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Efficient Computation of State-Constrained
Reachability Problems Using

Hopf–Lax Formulae
Donggun Lee and Claire J. Tomlin , Fellow, IEEE

Abstract—This article considers two state-constrained
reachability problems: computing 1) control-invariant and
2) reach–avoid sets, both under state constraints. Prior
research has developed Hamilton–Jacobi (HJ) partial
differential equations (PDEs) that characterize the optimal
cost functions of these two problems. Unfortunately,
solving the HJ PDEs by grid-based methods, such as
level-set methods, suffers from exponentially growing
computational complexity in the system state dimension.
In order to alleviate this computational issue, this article
proposes a Hopf–Lax formula for each reachability
problem’s HJ PDE. The advantage of the Hopf–Lax formulae
is that they have more favorable convexity conditions than
the corresponding problems. Thus, direct methods may
be used to solve Hopf–Lax formulae and thus efficiently
compute the optimal solution of the reachability problems
under specified conditions. This article provides an
example for each reachability problem and demonstrates
the performance of the proposed Hopf–Lax method.

Index Terms—Nonlinear control systems, optimal con-
trol, scalability.

I. INTRODUCTION

THIS article focuses on two reachability problems: 1) the
state-constrained control-invariance problem (SCCIP) and

2) the state-constrained reach–avoid problem (SCRAP) [1],
[2]. The SCCIP provides a quantitative measure for control-
invariance under constraints. Mathematically, the problem aims
to find a control signal to minimize the maximum distance
from the target in a time interval while satisfying state con-
straints. To relate it to a well-known construct, the viability
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kernel [3] is that set of initial states whose SCCIP quantity is
less than a certain value. The SCRAP quantifies the distance
between the system and a target while the system maintains
safety constraints [2]. Mathematically, in this problem, we
aim to find a control signal to minimize the minimum dis-
tance to the goal over a time interval while satisfying state
constraints. For example, the reach–avoid set [4] is the set
of initial states whose SCRAP quantity is less than a certain
value.

Hamilton–Jacobi (HJ) frameworks build on dynamic pro-
gramming and viscosity theory to solve optimal control prob-
lems [5], including SCCIP and SCRAP. Viscosity theory is
a notion of weak solutions for first-order partial differential
equations (PDEs) to deal with nondifferentiability of the so-
lution. Various HJ methods have been developed for state-
unconstrained problems [3], [6], [7], [8], [9], [10], [11] and for
state-constrained problems [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22]. State-constrained HJ PDEs [12], [13], [14],
[15], [16], [17] develop viscosity theory under controllability
assumptions, which allow the system to maintain a state con-
straint, which does not, unfortunately, hold for general systems.
More recent state-constrained HJ work [18], [19], [20], [21], [22]
does not need the controllability assumption because it utilizes
an epigraphical technique. The epigraphical technique does not
find an HJ PDE for the state-constrained problem’s optimal
cost. Instead, it finds an HJ PDE for another value function
whose subzero-level set is the epigraph of the optimal cost of the
state-constrained problem. Here, standard viscosity theory [18]
can be used. For SCCIP and SCRAP, Lee and Tomlin [1] and
Lee et al. [2] utilize the epigraphical technique to propose HJ
PDEs.

The solution of HJ PDEs can be computed numerically using,
for example, level-set or fast marching methods [23]. These
require gridding the state space and thus suffer from compu-
tational complexity that grows exponentially in the system state
dimension. There have been various methods to alleviate this
computational issue, including optimization with approximation
techniques [24], [25], [26], [27], control-barrier-function-based
methods [28], [29], [30], [31], [32], geometry-based formu-
lations [33], [34], [35], [36], [37], temporal logic [38], [39],
learning-based approaches [40], [41], [42], [43], and Hopf–Lax
theory [44].
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Given an HJ PDE, Hopf–Lax theory finds an optimization
problem whose optimal cost is the viscosity solution to the HJ
PDE [44], [45], [46], [47]; the optimization problem is called a
Hopf–Lax formula. Hopf–Lax formulae can significantly reduce
computation, as compared to the original HJ PDE, because they
do not require gridding the state space [48], [49], [50], [51].
Hopf–Lax formulae can be solved by combinations of direct
methods (multiple shooting [52] or collocation methods [53])
and numerical optimization methods, such as interior-point
methods [54, Ch. 11], sequential quadratic programming [55,
Ch. 18], or the split Bregman method [56]. As such, for some
problems, the computational complexity of solving Hopf–Lax
formulae can be polynomial in the state dimension [48].

State-of-the-art Hopf–Lax theory has computed viscosity
solutions to HJ PDEs representing state-unconstrained prob-
lems [44], [46], [48], [49], [50], [57]. On the other hand, there
is a small number of papers dealing with HJ PDEs for state-
constrained problems. [22] deals with HJ PDEs whose Hamil-
tonian has only costate dependency. Lee et al. [51] and Lee and
Tomlin [58] present Hopf–Lax formulae for a particular state-
constrained problem for nonlinear systems. Lee and Tomlin [58]
present the Hopf–Lax formula for the SCRAP in a time-invariant
case: cost, dynamics, and state constraints are time-invariant. In
this prior work on Hopf–Lax theory for HJ PDEs relevant to
state-constrained problems, there has not been an analysis as to
whether the computed results are viscosity solutions.

This article builds on HJ PDEs for the SCCIP and SCRAP
problems, which have first been presented in [1] and [2]. The
current article presents Hopf–Lax theory to compute the optimal
cost of these problems whose epigraph is characterized by the
viscosity solutions to the HJ PDEs. While the work in [58] first
presents the Hopf–Lax formula for the time-invariant SCRAP,
it does not present the viscosity solution analysis, and only
considers a zero stage cost.

For each of the SCCIP and SCRAP, we consider two cases: 1)
a time-varying case where cost, dynamics, and state constraints
are time-varying; and 2) a time-invariant case where those are
time-invariant [1], [2]. These two cases correspond to different
Hopf–Lax formulae, resulting in different convexity conditions.
Thus, we will choose one of the Hopf–Lax formulae that have
more favorable convexity conditions and then apply direct meth-
ods to find the optimal cost. On the other hand, the Hopf–Lax
formula assumes a convex Hamiltonian in the costate. Since
the Hamiltonian in the HJ PDE for the time-invariant SCCIP is
nonconvex, there is no Hopf–Lax formula for the time-invariant
SCCIP. Thus, this article presents three Hopf–Lax formulae: one
for the time-varying SCCIP, one for the time-varying SCRAP,
and one for the time-invariant SCRAP.

In summary, our contribution is fourfold as follows.
1) We propose three Hopf–Lax formulae for the time-

varying SCCIP, for the time-varying SCRAP, and for
the time-invariant SCRAP. Previously, Lee and Tom-
lin [58] first proposed the Hopf–Lax formula for the
time-invariant SCRAP, whose stage cost is zero, and this
article extends it for nonstage-cost problems.

2) We present the first proof of viscosity solutions from
Hopf–Lax theory relevant to state-constrained optimal
control problems.

3) We identify conditions under which direct methods, such
as multiple shooting or collocation methods, result in
convex problems for the Hopf–Lax formulae but not for
the original problems (SCCIP and SCRAP). This article
also proves that if the direct methods result in convex
problems for the original problems, their Hopf–Lax for-
mulae always result in convex problems.

4) We present examples for SCCIP and SCRAP to demon-
strate the utility and performance of the proposed Hopf–
Lax formulae.

The organization of this article is as follows. Section II de-
fines both the SCCIP and SCRAP. Section III presents the HJ
PDEs whose solutions’ subzero-level sets are the corresponding
epigraphs of the SCCIP or SCRAP. Section IV proposes our new
theorem in viscosity theory, which is utilized to prove our main
results, the Hopf–Lax formulae for the SCCIP, and SCRAP in
Section V. Section VI presents convexity analysis for the SCCIP,
SCRAP, and their Hopf–Lax formulae. Section VII presents
two examples to demonstrate the utility and performance of the
proposed Hopf–Lax formulae for each class of problem, and
Section VIII concludes the article.

A. Notation

This article uses the subscript ∗ to denote optimality and
superscript ∗ to denote the Legendre–Fenchel transformation:α∗
denotes an optimal control signal, andH∗ denotes the Legendre–
Fenchel transformation of a function H . H∗∗ = (H∗)∗ denotes
the biconjugate of a function H: the Legendre–Fenchel trans-
formation of the Legendre–Fenchel transformation of a function
H . “co(B)” denotes a convex-hull operator of a set B.

