implicit polynomial
℘(ρ1, ρ2, . . . , ρd), which is also of degree (δ + 1)(d− δ).

4This result goes back to Kronecker [40]. See also [41, p. 5, Lemma III].
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Fig. 2. Double integrator reach set R({x0}, t) and its polar dual
(R({x0}, t))◦ at t = 2, U ≡ [α, β] = [−1, 1]. The curves pupper, plower

defining the reach set boundary (see Corollary 3 and the discussion
thereafter) are shown too. (a) R with x0 =(0.05, 0.05)T. (a) R◦ with x0

=(0.05, 0.05)T.

For instance, when d = 3, the relation (38) becomes

det

([
A1 A2

A2 A3

])
= 0. (39)

In this case, equating (35) and (37) gives

A1 = −λ1, A2 =
1

2
λ2
1 −

1

2
λ2, A3 = −1

6
λ3
1 +

1

2
λ1λ2 − 1

3
λ3.

Substituting these back in (39) yields the quartic poly-
nomial λ4

1 + 3λ2
2 − 4λ3λ1 = 0, which under the mapping

(λ1, λ2, λ3) → (ρ3, ρ2, ρ1) recovers (35), and thus, (30).
In summary, (38) is the desired implicitization of the bounding

hypersurfaces of the single input integrator reach set (up to the
change of variables). The Cartesian product of these implicit
hypersurfaces gives the implicitization in the multi input case.

D. Dual of R({x0}, t)
From convex geometry standpoint, it is natural to ask what

kind of characterization is possible for the polar dual (see Sec-
tion II-A2) of the integrator reach set R or R�. We know in
general that R◦ will be a closed convex set. Depending on the
choice of x0,U and t, the set R({x0}, t) may not contain the
origin, and thus, the bipolar

(R ({x0}, t))◦◦ = closure (conv (R ({x0}, t) ∪ {0}))
that is, we do not have the involution in general.

Furthermore, since R�({x0}, t) is semialgebraic from Sec-
tion IV-B, so must be its polar dual (R�({x0}, t))◦; see,
e.g., [36, Ch. 5, Sec. 5.2.2].

We also know from Section IV-A that R�({x0}, t) is a
zonoid. However, the polar of a zonoid is not a zonoid in
general [42], [43], and we should not expect (R�({x0}, t))◦
to be one. Fig. 2 shows R({x0}, t) and (R({x0}, t))◦ for the
double integrator (d = 2, m = 1).

E. Summary of Taxonomy

So far we explained that the compact convex set R�({x0}, t)
is semialgebraic, and a translated zonoid. Two well-known
subclasses of convex semialgebraic sets are the spectrahedra
and the spectrahedral shadows. The spectrahedra, a.k.a. linear
matrix inequality (LMI) representable sets are affine slices of

Fig. 3. The bounding polynomials for the double and triple integra-
tor reach sets at t = 0.5 with x0 = 0 and μ = 1. (a) Real algebraic
curves pupper, plower for the double integrator. (b) Real algebraic surfaces
pupper, plower for the triple integrator.

Fig. 4. Summary of taxonomy for the integrator reach set R�.

the symmetric positive semidefinite cone. The spectrahedral
shadows, a.k.a. lifted LMI or semidefinite representable sets
are the projections of spectrahedra. The spectrahedral shadows
subsume the class of spectrahedra; e.g., the set {(x1, x2) ∈ R2 |
x4
1 + x4

2 ≤ 1} is a spectrahedral shadow but not a spectrahedron.
The polar duals of spectrahedra are spectrahedral shadows [36,
Ch. 5, Sec. 5.5].

We note that R� is not a spectrahedron. To see this, we
resort to the contrapositive of [44, Th. 3.1]. Specifically, the
number of intersections made by a generic line passing through
an interior point of the d-dimensional reach set R� with its real
algebraic boundary is not equal to the degree of the bounding
algebraic hypersurfaces, the latter we know from Section IV-C
to be (�d−1

2 �+ 1)(d− �d−1
2 �). In other words, the R� is not

rigidly convex, see [44, Sec. 3.1 and 3.2]. Fig. 3 helps visualize
this form = 1. From Fig. 3(a), we observe that a generic line for
d = 2 has 4 intersections with the bounding real algebraic curves
whereas from (29), we know that pupper, plower are degree 2 poly-
nomials. Likewise, Fig. 3(b) reveals that a generic line for d = 3
has 6 intersections with the bounding real algebraic surfaces
whereas from (30), we know that the polynomials pupper, plower

in this case, are of degree 4.
Could the reach set R� be spectrahedral shadow? Some

calculations show that sufficient conditions as in [45] do not
seem to hold. However, this remains far from conclusive. We
summarize our taxonomy results in Fig. 4; the highlighted region
shows where the integrator reach set belongs. To answer whether
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Fig. 5. Integrator reach set R�({x0}, t = 4) with m = 2, r = (2, 1)�,
x0 = (1, 1, 0)�, [α1, β1] = [−5, 5], [α2, β2] = [−3, 3].

this highlighted region can be further narrowed down, seems
significantly more challenging.

