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Risk-Aware Maximum Hands-Off Control Using Worst-Case
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Abstract—With the view of risks, this article deals with the
problems of maximum hands-off control that aims at minimizing
the length of nonzero control input. More specifically, we consider
stochastic systems and seek sparse control inputs that bring the
system state to a ball centered at the origin, such that the expected
value of the states that are further than a given threshold from
the origin is small, thus minimizing the risk that the system state
is outside of the ball. To deal with this problem, we employ the
worst-case conditional value-at-risk under the assumption that the
first two moments of the disturbance distribution are known. In
particular, we consider two kinds of risk-aware maximum hands-off
control problems: one enhances the sparsity within a given risk
threshold, and the other minimizes the risk subject to a sparsity
constraint. We also derive a risk-constrained sparse model predic-
tive control and provide a numerical example that shows the effec-
tiveness of the proposed approach in networked control systems.

Index Terms—Conditional value-at-risk (CVaR), maximum
hands-off control, model predictive control (MPC), networked con-
trol systems, stochastic systems.

I. INTRODUCTION

The maximum hands-off control introduced in [1] aims at minimiz-
ing the length of time during which the control input value is nonzero
while achieving given control objectives. Such a control approach
provides a sparse control input, which is valuable for electric/hybrid
vehicles and electric locomotives because it helps to reduce fuel and/or
electric energy consumption. Maximum hands-off control also has
significant advantages in networked control systems. This is because
real networks are rate-limited and transmitted signals should be com-
pressed to small data to meet the network limitation [2]. In [3], it was
shown that sparse signals can be more effectively compressed than
densely represented signals. Motivated by these various applications,
the maximum hands-off control has been proposed for discrete-time
systems [4], [5], [6], uncertain systems [7], stochastic systems [8], [9],
and infinite-dimensional systems [10]. A good survey of the maximum
hands-off control was given in [11].

This article considers the maximum hands-off control problems for
stochastic systems with the view of risks, or more specifically, tail
risks. For safety and reliability, it is important to consider tail risks
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in the decision-making processes to quantify the risk that has a low
probability of occurring, but if it does occur, it will result in a large
loss. However, in most cases, it is very difficult to obtain the exact
knowledge of uncertainties; the probability distribution of uncertainties
is not always available. This may be because uncertainties come from
many different sources. Even in such cases, moments are relatively easy
to compute. Therefore, we consider the case where the system is subject
to external disturbances whose first and second moments are already
computed. With disturbances, it is not possible to bring the system state
to a specific location and keep it there. Thus, our goal is to minimize
the risk that the system state moves away from a given ball centered at
the origin in the worst case as well as to keep the duration of nonzero
control inputs short.

In order to deal with disturbances that are only known to be con-
tained in a set of probability distributions with specified moments,
we formulate the problems in the form of distributionally robust op-
timization [12], [13], [14]. Namely, we deal with the supremum of the
risk over all possible disturbances in the set. As a risk measure, we
employ the notion of the conditional value-at-risk (CVaR), or more
precisely, the worst-case CVaR. CVaR is defined as the conditional
expectation of losses exceeding a certain threshold, which provides a
convex conservative approximation for a joint chance constraint [13].
The worst-case CVaR is the supremum of CVaR over the set of possible
disturbances. Because the (worst-case) CVaR is a coherent risk mea-
sure [15], [16], [17], [18], it enjoys nice mathematical properties. In
particular, we observe that the problem of maximum hands-off control
using the worst-case CVaR on the squared norm of the states using the
first two moments of the disturbance allows a beautiful and efficient
mathematical formulation of convex optimization if the control input
sparsity is promoted by using �1-norm.

We present the risk-constrained sparsity enhancement finite-horizon
control problem using the �0-norm of the control inputs and worst-case
CVaR, which is followed by the convex optimization problem that
is obtained by relaxing the �0-norm with the �1-norm. The solutions
to those two problems are then compared with the solutions to cases
without disturbances. Another important contribution is to show that
it is not possible for the system states to be in a given ball centered at
the origin regardless of the control input if the ball radius is too small
compared with the disturbance. Motivated by this, we also investigate
the problems of minimizing the risk subject to sparsity constraints
with �0- and �1-norms. Furthermore, we develop a model predictive
control (MPC) [19] that promotes sparsity subject to risk constraints and
demonstrate its effectiveness for the quantized control in the networked
control systems. We choose to use the networked control problem for
the numerical example because although the transmitted signals should
suffer from quantization, packet-dropout, noise, and so on [20], to date,
only a few studies have investigated maximum hands-off control to deal
with such issues.

The rest of this article is organized as follows. After introducing basic
notation, definitions and important results in Section II, Section III pro-
vides the system description along with some preliminary observations.
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Two problems of finite-horizon risk-aware maximum hands-off control,
risk-constrained sparsity enhancement and sparsity-constrained risk
minimization, are discussed in Sections IV and V, respectively. Based
on the results in Section IV, a risk-constrained sparse MPC is developed
in Section VI, which is followed by a numerical example in Section VII.
Finally, Section VIII concludes this article.