II. STATE-CONSTRAINED REACHABILITY PROBLEMS

AND THE HJ ANALYSIS

This section introduces the two state-constrained reachability
problems: 1) the SCCIP and 2) the SCRAP. In these, we are
considering the state trajectory (x : [t, T ] → Rn) in a time in-
terval [t, T ] solving the following ordinary differential equation
(ODE):

ẋ(s) = f(s, x(s), α(s)), s ∈ [t, T ], and x(t) = x (1)

where (t, x) are the initial time and state, s is time between t and
T , f : [t, T ]× Rn ×A → Rn is a dynamics function, A ⊂ Rm

is the control set, and α ∈ A(t) is the measurable control signal

A(t) := {α : [t, T ] → A | ‖α‖L∞(t,T ) < ∞}. (2)

We assume that A is a compact subset in Rm.
State-constrained control-invariance problem (SCCIP): For

given initial time and state (t, x), solve

ϑ1(t, x) := inf
α∈A(t)

max
τ∈[t,T ]

∫ τ

t

L(s, x(s), α(s))ds+ g(τ, x(τ))

(3)

subject to c(s, x(s)) ≤ 0, s ∈ [t, T ] (4)

where x solves (1), L : [t, T ]× Rn ×A → R is the stage cost,
g : R × Rn → R is the terminal cost, f is the system dynamics
as defined above, c : [t, T ]× Rn → R is the state constraint, and
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τ is the time when the cost is the highest. The scalar function c
can handle a number of state constraints. For example, consider
state constraints c1, . . ., cl(s, x(s)) ≤ 0; c = max{c1, .., cl} en-
codes all state constraints into a scalar constraint function. We
would like to note that ϑ1(t, x) ∈ R ∪ {∞}. This means that,
for initial time and state (t, x), if there does not exist a control
signal α to satisfy the state constraint (4), the optimal cost ϑ1 is
∞.

Assumption 1. (Lipschitz continuity and compactness):
1) The control set A is compact and convex.
2) f : [0, T ]× Rn ×A → Rn (f = f(t, x, a)) is Lipschitz

continuous in (t, x) for each a ∈ A.
3) The stage cost L : [0, T ]× Rn × Rm → R (L =

L(t, x, a)) is Lipschitz continuous in (t, x) for each
a ∈ A.

4) For all (t, x) ∈ [0, T ]× Rn, {f(t, x, a) | a ∈ A} and
{L(t, x, a) | a ∈ A} are compact and convex.

5) The terminal cost g : [0, T ]× Rn → R (g = g(t, x)) is
Lipschitz continuous in (t, x).

6) The state constraint c : [0, T ]× Rn → R (c = c(t, x)) is
Lipschitz continuous in (t, x).

7) The stage cost (L) and the terminal cost (g) are bounded
ahead.

Assumption 1 guarantees the existence of a unique solution
to the HJ PDEs, presented in Section III. Notably

ϑ1(t, x) = inf
α∈A(t)

max
τ∈[t,T ]

∫ τ

t

L(s, x(s), α(s))ds+ g(τ, x(τ))

(5)

subject to c(s, x(s)) ≤ 0, s ∈ [t, τ ] (6)

in which the state constraint c(s, x(s)) ≤ 0 is satisfied in [t, τ ]
instead of [t, T ] as in (4) [1]. If the optimal value ϑ1(t, x) is
finite, the state constraint has to be satisfied for all time in [t, T ].
Otherwise, the time maximizer τ will choose the time when the
state constraint is not satisfied so that the optimal value becomes
infinity.

State-constrained reach–avoid problem (SCRAP): For given
initial time and state (t, x), solve

ϑ2(t, x) := inf
α∈A(t)

min
τ∈[t,T ]

∫ τ

t

L(s, x(s), α(s))ds+ g(τ, x(τ))

(7)

subject to c(s, x(s)) ≤ 0, s ∈ [t, τ ] (8)

where x solves (1), and L, g, f , c are defined in the same way
as for the SCCIP. Also, for each (t, x), ϑ2(t, x) ∈ R ∪ {∞},
meaning that if there is no feasible control signal to satisfy the
state constraint (8), then ϑ2(t, x) is infinite. As for SCRAP, we
assume Assumption 1 holds.

III. HJ EQUATIONS FOR STATE-CONSTRAINED

REACHABILITY PROBLEMS

This section reviews the previously presented HJ PDEs for
SCCIP and SCRAP [1], [2], which will be utilized to derive
Hopf–Lax formulae in Section V. For each problem, this section

presents two HJ PDEs, one for the time-varying case and a sec-
ond for the time-invariant case. The time-varying case features
time-varying cost functions, dynamics, and state constraints.

A. HJ Equation for SCCIP

Lee and Tomlin [1] utilize the epigraphical technique to
derive an HJ PDE whose solution characterizes the epigraph
of the optimal cost (ϑ1) for the SCCIP. In this formulation,
we first encode the cost and constraint of the SCCIP into a
state-augmented value function V1 (10) whose subzero-level set
is the epigraph of the optimal cost (ϑ1) for SCCIP

epi(ϑ1(t, ·)) := {(x, z) | z ≥ ϑ1(t, x)}
= {(x, z) | V1(t, x, z) ≤ 0}. (9)

Then, the dynamic programming principle is applied to derive
the HJ PDE for V1.

Define the augmented value function V1 = V1(t, x, z) :
[0, T ]× Rn × R → R

V1(t, x, z) := inf
α∈A(t)

max

{
max
s∈[t,T ]

c(s, x(s))

max
τ∈[t,T ]

∫ τ

t

L(s, x(s), α(s))ds+ g(τ, x(τ))− z

}
(10)

where x solves (1), (t, x) are initial time and states, and z is a
new scalar variable that represents a value axis for the epigraph
of ϑ1. Now, we will consider (x, z) as an augmented state in V1.
V1 is continuous in (t, x, z)-space, and standard viscosity

theory works for V1. Theorem 1 presents HJ PDEs for V1 and
finds ϑ1 from V1.

Theorem 1. (HJ PDE for SCCIP [1]): Suppose Assumption
1 holds. V1 in (10) is the unique viscosity solution to the HJ PDE

max {c(t, x)− V1(t, x, z), g(t, x)− z − V1(t, x, z)

∂V1

∂t
− H̄

(
t, x, z,

∂V1

∂x
,
∂V1

∂z

)}
= 0 (11)

in (0, T )× Rn × R, where H̄ : [0, T ]× Rn × R × Rn × R →
R is given by

H̄(t, x, z, p, q) := max
a∈A

[−p · f(t, x, a) + qL(t, x, a)] (12)

where p and q represent the gradients ∂V1

∂x and ∂V1

∂z , and

V1(T, x, z) = max{c(T, x), g(T, x)− z} (13)

on {t = T} × Rn × R.
For the time-invariant case, the above HJ PDE (11) simplifies

to

max

{
c(x)− V1(t, x, z),

∂V1

∂t
− H̄TI

1

(
x, z,

∂V1

∂x
,
∂V1

∂z

)}
= 0

(14)

in (0, T )× Rn × R, where

H̄TI
1 (x, z, p, q) := min

{
0, H̄(x, z, p, q)

}
(15)

for (x, z, p, q) ∈ Rn × R × Rn × R, and H̄ is defined in (12).
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Then

ϑ1(t, x) = min z subject to V1(t, x, z) ≤ 0. (16)

B. HJ Equation for SCRAP

The HJ analysis for SCRAP is similar to that for SCCIP.
We first define a state-augmented value function V2 (17) that
combines the cost (7) and the constraint (8) of ϑ2 so that V2’s
subzero-level set is the epigraph of the optimal cost ϑ2 for the
SCRAP. For (t, x, z) ∈ [0, T ]× Rn × R

V2(t, x, z) := inf
α∈A(t)

min
τ∈[t,T ]

max

{
max
s∈[t,τ ]

c(s, x(s))

∫ τ

t

L(s, x(s), α(s))ds+ g(τ, x(τ))− z

}
(17)

where x solves (1), (t, x) are initial time and states, and z is again
the new variable that represents a value axis for the epigraph
of ϑ2.

Theorem 2 presents HJ PDEs for V2 and finds ϑ2 from V2.
Theorem 2. (HJ PDE for SCRAP [2]): Suppose Assumption 1

holds. V2 in (17) is the unique viscosity solution to the HJ PDE

max

{
c(t, x)− V2(t, x, z),min

{
g(t, x)− z − V2(t, x, z),

∂V2

∂t
− H̄

(
t, x, z,

∂V2

∂x
,
∂V2

∂z

)}}
= 0 (18)

in (0, T )× Rn × R, where H̄ is defined in (12), and

V2(T, x, z) = max{c(T, x), g(T, x)− z} (19)

on {t = T} × Rn × R.
For the time-invariant case, V2 is also the unique viscosity

solution to HJ PDE

max

{
c(x)− V2(t, x, z),

∂V2

∂t

− H̄TI
2 (x, z,

∂V2

∂x
,
∂V2

∂z
)

}
= 0 (20)

in (0, T )× Rn × R, where

H̄TI
2 (x, z, p, q) = max

{
0, H̄(x, z, p, q)

}
(21)

for (x, z, p, q) ∈ Rn × R × Rn × R, H̄ is defined in (12), and

V2(T, x, z) = max{c(x), g(x)− z} (22)

on {t = T} × Rn × R.
Then

ϑ2(t, x) = min z subject to V2(t, x, z) ≤ 0. (23)

Building on the HJ PDEs in this section, Section V presents
the main contribution of this article: the proposal of Hopf–Lax
formulae for SCCIP and SCRAP. Our Hopf–Lax formulae in
Section V will assume convex Hamiltonians in the gradient
space. H̄ (12) and H̄TI

2 (20) are convex in (p, q), but H̄TI
1

(14) is not. Thus, we do not have the Hopf–Lax formula for

the time-invariant SCCIP. Section V presents three Hopf–Lax
formulae for time-varying SCCIP, time-varying SCRAP, and
time-invariant SCRAP.