V. SIZE

We next quantify the “size” of the reach set R�({x0}, t) by
computing two functionals: its d-dimensional volume (see Sec-
tion V-A), and its diameter or maximum width (see Section V-B).
In Section V-C, we discuss how these functionals scale with the
state dimension d.

A. Volume

The following result gives the volume formula for the inte-
grator reach set R�.

Theorem 5: Fixx0 ∈ Rd, letX0 ≡ {x0} andU given by (20).
Consider the integrator dynamics (1) and (2) with d states, m
inputs, and relative degree vector r = (r1, r2, . . ., rm)�. Define
μ1, . . . , μm as in (11) and (12). Then, the d-dimensional volume
of the integrator reach set (3) at time t > 0 is

vol
(
R� ({x0}, t)

)
=2d

m∏
j=1

{
μ
rj
j trj(rj+1)/2

rj−1∏
k=1

k!

(2k + 1)!

}
.

(40)

For a simple illustration of Theorem 5, consider d = 3,m = 2
with r = (2, 1)�. The corresponding reach set R�({x0}, t) at
t = 4 is shown in Fig. 5 for x0 = (1, 1, 0)�, U = [−5× 5]×
[−3, 3]. Here, μ1 = 5 and μ2 = 3.

This reach set, being a direct product of the double integrator
reach set R1 (cf. Fig. 2) and the single integrator reach set
R2 = {x0(3)}� [−μ2t, μ2t], is a cylinder.5 In [4], we explic-
itly derived that vol(R1) =

2
3μ

2
1t

3, and therefore, the volume of
this cylindrical set must be equal to “height of the cylinder ×
cross sectional area,” i.e.,

2μ2t× 2

3
μ2
1t

3 =
4

3
μ2
1μ2t

4.

5Here, the notation x0(3) stands for the third component of vector x0.

Indeed, a direct application of the formula (40) recovers the
abovementioned expression.

Remark 2: If the initial setX0 is not singleton, then computing
the volume of the R� requires us to compute the volume of a
Minkowski sum. Notice that

vol (exp(tA)X0) = |det (exp(tA)) |vol (X0)

= exp (trace (tA)) vol (X0)

= exp

⎛⎝m∑
j=1

trace (tAj)

⎞⎠ vol(X0)=vol(X0)

since from (2b), trace(Aj) = 0 for all j = 1, . . . ,m. Therefore,
combining (4), (40) with the classical Brunn–Minkowski in-
equality, we obtain a lower bound for vol(R�) as(

vol
(
R� (X0, t)

))1/d
≥ (vol (X0))

1/d

+ 2

⎛⎝ m∏
j=1

{
μ
rj
j trj(rj+1)/2

rj−1∏
k=1

k!

(2k + 1)!

}⎞⎠1/d

.

The abovementioned bound holds for any compact X0 ⊂ Rd,
not necessarily convex.

B. Diameter

We now focus on another measure of “size” for the integrator
reach set R�, namely its diameter, or maximal width.

By definition, the width [13, p. 42] of R�(X0, t), is

wR�(X0,t)
(η) := hR�(X0,t)

(η) + hR�(X0,t)
(−η) (41)

where η ∈ Sd−1 (the unit sphere imbedded in Rd), and the
support function hR�(X0,t)

(·) is given by (21). In other words,

(41) gives the width of R� in the direction η.
For singleton X0 ≡ {x0}, combining (21) and (41), we have

wR�({x0},t)(η) =
∫ t

0

{
|〈η, ξ(s)〉|+ |〈−η, ξ(s)〉|

}
ds

= 2

∫ t

0

|〈η, ξ(s)〉| ds (42)

where the last equality follows from the fact that ξ(s) in (13) is
component-wise nonnegative for all 0 ≤ s ≤ t.

The diameter of the reach set R� is its maximal width

diam
(
R� (X0, t)

)
:= max

η∈Sd−1
wR�(X0,t)

(η). (43)

Notice that (42) is a convex function of η; see, e.g., [46, p. 79].
Thus, computing (43) amounts to maximizing a convex function
over the unit sphere. We next derive a closed-form expression
for (43).

Theorem 6: Fixx0 ∈ Rd, letX0 ≡ {x0} andU given by (20).
Consider the integrator dynamics (1) and (2) with d states, m
inputs, and relative degree vector r = (r1, r2, . . ., rm)�. Define
μ1, . . . , μm as in (11) and (12). The diameter of the integrator
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reach set (3) at time t > 0 is

diam
(
R� ({x0}, t)

)
=2 ‖ζ(t)‖2 = 2

⎛⎝ m∑
j=1

μ2
j‖ζj‖2

⎞⎠
1
2

(44)

wherein ζ(t) is defined as in Section II-A1, and the ith compo-
nent of the subvector ζj(t) ∈ Rrj is∫ t

0

s(rj−i)

(rj − i)!
ds =

trj−i+1

(rj − i+ 1)!
, i = 1, 2, . . . , rj . (45)

To illustrate Theorem 6, consider the triple integrator with
d = 3 andm = 1. In this case,U = [α, β], μ := (β − α)/2, and
we can parameterize the unit vector η ∈ S2 as

η ≡
⎛⎝sin θ cosφ

sin θ sinφ

cos θ

⎞⎠ , θ ∈ [0, π], φ ∈ [0, 2π).

