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Abstract—In this article, we propose a novel computational
method for solving nonlinear optimal control problems. The
method is based on the use of Fourier–Hermite series for approx-
imating the action-value function arising in dynamic programming
instead of the conventional Taylor-series expansion used in dif-
ferential dynamic programming. The coefficients of the Fourier–
Hermite series can be numerically computed by using sigma-point
methods, which leads to a novel class of sigma-point-based dy-
namic programming methods. We also prove the quadratic con-
vergence of the method and experimentally test its performance
against other methods.

Index Terms—Approximate dynamic programming, differential
dynamic programming, Fourier–Hermite series, sigma-point dy-
namic programming, trajectory optimization.

I. INTRODUCTION

Trajectory optimization in nonlinear systems is an active research
area in optimal control and reinforcement learning [1], [2], [3]. The aim
is to find a state-control sequence that globally or locally minimizes a
given performance index such as a cost or a reward function. Appli-
cations include trajectory planning in autonomous vehicles, robotics,
industrial automation, and gaming [4], [5], [6], [7], [8], [9].

A commonly used approach for solving trajectory optimization
problems is dynamic programming (DP) [2], [10], which is based on
solving the value function from the Bellman’s equation [10] by using
suitable numerical methods. One such particular approach is differential
dynamic programming (DDP) [11], [12], [13], where a locally optimal
solution is reached iteratively by backward and forward passes. The
method is based on the second-order Taylor series expansion of the
action-value function that appears in the Bellman’s equation of dynamic
programming. The convergence of DDP has also been proven under
suitable differentiability conditions [14], [15], [16].

Although DDP has turned out to be useful in many applications,
the second-order Taylor series expansion used in this method is com-
putationally expensive due to the higher order derivatives appearing
in the expansion. Therefore, researchers have opted to discard the
second-order derivatives, which has led to methods such as the it-
erative linear quadratic regulator (iLQR) [17]. Furthermore, Taylor
series expansion is also an inherently local approximation as it is
based on derivatives evaluated at a single point and it induces strong
differentiability assumptions on the dynamic and cost functions [14],
[15], [16]. To address these limitations, the Taylor series expansion can
also be replaced with other approximations. Examples of such methods
are the unscented DP [18], sparse Gauss–Hermite quadrature DDP [19],
and sampled DDP [20].

Manuscript received 25 November 2022; accepted 27 December
2022. Date of publication 4 January 2023; date of current version 27
September 2023. Recommended by Associate Editor S. S. Saab. (Cor-
responding author: Syeda Sakira Hassan.)

The authors are with the Department of Electrical Engineering
and Automation, Aalto University, 02150 Espoo, Finland (e-mail:
syeda.s.hassan@aalto.fi; simo.sarkka@aalto.fi).

Digital Object Identifier 10.1109/TAC.2023.3234236

In particular, unscented DP [18] uses an unscented transform-based
method, inspired by the unscented Kalman filter [21], [22], to esti-
mate the derivatives using a sigma-point scheme. This allows the DP
algorithm to be derivative-free while leveraging information beyond a
single point of evaluation and without compromising the performance
of the classical DDP algorithm. Additionally, cubature approximations
of stochastic continuous-time DDP are considered in [23] and prob-
abilistic approximations based on Gaussian processes are considered
in [24].

The contribution of this article is to propose a method based on
Fourier–Hermite series (cf. [25]) to approximate the action-value func-
tion. The resulting Fourier–Hermite dynamic programming (FHDP)
algorithm can be implemented using sigma-point methods in a com-
pletely derivative-free manner, which leads to a new class of sigma-
point dynamic programming (SPDP) methods. We also prove the local
second-order convergence of the method and experimentally evaluate
its performance against classical DDP and unscented DP. Unlike un-
scented DP or sparse Gauss–Hermite DDP, the method is guaranteed
to converge in well-defined conditions, and it can also explicitly handle
nonquadratic costs. Moreover, unscented DP requires the propagation
of estimates in backward direction along the trajectory, which is not
needed in our method.