II. PRELIMINARIES

A. Notation

The sets of real numbers, real vectors of length n, and real matrices
of size n×m are denoted by R, Rn, and Rn×m, respectively. For
M ∈ Rn×n, M � 0 and M � 0 indicate that M is positive definite
and positive semidefinite, respectively. The set of positive semidefinite
symmetric matrices in Rn×n is denoted by S

n
+. M� denotes the trans-

pose of a real matrix M , M−� denotes the transpose of the inverse
of M , and Tr(M) denotes the trace of M . In denotes the identity
matrix of size n, and the subscript may be dropped when the size is
clear. The Kronecker product of two matrices X and Y is denoted
as X ⊗ Y . For x ∈ R, x+ = max{x, 0}. For a vector v ∈ Rn, ‖v‖0,
‖v‖1, and ‖v‖2 denote the number of nonzero entries of the vector v
(�0-norm), Manhattan norm (�1-norm), and Euclidean norm (�2-norm),
respectively. For a matrix M , ‖M‖2 denotes the maximum singular
value norm. diag[A1, A2, . . ., An] denotes a block diagonal matrix,
whose diagonal blocks are A1, A2,..., An.

B. CVaR

Let μ ∈ Rn be the mean and Σ ∈ Rn×n be the covariance matrix
of the random vector ξ ∈ Rn under the true distribution Pξ (i.e., Pξ is
the probability law of ξ). For simplicity, we drop the subscript ξ and
write P instead of Pξ from now on. Thus, we implicitly assume that
the random vector ξ has finite second-order moments. Let P denote the
set of all probability distributions on Rn that have the same first- and
second-order moments as P . Define the second-order moment matrix
of ξ by

Ω =

[
Σ+ μμ� μ

μ� 1

]
.

Definition II.1 (CVaR [21]): For a given measurable loss function
L : Rn → R, the probability distribution P on Rn and the level ε ∈
(0, 1), the CVaR at ε with respect to P is defined as

P -CVaRε[L(ξ)] = inf
β∈R

{
β +

1

ε
EP [(L(ξ)− β)+]

}
where EP [·] denotes the expectation with respect to P .

The CVaR is the conditional expectation of loss above the (1− ε)-
quantile of the loss function [13] and quantifies the tail risk.

Definition II.2 (Worst-case CVaR [13]): The worst-case CVaR over
P is given by

sup
P∈P

P -CVaRε[L(ξ)] = inf
β∈R

{
β +

1

ε
sup
P∈P

EP [(L(ξ)− β)+]

}
.

The worst-case CVaR is the supremum of CVaR over a given set
of probability distributions. The exchange of the maximization and
minimization is justified by a stochastic saddle point theorem [22]. In
this article, this worst-case CVaR will be used to design control inputs
that minimize the potential outlier states that are outside of a ball.

Now, we are ready to introduce some basic results.
Lemma II.3 (Worst-case CVaR for quadratic function [13], [23]):

Let

L(ξ) = ξ�Aξ + 2b�ξ + c

where A ∈ S
n
+, b ∈ Rn, and c ∈ R. Then,

sup
P∈P

P -CVaRε[L(ξ)] = inf
β

{
β +

1

ε
Tr(ΩM) :

M � 0

M −
[
A b
b� c− β

]
� 0

}
.

Lemma II.4 (Bounds for worst-case CVaR [24]): Supposeμ = 0 and
L(ξ) = ‖A1/2ξ + b′‖22 + c′ with some A ∈ S

n
+, b′ ∈ Rn, and c′ ∈ R,

then

c′ + b′�b′ +
1

ε
(Tr(ΣA)) ≤ sup

P∈P
P -CVaRε[L(ξ)]

≤ c′ +
1

ε

(
Tr(ΣA) + b′�b′

)
.

Remark II.5: Suppose μ = 0. If we only know that the upper bound
Σ̄ of the covariance, i.e., Σ̄ � Σ, then Lemma II.3 holds by replacing
Ω by Ω̄ = diag[Σ̄, 1].

Lemma II.6: Let ξ1 ∈ Rn1 , ξ2 ∈ Rn2 with n1 + n2 = n be two
independent random vectors whose means are zero, and A1 ∈ Rm×n1

A2 ∈ Rm×n2 be constant matrices. Define A = [A1, A2] and ξ =
[ξ�1 , ξ

�
2 ]

�. Then,

sup
P∈P

P -CVaRε[‖Aξ‖22]

= sup
P∈P1

P -CVaRε[‖A1ξ1‖22] + sup
P∈P2

P -CVaRε[‖A2ξ2‖22]

where P , P1, and P2 denote the set of all probability functions on Rn,
Rn1 , and Rn2 that have the same first- and second-order moments as the
probability law of the random vectors ξ, ξ1, and ξ2 have, respectively.