Thus, (43) reduces to

2μ max
θ∈[0,π]
φ∈[0,2π)

∫ t

0

|s2 (sin θ cosφ) /2 + s sin θ sinφ+ cos θ| ds.

Furthermore, ζ(t) = (t3/6, t2/2, t)�, and we obtain

ηmax =

⎛⎝sin θmax sinφmax

sin θmax cosφmax

cos θmax

⎞⎠ =
±1√

t4 + 9t2 + 36

⎛⎝t2

3t

6

⎞⎠
where ± means that either all components are plus or all minus.
Thus, the maximizing tuples (φmax, θmax) ∈ [0, π]× [0, 2π) are
given by

(φmax, θmax)

=

{(
arctan (3/t) , arccos

(
6/
√
t4 + 9t2 + 36

))(
π + arctan (3/t) , arccos

(−6/
√
t4 + 9t2 + 36

))
.

(46)

Hence, the diameter of the triple integrator reach set at time t is
equal to (μt/3)

√
t4 + 9t2 + 36.

Fig. 6 shows how the width of the integrator reach set for
d = 3, m = 1 varies over (φ, θ) ∈ [0, π]× [0, 2π), which pa-
rameterize the unit sphere S2. The location of the maximizers
are given by (46), and are depicted in Fig. 6 via filled black circle
and filled black square.

For a visualization of the width and diameter for the double
integrator, see [4, Fig. 2].

C. Scaling Laws

We now turn to investigate how the volume and the diameter of
the integrator reach set scale with time and the state dimension.
While scaling laws reveal limits of performance of engineered
systems (see, e.g., [47], [48]), they have not been formally
investigated in the context of reach sets even though empirical
studies are common [20], [49, Table 1], [50, Fig. 4].

For clarity, we focus on the single-input case and hence do
not notationally distinguish between R and R�.

Fig. 6. Width (42) for the single input triple integrator reach set
R({x0}, t) is shown as a function of (φ, θ) ∈ [0, π]× [0, 2π), which pa-
rameterize the unit sphere S2. Here, U = [−1, 1], and hence, μ = 1.
The darker (resp. lighter) hues correspond to the higher (resp. lower)
widths. The filled black circle and the filled black square correspond to
the maximizers (φmax, θmax) given by (46).

Fig. 7. For single input (m = 1), the volume of the integrator reach
set R({x0}, t) computed from (40) is plotted against time t for state
dimensions d = 2, 3, . . . , 6 with U = [α, β] = [−1, 1], μ := (β − α)/2 =
1. The dashed vertical lines show the critical times given by (49).

1) Scaling of the Volume: Fig. 7 plots the volume (40) for
the single input (m = 1) case against time t for varying state
space dimension d. In this case, U = [α, β], and therefore, μ :=
(β − α)/2. As expected, the volume of the reach set increases
with time for any fixed d.

Let us now focus on the scaling of the volume with re-
spect to the state dimension d. For m = 1, using the known
asymptotic [51] for

∏d−1
k=1(2k + 1)!/k!, we find the d → ∞
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asymptotic for the volume

vol (Rd ({x0}, t)) ∼ (2μ)dtd(d+1)/2 exp
(
3
2d

2 + 1
12

)
c× 2(2d2− 1

12 ) d(d
2+ 1

12 )

where c ≈ 1.2824 . . . is the Glaisher–Kinkelin constant [52, Sec.
2.15].

Fig. 7 shows that when t is small, the volume of the larger
dimensional reach set stays lower than its smaller dimensional
counterpart. In particular, given two state space dimensions d, d′
with d > d′, and all other parameters kept fixed, there exists a
critical time tcr when the volume of the d dimensional reach set
overtakes that of the d′ dimensional reach set.

For any d > d′, the critical time tcr satisfies

vol (Rd ({x0}, tcr))︸ ︷︷ ︸
d dimensional volume

= vol (Rd′ ({x0}, tcr))︸ ︷︷ ︸
d′ dimensional volume

which together with (40) yields

tcr = (2μ)−
2

d+d′+1

(
d−1∏
k=d′

(2k + 1)!

k!

) 2
(d−d′)(d+d′+1)

. (47)

In particular, for d′ = d− 1, we get

tcr =

(
1

2μ

(2d− 1)!

(d− 1)!

)1/d

, d = 2, 3, . . . . (48)

For instance, when μ = 1, d = 3, d′ = 2, we have tcr =
(30)1/3 ≈ 3.1072. When μ = 1, d = 4, d′ = 3, we have tcr =
(420)1/4 ≈ 4.5270. The dashed vertical lines in Fig. 7 show the
critical times given by (48).

Applying Stirling’s approximation n! ∼ √
2πn(n/e)n, we

obtain the d → ∞ asymptotic for (48)

tcr ∼ 4

e
d μ− 1

d 2−
3

2d

where ∼ denotes asymptotic equivalence [53, Ch. 1.4], and e is
the Euler number.