The article is structured as follows. In Section II, we revisit the DDP
in discrete-time domain. In Section III, we first discuss Fourier–Hermite
series and then use the Fourier–Hermite expansion to approximate the
action-value function, leading to the proposed method. In Section IV,
we analyze the computational complexity and prove the local conver-
gence of the method, and in Section V we experimentally evaluate its
performance. Concluding remarks are given in Section VI.

II. DIFFERENTIAL DYNAMIC PROGRAMMING

In this section, we define the control problem to be solved and review
the differential dynamic programming (DDP) algorithm.

A. Problem Formulation

Consider a nonlinear discrete-time deterministic optimal control
problem [2] with cost

J(u1:T−1;x1) = �T (xT ) +
T−1∑
k=1

�k(xk, uk) (1)

with given initial state x1, subject to the dynamics of the form

xk+1 = fk(xk, uk), k = 1, . . . , T − 1. (2)

Here, xk ∈ Rn is the state variable, uk ∈ Rs is the control variable at
step k, and u1:T−1 = {u1, . . . , uT−1} is a sequence of controls over
the horizon T . For a given initial state x1, the total cost of the control
sequence u1:T−1 is given by (1). Furthermore, �T (xT ) denotes the
terminal cost of the state xT and the �k(xk, uk) is the cost incurred at
time step k.
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The aim is to find a control sequence u∗1:T−1 that minimizes the cost
defined by (1)

u∗1:T−1 = arg min
u1:T−1

J(u1:T−1; x1). (3)

This solution can be expressed in terms of the optimal cost-to-go or
value function Vk(xk) that gives the minimum total cost accumulated
between time step k and T starting from the state xk. As shown by
Bellman [10], we can compute the value function using backward
recursion as follows:

Vk(xk) = min
uk

{�k(xk, uk) + Vk+1(fk(xk, uk))} (4)

where the value function at the terminal time T is VT (xT ) = �T (xT ).
Because (4) becomes computationally infeasible with increasing

state-dimensionality [26], one common approach is to approximate the
action-value function appearing on the right-hand side of (4)

Qk(xk, uk) = �k(xk, uk) + Vk+1(fk(xk, uk)) (5)

using a tractable approximation. In particular, DDP, which is discussed
below, uses a second-order Taylor series expansion for this purpose.

B. Differential Dynamic Programming

The classical DDP [11], [12], [13] approach uses a second-order
Taylor series expansion of the action-value functionQk about a nominal
trajectory. Given a nominal trajectory of states and controls (x̂k, ûk), at
step k, we can approximate Qk around this trajectory using a second-
order Taylor series expansion

Qk(xk, uk) ≈ Q0
k +Q�x δxk +Q�u δuk

+
1

2

[
δx�k δu�k

] [Qxx Qxu

Qux Quu

][
δxk

δuk

]
(6)

where δxk = xk − x̂k and δuk = uk − ûk. Let us now assume a
quadratic approximation for the value function of the form

Vk+1(fk(xk, uk)) ≈ V 0
k+1 − v�k+1 δxk+1 +

1

2
δx�k+1 Sk+1 δxk+1.

(7)
If we now form a second-order Taylor series expansion of (5), we get
the following coefficients for (6):

Q0
k ≈ �k(x̂k, ûk) + V 0

k+1 − v�k+1 (fk(x̂k, ûk)− x̂k+1)

+
1

2
(fk(x̂k, ûk)− x̂k+1)

� Sk+1 (fk(x̂k, ûk)− x̂k+1)

Qx = Lx + F�x [−vk+1 + Sk+1 (fk(x̂k, ûk)− x̂k+1)]

Qu = Lu + F�u [−vk+1 + Sk+1 (fk(x̂k, ûk)− x̂k+1)]