IV. VISCOSITY THEORY FOR TWO DIFFERENT PDES’
SOLUTION EQUIVALENCE

This section proposes a general theorem in viscosity theory
to investigate the equivalence of two first-order PDEs. Building
on our new theory in this section, we will present and prove
our main result, Hopf–Lax formulae for SCCIP and SCRAP, in
Section V. We use a more general notation in this section.

Consider time t ∈ [0, T ], a state that consists of x ∈ Rnx , z ∈
Rnz , and two value functions Xi = Xi(t, x, z) ∈ R (i = 1, 2).
Suppose Xi solves a first-order PDE

0 = Fi

(
t, x, z,Xi(t, x, z),

∂Xi

∂t
(t, x, z),

∂Xi

∂x
(t, x, z),

∂Xi

∂z
(t, x, z)

)
(24)

in (0, T )× Rnx × Rnz for i = 1, 2, and the terminal values for
X1 and X2 are the same as l = l(x, z) ∈ R

X1(T, x, z) = X2(T, x, z) = l(x, z) ∀(x, z) ∈ Rnx × Rnz .
(25)

We say that Xi = Xi(t, x, z) (i = 1, 2) is the viscosity solu-
tion of Fi [47, Ch. 10] if 1) Xi(T, x, z) = l(x, z) and, 2) for
each smooth function U : (0, T )× Rnx × Rnz → R

1) if Xi − U has a local maximum at a point (t0, x0, z0) ∈
(0, T )× Rnx × Rnz and (Xi − U)(t0, x0, z0) = 0

Fi

(
t0, x0, z0, U(t0, x0, z0),

∂U

∂t
(t0, x0, z0),

∂U

∂x
(t0, x0, z0),

∂U

∂z
(t0, x0, z0)

)
≥ 0 (26)

2) if Xi − U has a local minimum at a point (t0, x0, z0) ∈
(0, T )× Rnx × Rnz and (Xi − U)(t0, x0, z0) = 0

Fi

(
t0, x0, z0, U(t0, x0, z0),

∂U

∂t
(t0, x0, z0),

∂U

∂x
(t0, x0, z0),

∂U

∂z
(t0, x0, z0)

)
≤ 0. (27)

For SCCIP, F1 refers to the HJ PDE (11), t to the initial time,
x to the initial state, nx to n, nz to 1, and X1 to V1. F2 refers
to the HJ PDE (41) that will be introduced later in Section V-A,
X2 to W1 (39) also in Section V-A. Also, l(x, z) refers to the
terminal condition for V1 and W1: max{c(T, x), g(T, x)− z}.
For SCRAP, we have a similar notation matching rule with
SCCIP.

In the notion of viscosity theory, we present conditions under
which the two different PDEs F1 and F2 have the same solu-
tion. Define superdifferentials and subdifferentials of Xi (i =
1, 2) with respect to z: for each (t, x, z) ∈ [0, T ]× Rnx × Rnz ,
q ∈ ∂+

z Xi(t, x, z) (i = 1, 2) is a superdifferential with respect
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to z if

∂+
z Xi(t, x, z)

:=

{
q | lim sup

z̄→0

Xi(t, x, z + z̄)−Xi(t, x, z)− q · z̄
‖z̄‖ ≤ 0

}
(28)

and q ∈ ∂−
z Xi(t, x, z) (i = 1, 2) is a subdifferential with respect

to z if

∂−
z Xi(t, x, z) :=

{
q | lim sup

z̄→0

Xi(t, x, z + z̄)−Xi(t, x, z)− q · z̄
‖z̄‖ ≥ 0

}
. (29)

Theorem 3 states that if two different PDEs (F1 and F2) are the
same in the superdifferential or subdifferential domains in z, the
two PDEs’ solutions are the same.

Theorem 3: Suppose each of the two first-order PDEs in (24)
with the terminal value (25) for i = 1, 2 has the unique solution
(Xi). If, for all (t, x, z,X, r, p) ∈ [0, T ]× Rnx × Rnz × R ×
R × Rnx , q ∈ ∂+

z X1(t, x, z) ∪ ∂−
z X1(t, x, z)

F1(t, x, z,X, r, p, q) = F2(t, x, z,X, r, p, q) (30)

then X1 ≡ X2. Here, r, p, q are the costates with respect to t,
x, and z, respectively.

Proof: See Appendix A. �

V. HOPF–LAX FORMULAE FOR THE STATE-CONSTRAINED

REACHABILITY PROBLEMS

For SCCIP and SCRAP, the HJ PDEs in Theorems 1 and 2
can be numerically solved by grid-based methods, such as
level-set [23] and fast marching methods [59]. These methods
require spatial and temporal discretization, which leads to ex-
ponential computational complexity in the state’s dimension.
Thus, it is intractable to utilize these grid-based methods for
high-dimensional systems [6]. This article provides more dis-
cussion about the computational complexity in Section VII-C.

This section presents our main results to alleviate this com-
putational complexity, Hopf–Lax formulae for SCCIP and
SCRAP: Section V-A for SCCIP, Section V-B for SCRAP, and
Section V-C for time-invariant SCRAP.

A. Hopf–Lax Formula for SCCIP

Define, for initial time and state (t, x) ∈ [0, T ]× Rn

ϕ1(t, x) := inf
β

max
τ∈[t,T ]

∫ τ

t

H∗(s, x(s), β(s))ds+ g(τ, x(τ))

(31)

subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẋ(s) = −β(s), s ∈ [t, T ]

β(s) ∈ co({−f(s, x(s), a) | a ∈ A}), s ∈ [t, T ]

x(t) = x

c(s, x(s)) ≤ 0, s ∈ [t, T ]

(32)

where β : [t, T ] → Rn is a new measurable control signal, H :
[0, T ]× Rn × Rn → R

H(s, x, p) := H̄(s, x, z, p,−1)

= max
a∈A

[−p · f(s, x, a)− L(s, x, a)] (33)

where p is the costate with respect to x, H̄ is defined in (12), and
H∗ : [0, T ]× Rn × Rn → R ∪ {∞} is the Legendre–Fenchel
transformation of H with respect to p

H∗(s, x, b) := max
p∈Rn

[p · b−H(s, x, p)] (34)

where b is a new control input (b and p are dual variables). For
each s andx,H∗(s, x, b) is finite if b ∈ co({−f(s, x(s), a) | a ∈
A}) but, otherwise, is infinite.

Theorem 4. (Hopf–Lax formula for SCCIP): For all (t, x) ∈
[0, T ]× Rn

ϑ1(t, x) = ϕ1(t, x) (35)

where ϑ1 is the optimal cost of SCCIP [(3) subject to (4)], and
ϕ1 is the Hopf–Lax formula for SCCIP [(31) subject to (32)].

We will utilize our proposed theory in Section IV to prove
Theorem 4. We first investigate the superdifferentials and subd-
ifferentials of V1 with respect to z.

Lemma 1. (Convexity of the value function in z): For each
(t, x) ∈ [0, T ]× Rn, V1 in (10) is convex in z ∈ R: for all
z1, z2 ∈ R and θ1, θ2 ∈ [0, 1] such that θ1 + θ2 = 1

V1(t, x, θ1z1 + θ2z2) ≤ θ1V1(t, x, z1) + θ2V1(t, x, z2). (36)

Proof: See Appendix B. �
Lemma 2: For all (t, x, z) ∈ [0, T ]× Rn × R

∂−
z V1(t, x, z) ⊂ [−1, 0] (37)

and if ∂+
z V1(t, x, z) is not the empty set, the set of superdiffer-

entials with respect to z is a singleton

∂+
z V1(t, x, z) =

{
∂V1

∂z
(t, x, z)

}
⊂ [−1, 0]. (38)

Note that V1 is defined in (10).
Proof: See Appendix C. �
By applying the HJ analysis in Section III-A, we have the

following results for the Hopf–Lax formula for SCCIP [ϕ1 (31)
subject to (32)]. Combining (31) and (32), define a value function
in the augmented state space, W1 : [0, T ]× Rn × R → R:

W1(t, x, z) = inf
β

max

{
max
s∈[t,T ]

c(s, x(s)),

max
τ∈[t,T ]

∫ τ

t

H∗(s, x(s), β(s))ds+ g(τ, x(τ))− z

}
(39)

where β(s) ∈ co({−f(s, x(s), a) | a ∈ A}). As shown in [51]

Dom(H∗(s, x(s), ·)) = {b | H∗(s, x(s), b) < ∞}
= co({−f(s, x(s), a) | a ∈ A}). (40)

Thus, it is not necessary to add the control constraint in the
infimum operation in (39) since H∗ becomes infinity due to the
control constraint (40).
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By Theorem 1, W1 is the unique viscosity solution to

max {c(t, x)−W1(t, x, z), g(t, x)− z −W1(t, x, z),

∂W1

∂t
− H̄W

(
t, x, z,

∂W1

∂x
,
∂W1

∂z

)}
= 0 (41)

in (0, T )× Rn × R, where H̄W : [0, T ]× Rn × R × Rn ×
R → R is defined as

H̄W (t, x, z, p, q) := max
b

[p · b+ qH∗(t, x, b)] (42)

Here p and q represents the gradients ∂W1

∂x and ∂W1

∂z , H∗ is
defined in (34), and

W1(T, x, z) = max{c(T, x), g(T, x)− z} (43)

on {t = T} × Rn × R. Then

ϕ1(t, x) = min z subject to W1(t, x, z) ≤ 0. (44)

Now, it is sufficient to prove V1 ≡ W1.
We will utilize Theorem 3 to prove V1 ≡ W1. F1 and F2 in

Section IV refer to (11) and (41), respectively. Also, Lemma 3
analyzes the relationship between the two Hamiltonians: H̄ (12)
for V1 and H̄W (42) for W1.