Proof: Let Σ1 and Σ2 be the covariances of ξ1 and ξ2, respectively.
Then, because ξ1 and ξ2 are independent, the covariance of ξ is Σ =
diag[Σ1,Σ2]. From Lemma II.4, it follows that

sup
P∈P

P -CVaRε

[‖Aξ‖22
]

=
1

ε
Tr(ΣA�A)

=
1

ε

(
Tr(Σ1A

�
1A1) + Tr(Σ2A

�
2A2)

)
= sup

P∈P1

P -CVaRε[‖A1ξ1‖22] + sup
P∈P2

P -CVaRε[‖A2ξ2‖22].

�
We can extend this result as follows:
Corollary II.7: Let ξi ∈ Rn, i = 1, . . . , k, bek independent random

vectors whose means are zero under the same true distributions P and
Ai ∈ Rm×n be constant matrices. Let A = [A1, A2, . . ., Ak] and ξ =
[ξ�1 , ξ

�
2 , . . ., ξ

�
k ]

�. Then,

sup
P∈Paug

P -CVaRε[‖Aξ‖22] =
k∑

i=1

sup
P∈P

P -CVaRε[‖Aiξi‖22]

where Paug and P denote the set of all probability functions on Rnk

and Rn that have the same first- and second-order moments as the
probability law of the random vectors ξ and ξi have, respectively.

C. Sparsity

To deal with sparsity, let us define the set of all s-sparse vectors by

Φs = {ū ∈ Rm s.t. ‖ū‖0 ≤ s}.
Definition II.8 (Restricted isometry property [25]): A matrix M is

said to satisfy the restricted isometry property (RIP) of order s if there
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exists δs ∈ (0, 1) such that

(1− δs)‖ū‖22 ≤ ‖Mū‖22 ≤ (1 + δs)‖ū‖22
holds for all ū ∈ Φs.

It is known that no efficient RIP-testing algorithm exists [26].

III. SYSTEM DESCRIPTION

Consider the discrete-time linear time-invariant stochastic system
over a finite time horizon

xt+1 = Axt +But +Ewt, x0 = ζ, t = 0, 1, . . . , T − 1 (1)

where xt ∈ Rn is the system state, ut ∈ Rnu is the input, and
wt ∈ Rnw is the process noise or disturbance, respectively, at dis-
crete time instant t. A ∈ Rn×n, B ∈ Rn×nu , and E ∈ Rn×nw are
time-invariant system matrices, and the pairs (A,B) and (A,E)
are both reachable (i.e., rank[An−1B An−2B · · · B] = n and
rank[An−1E An−2E · · · E] = n). It is assumed that an initial state
x0 = ζ is given and T ≥ n is the given final time of interest. wt are
independent and identically distributed random vectors with the mean
zero and covariance Σw � 0 for all t. The true underlying probability
measure Pw is not exactly known, but it is known that Pw ∈ P1, where

P1=

{
P :EP

[[
wi

1

][
wj

1

]�]
=

[
Σwδij 0

0� 1

]
∀i, j

}
. (2)

Here, δij is the Kronecker delta. The second-order moment matrix of
wt is given by

Ω1 =

[
Σw 0

0� 1

]
. (3)

For t ≥ 1, the state evolution of (1) can be expressed by

xt = Ftζ +Gtūt +Htw̄t (4)

using

ūt = [u�
0 , u

�
1 , . . . , u

�
t−1]

�

w̄t = [w�
0 , w

�
1 , . . . , w

�
t−1]

�

Ft = At

Gt =
[
At−1B At−2B · · · B

]
Ht =

[
At−1E At−2E · · · E

]
. (5)

Thus, the state at the final time T can be written as

xT = Fζ +Gū+Hw̄ (6)

where

ū = ūT , w̄ = w̄T , F = FT , G = GT , H = HT . (7)

With this notation, w̄t ∈ Rnwt is a random vector with the mean zero
and covariance It ⊗ Σw. Thus, the true underlying probability measure
P for w̄t satisfies P ∈ Pt, where

Pt=

{
P :EP

[[
w̄t,i

1

][
w̄t,j

1

]�]
=

[
(It ⊗ Σw)δij 0

0 1

]
∀i, j

}
(8)

and the second-order moment matrix of w̄t is given by

Ωt =

[
It ⊗ Σw 0

0� 1

]
. (9)

We write P for PT and Ω for ΩT .
Before considering the main problems, the rest of this section extends

the results of [4] from the case of a single-input system to the case of a
multiple-input system. Namely, we show the existence of an n-sparse
control input ū that drives the state from the initial state x0 = ζ to

xT = 0 in the case of no disturbance, i.e., E = 0. For this purpose, let
us define an allowable control set by

V0
ζ = {ū ∈ RnuT s.t. Fζ +Gū = 0}. (10)

The following lemma shows that the set V0
ζ ∩ Φn is nonempty.