Qxx = Lxx + F�x Sk+1 Fx

+
∑
m

Fm
xx[−vk+1 + Sk+1 (fk(x̂k, ûk)− x̂k+1)]m

Qxu = Lxu + F�x Sk+1 Fu

+
∑
m

Fm
xu[−vk+1 + Sk+1 (fk(x̂k, ûk)− x̂k+1)]m

Quu = Luu + F�u Sk+1 Fu

+
∑
m

Fm
uu[−vk+1 + Sk+1 (fk(x̂k, ûk)− x̂k+1)]m. (8)

Above we have denoted the gradients of �k with respect to x and u as
Lx and Lu. The second-order derivative matrices of �k are denoted as
Lxx, Lxu, and Luu. The Jacobians of fk with respect to x and u are
denoted as Fx and Fu. In addition, we use Fm

xx, Fm
xu, and Fm

uu to denote

Algorithm 1: Differential Dynamic Programming.

Input: Initial state x̂1, nominal control ûk for k = 1, . . . , T − 1,
and nominal states x̂k for k = 2, . . . , T

Output: Updated ûk and x̂k

1: Backward pass:
2: Compute terminal cost, �T (x̂T ) and its derivatives Lx(x̂T )

and Lxx(x̂T )
3: V 0

T ← �T (x̂T ), vT ← −Lx(x̂T ), and ST ← Lxx(x̂T )
4: for k = T − 1 to 1 do
5: Evaluate the partial derivatives Lx, Lu, Lxx, Luu, Lxu of

�k and Fx, Fu, Fxx, Fuu, Fxu of fk at (x̂k, ûk).
6: Compute the coefficients of Qk(xk, uk) using (8).
7: Compute d and K using (10), and vk and Sk using (12).
8: end for
9: Forward pass:

10: Start from x̂1

11: for k = 1 to T − 1 do
12: ûk ← uk + δuk, where δuk is given by (11).
13: x̂k+1 ← fk(x̂k, ûk)
14: end for
15: Repeat from Step 1 until convergence.

the second-order derivative matrices of the mth component of fk. All
the derivatives are evaluated at (x̂k, ûk).

Minimizing (6) with respect to δuk, we arrive at the following
correction to the control trajectory:

δuk = −Q−1uu Qu −Q−1uu Qux δxk. (9)

Let us define

d = −Q−1uuQu, K = Q−1uuQux (10)

then we can rewrite (9) as follows:

δuk = d−Kδxk. (11)

By substituting δuk to (6), we get the coefficients for the quadratic
approximation of the value function at step k:

V 0
k = Q0

k +
1

2
d�Qu

vk = −Qx −K�Quu d

Sk = Qxx −K�Quu K. (12)

This procedure is then continued backwards for k − 1, k − 2, . . . , 1.
That is, the backward pass of DDP starts from the terminal time step

k = T from a quadratic approximation to �T formed with a second-
order Taylor series expansion centered at x̂T . Then, we successively
perform the aforementioned computations until k = 1. The backward
pass is followed by a forward pass, where the system is simulated
forward in time under the optimal control law (11) to generate a
new trajectory. The backward and forward passes are iterated until
convergence. The pseudocode for the classical DDP method is given in
Algorithm 1.

C. Regularization of the Optimization and Line Search

As with all nonlinear optimization, proper care must be taken to
ensure a good convergence behavior of the method. The DDP algorithm
involves the matrix inversion ofQuu in (9), which may cause numerical
instability. A regularization scheme was, therefore, proposed by [12],
[16], [27] to ensure invertibility of Quu in (9) by replacing it with

Q̃uu = Quu + βI (13)
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where β > 0 is a small positive constant. Furthermore, when using this
regularization,Tassa [27] suggests that the following modifications to
(12) are recommended for numerical stability:

V 0
k = Q0

k +
1

2
d̃�Qu +

1

2
d̃�Quud̃

vk = −Qx + K̃�Quu d̃+ K̃�Qu −Q�ux d̃

Sk = Qxx + K̃�Quu K̃ − K̃�Qux −Q�ux K̃ (14)

where K̃ = Q̃−1uuQux and d̃ = − Q̃−1uuQu.
The value β can be adapted by using a Levenberg–Marquardt type

of adaptation procedure, that is, if the cost of the new trajectory is less
than the current one, then the value of β is decreased by dividing it with
a constant factor ν > 1, otherwise the value increased by multiplying
with ν and the new trajectory is discarded. Note that if β = 0, then (14)
reduces to (12). In [28], Tassa et al. used a quadratic modification
schedule to choose β at each iteration.