2) Scaling of the Diameter: Fig. 8 plots the diameter of (44)
for the single input (m = 1) case against time t for varying state
space dimension d. As earlier, U = [α, β], μ := (β − α)/2. As
expected, the diameter of the reach set increases with time for
any fixed d.

As d → ∞, the diameter approaches a limiting curve shown
by the dotted line in Fig. 8. To derive this limiting curve, notice
that for m = 1, the formula (44) gives

lim
d→∞

diam (R ({x0}, t)) = lim
d→∞

2μ

√√√√ d∑
j=1

(
tj

j!

)2

. (49)

We write the partial sum

d∑
j=1

(
tj

j!

)2

=

∞∑
j=1

(
tj

j!

)2

︸ ︷︷ ︸
=:S1

−
∞∑

j=d+1

(
tj

j!

)2

︸ ︷︷ ︸
=:S2

(50)

and by ratio test, note that both the sums S1, S2 converge. In
particular, S1 converges to I0(2t)− 1, where I0(·) is the zeroth
order modified Bessel function of the first kind. This follows
from the very definition of theνth order modified Bessel function

Fig. 8. For single input (m = 1), the diameter of the integrator reach
set R({x0}, t) computed from (44) is plotted against time t for state
dimensions d = 2, 3, . . . , 6 with U = [α, β] = [−1, 1], μ := (β − α)/2 =

1. As d → ∞, the diameter converges to 2μ
√

I0(2t)− 1, shown by the
dotted line.

of the first kind, given by

Iν(z) := (z/2)ν
∞∑
j=0

(
z2/4

)j
j! Γ (ν + j + 1)

, ν ∈ R

where Γ(·) denotes the Gamma function.
On the other hand, using the definition of the generalized

hypergeometric function6

1F2 (a1; b1, b2; z) :=
∞∑

n=0

(a1)n
(b1)n(b2)n

zn

n!

we find that

S2 =
t2(d+1)

1F2

(
1; d+ 2, d+ 2; t2

)
((d+ 1)!)2

.

Therefore, (50) evaluates to

S1−S2 = I0(2t)− 1− t2(d+1)
1F2

(
1; d+ 2, d+ 2; t2

)
((d+ 1)!)2

. (51)

Combining (49), (50), (51), and using the continuity of the
square root function on [0,∞), we deduce that

lim
d→∞

diam (R ({x0}, t)) = 2μ
√

lim
d→∞

(S1 − S2)

= 2μ
√

I0(2t)− 1. (52)

That limd→∞ S2 exists and equals to zero, follows from (50) and
the continuity of the square

lim
d→∞

S2 = lim
j→∞

(
tj

j!

)2
=

(
lim
j→∞

tj

j!

)2
= 0.

6Here, (·)n denotes the Pochhammer symbol [54, p. 256] or rising factorial.
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Fig. 9. (Top) Zonotopic overapproximations of the double integrator
reach sets; (bottom) the ratio of the volume of the single input integrator
reach set R(t) and that of its zonotopic overapproximation Rapprox(t)
for d = 2, 3, 4, plotted against time t ∈ [0, 1]. The results are computed
using the CORA toolbox with μ = 1, X0 = {0}.

To see the last equality, let aj := tj/j!. By the ratio test,
lim sup
j→∞

|aj+1/aj | = lim
j→∞

t/j = 0 < 1, hence, {aj} is a Cauchy

sequence and lim
j→∞

aj = 0.

The dotted line in Fig. 8 is the curve (52).

VI. BENCHMARKING OVERAPPROXIMATIONS OF INTEGRATOR

REACH SETS

In practice, a standard approach for safety and performance
verification is to compute “tight” overapproximation of the reach
sets of the underlying controlled dynamical system. Several
numerical toolboxes such as [2], [3] are available which over-
approximate the reach sets using simple geometric shapes such
as zonotopes and ellipsoids. Depending on the interpretation of
the qualifier “tight,” different optimization problems ensue, e.g.,
minimum volume outer-approximation [55], [56], [57], [58],
[59], [60], [61], [62].

One potential application of our results in Section V is to help
quantify the conservatism in different overapproximation algo-
rithms by taking the integrator reach set as a benchmark case.
For instance, Fig. 9 shows the conservatism in zonotopic overap-
proximations Rapprox(t) of the single input integrator reach sets
R({0}, t) ⊆ Rapprox({0}, t) for d = 2, 3, 4 with 0 ≤ t ≤ 1 and
μ = 1, computed using the CORA toolbox [2], [63]. To quantify
the conservatism, we used the volume formula (40) for comput-
ing the ratio of the volumes vol(R)/vol(Rapprox) ∈ [0, 1]. The
results shown in Fig. 9 were obtained by setting the zonotope
order 50 in the CORA toolbox, which means that the number of
zonotopic segments used by CORA for overapproximation was
≤ 50d. As expected, increasing the zonotope order improves
the accuracy at the expense of computational speed, but among
the different dimensional volume ratio curves, trends similar to
Fig. 9 remain. It is possible [31, Th. 1.1, 1.2] to compute the op-
timal zonotope order as a function of the desired approximation
accuracy (i.e., desired Hausdorff distance from the zonoid).