Lemma 3: For (t, x, z, p, q) ∈ [0, T ]× Rn × R × Rn × R

H̄(t, x, z, p, q) = H̄W (t, x, z, p, q) if q ≤ 0 (45)

where H̄ and H̄W are defined in (12) and (42), respectively.
Proof: See Appendix D. �
Now, we are ready to conclude the proof of Theorem 4.
Proof of Theorem 4: Lemma 2 states that the subdifferentials

and superdifferentials ofV1(t, x, z)with respect to z are less than
or equal to 0 for all (t, x, z). Thus, by combining Theorem 3,
Lemma 2, and Lemma 3, we prove V1 ≡ W1. By (16) and (44),
we conclude ϑ1 ≡ ϕ1. �

B. Hopf–Lax Formula for SCRAP

Define, for initial time and state (t, x) ∈ [0, T ]× Rn

ϕ2(t, x) := inf
β

min
τ∈[t,T ]

∫ τ

t

H∗(s, x(s), β(s))ds+ g(τ, x(τ))

(46)

subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẋ(s) = −β(s), s ∈ [t, T ]

β(s) ∈ co({−f(s, x(s), a) | a ∈ A}), s ∈ [t, T ]

x(t) = x

c(s, x(s)) ≤ 0, s ∈ [t, τ ]

(47)

where the description for all variables is the same as in Sec-
tion V-A.

Theorem 5. (Hopf–Lax formula for SCRAP): For all (t, x) ∈
[0, T ]× Rn

ϑ2(t, x) = ϕ2(t, x) (48)

where ϑ2 is the optimal cost of SCRAP [(7) subject to (8)], and
ϕ2 is the Hopf–Lax formula for SCRAP [(46) subject to (47)].

The proof of Theorem 5 similarly follows that of Theorem 4
except for the proof of the convexity of V2 in z-space, whose
counterpart in the previous section is Lemma 1. Although V2

is convex in z-space, we have to prove it not in a similar way
for Lemma 1. Our proof for the convexity of V2 is added to the
proof of Lemma 1 in Appendix B (iii).

C. Hopf–Lax Formula for the Time-Invariant SCRAP

Define, for the initial time and state (t, x) ∈ [0, T ]× Rn

ϕTI
2 (t, x) := inf

β

∫ T

t

HTI*
2 (x(s), β(s))ds+ g(x(T )) (49)

subject to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ(s) = −β(s), s ∈ [t, T ]

β(s) ∈ co({0} ∪ {−f(x(s), a) | a ∈ A}),
s ∈ [t, T ]

x(t) = x

c(x(s)) ≤ 0, s ∈ [t, T ]

(50)

where β : [t, T ] → Rn is a new measurable control signal,HTI
2 :

Rn × Rn → R

HTI
2 (x, p) := H̄TI

2 (x, z, p,−1) = max{0, H(x, p)}
= max{0,max

a∈A
[−p · f(x, a)− L(x, a)]} (51)

where p is the costate with respect to x, H̄TI
2 is defined in (21),

H is defined in (33), and HTI∗
2 : Rn × Rn → R ∪ {∞} is the

Legendre–Fenchel transformation of HTI
2 with respect to p

HTI*
2 (x, b) := max

p
[p · b−HTI

2 (x, p)] (52)

where b is a new control input.
Theorem 6. (Hopf–Lax formula for the time-invariant

SCRAP): Consider the time-invariant SCRAP. For all (t, x) ∈
[0, T ]× Rn

ϑ2(t, x) = ϕ2(t, x) = ϕTI
2 (t, x) (53)

where ϑ2 is the optimal cost of SCRAP [(7) subject to (8)], ϕ2

is the Hopf–Lax formula for SCRAP [(46) subject to (47)], and
ϕTI
2 is the Hopf–Lax formula for the time-invariant SCRAP [(49)

subject to (50)].
We will combine Section IV and following formulations to

prove Theorem 6. By applying the HJ analysis in Section III-B,
we have the following results for the Hopf–Lax formula for the
time-invariant SCCIP [ϕ2 (49) subject to (50)]. Combining (49)
and (50), define a value function in the augmented state space.
W TI

2 : [0, T ]× Rn × R → R:

W TI
2 (t, x, z) = inf

β
max

{
max
s∈[t,T ]

c(x(s))

∫ T

t

HTI∗
2 (x(s), β(s))ds+ g(x(T ))− z

}
. (54)
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In (54), we can omit the control constraint in (50): β(s) ∈
co({0} ∪ {−f(x(s), a) | a ∈ A}), since this control constraint
is the domain of the control input β(s) for finite HTI∗

2 (x(s), ·).
Lemma 4. (Domain of HTI∗

2 ): For all x ∈ Rn

Dom(HTI∗
2 (x, ·)) = {b | HTI∗

2 (x, b) < ∞}
= co({0} ∪ {−f(x, a) | a ∈ A}) (55)

where HTI∗
2 is defined in (52).

Proof: See Appendix E. �
By [18, Proposition 3.4], W TI

2 is the unique viscosity solution
to

max

{
c(x)−W TI

2 ,

∂W TI
2

∂t
− H̄TI

W

(
x, z,

∂W TI
2

∂x
,
∂W TI

2

∂z

)}
= 0 (56)

in (0, T )× Rn × R, andW TI
2 (T, x, z) = max{c(x), g(x)− z}

on {t = T} × Rn × R, where H̄TI
W : Rn × R × Rn × R → R

H̄TI
W (x, z, p, q) := max

b
[p · b+ qHTI∗

2 (x, b)] (57)

where HTI∗
2 is defined in (52), and p and q represents the

gradients ∂W TI
2

∂x and ∂W TI
2

∂z . Then

ϕTI
2 (t, x) = min z subject to W TI

2 (t, x, z) ≤ 0. (58)

Now, it is sufficient to show V2 ≡ W TI
2 . To prove this, we will

use Theorem 3 where we substitute (20) to F1 and (56) to F2.
Lemma 5 analyzes the relationship between H̄TI

2 (21) for V2

and H̄TI
W (57) for W TI

2 .
Lemma 5: For (x, z, p, q) ∈ Rn × R × Rn × R

H̄TI
2 (x, z, p, q) = H̄TI

W (x, z, p, q) if q ≤ 0 (59)

where H̄TI
2 and H̄TI

W are defined in (21) and (57), respectively.
Proof: See Appendix F. �
Now, we are ready to conclude the proof of Theorem 6.
Proof of Theorem 6: In Theorem 3, we substitute the HJ

PDE for V2 (20) to F1 and the HJ PDE for W TI
2 (56) to F2.

Since Lemmas 2 and 5 hold, Theorem 3 implies V2 ≡ W TI
2 . By

Theorem 5, (23), and (58), we conclude ϑ2 ≡ ϕ2 ≡ ϕTI
2 . �

Although the time-varying case is more general than the
time-invariant case, Section VI show that the Hopf–Lax formula
for the time-invariant SCRAP has better convexity conditions.
Thus, direct methods for the time-invariant SCRAP enable op-
timality guarantees and efficient computation for more classes
of problems than for the time-varying SCRAP.

VI. CONVEXITY ANALYSIS

We can efficiently solve SCCIP, SCRAP, and Hopf–Lax
formulae by utilizing direct methods, such as multiple shoot-
ing [52] or collocation methods [53]. This section investigates
convexity conditions under which direct methods guarantee
optimality. The convexity analysis in this Section VI is valid
regardless of any different numerical integration methods, in-
cluding the midpoint, trapezoidal, and Simpson’s rule, and
numerical ODE solving methods, including linear multistep
and Runge–Kutta methods [60]. For convenience, this section

chooses a multiple shooting method that uses the first-order
forward Euler method for both numerical integration and ODE
solving.

We discretize the time interval to {t0 = 0, . . ., tK = T}
where Δk := tk+1 − tk. In the use of the first-order Euler
method, the difference between the exact ODE solution and
the Euler approximation becomes smaller for smaller Δk [61],
[62]. For notation, the state at tk is x[k], and α[k] and β[k] are
control inputs at tk. In this article, we use x to denote both a
state trajectory in the continuous-time setting (x(·)) and a state
sequence in the discrete-time setting (x[·]). We apply the same
notation rule for α, β.