The work in [15], [27], and [29] also suggested to use an additional
backtracking line search scheme to improve the convergence. A param-
eter 0 < ε ≤ 1 is introduced in the update statement of the control in
the forward pass routine as follows:

δûk = ε d̃− K̃ δxk, ûk = uk + δûk. (15)

We start by setting ε = 1 and update control using (15) and then generate
a new state sequence by forward simulation, that is, x̂k+1 = f(x̂k, ûk).
If the decrease in the cost function is not below a given threshold, the
value of ε is decreased (e.g., by halving it as we did in our case), and
we restart the forward pass again.

D. Implementation of DDP Using Automatic Differentiation
(AD)

During the backward pass in DDP, we need to evaluate the derivatives
on the right-hand side of (8) at (x̂k, ûk) to approximate Qk. Classi-
cally, these derivatives have been derived by hand or via symbolic or
numerical differentiation methods, but they can also be automatically
computed by using AD [30]. AD is based on transforming the function
to be evaluated into a sequence of operations that compute the exact
derivatives of the function along with its value. AD is readily available in
several programming platforms such as TensorFlow [31], PyTorch [32],
and MATLAB [33].

When using AD, there are two alternative ways to evaluate Qk of the
DDP algorithm at the nominal trajectory (x̂k, ûk). The first approach
evaluates the derivatives of �k and fk on the right-hand side of (8) at
(x̂k, ûk) using AD. Once we have all the derivatives, we can solve
for Qk using (8). The other alternative is to use AD directly to Qk

and evaluate its derivatives at (x̂k, ûk). In this article, we implement
DDP with AD by applying the former approach due to its more direct
connection with the classical DDP.

III. FOURIER–HERMITE DYNAMIC PROGRAMMING

In this section, we present the proposed method which is based on
using the Fourier–Hermite series approximation instead of the Taylor
series approximation for the action-value function.

A. Fourier–Hermite Series

Fourier–Hermite series is a series expansion of a function using
Hermite polynomial basis of a Hilbert space [34]. The mth order
univariate Hermite polynomials can be computed as follows:

Hm(x) = (−1)m exp (x2/2)
dm

dxm
exp (−x2/2), m = 0, 1, . . . .

(16)

The first few (m = {0, 1, 2}) Hermite polynomials are H0(x) = 1,
H1(x) = x, H2(x) = x2 − 1, and for m ≥ 3 polynomials can be
found using the recursion Hm+1(x) = xHm(x)−mHm−1(x).

A multivariate Hermite polynomial with multiindex I =
{i1, . . . , in} for n-dimensional vector x can be written as

HI(x) =
n∏

m=1

Him(xm) (17)

where Him(xm) are univariate Hermite polynomials. Let us define the
inner product of two functions f and g as

〈f, g〉 =
∫

Rn

f(x) g(x)N (x | 0, I) dx (18)

and a Hilbert space H consisting of functions satisfying ‖g‖2 =
〈g, g〉 <∞. Then, the Hermite polynomials are orthogonal in the sense

〈HI ,HJ 〉 =
∫

HI(x)HJ (x)N (x | 0, I) dx =

{
I!, if I = J
0, otherwise.

(19)

Here, I! = i1! i2! · · · in!, J = {j1, j2, . . . , jn} and I = J when
ik = jk for all elements in I,J . Now, we can define the Fourier–
Hermite expansion of a function g(x) as follows.