Lemma III.1 (Existence of allowable sparse control input, cf., [4]):
Consider the system (1) with E = 0. For any ζ, there exists ū ∈ V0

ζ ∩
Φn.

Proof: Let partition the matrix G as

G =
[
G1 G2

]
(11)

where

G1 =
[
AT−1B AT−2B · · · AnB

]
G2 =

[
An−1B An−2B · · · B

]
. (12)

Then, G2 is full rank because (A,B) is reachable. Thus, by applying
QR decomposition to G�

2 , it follows that

G2 = R� [Q�
1 Q�

2

]
(13)

where R ∈ Rn×n is an upper triangular and nonsingular matrix and
[Q�

1 Q�
2 ] ∈ Rn×nnu is an orthogonal matrix with Q1 ∈ Rn×n. Choos-

ing

ū =
[
0�nu(T−n) ũ� 0�n(nu−1)

]�
(14)

where ũ ∈ Rn is to be determined, it follows that

Gū = R�Q�
1 ũ. (15)

Since R is invertible, by choosing

ũ = −Q1R
−�Fζ (16)

it follows that

Gū = −Fζ (17)

and V0
ζ is nonempty. Furthermore,

‖ū‖0 = ‖ũ‖0 ≤ n. (18)

�
From now on, we bring back E.

IV. RISK-CONSTRAINED SPARSE CONTROL

This section considers the problem of promoting the sparsity of the
control input while keeping the risk small that the outlier states go far
away outside of a ball of radius r. More specifically, we deal with the
problems of minimizing the �0- and �1-norms of the control inputs
that satisfy the worst-case CVaR constraint for the system (1). This
problem is to see how much control effort is needed to satisfy the
risk constraint. We also consider the relationship between the set of
allowable control inputs that satisfy the worst-case CVaR constraint
and the set of allowable control inputs without disturbances in (10).

For this problem, we define an allowable control input set by

Ur
ζ =

{
ū ∈ RnuT s.t. sup

P∈P
P -CVaRε[L(w̄)] ≤ r2

}
(19)

where

L(w̄) = ‖xT ‖22 = ‖Fζ +Gū+Hw̄‖22 (20)

with r ≥ 0. If a control input ū belongs to Ur
ζ in (19), then the expected

value above (1− ε)-quantile of ‖xT ‖22 is no more than r2. Since
the worst-case CVaR provides a conservative approximation for the
following distributionally robust chance constraint:

inf
P∈P

P
(
L(w̄) ≤ r2

) ≥ 1− ε (21)

we can also say that any ū ∈ Ur
ζ brings xT within a ball of radius r

centered at the origin with probability no less than 1− ε. Here, note
that Ur

ζ can be empty, and the condition for nonemptiness is given later
in this section.
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Throughout this article, we consider the squared norm of the state
‖ · ‖22 and the squared radius r2, instead of ‖ · ‖2 and r. This squaring
operation allows us tractable problem formulation with the worst-case
CVaR.

The problem of maximizing the sparsity of the control input ū subject
to the worst-case CVaR constraint can be formulated as follows.

Problem IV.1 (Minimization of �0-norm of allowable control input):

min
ū∈Ur

ζ

‖ū‖0 (22)

The solution to Problem IV.1 can be found by solving the following
equivalent optimization problem:

inf
ū,β

‖ū‖0

s.t. β +
1

ε
Tr(ΩM)− r2 + ‖Fζ +Gū‖22 ≤ 0

M � 0

M −
[

H�H H�(Fζ +Gū)

(Fζ +Gū)�H −β

]
� 0. (23)

Here, we used the fact that

L(w̄) = (Fζ +Gū+Hw̄)�(Fζ +Gū+Hw̄)

= w̄�H�Hw̄ + 2(Fζ +Gū)�Hw̄

+ (Fζ +Gū)�(Fζ +Gū) (24)

and Lemma II.3 to observe that Ur
ζ is the set of ū that satisfies

sup
P∈P

P -CVaRε[L(w̄)]

= inf
β

{
β +

1

ε
Tr(ΩM) :

M � 0

M −
[

H�H H�(Fζ +Gū)

(Fζ +Gū)�H −β

]
� 0

}

+ ‖Fζ +Gū‖22
≤ r2. (25)

Problem IV.1 or the optimization problem (23) is difficult to solve
because of the nonconvex �0-norm for the control input. By relaxing
the �0-norm by the �1-norm, we obtain the following problem, from
which we can still expect that the obtained control input is sparse even
if it may not be the sparsest.