Section VI-A deals with SCCIP and its Hopf–Lax formula,
and Section VI-B deals with SCRAP and its Hopf–Lax formulae
for time-varying and time-invariant cases.

A. Convexity Analysis for SCCIP and Its Hopf–Lax
Formula

This subsection presents a convexity analysis for a tempo-
rally discretized SCCIP and Hopf–Lax formula. Consider the
temporally discretized SCCIP

ϑ1(0, x) 
 min
x[·],α[·]

max
k′∈{0,...,K}

k′∑
k=0

L(tk, x[k], α[k])Δk

+ g(tk′ , x[k′]) (60)

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x[k + 1]− x[k] = Δkf(tk, x[k], α[k])

k ∈ {0, . . .,K − 1}
α[k] ∈ A, k ∈ {0, . . .,K − 1}
x[0] = x

c(tk, x[k]) ≤ 0, k ∈ {0, . . .,K}.

(61)

The temporal discretized SCCIP [(60) subject to (61)] is convex
in (x[·], α[·])-space if Assumption 2 holds. Since a pointwise
maximum of convex functions is convex, the cost in (60) is
convex if

∑k′
k=0 L(tk, x[k], α[k])Δk + g(tk′ , x[k′]) is convex

for each k′. Thus, the first two conditions in Assumption 2 are
sufficient to have convex cost in (60). The other three conditions
are for convex constraints (61).

Assumption 2. (Convexity conditions for the temporally dis-
cretized SCCIP).

1) L(t, x, a) is convex in (x, a) for all t ∈ [0, T ].
2) g(t, x) is convex in x for all t ∈ [0, T ].
3) c(t, x) is convex in x for all t ∈ [0, T ].
4) f(t, x, a) is affine in (x, a) for all t ∈ [0, T ].
5) A is convex.

We discretize the Hopf–Lax formula for SCCIP [ϕ1 in (31)
subject to (32)] as the following:

ϕ1(0, x) 
 min
x[·],β[·]

max
k′∈{0,...,K}

k′∑
k=0

H∗(tk, x[k], β[k])Δk

+ g(tk′ , x[k′]) (62)



6488 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 11, NOVEMBER 2023

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x[k + 1]− x[k] = −Δkβ[k], k ∈ {0, . . .,K − 1}
β[k] ∈ co({−f(tk, x[k], a) | a ∈ A}),

k ∈ {0, . . .,K − 1}
x[0] = x

c(tk, x[k]) ≤ 0, k ∈ {0, . . .,K}.
(63)

Based on the above convexity analysis for the tempo-
rally discretized SCCIP in (x[·], β[·])-space, it is sufficient to
verify convexity conditions for H∗(t, x, b) and {(x, b) | b ∈
co({−f(t, x, a) | a ∈ A})} in (x, b). One of the authors’ pa-
pers [51] provided sufficient conditions under which a finite-
dimensional optimization problem (62) subject to (63) is convex,
as written ahead.

Lemma 6: Suppose 1) L(t, x, a) = Lx(t, x) + La(t, a), and
Lx is convex in x for each t ∈ [0, T ], 2) f(t, x, a) = M(t)x+
La(t, a) for some matrix M(t) ∈ Rn × Rn. Then, H∗(t, x, b)
and {(x, b) | b ∈ co({−f(t, x, a) | a ∈ A})} are convex in
(x, b) [51].

Combining Lemma 6 and the convexity analysis argument
for SCCIP, we conclude sufficient convexity conditions for
the temporally discretized Hopf–Lax formula for SCCIP in
Assumption 3.

Assumption 3. (Convexity condition for the temporally dis-
cretized Hopf–Lax formula for SCCIP):

1) L(t, x, a) = Lx(t, x) + La(t, a) for some Lx and La,
and Lx is convex in x for all t ∈ [0, T ].

2) g(t, x) is convex in x for all t ∈ [0, T ].
3) c(t, x) is convex in x for all t ∈ [0, T ].
4) f(t, x, a) = M(t)x+ fa(t, a) for someM and fa for all

t ∈ [0, T ].
Assumption 3 does not require 1) convex stage cost L in the

control input a, 2) affine dynamics f in the control input a, and
3) convex control set A. This is because the Legendre–Fenchel
transformation of the Hamiltonian (H∗) is always convex in
the control input a, and the convex-hull operator (co) also
convexifies the control-input space. We would like to note that
the HJ analysis in Section III still needs to assume A is convex,
as in Assumption 1.

Remark 1: The Hopf–Lax formula for SCCIP convexifies
SCCIP in the control-input space.

B. Convexity Analysis for SCRAP and Its Two
Hopf–Lax Formulae

This section presents convexity analysis for SCRAP, the
Hopf–Lax formula for the time-varying SCRAP, and the Hopf-
Lax formula for the time-invariant SCRAP. The temporally
discretized SCRAP is

ϑ2(0, x) 
 min
x[·],α[·],k′∈{0,...,K}

k′∑
k=0

L(tk, x[k], α[k])Δk

+ g(tk′ , x[k′]) (64)

subject to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x[k + 1]− x[k] = Δkf(tk, x[k], α[k]),

k ∈ {0, . . .,K − 1}
α[k] ∈ A, k ∈ {0, . . .,K − 1}
x[0] = x

c(tk, x[k]) ≤ 0, k ∈ {0, . . ., k′}.

(65)

The cost in (64) is generally nonconvex in (x[·], α[·])-space since
the pointwise minimum operator over k′ is defined in a noncon-
vex set: {0, . . .,K}. Thus, a sufficient convexity condition is
that L and g are 0, as in Assumption 4. In this case, 0 is always
a minimizer k′. Thus no additional conditions are necessary for
convexity of the temporally discretized SCRAP.

Assumption 4. (Convexity condition for the temporally dis-
cretized SCRAP and its Hopf–Lax formula):

1) L ≡ g ≡ 0.
The temporally discretized Hopf–Lax formula for SCRAP

[(46) subject to (47)] is as follows:

ϕ2(0, x) 
 min
x[·],β[·],k′∈{0,...,K}

k′∑
k=0

H∗(tk, x[k], β[k])Δk

+ g(tk′ , x[k′])

(66)

subject to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x[k + 1]− x[k] = −Δkβ[k], k ∈ {0, . . .,K − 1}
β[k] ∈ co({−f(tk, x[k], a) | a ∈ A}),

k ∈ {0, . . .,K − 1}
x[0] = x

c(tk, x[k]) ≤ 0, k ∈ {0, . . ., k′}.
(67)

By the same argument for SCRAP, H∗ and g should be zero for
the convexity of the discretized Hopf–Lax formula for SCRAP in
(x[·], β[·])-space. [51] proves that L ≡ 0 implies H∗ ≡ 0, thus,
Assumption 4 is also a sufficient condition for convexity of the
temporally discretized Hopf–Lax formula for SCRAP.

We discretize the Hopf–Lax formula for the time-invariant
SCRAP [ϕTI

2 in (49) subject to (50)]

ϕTI
2 (0, x) 
 min

x[·],β[·]

K∑
k=0

HTI∗
2 (x[k], β[k])Δk + g(x(K)) (68)

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x[k + 1]− x[k] = −Δkβ[k],

k ∈ {0, . . .,K − 1}
β[k] ∈ co({0} ∪ {−f(x[k], a) | a ∈ A}),

k ∈ {0, . . .,K − 1}
x[0] = x

c(x[k]) ≤ 0, k ∈ {0, . . .,K}.
(69)

We will prove that Assumption 5 is sufficient for the tem-
porally discretized time-invariant SCRAP to be convex in
(x[·], β[·])-space. We will first showHTI∗

2 (x, b) and {(x, b) | b ∈
co({0} ∪ {−f(x, a) | a ∈ A})} are convex in (x, b) if Assump-
tion 5 holds. According to the definition of HTI

2 (51), HTI
2 does

not have state dependency since f and L do not have it. Thus,
HTI∗

2 also does not have state dependency and is always convex in
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Fig. 1. (a) SCCIP problem setting that describes the target positions xr
g and constrained regions Sr , r = 1, . . ., 4. (b)–(h) Optimal trajectories for

the SCCIP problem at each time, where the blue circles are the vehicles’ positions, and the black curves are optimal state trajectories. The SCCIP
cost is maximized at 1.1 s. (a) Problem setting. (b) 0 s. (c) 1 s. (d) 1.1 s: Maximizer. (e) 2 s. (f) 3 s. (g) 4 s. (h) 5 s.

b. Similarly, {(x, b) | b ∈ co({0} ∪ {−f(x, a) | a ∈ A})} does
not have state dependency and is convex in b. Finally, the second
and fourth conditions in Assumption 5 imply the terminal cost
and the state constraint are convex.

Assumption 5. (Convexity condition for the temporally dis-
cretized Hopf–Lax formula for the time-invariant SCRAP):

1) L(x, a) = L(a).
2) g(x) is convex in x.
3) c(x) is convex in x.
4) f(x, a) = f(a).

Remark 2: SCRAP and its Hopf–Lax formula for the time-
varying case are generally nonconvex. However, the Hopf–Lax
formula for the time-invariant SCRAP is convex if Assumption
5 holds. Assumption 5 does not require any convexity conditions
in the control-input space.