For the numerical results shown in Fig. 9, we found the
diameters of the overapproximating zonotopes for d = 2, 3, 4,
to be the same as that of the true diameters given by (44) for all
times.

Fig. 10 depicts the conservatism in ellipsoidal overapprox-
imations Rapprox(t) of the single input integrator reach sets
R({0}, t) ⊆ Rapprox({0}, t) for d = 2, 3, 4 with 0 ≤ t ≤ 1 and
μ = 1, following the algorithms in ellipsoidal toolbox [3].
Specifically, the reach set at time t, is overapproximated by the
intersection of a carefully constructed parameterized family of
ellipsoids E(q(t),Q�i(t)(t)) defined as

{x ∈ Rd | (x− q(t))
(
Q�i(t)(t)

)−1
(x− q(t))� ≤ 1}

for unit vectors �i(0) ∈ Rd, i = 1, . . . , N . The choice of �i(0)
determines �i(t) := exp(−A�t)�i(0), which in turn param-
eterizes the d× d symmetric positive definite shape matrix
Q�i(t)(t); we refer the readers to [64, Ch. 3.2], [37, Ch. 3]
where the corresponding evolution equations were derived using
optimal control. The center vectors q(t) ∈ Rd, and the shape
matrices Q�i(t)(t) for this parameterized family of ellipsoids
are constructed such that ∩N

i=1E(q(t),Q�i(t)(t)) is guaranteed
to be a superset of the reach set at time t for any finite N , and
for N → ∞, recovers the reach set at that time.

For the results shown in Fig. 10, we used N = 20 randomly
chosen unit vectors �i(0) ∈ Rd. Ideally, one would like to com-
pute the (unique) minimum volume outer ellipsoid (MVOE),
a.k.a. the Löwner–John ellipsoid [65], [66] of the convex set
∩20
i=1E(q(t),Q�i(t)(t)), which is a semi-infinite programming

problem [46, Ch. 8.4.1], and has no known exact semidefinite
programming (SDP) reformulation. We computed two differ-
ent relaxations of this problem: one based on the S proce-
dure [67, Ch. 3.7.2], and the other by homothetic scaling of the
maximum volume inner ellipsoid (MVIE) [65, Th. III] of the
set ∩20

i=1E(q(t),Q�i(t)(t)). Both of these lead to solving SDP
problems, and both are guaranteed to contain the Löwner–John
ellipsoid of the intersection of the parameterized family of ellip-
soids. These suboptimal (w.r.t. the MVOE criterion) solutions,
computed using cvx [68], are shown in Fig. 10.

Fig. 10 shows that the S procedure entails less conservatism
compared to the MVIE scaling, in terms of volume. While the
volume ratio trends in Fig. 10 are similar to that observed in
Fig. 9, the approximation quality is lower. In light of the results
in Section IV-A, this is not surprising: the integrator reach sets
being zonoids (i.e., Hausdorff limit of zonotopes), the zonotopic
outer approximations are expected to perform better than other
overapproximating shape primitives.

The main point here is that our results in Section V provide
the ground truth for the size of the integrator reach set, thereby
help benchmarking the performance of reach set approximation
algorithms.

VII. EPILOGUE

A. Recap

This article initiates a systematic study of integrator reach set.
When the input uncertainty set is hyperrectangle, we showed
that the corresponding compact convex reach set R� is in fact
semialgebraic (Section IV-B) as well as a zonoid (range of an
atom free vector measure) up to translation (Section IV-A).
We derived the equation of its boundary in both parametric
(Proposition 2) and implicit form (Section IV-C). We obtained
the closed-form formula for the volume (Section V-A) and
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Fig. 10. (Top) Ellipsoidal overapproximations of the double integrator reach sets; (bottom) the ratio of the volume (left) and diameter (right) of
the single input integrator reach set R(t) and that of its ellipsoidal overapproximation Rapprox(t) for d = 2, 3, 4, plotted against time t ∈ [0, 1]. Two
different ellipsoidal overapproximations are shown: one (in red) based on the S procedure, and the other (in blue) obtained by scaling the MVIE of
the intersection of a parameterized family of ellipsoids. The results are computed for μ = 1, X0 = {0}.

diameter (Section V-B) of these reach sets. We also derived the
scaling laws (Section V-C) for these quantities. We pointed out
that these results may be used to benchmark the performance of
set overapproximation algorithms (Section VI).

B. What Next

In the sequel Part II, we will show how the ideas presented
herein enable computing the reach sets for feedback linearizable
systems. The focus will be in computing the reach set in trans-
formed state coordinates associated with the normal form, and to
map that set back to original state coordinates under diffeomor-
phism. This, however, requires nontrivial extension of the basic
theory presented here (especially those in Proposition 2 and
Section IV-C) since we will need to handle time-dependent set-
valued uncertainty in transformed control input even when the
original control takes values from a set that is not time-varying.