Definition 1: For any g ∈ H, the Fourier–Hermite expansion of g
with respect to a unit Gaussian distribution N (0, I) is given by

g(x) =
∞∑

k=0

∑
|I|=k

1

I! cI HI(x) (20)

where HI is a multivariate Hermite polynomial and cI are the series
coefficients given by the inner product cI = 〈g,HI〉.

The representation in (20) is useful if we want to compute expecta-
tions of a nonlinear function over a unit Gaussian distribution. It turns
out that the expectation of the function can be simply extracted from
the zeroth order coefficient c0 of the Fourier–Hermite series and the
higher order coefficients are equal to the expectations of the derivatives
of the function g(x) [25]. In this article, we are particularly interested
in the second-order Fourier–Hermite series expansion of g(x), which
can be written as

g(x) ≈
2∑

k=0

∑
|I|=k

1

I! cIHI(x) = E[g(x)] + E[g(x)H1(x)]
�H1(x)

+
1

2
tr {E [g(x)H2(x)]H2(x)} . (21)

In (21), the multivariate polynomials Hi(x) have been expressed as
vectors and matrices as follows (cf. [25]):

H0(x) = 1, H1(x) = x, H2(x) = xx� − I. (22)

We can also generalize the expansion to a more general Gaussian
distribution N (μ,Σ) by rewriting the second order Fourier–Hermite
expansion as

g(Λx+ μ) ≈ E[g(Λx+ μ)] + E[g(Λx+ μ)H1(x)]
�H1(x)

+
1

2
tr {E [g(Λx+ μ)H2(x)]H2(x)} . (23)

Above, we have put Σ = ΛΛ�. If we now let y = Λx+ μ, then (23)
becomes

g(y) ≈ E [g(y)] + E [g(y)H1 (Λ
−1 (y − μ))]�H1 (Λ

−1 (y − μ))

+
1

2
tr
{

E [g(y)H2 (Λ
−1 (y − μ))]H2 (Λ

−1 (y − μ))
}
(24)

where the expectations are over y ∼ N (μ,Σ). Now, if we substitute
the multivariate Hermite polynomials from (22) to (24), we get

g(y) ≈ E[g(y)] + E[g(y)H1(Λ
−1(y − μ))]�(Λ−1(y − μ))
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+
1

2
tr
{

E [g(y)H2 (Λ
−1 (y − μ))]

× (Λ−1(y − μ) (y − μ)� Λ−� − I)
}
. (25)

Let us denote

aG = E [g(y)]

bG = E [g(y)H1 (Λ
−1 (y − μ))]

CG = E [g(y)H2 (Λ
−1 (y − μ))]. (26)

Then, (25) can be rewritten as

g(y) ≈ aG − 1

2
tr {CG}+ b�G (Λ−1 (y − μ))

+
1

2
(y − μ)� [ΛC−1G Λ�]−1 (y − μ). (27)

Now, we are ready to apply this approximation to the action-value
function.

B. Fourier–Hermite Approximation of Action-Value Function

Consider the approximation of the action-value function Qk defined
in (5). Furthermore, assume that we have a quadratic approximation
to the value function at step k + 1 of the form (7). Instead of using a
Taylor series approximation to get (6) as in (8), we will now form the
approximation with Fourier–Hermite series. Assume that our nominal
trajectory for k = 1, . . . , T − 1 consists of mean μk = [x̂k, ûk] and
the joint covariance Σk = Λk Λ

�
k for the Gaussian distribution of the

state-control pair (xk, uk).1 Further assume that at the terminal step T
the nominal trajectory consists of x̂T and ΣT . If we let δxk = xk − x̂k

and δuk = uk − ûk, then the Fourier–Hermite approximation for Qk

can be written as

Qk(xk, uk) ≈ aQ − 1

2
tr{CQ}+ b�Q Λ−1k

[
δxk

δuk

]