VII. NUMERICAL EXAMPLES

This section provides two numerical examples to demonstrate
the Hopf–Lax formulae for SCCIP and SCRAP. For numerical
computation, we utilize the interior-point method [54, Ch. 11]
in MATLAB, and a computer with an Apple M1 Pro and 16-GB
RAM was used.

A. SCCIP: Robust Formation Control

Consider a 16-D system, which consists of four 4-D ve-
hicles: xr(s) = (xr1(s), x

r
2(s), x

r
3(s), x

r
4(s)) ∈ R4 refers to the

rth vehicle’s 4-D state (r = 1, . . ., 4) at time s, and x(s) =
(x1(s), . . ., x4(s)) ∈ R16 refers to the system state at s. Each
vehicle has two control inputs: αr(s) = (αr

1(s), α
r
2(s)) ∈ R2.

The system dynamics is

ẋr1(s) = xr2(s), ẋr2(s) = αr
1(s) cosα

r
2(s)

ẋr3(s) = xr4(s), ẋr4(s) = αr
1(s) sinα

r
2(s) (70)

wherexr1 andxr2 (xr3 andxr4) are horizontal (vertical) position and
velocity of the rth vehicle, αr

1 is the magnitude of acceleration,
and αr

2 is the angle of the acceleration for r = 1, . . ., 4.
As shown in Fig. 1(a), we would like to control the multi-

vehicle system where the rth vehicle stays close to the point
xr
g within the interval s ∈ [0, 5] while maneuvering in the rth

square-shaped constrained region (Sr). We control the accelera-
tions of the system (70). Due to initial velocities, it is challenging
to control the rth vehicle to stay in Sr and close to xr

g . For this
problem, we solve

inf
α

max
τ∈[0,5]

max
r=1,...,4

‖(xr1(τ), xr3(τ))− xr
g‖2 (71)

subject to

⎧⎪⎨
⎪⎩
(70), αr(s) ∈ [−1, 1]× [−π

6 ,
π
6 ]

x(0) = x

(xr1(s), x
r
3(s)) ∈ Sr, r = 1, . . ., 4, s ∈ [0, 5]

(72)

where the target positions are following: x1
g = (−1, 1), x2

g =
(1, 1), x3

g = (1,−1), x4
g = (−1,−1). The stage cost L is zero,

and the terminal cost g is maxr=1,...,4 ‖(xr1(τ), xr3(τ))− xr
g‖2.

For this SCCIP, the Hamiltonian H in (33) becomes

H(s, x, p) =

4∑
r=1

−pr1x
r
2 − pr3x

r
4

+max

{
‖(pr2, pr4)‖2, |pr2|

√
3

2
+ |pr4|

1

2

}
(73)

where xr
i is the name of the variable for which we substitute

xri (s) (r = 1, . . ., 4), pri is the costate with respect to xr
i , pr =

(pr1, p
r
2, p

r
3, p

r
4) ∈ R4, and p = (p1, . . ., p4) ∈ R16. H is convex
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in p, and any supporting hyperplane for H can be written as
b · p = 0 for some normal vector b ∈ R16. Since the supporting
hyperplane b · p = 0 passes through the origin for any b, the
Legendre–Fenchel transformation of the Hamiltonian becomes

H∗(s, x, b) ={
0, br1 = −xr

2, b
r
3 = −xr

4, ‖(br2, br4)‖2 ≤ 1, |b4r| ≤ 1
2

∞, otherwise
(74)

where b = (b11, b
1
2, . . ., b

4
4) ∈ R16, and Dom(H∗(s, x, ·)) is ana-

lytically derived by (40). In general, if the stage cost L is zero,
H∗ becomes zero, which has been investigated in [51].

The Hopf–Lax formula for SCCIP in Theorem 1 is

inf
β

max
τ∈[0,5]

max
r=1,...,4

‖(xr1(τ), xr3(τ))− xr
g‖2 (75)

subject to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋr(s) = −βr(s)

βr
1(s) = −xr2(s), β

r
3(s) = −xr4(s)

‖(βr
2(s), β

r
4(s))‖2 ≤ 1, |βr

4(s)| ≤ 1
2

x(0) = x

(xr1(s), x
r
3(s)) ∈ Sr, r = 1, . . ., 4, s ∈ [0, 5]

(76)

where we get the second and third lines in (76) by substituting
x(s) into x and β(s) = (β1

1(s), . . ., β
4
4(s)) into b in (74).

Consider the temporally discretized SCCIP and Hopf–Lax
formula for SCCIP on any temporal discretization {t0 = 0,
. . . , tK = 5} as in Section VI-A. The temporally discretized
SCCIP is nonconvex, but the temporally discretized Hopf–Lax
formula is convex since Assumption 3 is satisfied. Thus, direct
methods with numerical optimization methods provide an opti-
mal solution for the proposed Hopf–Lax formula for SCCIP.

For numerical computation of the Hopf–Lax formula, we
discretize the temporal space to {t0 = 0, . . ., t50 = 5} with
Δk = 0.1 (51 time steps). We utilize the interior-point method to
solve the temporally discretized Hopf–Lax formula for SCCIP.
The computation time is 108.5 s. This system is 16-D with four
vehicles, for which it is intractable to utilize grid-based methods
(such as the level-set method [23]) to solve the HJ PDEs (11).

As shown in Fig. 1(b)–(h), the four vehicles successfully stay
in the constrained regions and stay near their target positions
(xr

g). Within the time interval, the maximum distance between
xr
g and the four vehicles is maximized at 1.1 s as shown in Fig.

1(d). At this time, each distance between xr
g and the rth vehicle

is 1.18, 0.43 0.42, and 1.16 m, and the first vehicle shows the
farthest distance among the four vehicles. Thus, the optimal cost
for SCCIP is 1.18. This means that all vehicles stay near their
goals while maintaining less than 1.18-m distance within the
time horizon while staying in their constraint regions Sr for all
r = 1, . . ., 4. The first vehicle’s trajectory shown in Fig. 1(b)–(h)
initially moves downward, with a velocity in the -y-direction.
Thus, in the solution found by SCCIP, the optimal control first
decreases its vertical speed to ensure that it remains in S1. Then,
it heads toward x1

g , in order to stay close to x1
g , as incentivized

by the cost function.

This example shows an optimal-control analysis for SCCIP,
and this can be additionally utilized in decision-making for hard-
ware specification. For example, consider designing multiple
mobile manipulators for which we attach a manipulator to each
mobile robot (vehicle). Each manipulator aims to perform some
tasks at its target position xr

g for all time in [0,5]. Our SCCIP
analysis provides a guideline for choosing the manipulator’s
workspace that has to cover more than 1.18 m since all vehicles
can be controlled to stay within 1.18-m-radius regions from xr

g

for all time in [0,5].

B. Hopf–Lax Formula for the Time-Invariant SCRAP

Consider a 12-D system, which consists of six 2-D vehicles:
xr(s) = (xr1(s), x

r
2(s)) ∈ R2 refers to the rth vehicle’s 2-D state

(r = 1, . . ., 6) at time s, and x(s) = (x1(s), . . ., x6(s)) ∈ R12.
Each vehicle has two control inputs: αr(s) = (αr

1(s), α
r
2(s)) ∈

R2. The system dynamics is

ẋr1(s) = αr
1(s) + 2, ẋr2(s) = αr

2(s) + 1 (77)

where xr1 and xr2 are horizontal and vertical positions of the rth
vehicle at s, and αr

1(s) and αr
2(s) are horizontal and vertical

velocities, respectively.
As shown in Fig. 2(a), we would like to control the mul-

tivehicle system so that the distance between the 2-D center
position of the six vehicles and the goal point is minimized while
maintaining the hexagonal formation with 0.1-error bound

inf
α

min
τ∈[0,5]

∥∥∥∥x1(τ) + · · ·+ x6(τ)

6
− xg

∥∥∥∥
2

(78)

subject to

⎧⎪⎨
⎪⎩
(77), ‖αr(s)‖∞ ≤ 0.5, r = 1, . . ., 6, s ∈ [0, 5]

x(0) = x

‖xr(s)− x1(τ)+···+x6(τ)
6 − dr‖∞ ≤ 0.1, s ∈ [0, τ ]

(79)

where xg = (1, 0), and dr = 0.5(cos((r − 1)π/3), sin((r −
1)π/3)) is a vector for the rth vehicle that indicates the for-
mation direction from the 2-D center position of the six vehicles
(r = 1, . . ., 6).

For this problem, we will derive the Hopf–Lax formula for the
time-invariant SCRAP since the temporally discretized Hopf–
Lax formula for the time-varying SCRAP as in Section VI-B is
generally nonconvex.