APPENDIX

A. Proof of Proposition 1

Since support function is distributive over sum, we have

hR(X0,t) (y) = sup
x0∈X0

〈y , exp (tA)x0〉

+ h∫ t
0 exp(sA)BUds(y). (53)

The block diagonal structure of the matrix A in (2) implies

sup
x0∈X0

〈y , exp (tA)x0〉= sup
x0∈X0

m∑
j=1

〈yj , exp (tAj)xj0〉. (54)

Following the definition of support function and [4, Proposition
1], we then have

h∫ t
0 exp(sA)B U ds(y) =

∫ t

0

hexp(sA)B U (y) ds

=

∫ t

0

sup
u∈U

〈y , exp(sA)Bu〉 ds

=

∫ t

0

sup
u∈closure(conv(U))

m∑
j=1

{〈yj , ξj(s)〉uj} ds. (55)

The last equality in (55) follows from (13), and from the fact [26,
Prop. 6.1] that the reach set remains invariant under the closure
of convexification of the input set U . Substituting (54) and (55)
in (53) yields (16). �

B. Proof of Theorem 1

Since the uncertainties in (20) along different input co-
ordinate axes are mutually independent, the support function
of the reach set is of the form (19). Therefore, in this case, (16)
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takes the form

hR(X0,t) (y) =

m∑
j=1

{
sup

xj0∈Xj0

〈yj , exp (tAj)xj0〉

+

∫ t

0

sup
uj∈[αj ,βj ]

〈yj , ξj(s)〉 uj ds

}
. (56)

The optimizer uopt
j of the integrand in the RHS of (56), for j ∈

[m], can be written in terms of the Heaviside unit step function
H(·) as

uopt
j = αj + (βj − αj)H(〈yj , ξj〉)

= αj + (βj − αj)× 1

2
(1 + sgn (〈yj , ξj〉))

where sgn(·) denotes the signum function. Therefore

sup
uj∈[αj ,βj ]

〈yj , ξj(s)〉uj = νj〈yj , ξj(s)〉+ μj |〈yj , ξj(s)〉| (57)

for 0 ≤ s ≤ t. Substituting (57) back in (56) and integrating over
s completes the proof. �

C. Proof of Theorem 2

For s ∈ [0, t], let the vector measure μ̃ be defined as dμ̃(s) :=
ξ(s)ds where ξ(s) is given by (13). Then,

∫ t

0 |〈y, ξ(s)〉|ds is
exactly in the form of a support function of a zonoid (see,
e.g., [28, Sec. 2]). Using the one-to-one correspondence between
a compact convex set and its support function, the corresponding
set is a zonoid.

From (9) and (21), R�({x0}, t) is the translation of a set
with support function

∫ t

0 |〈y, ξ(s)〉|ds, i.e., the translation of a
zonoid. Thus, R�({x0}, t) is a zonoid. �

D. Proof of Proposition 2

From Section II-A1, the supporting hyperplane at any xbdy ∈
∂R�({x0}, t) with outward normal y ∈ Rd is 〈y,xbdy〉 =
hR�({x0},t)(y), and the Legendre–Fenchel conjugate

h∗
R�({x0},t)

(
xbdy

)
= 0. (58)

For j ∈ [m], let y comprise of subvectors yj ∈ Rrj . Since
the Cartesian product (18) is equivalent to the Minkowski sum
R1 � · · ·�Rm, and the support function of Minkowski sum is
the sum of support functions of the summand sets [13, p. 48],
we have

hR�({x0},t)(y) =
m∑
j=1

hRj({x0},t)(yj)

⇒ h∗
R�({x0},t)

(
xbdy

)
=

m∑
j=1

h∗
Rj({x0},t)

(
xbdy
j

)
(59)

wherein the last line follows from the property that the
Legendre–Fenchel conjugate of a separable sum equals to the
sum of the Legendre–Fenchel conjugates [46, p. 95].

Therefore, combining (58) and (59), we obtain
m∑
j=1

inf
yj∈Rrj

{〈
−xbdy

j + exp (tAj)xj0 + νjζj(t),yj

〉
+ μj

∫ t

0

|〈yj , ξj(s)〉| ds
}

= 0. (60)

For j ∈ [m], since each objective in (60) involves an integral of
the absolute value of a polynomial in s of degree rj − 1 that
polynomial can have at most rj − 1 roots in the interval [0, t],
i.e., can have at most rj − 1 sign changes in that interval. If all
rj − 1 roots of the aforesaid polynomial are in [0, t], we denote
these roots as s1 ≤ s2 ≤ · · · ≤ srj−1, and write∫ t

0

|〈yj , ξj(s)〉| ds=±
∫ s1

0

〈yj , ξj(s)〉 ds∓
∫ s2

s1

〈yj , ξj(s)〉 ds

± . . .± (−1)rj−1

∫ t

srj−1

〈yj , ξj(s)〉 ds

=〈yj ,±ζj(0, s1)∓ ζj(s1, s2)± . . .± (−1)rj−1ζj(srj−1, t)〉.
(61)

Notice that even if the number of roots in [0, t] is strictly less
than7 rj − 1, the expression (61) is generic in the sense the cor-
responding summand integrals become zero. Thus, combining
(60) and (61), we arrive at
m∑
j=1

inf
yj∈Rrj

〈
−xbdy

j + exp (tAj)xj0 + νjζj(t)± μjζj(0, s1)

∓μjζj(s1, s2)± · · · ± μj(−1)rj−1ζj(srj−1, t),yj

〉
= 0.