Problem IV.2 (Minimization of �1-norm of allowable control input):

min
ū∈Ur

ζ

‖ū‖1 (26)

This time, the solution to Problem IV.2 can be found by solving the
following equivalent convex optimization problem:

inf
ū,v,β

1�v

s.t. β +
1

ε
Tr(ΩM)− r2 + ‖Fζ +Gū‖22 ≤ 0

M � 0

M −
[

H�H H�(Fζ +Gū)

(Fζ +Gū)�H −β

]
� 0

ū ≤ v

−ū ≤ v. (27)

Now, we consider the feasibility of Problems IV.1 and IV.2.
Lemma IV.3 (Existence of allowable control input): The set Ur

ζ is
nonempty if and only if

r2 ≥ 1

ε
Tr((IT ⊗ Σw)H

�H). (28)

Moreover, if (28) is satisfied, then

ū = [0�, (Q1R
−�Fζ)�, 0�]� (29)

is a feasible solution to both optimization problems (22) and (26).
Proof: Suppose (28) does not hold. Then, Lemma II.4 implies ū in

Ur
ζ must satisfy

‖Fζ +Gū‖22 < 0 (30)

which is impossible. Thus Ur
ζ is empty.

On the other hand, if (28) holds, then Lemma II.4 implies that a
sufficient condition forUr

ζ is nonempty is the existence of ū that satisfies

1

ε
‖Fζ +Gū‖22 ≤ d2 (31)

where

d =

√
r2 − 1

ε
Tr((IT ⊗ Σw)H�H). (32)

From Lemma III.1, ‖Fζ +Gū‖2 = 0 is satisfied with an n-sparse
solution (29). �

Thus, the optimization problems (22) and (26) are feasible if and
only if (28) is satisfied.

This result can be seen as an impossibility result. Namely, this shows
that it is impossible for the expected value above (1− ε)-quantile of
‖xT ‖22 to be less than r2 unless the covariance Σw is small enough
compared with r regardless of the control input. This motivates us
the consideration of minimizing the risk as much as possible with the
control input constraint, which we discuss in Section V.

We can design the parameter r for a reasonable control objective
without computing the summation in the right-hand-side of (28) using
the following result.

Lemma IV.4: For any final time T ,

1

ε
Tr((IT ⊗ Σw)H

�H ≤ 1

ε
Tr(P ) (33)

where P � 0 is the solution to the Lyapunov function

APA� − P +EΣwE
� = 0. (34)

Proof: From Lemma II.4 and Corollary II.7,

1

ε
Tr((IT ⊗ Σw)H

�H)

= sup
P∈P

P -CVaRε[‖Hw̄‖22]

=
t−1∑
k=0

sup
P∈P1

P -CVaRε

[∥∥AkEwt−1−k

∥∥2

2

]

=
1

ε

t−1∑
k=0

Tr(AkEΣw(A
kE)�)

=
1

ε
Tr

(
t−1∑
k=0

AkEΣw(A
kE)�

)

≤ 1

ε
Tr

( ∞∑
k=0

AkEΣw(A
kE)�

)
=

1

ε
Tr(P ). (35)

�
This bound is independent of the time horizon T .
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Next, consider the relation between the allowable control set in (10)
and the allowable control set in (19).

Theorem IV.5 (Relationship betweenUr
ζ andV0

ζ ): If (28) is satisfied,
then Ur

ζ ⊇ V0
ζ . Moreover, if (28) is satisfied with equality, then Ur

ζ =
V0
ζ .
Proof: Let v ∈ V0

ζ , then Fζ +Gv = 0. Thus,

sup
P∈P

P -CVaRε[‖Fζ +Gv +Hw̄‖22]

= sup
P∈P

P -CVaRε[‖Hw̄‖22]

=
1

ε
Tr((IT ⊗ Σw)H

�H) ≤ r2. (36)

Hence, v ∈ Ur
ζ .

If (28) is satisfied with equality, then from Lemma II.4, u ∈ Ur
ζ

implies that

sup
P∈P

P -CVaRε[‖Fζ +Gu+Hw̄‖22] ≤ r2

⇒ ‖Fζ +Gu‖22 +
1

ε
Tr((IT ⊗ Σw)H

�H) ≤ r2

⇒ ‖Fζ +Gu‖22 ≤ r2 − 1

ε
Tr((IT ⊗ Σw)H

�H) = 0. (37)

Thus, u ∈ V0
ζ . �

Let us introduce two more closely related problems:
Problem IV.6 (Minimization of �0-norm of allowable control input):

min
ū∈V0

ζ

‖ū‖0. (38)

Problem IV.7 (Minimization of �1-norm of allowable control input):

min
ū∈V0

ζ

‖ū‖1. (39)

Those problems provide control inputs that bring the state to the
origin at the final time T if there is no disturbance. From Theorem IV.5,
the optimal values of Problems IV.6 and IV.7 provide upper bounds on
the optimal values of Problems IV.1 and IV.2. If the disturbance and
radius satisfy (28) with equality, then the same control input which
brings the state to the origin assuming no disturbance, achieves the
worst-case CVaR objective supP∈P P -CVaRε[‖xT ‖22] ≤ r2 subject to
the disturbance.