The Hamiltonian HTI
2 (x, p) (51) is

HTI
2 (x, p) = max

{
0,

6∑
r=1

[−2pr1 − pr2 + ‖pr1‖+ ‖pr2‖]
}

(80)

where x = (x1
1, x

1
2, . . ., x

6
2) ∈ R12, pri is the costate with respect

to xr
i , pr = (pr1, p

r
2) ∈ R2, and p = (p1, . . ., p6) ∈ R12. Since

HTI
2 is a pointwise maximum of two convex functions in p, HTI

2

is convex in p. Also, for all b ∈ R12, the supporting hyperplane
of HTI

2 in p-space with respect to the normal vector b crosses the
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Fig. 2. (a) SCRAP problem setting that describes the target position xg and the six vehicles’ 2-D positions. (b)–(h) Optimal trajectories for the
SCRAP problem at each time, where the blue circles are the vehicles’ positions, and the black curves are optimal state trajectories. The SCRAP
cost is minimized at 2.3 s. (a) Problem setting. (b) 0 s. (c) 1 s. (d) 2 s. (e) 2.3 s: Minimizer. (f) 3 s. (g) 4 s. (h) 5 s.

origin. Thus

HTI∗
2 (x, b) =

{
0, in Dom(HTI∗

2 (x, ·))
∞, otherwise

(81)

where b = (b1, . . ., b6) = (b11, b
1
2, . . ., b

6
1, b

6
2) ∈ R12. By Lemma

4, Dom(HTI∗
2 (x, ·)) = co({0} ∪ {−f(x, a) | a ∈ [−0.5,

0.5]12}) ⊂ R12 is analytically derived as follows:

Dom(HTI∗
2 (x, ·)) = {b | ∀r1, r2 ∈ {1, . . ., 6},

− 2.5 ≤ br11 ,−1.5 ≤ br12 ,
3

5
br11 − br21 ≥ 0, br11 − 3

5
br21 ≤ 0,

br11 ≥ 5br22 , br11 ≤ br22 , br22 ≥ 3br12 , 3br22 ≤ br12 } . (82)

The Hopf–Lax formula for the time-invariant SCRAP in
Theorem 6 is

inf
β

∥∥∥∥x1(5) + · · ·+ x6(5)

6
− xg

∥∥∥∥
2

(83)

subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẋr(s) = −βr(s)

β(s) ∈ Dom(HTI∗
2 (x, ·)) in (82)

x(0) = x

‖xr(s)− x1(s)+···+x6(s)
6 − dr‖∞ ≤ 0.1, s ∈ [0, 5].

(84)

Consider the temporally discretized SCRAP and Hopf–Lax
formula on any temporal discretization {t0 = 0, . . ., tK = 5} as
in Section VI-B. The temporally discretized SCRAP is noncon-
vex, but the temporally discretized Hopf–Lax formula for the
time-invariant case is convex since Assumption 5 is satisfied,
which enables direct methods to compute an optimal solution.

We utilized a numerical algorithm presented in [58] to find
optimal control signals and state trajectories for the SCRAP
problem. The computation time is 158.5 s. Fig. 2(b)–(h) shows
the optimal state (position) trajectories of the multivehicle sys-
tem. The distance between the center of the six vehicles and the
goal position xg is minimized at 2.3 s, as shown in Fig. 2(e), and
then, the center of the six vehicles moves away from the goal
position.

This example demonstrates our method’s potential useful-
ness in multiple vehicle operations, for example, the control
a spacecraft system to get close to an object of interest, such as
an asteroid, and then the release of smaller exploration robots

Fig. 3. This figure shows the computation time of the level-set method
and the time-invariant Hopf–Lax formula with different numbers of vehi-
cles. Each vehicle is 2-D.

from the spacecraft to do more detailed sensing of the asteroid.
The SCRAP analysis provides the optimal control and the time
at which the exploration robots have to be released from the
spacecraft.

C. Computation Time

In this section, we compare the computation time of the Hopf–
Lax formula for the time-invariant SCRAP and the level-set
method. In the example in Section VII-B, we can easily change
the number of vehicles. Fig. 3 shows the computation time
where the number of vehicles is 1–10. We used the interior-point
method [54, Ch. 11] to solve the proposed Hopf–Lax formula,
which has polynomial–computational complexity in the state
dimension, which is also demonstrated in Fig. 3. Since each
vehicle is 2-D, the state dimension varies from 2 to 20.

The level-set method requires spatial and temporal discretiza-
tion, which leads to exponential computational complexity in the
state’s dimension. The level-set method handles this problem
if the number of vehicles is smaller than three. For numerical
computation, we discretize the temporal space with 51 points
and each axis of the augmented state (x, z) space with 61 points.
The computation time is 26.9 s for the one-vehicle and 27.4 h
(9.86× 104 s) for the two-vehicle.

The level-set method provides a closed-loop control. Thus,
offline computation is allowed because a closed-loop control is
robust to disturbances, measurement noise, and system modeling
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errors in practice. On the other hand, our Hopf–Lax methods
provide an open-loop control, requiring real-time computation
to be robust to the above factors.

Offline computation of the level-set method is intractable
for high-dimensional systems due to the exponential growth of
computational complexity in the state dimension and computing
machines’ memory limits. However, our Hopf–Lax method
computes a solution even if the computation time might not meet
real-time computation. For the three-vehicle setting (6-D), the
level set method requires 641.1 TB of memories for a numerical
solution to the HJ PDE, where 51 temporal discretization points
and 61 spatial discretization points on each axis of (x, z) are
used. It still requires 367.4 gigabytes if the number of spatial
discretization points on each axis is reduced by 21. On the other
hand, our Hopf–Lax method computes a solution even for a 10-
vehicle setting (20-D). In order to reduce the computation time,
the Hopf–Lax formula can be incorporated with approximation
methods, such as the receding-horizon technique [63], [64].

VIII. CONCLUSION

This article considers two state-constrained reachability prob-
lems: 1) the control invariance problem (SCCIP) and 2) reach–
avoid problem (SCRAP). We propose three Hopf–Lax formulae
for 1) SCCIP, 2) SCRAP, and 3) the time-invariant SCRAP and
provide proofs. In the proof of each Hopf–Lax formula, this
article considers two HJ PDEs: One for SCCIP (or SCRAP)
and the other for the corresponding Hopf–Lax formula and
then proves these two different HJ PDEs have the same so-
lution. This proof technique can be generally applied to other
state-constrained optimal control problems’ Hopf–Lax theory.
This article also shows that Hopf–Lax formulae always have
more favorable convexity conditions than SCCIP and SCRAP.
Thus, direct methods efficiently compute solutions without los-
ing optimality guarantees for more classes of problems. This
benefit has been demonstrated via simulations compared with
HJ analysis. The level-set method to solve HJ PDEs requires
exponentially increasing memory space and computation time
in the state dimension, so it is intractable to deal with more than
5-D systems. On the other hand, our method deals with 20-D and
potentially much higher-dimensional systems without losing the
optimality guarantee under the specified conditions.

APPENDIX

A. Proof of Theorem 3

i) The terminal values of X1 and X2 are the same.
ii) Consider a smooth function U : [0, T ]× Rn × R → R. If

X1 − U has a local maximum at (t0, x0, z0) ∈ (0, T )× Rn ×
R and (X1 − U)(t0, x0, z0) = 0

F1

(
t0, x0, z0, U(t0, x0, z0),

∂U

∂t
(t0, x0, z0),

∂U

∂x
(t0, x0, z0),

∂U

∂z
(t0, x0, z0)

)
≥ 0. (85)

Since X1 − U has a local maximum at (t0, x0, z0),
∂U
∂z (t0, x0, z0) is in ∂+

z X1(t0, x0, z0). Then, by (30)

F2

(
t0, x0, z0, U(t0, x0, z0),

∂U

∂t
(t0, x0, z0),

∂U

∂x
(t0, x0, z0),

∂U

∂z
(t0, x0, z0)

)
≥ 0. (86)

iii) Consider a smooth functionU : [0, T ]× Rn × R → R. If
X1 − U has a local minimum at (t0, x0, z0) ∈ (0, T )× Rn × R
and (X1 − U)(t0, x0, z0) = 0

F1

(
t0, x0, z0, U(t0, x0, z0),

∂U

∂t
(t0, x0, z0),

∂U

∂x
(t0, x0, z0),

∂U

∂z
(t0, x0, z0)

)
≤ 0. (87)

Since X1 − U has a local minimum at (t0, x0, z0),
∂U
∂z (t0, x0, z0) is in ∂−

z X1(t0, x0, z0). By (30)

F2

(
t0, x0, z0, U(t0, x0, z0),

∂U

∂t
(t0, x0, z0),

∂U

∂x
(t0, x0, z0),

∂U

∂z
(t0, x0, z0)

)
≤ 0. (88)

�

B. Proof of Lemma 1

i) For all y1, y2, y3, y4 ∈ R,

max{y1 + y2, y3 + y4} ≤ max{y1, y3}+max{y2, y4}.
(89)

ii) Proof of (36) for V1. Let

Jc(α, τ) := max
s∈[t,T ]

c(s, x(s)) (90)

Jr(α, τ) :=

∫ τ

t

L(s, x(s), α(s))ds+ g(τ, x(τ)). (91)

V1(t, x, θ1z1 + θ2z2)

= inf
α∈A

max
τ∈[t,T ]

max {θ1Jc(α, τ) + θ2Jc(α, τ)

θ1 [Jr(α, τ)− z1] + θ2 [Jr(α, τ)− z2]}
≤ inf

α∈A
max
τ∈[t,T ]

θ1 max {Jc(α, τ), Jr(α, τ)− z1}

+ θ2 max {Jc(α, τ), Jr(α, τ)− z2} . (92)

The second inequality is by (89). For α ∈ A, we use τ∗(α) to
denote a maximizer of the last term in (92). By the triangular
inequality, we simplify (92) to

V1(t, x, θ1z1 + θ2z2)

≤ inf
α∈A

θ1 max {Jc(α, τ), Jr(α, τ∗(α))− z1}

+ inf
α∈A

θ2 max {Jc(α, τ), Jr(α, τ∗(α))− z2}

≤ θ1V1(t, x, z1) + θ2V1(t, x, z2). (93)
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The last inequality holds by the definition of V1 in (10).
iii) We additionally prove that V2 (17) is convex in z-space:

for each (t, x) ∈ [0, T ]× Rn, for all z1, z2 ∈ R and θ ∈ [0, 1]

V2(t, x, θ1z1 + θ2z2) ≤ θ1V2(t, x, z1) + θ2V2(t, x, z2).