(62)

The left-hand side of (62) being the sum of the infimum values
of linear functions, can achieve zero if and only if each of those
infimum equals to zero, i.e., if and only if

xbdy
j =exp (tAj)xj0+νjζj(t)± μjζj(0, s1)∓ μjζj(s1, s2)

± · · · ± (−1)rj−1μjζj(srj−1, t). (63)

Using (6), (13), and (14), we simplify (63) to (26), thereby
completing the proof. �

E. Proof of Corollary 3

From (26), we get two different parametric representations
of xbdy

j in terms of (s1, s2, . . . , srj−1). One parametric rep-
resentation results from the choice of positive sign for the ±
appearing in (26), and another for the choice of negative sign
for the same. Denoting the implicit representation corresponding
to the parametric representation (26) with + (resp. −) sign as
pupper
j (x) = 0 (resp. plower

j (x) = 0), the result follows. �

F. Proof of Theorem 4

We notice that (26) gives polynomial parameterizations of
the components of xbdy

j for all j ∈ [m]. In particular, for
each k ∈ [rj ], the right-hand side of (26) is a homogeneous
polynomial in rj − 1 parameters (s1, s2, . . . , srj−1) of degree
rj − k + 1. By polynomial implicitization [25, p. 134], the
corresponding implicit equations pupper

j (xbdy
j ) = 0 [when fix-

ing plus sign for ± in (26)] and plower
j (xbdy

j ) = 0 [when fix-
ing minus sign for ± in (26)], must define affine varieties
VR[x1,...,xrj

](p
upper
j ), VR[x1,...,xrj

](p
lower
j ) in R[x1, . . . , xd].

7This may happen either because there are repeated roots in [0, t], or be-
cause some real roots exist outside [0, t], or because some roots are complex
conjugates, or a combination of the previous three.
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Specifically, denote the right-hand sides of (26) as g±1 , . . . , g
±
rj

for all j ∈ [m], where the superscripts indicate that either all
gs are chosen with plus signs, or all with minus signs. Then,
write (26) asxbdy

j (1) = g±1
(
s1, s2, . . . , srj−1

)
, . . . ,xbdy

j (rj) =

g±rj
(
s1, s2, . . . , srj−1

)
. Now for each j∈ [m], consider the ideal

I±j :=
〈〈

xbdy
j (1)− g±1 ,x

bdy
j (2)− g±2 , . . . ,x

bdy
j (rj)− g±rj

〉〉
⊆ R[s1, s2, . . . , srj−1, x1, x2, . . . , xrj ]

and let I±j,rj−1 := I±j ∩ R[x1, . . ., xrj ] be the (rj − 1)th elimi-
nation ideal of I±j . Then, for each j ∈ [m], the variety

V
(
I+j,rj−1

)
= VR[x1,...,xrj

](p
upper
j ).

Likewise, the variety V (I−j,rj−1) = VR[x1,...,xrj
](p

lower
j ).

Thus, the algebraic boundary (i.e., the Zariski closure of the
Euclidean boundary) of Rj is

∂Rj = VR[x1,...,xrj
]

(
pupper
j

) ∪ VR[x1,...,xrj
]

(
plower
j

)
.

Therefore, Rj := {x ∈ Rrj | pupper
j (x) ≤ 0, plower

j (x) ≤ 0} is
semialgebraic for all j ∈ [m].

Since the Cartesian product of semialgebraic sets is semial-
gebraic, the statement follows from (18). �

G. Proof of Theorem 5

We organize the proof in three steps.
Step 1: From (18), we have

vol
(
R� ({x0}, t)

)
= vol (R1 ×R2 × · · · × Rm)

=
m∏
j=1

vol (Rj ({x0}, t)) . (64)

Step 2: Motivated by (64), we focus on deriving the rj-
dimensional volume of Rj({x0}, t). For this purpose, we pro-
ceed as in [4] by uniformly discretizing the interval [0, t] into
n subintervals [(i− 1)t/n, it/n), i = 1, . . . , n, with (n+ 1)
breakpoints {ti}ni=0, where ti := it/n for i = 0, 1, . . . , n.