Problem IV.6 is in the form of the basis pursuit problem in signal
processing. Solutions to these two problems are discussed in [4] for
the single-input case, and the following result remains the same for the
multi-input case.

Lemma IV.8 ([4], [25]): Assume that the pair (A,B) is reachable
and E = 0. Let ū0 and ū1 be the solutions to Problems IV.6 and IV.7.
If the matrix G satisfies the RIP of order 2s with δ2s <

√
2− 1 and ū0

is unique and s-sparse, then ū0 = ū1.
We go back to the original problem. The quality of �1-norm relax-

ation can be assessed by the following.
Theorem IV.9 (cf., Lemma IV.8): Let ū0 and ū1 be the solutions to

Problems IV.1 and IV.2, respectively. If the matrix G satisfies the RIP
of order 2s with δ2s <

√
2− 1 and ū0 is unique and s-sparse, then

‖ū0 − ū1‖2 ≤ C1d (40)

where d is defined in (32) and

C1 =
4
√
1 + δ2s

1− (1 +
√
2)δ2s

. (41)

Furthermore, when d = 0, ū0 = ū1.
Proof: From Lemma II.4, the condition

sup
P∈P

P -CVaRε[L(w̄)] ≤ r2 (42)

Fig. 1. Relationship between the four problems. Recall Ur
ζ = {ū ∈

RnuT s.t. supP∈P P -CVaRε[L(w̄)] ≤ r2} and V0
ζ = {ū ∈ RnuT s.t.

Fζ +Gū = 0}.

guarantees

‖Fζ +Gū‖2 ≤ d. (43)

On the other hand, by [25, Th. 1.2],

‖ū0 − ū1‖2 ≤ C0

√
s−1 min

ūs∈Φs

‖ū0 − ūs‖1 + C1d (44)

where

C0 = 2
1− (1−√

2)δ2s

1− (1 +
√
2)δ2s

. (45)

Since ū0 is s-sparse (i.e., ū0 ∈ Ψs), ‖ū0 − ūs‖1 = 0with ūs = ū0 and

‖ū0 − ū1‖2 ≤ C1d. (46)

�
The four problems in Section IV are closely related as summarized

in Fig. 1.

V. SPARSITY-CONSTRAINED RISK MINIMIZATION

This section considers the problem of minimizing the risk subject to
sparsity constraints for the system (1). More specifically, we deal with
the problem of minimizing the worst-case CVaR subject to �0-norm
constraint and �1-norm constraint. This problem is closely related to
the problem in the previous section. Such a problem appears when one
needs to check the control performance subject to a strict requirement
on the sparsity of the control inputs.

Problem V.1 (Minimization of risk subject to sparsity constraints):

min
ū

sup
P∈P

P -CVaRε[L(w̄)]

s.t. ‖ū‖0 ≤ s0 (47)

where s0 is a given design requirement and as before,

L(w̄) = ‖Fζ +Gū+Hw̄‖22. (48)

Roughly speaking, this problem is to bring the state xT as close as
possible to the origin, using a control input that satisfies the sparsity
constraint ‖ū‖0 ≤ s0.

The solution to Problem V.1 is the solution to the following equiva-
lent optimization problem:

inf
ū,β

β +
1

ε
Tr(ΩM) + ‖Fζ +Gū‖22

s.t. M � 0

M −
[

H�H H�(Fζ +Gū)

(Fζ +Gū)�H −β

]
� 0

‖ū‖0 ≤ s0. (49)
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Lemma V.2: Consider Problem V.1 with s0 ≥ n. Then, ū in (29)
satisfies the sparsity constraint in (47) and provides the optimal value

1

ε
Tr((IT ⊗ Σw)H

�H). (50)

Proof: Follows from Lemma II.4. �
In the general case of s0 < n, solving Problem V.1 is difficult due

to the nonconvex constraint for sparsity. Now consider the convex
relaxation of Problem V.1.

Problem V.3 (Minimization of risk subject to �1-norm constraint):

min
ū

sup
P∈P

P -CVaRε[L(w̄)]

s.t. ‖ū‖1 ≤ s1

(51)

where s1 is a given design requirement.
The solution to Problem V.3 is the solution to the following convex

optimization problem:

inf
ū,β

β +
1

ε
Tr(ΩM) + ‖Fζ +Gū‖22

s.t. M � 0

M −
[

H�H H�(Fζ +Gū)
(Fζ +Gū)�H −β

]
� 0

1�v ≤ s1

ū ≤ v

−ū ≤ v. (52)

From Lemma II.4, we have the following:
1) supP∈P P -CVaRε[L(w̄)] → (50) as ‖Fζ +Gū‖2 → 0;
2) supP∈P P -CVaRε[L(w̄)] ≥ (50).