Similar to (92)

V2(t, x, θ1z1 + θ2z2)

≤ inf
α∈A

min
τ∈[t,T ]

θ1 max {Jc(α, τ), Jr(α, τ)− z1}

+ θ2 max {Jc(α, τ), Jr(α, τ)− z2} . (94)

Since the last term in (94) is greater than or equal to
θ1V2(t, x, z1) + θ2V2(t, x, z2) by the triangular inequality, we
conclude the proof. �

C. Proof of Lemma 2

i) The proof of (37).
For z̄ ≥ 0, V1(t, x, z + z̄) ≤ V1(t, x, z), and by the distribu-

tive property of the maximum operations

V1(t, x, z + z̄) = inf
α∈A

max
τ∈[t,T ]

max

{
max
s∈[t,T ]

c(s, x(s)) + z̄,

∫ τ

t

L(s, x(s), u(s))ds+ g(τ, x(τ))− z

}
− z̄

≥ V1(t, x, z)− z̄.

Thus, for z̄ ≥ 0

V1(t, x, z)− z̄ ≤ V1(t, x, z + z̄) ≤ V1(t, x, z) (95)

and, by the same derivation, for z̄ ≤ 0

V1(t, x, z) ≤ V1(t, x, z + z̄) ≤ V1(t, x, z)− z̄. (96)

Suppose there exists q > 0 in ∂−
z V1(t, x, z). Then, there exists

ε > 0 such that V1(t, x, z + z̄) ≥ V1(t, x, z) + qz̄ for all z̄ ∈
[−ε, ε]. However, for z̄ ∈ (0, ε)

V1(t, x, z + z̄) > V1(t, x, z). (97)

This contradicts (95).
Suppose there exists q < −1 in ∂−

z V1(t, x, z). Then, there
exists ε > 0 such that V1(t, x, z + z̄) ≥ V1(t, x, z) + qz̄ for all
z̄ ∈ [−ε, ε]. However, for z̄ ∈ (−ε, 0)

V1(t, x, z + z̄) > V1(t, x, z)− z̄. (98)

This contradicts (96). Thus, q ∈ [−1, 0].
ii) The proof of (38).
The convexity of V1(t, x, z) stated in Lemma 1 implies that

∂+
z V1(t, x, z) contains a single superdifferential q if V1(t, x, z)

is locally affine in z, otherwise, ∂+
z V1(t, x, z) is the empty

set. If V1(t, x, z) is locally affine in z, it is also differentiable
in z. As z̄ converges to 0 in (95), we have ∂+

z V1(t, x, z) =
{∂V1

∂z (t, x, z)} ⊂ [−1, 0].
iii) We would like to note that the analogous derivation

concludes that this lemma also holds for V2: ∂−
z V2(t, x, z) ⊂

[−1, 0] for all (t, x, z) ∈ [0, T ]× Rn × R, and if ∂+
z V2(t, x, z)

is not the empty set, then ∂+
z V2(t, x, z) = {∂V2

∂z (t, x, z)} ⊂
[−1, 0]. �

D. Proof of Lemma 3

i) Case 1: q = 0.

H̄(t, x, z, p, 0) = max
a∈A

[−p · f(t, x, a)]

= max{p · b | b = −f(t, x, a), a ∈ A}.
(99)

Since {−f(t, x, a) | a ∈ A} ⊂ co({−f(t, x, a) | a ∈ A})
H̄(t, x, z, p, 0) ≤ H̄W (t, x, z, p, 0). (100)

On the other hand, let b∗ ∈ argmaxb∈co({−f(t,x,a) | a∈A})[p · b].
Since {−f(t, x, a) | a ∈ A} is compact, there exists a finite
number of bi ∈ {−f(t, x, a) | a ∈ A} and θi ∈ [0, 1] such that
b∗ =

∑
i θibi and

∑
i θi = 1. Then

H̄W (t, x, z, p, 0) =
∑
i

θip · bi ≤ max
i

{p · bi}

≤ max
b∈{−f(t,x,a) | a∈A}

[p · b] = H̄(t, x, z, p, 0). (101)

The last inequality holds since all bis are in {−f(t, x, a) | a ∈
A}. By (100) and (101), we have

H̄(t, x, z, p, 0) = H̄W (t, x, z, p, 0). (102)

ii) Case 2: q < 0.

H̄(t, x, z, p, q) = max
a∈A

−p · f(t, x, a) + qL(t, x, a)

= −qH

(
t, x,−p

q

)
.

(103)

SinceH is convex in p for each (t, x) and lower semi-continuous
in p, H∗∗ ≡ H . Thus, we have

H̄W (t, x, z, p, q)

= −q max
b∈co({−f(t,x,a) | a∈A})

[−p

q
· b−H∗(t, x, b)]

= −qH∗∗
(
t, x,−p

q

)
= −qH

(
t, x,−p

q

)
. (104)

By (103) and (104), we conclude

H̄(t, x, z, p, q) = H̄W (t, x, z, p, q) (105)

for all q < 0. �

E. Proof of Lemma 4

This proof generalizes the proof of Lemma 1 [58], which is
for the zero stage cost problem.

i) For b ∈ B(x), b = −f(x, ā) for some ā ∈ A. Then

HTI∗
2 (x, b) = max

p
−p · f(x, ā)−HTI

2 (x, p)

≤ max
p

−p · f(x, ā) + min
a∈A

p · f(x, a) + L(x, a)

< ∞. (106)

The last inequality holds since mina∈A p · f(x, a) + L(x, a) ≤
p · f(x, ā) + L(x, ā) and L is finite for a fixed x.

ii) If b = 0

HTI∗
2 (x, b) = max

p
−HTI

2 (x, p) ≤ 0 < ∞. (107)
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iii) b ∈ co({0} ∪B(x))
There exists a finite set of θi ∈ [0, 1] (

∑
i θi ≤ 1),ai ∈ A such

that b = −∑
i θif(x, ai). Since HTI∗

2 is convex in b

HTI∗
2 (x, b) ≤

∑
i

θiH
TI∗
2 (x, bi) + (1−

∑
i

θi)H
TI∗
2 (x, 0) < ∞

by (106) and (107).
iv) b /∈ co({0} ∪B(x)).
For the two convex sets {b} and co({0} ∪B(x)), by the sep-

arating hyperplane theorem [54], there exists a hyperplane (P :
Rn → R):P (b′) := p′ · b′ + c such thatP (b) > 0butP (b′) < 0
for all b′ ∈ co({0} ∪B(x)). By picking p = dp′

HTI∗
2 (x, b) ≥ sup

d
min

{
dp′ · b,min

a∈A
dp′ · (b+ f(x, a))

+ L(x, a)

}
.

Since p′ · b > 0 and p′ · (b+ f(x, a)) > 0 for all a ∈ A, the
supremum of the right term in the above equation is attained
at d = ∞, thus, HTI∗

2 (x, b) = ∞. �

F. Proof of Lemma 5

i) Case 1: q = 0

H̄TI
2 (x, z, p, 0) = max{0, max

b∈B(x)
p · b} (108)

where B(x) is defined in (55). Since B(x) ⊂ co({0} ∪B(x))

H̄TI
2 (x, z, p, 0) ≤ H̄TI

W (x, z, p, 0). (109)

On the other hand, let b∗ ∈ argmaxb∈co({0}∪B(x)) p · b, then,
there exists a finite number of bi ∈ B(x) and θi ∈ [0, 1] such
that b∗ =

∑
i θibi and

∑
i θi < 1. Thus, we have

H̄TI
W (x, z, p, 0) =

∑
i

θip · bi ≤ max{0,max
i

p · bi}

≤ H̄TI
2 (x, z, p, 0). (110)

Combining (109) and (110), we have

H̄TI
W (x, z, p, 0) = H̄TI

2 (x, z, p, 0). (111)

ii) Case 2: q < 0.

H̄TI
2 (x, z, p, q) = −qmax

{
0, H

(
x,−p

q

)}
(112)

and, by the convexity of HTI
2 in p, HTI∗∗

2 ≡ HTI
2 . Then

H̄TI
W (x, z, p, q) = −qHTI

2

(
x,−p

q

)
. (113)

By combining (112), (113), and (21), we conclude the
proof. �
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