From (24), we then have

vol (Rj ({x0}, t))=vol

(
lim
n→∞

n∑
i=0

t

n
exp (tiAj) bj [−μj , μj ]

)

= trj lim
n→∞

1

nrj
vol

(
n∑

i=0

μjξj(ti)[−1, 1]

)
(65)

where ξj was defined in (13). We recognize that the set∑n
i=0 μjξj(ti)[−1, 1] in (65) is a Minkowski sum ofn+ 1 inter-

vals, i.e., is a zonotope imbedded in Rrj , wherein each interval
is rotated and scaled in Rrj via different linear transformations
exp(tiAj), i = 0, 1, . . . , n. Using the formula for the volume of
zonotopes [15, eq. (57)], [69, Exercise 7.19], we can write (65)
as

vol (Rj ({x0}, t)) = (2μjt)
rj lim

n→∞
1

nrj

×
∑

0≤i1<i2<···<irj≤n

det
(
ξj(ti1)|ξj(ti2)| . . . |ξj(tirj )

)
. (66)

To compute the summand determinants in (66), let

Δj

(
i1, i2, . . . , irj

)
:= det

(
ξj(ti1)|ξj(ti2)| . . . |ξj(tirj )

)
where 0 ≤ i1 < i2 < · · · < irj ≤ n. In the matrix list notation,
let us use the vertical bars | · | to denote the absolute value of
determinant. From (13), Δj(i1, i2, . . . , irj ) equals

(t/n)rj(rj−1)/2

rj−1∏
k=1

k!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

i1 i2 . . . irj

...
...

...
...

i
rj−2
1 i

rj−2
2 . . . i

rj−2
rj

i
rj−1
1 i

rj−1
2 . . . i

rj−1
rj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(67)

where we used the properties of elementary row operations.
Notice that the determinant appearing in the last step of (67)

is the Vandermonde determinant (see, e.g., [70, p. 37])∏
1≤a<b≤rj

(ib − ia) . (68)

Combining (66), (67), and (68), we obtain

vol (Rj ({x0}, t)) = (2μj)
rj trj(rj+1)/2

rj−1∏
k=1

k!

lim
n→∞

1

nrj(rj+1)/2

×
∑

0≤i1<i2<···<irj≤n

∏
1≤a<b≤rj

(ib − ia) .

(69)

Step 3: Our next task is to simplify (69). Observe that the sum∑
0≤i1<i2<···<irj≤n

∏
1≤a<b≤rj

(ib − ia) (70)

returns a polynomial in n of degree rj(rj + 1)/2, and hence,
the limit in (69) is always well-defined. Specifically, the limit
extracts the leading coefficient of this polynomial.

Let us denote the leading coefficient of the sum (70) as c(rj).
By the Euler–Maclaurin formula [71], [72, Ch. II.10]

c(rj) =

∫
0≤y1<y2<···<yrj

≤1

∏
1≤α<β≤rj

(ya − yb) ·
rj∏

a=1

dya. (71)

One way to unpack (71) is to write it as a sum over the symmetric
permutation group Srj of the finite set [rj ], i.e.,

c(rj) =
∑

σ∈Srj

sgn(σ)
1∏rj

k=1(σ1 + σ2 + · · ·+ σk)

where sgn(σ) := (−1)ν , ν := {#(i, j) | i < j, σ(i) > σ(j)},
and # stands for “the number of.” We will now prove that

c(rj) =

rj−1∏
k=1

(k!)2

(2k + 1)!
. (72)
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To this end, we write rj ! · c(rj) as an integral over [0, 1]rj

rj ! · c(rj) =
∫
[0,1]rj

∏
1≤a<b≤rj

|ya − yb| dy1. . .dyrj . (73)

In 1955, de Bruijn [73, see toward the end of Sec. 9] used certain
Pfaffians to evaluate∫

[0,1]rj

∏
1≤a<b≤rj

|ya − yb| dy1. . .dyrj

=
rj ! · {1!× 2!× · · · × (rj − 1)!}2

1!× 3!× · · · × (2rj − 1)!
, rj = 2, 3, . . .

which upon substitution in (73), indeed yields (72).
Combining (69) and (72), we arrive at

vol (Rj ({x0}, t)) =
(2μj)

rj trj(rj+1)/2

rj−1∏
k=1

k!

c(rj)

= (2μj)
rj trj(rj+1)/2

rj−1∏
k=1

k!

(2k + 1)!
. (74)

Finally, substituting (74) in (64), and recalling that r1 + r2 +
. . .+ rm = d, the expression (40) follows. �

H. Proof of Theorem 6

From (13), the subvector ξj(s), where j ∈ [m], is component-
wise nonnegative for all s ∈ [0, t].

Therefore, by triangle inequality, we have∫ t

0

|〈η, ξ(s)〉| ds ≤
∫ t

0

m∑
j=1

〈|ηj |, μjξj(s)〉 = 〈|η|, ζ(t)〉 (75)

where |ηj | denotes the jth subvector with component-wise
absolute values. Let us call |η| as the “absolute unit vector.”

The upper bound in (75) is convex in η, and is maximized by
an absolute unit vector collinear with ζ(t) given by

η = ± ζ(t)

‖ ζ(t) ‖2 (76)

i.e., the unit vectors associated with ζ(t) up to plus-minus sign
permutations among its components.

Out of the 2d unit vectors given by (76), the “all plus” and “all
minus” unit vectors achieve equality in (75) and, hence, must be
the maximizers of (42). Inequality (75) remains strict for the
remaining 2d − 2 unit vectors in (76), thus, are suboptimal for
(42). Therefore, the maximizers in (43) are

ηmax = ζ(t)/ ‖ ζ(t) ‖2, −ζ(t)/ ‖ ζ(t) ‖2
which upon substitution in (42), results in (44). �
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