These motivate us to consider minimizing ‖Fζ +Gū‖2.
Problem V.4:

min
ū

‖Fζ +Gū‖2

s.t. ‖ū‖0 ≤ s0. (53)

Problem V.5:

min
ū

‖Fζ +Gū‖2

s.t. ‖ū‖1 ≤ s1. (54)

Problem V.4 is in the form of matching pursuit [27] in signal
processing and Problem V.5 is its relaxation.

As stated in Lemma V.2, if s0 ≥ n, then there exists ū such that
‖Fζ +Gū‖2 = 0. Thus, the optimal solution to Problem V.4 is also
zero with ū in (29).

VI. RISK-CONSTRAINED SPARSE MPC

In this section, we develop a sparse MPC that brings the state inside
the ball of radius r at the specific time instance T̂ and keeps it inside
the ball afterward with the view of risk. The approach is based on
the finite-horizon �1-optimal control subject to the risk constraint in
Problem IV.2 in Section IV.

Definition VI.1 (Risk-constrained sparse MPC): Consider the sys-
tem (1). Recall that n is the dimension of the state vector xt. Let the
time horizon p ≥ n and the target time instance T̂ ≥ n. Without loss of
generality, it is assumed p ≥ T̂ . Choose the radius r of the target ball
that satisfies the condition

1

ε
Tr((Ip ⊗ Σw)H

�
p Hp) ≤ r2. (55)

At every time instance t, the state xt is observed. Using this state xt,
find a sparse control input ût ∈ Rpnu for the next p time instances

by solving the finite-horizon �1-optimal control problem subject to the
following (possibly soft) constraints:

sup
P∈Pk

P -CVaRε[‖xk|t‖22] ≤ r2 for all k ∈ [k0, p] (56)

where k0 = max{1, T̂ − t}. Here,xk|t is the state at the time k + t that
is predicted at time t using (1) with the initial condition ζ = xt = x0|t.
Once the �1-optimal control vector ût is found, then apply the control
input ut defined by

ut = [Inu 0 · · · 0]ût ∈ Rnu . (57)

Note that, under the condition (55), for any single k ∈ [n, p], the
existence of control input is guaranteed such that the state at time k + t
predicted at time t satisfies the constraint

sup
P∈Pk

P -CVaRε[‖xk|t‖22] ≤ r2. (58)

However, this does not mean that there exists a control input ût that
satisfies all the constraints in (56) at the same time. We choose to force
this constraint to be satisfied only at the end of the prediction horizon
and relax for other time instances. Then, the �1-optimal control vector

ût =

⎡
⎢⎢⎢⎣

û0|t
û1|t

...
ûp−1|t

⎤
⎥⎥⎥⎦ (59)

is the optimal solution to the following problem.
Problem VI.2 (Minimization of �1-norm for MPC):

min
û∈Rpnu

‖û‖1 + γc

s.t. sup
P∈Pk

P -CVaRε[‖xk|t‖22]− r2 ≤ c for all k ∈ [k0, p− 1]

sup
P∈Pp

P -CVaRε[‖xp|t‖22]− r2 ≤ 0

c ≥ 0 (60)

where k0 = max{1, T̂ − t} and γ > 0 is a weight.
This minimizes the worst-case violation of the constraint (56) during

the next p− 1 time instances while satisfying the constraint at the end
of the prediction horizon. This can be solved using the following convex
optimization problem:

inf
û,v,βk

1�v + γc

s.t. βk+
1

ε
Tr(ΩpMk)−r2+‖Fkxt+Ḡkû‖22≤c for all k ∈ [k0, p−1]

βk +
1

ε
Tr(ΩpMk)− r2 + ‖Fkxt + Ḡkû‖22 ≤ 0 for k = p

Mk � 0

Mk −
[

H̄�
k H̄k H̄�

k (Fkxt + Ḡkû)
(Fkxt + Ḡkû)

�H̄k −βk

]
� 0

for all k ∈ [k0, p]

c ≥ 0

û ≤ v

−û ≤ v (61)

where

k0 = max{1, T̂ − t}
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Ḡk =

⎧⎪⎨
⎪⎩
Gp

[
0 0

Iknu 0

]
∈ Rn×pnu , if k < p

Gp ∈ Rn×pnu , if k = p

H̄k =

⎧⎪⎨
⎪⎩
Hp

[
0 0

Iknw 0

]
∈ Rn×pnw , if k < p

Hp ∈ Rn×pnw , if k = p.

(62)

VII. NUMERICAL EXAMPLE

This section provides a numerical example to illustrate the proposed
approach. For this purpose, we design a risk-constrained sparse MPC
discussed in Section VI for a quantized control for the use of networked
control systems.

We consider a stable linear plant model

xt+1 = Axt +But, x0 =
[
2 2 2

]�
(63)

with

A =

⎡
⎢⎣
0.5076 −0.2292 −0.1474

0.2947 0.9497 −0.0327

0.0164 0.0982 0.9989

⎤
⎥⎦ , B =

⎡
⎢⎣
0.5895

0.1310

0.0046

⎤
⎥⎦ . (64)

This model is obtained by the zero-order-hold discretization [28]
of a continuous-time system 10/(s+ 1)3 with sampling period
h = 0.2.

For this system, we introduce a uniform quantizer for the control
input ut:

Q(ut) = Q(ut) = Δ

⌊
ut

Δ
+

1

2

⌋
(65)

where �·� denotes the floor function and Δ > 0 is the quantization
step size. Let wt be the stochastic quantization error at time t, then the
quantized control input Q(ut) can be expressed as

Q(ut) = ut + wt. (66)

Thus, our plant model becomes

xt+1 = Axt +But +Bwt (67)

which is in the form of (1).
As mentioned in Section I, the sparse quantized control input is

desired for a networked control system. However, the direct sparsity
enhancement for Q(ut) is nontrivial. This motivates us to enhance the
sparsity of ut instead of Q(ut) because if ut = 0, then Q(ut) = 0. In
other words, the sparsity of ut guarantees the sparsity of Q(ut). Hence,
we apply the proposed risk-constrained sparse MPC to the system (67).

For the simulation, the value of ε in the worst-case CVaR is taken
as ε = 0.5 and the quantizer’s step size is set to Δ = 5. It is assumed
that the quantization error is uniformly distributed over (−Δ/2,Δ/2).
Then, the mean and variance of the noisewt ∈ R areμw = 0 andΣw =
Δ2/12 = 2.0833. The time horizon and ball radius are set to p = 5 and
r = 5.4308, respectively. These parameters satisfy the inequality (28)
by

r2 = 29.4939 ≥ 1

ε
Tr((Ip ⊗ Σw)H

�
p Hp) = 19.6626. (68)

Here, we would like to note that the value of r = 5.4308 was chosen
only slightly larger than the step size of quantization Δ = 5. We can
also see that the inequality (28) for this case can be expressed as

r ≥ Δ

√
Tr(H�

p Hp)

12ε
≈ 0.3531Δ√

ε
. (69)

This means that the conditional expectation of ‖xp‖2 above the 50%-
quantile of ‖xp‖2 (i.e., ε = 0.5) is about half of the quantizer’s step

Fig. 2. Quantized control Q(ut) by MPC for a sample run: proposed
risk-constrained sparse control (solid) and nominal control (dashed).

Fig. 3. Euclidean norm of xt, t = 0, 1, 2, . . . , for a sample run:
proposed risk-constrained sparse control (solid) and nominal control
(dashed).

size, which seems reasonable. The weight and target time instance are
set to γ = 1 and T̂ = 4, respectively.

In Figs. 2 and 3, the proposed risk-constrained sparse MPC is
compared with the maximum hands-off MPC designed for the nominal
system using (39) [4]. Note that the latter controller design does not
take into account the control input quantization, but the control input is
quantized before it is applied to the system. Fig. 2 shows the resulting
quantized control inputs. We can easily see that the proposed MPC
provides a much sparser control input than the nominal MPC does,
as it takes into account the effect of quantization errors in the design.
In particular, the nominal MPC shows a steady oscillation due to the
quantization.

The control performance measured by the Euclidean norm
‖xt‖2, t = 0, 1, 2, . . . , is shown in Fig. 3. The performance of
the proposed MPC is obviously better than that of the nominal
MPC.

In summary, the proposed risk-constrained MPC successfully pro-
vided a sparse quantized control input while the nominal MPC failed
to produce a sparse control input.
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VIII. CONCLUSION

In this study, we considered risk-aware maximum hands-off con-
trol for discrete-time linear time-invariant stochastic systems. First,
we obtained sparse control inputs that satisfy the risk constraint for
finite-horizon control problems using �0 and �1 optimizations and
investigated the relationship between those two sparse control inputs.
We also obtained control inputs that minimize the risk while satisfying
the sparsity constraint given in terms of the �0- and �1-norms of the
control inputs. Then, by extending the result of the risk-constrained
sparse control, we developed a risk-constrained sparse MPC. Moreover,
we applied the proposed risk-constrained sparse MPC to the networked
control problem and demonstrated that a successful sparse control input
can be obtained subject to risk constraint.

In future work, we can extend the obtained risk-aware results to
problems for other types of maximum hands-off control of linear
systems. More generally, the obtained risk-aware results are useful for
other linear control problems where we want to control the outliers’
behaviors on average. This includes the problem of multiagent systems
where we want to design a controller so that the behaviors of a group
of poor agents are not too away from others.
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