+
1

2

[
δx�k δu�k

] [
Λk C

−1
Q Λk

]−1 [δxk

δuk

]
(28)

where

aQ = E [Qk(xk, uk)] ,

bQ = E
[
Qk(xk, uk)H1

(
Λ−1k

[
δxk, δuk

])]
CQ = E

[
Qk(xk, uk)H2

(
Λ−1k

[
δxk, δuk

])]
(29)

with the expectations taken over the joint Gaussian distribution for
(xk, uk). The expectations can be numerically computed, for example,
using numerical integration methods such as sigma-point methods [22].
By matching the terms in (6) and (28), we now notice that this approx-
imation has the same form as DDP with the correspondences

Q0
k = aQ − 1

2
tr{CQ}[

Q�x Q�u
]
= b�Q Λ−1k[

Qxx Qxu

Qux Quu

]
=

[
Λk C

−1
Q Λk

]−1
. (30)

1With a slight abuse of the notation [xk, uk] used here to represent a column

vector and is equivalent to

[
xk

uk

]
, not to be confused with [x�k u�k ], which

represents a row vector.

At the terminal step T , the nominal trajectory consists of mean x̂T

and covariance ΣT = ΛTΛ
�
T . The approximation is formed as

VT (xT ) ≈ V 0
T − v�T δxT +

1

2
δx�T ST δxT (31)

where δxT = xT − x̂T , and

V 0
T = aT − 1

2
tr {CT }

v�T = − b�T Λ−1T

ST = [ΛT C−1T Λ�T ]
−1 (32)

with

aT = E [�T (xT )]

bT = E [�T (xT )H1(Λ
−1
T δxT )]

CT = E [�T (xT )H2(Λ
−1
T δxT )]. (33)

The FHDP algorithm in its abstract form now consists in replacing
the Taylor series based computations of the action-value function
coefficients in (6) with (30) and the terminal step value function
approximation by (32). It is worth noticing that the Hermite polynomials
needed at the terminal step in (33) are functions of n-dimensional input
although in (29) the input dimension is s+ n.

C. Coefficient Computation via Sigma-Point Methods

Sigma-point methods are numerical integration methods commonly
used in nonlinear filters, such as unscented Kalman filters (UKFs), cuba-
ture Kalman filters (CKFs), Gauss–Hermite Kalman filters (GHKFs),
and their extensions [22]. In their most common form, sigma-point
method can be seen as Gaussian quadrature approximations for com-
puting Gaussian integrals as follows:∫

g(x)N (x | 0, I) dx ≈
∑
i

Wn
i g(ξni ) (34)

where x ∈ Rn, and the weights Wn
i and (unit) sigma points ξni for

the n-dimensional integration rule are determined by the sigma-point
method at hand. By a change of variables, y = Λx+ μ we can then
approximate integrals over more general Gaussian distributionsN (y |
μ,Σ) as ∫

g(y)N (y | μ,Σ) dx ≈
∑
i

Wn
i g(Λ ξni + μ) (35)

where Σ = ΛΛ�. We can now apply this rule to (29), which gives the
sigma-point approximations:

aQ ≈
∑
i

Wn+s
i Qk(Λk ξ

n+s
i + [x̂k, ûk])

bQ ≈
∑
i

Wn+s
i Qk(Λk ξ

n+s
i + [x̂k, ûk]) ξ

n+s
i

CQ ≈
∑
i

Wn+s
i Qk(Λk ξ

n+s
i + [x̂k, ûk]) (ξ

n+s
i [ξn+s

i ]� − I)

(36)

where Σk = Λk Λ
�
k is the joint covariance of the nominal trajectory

(xk, uk). It is though important to note that it is not sufficient to use
a third-order rule such as unscented transform or third-order cubature
rule, because the resulting integrals are typically higher order poly-
nomials. Instead, it is advisable to use, for example, Gauss–Hermite
rules [35], [36] or higher order spherical cubature (i.e., unscented)
rules [37], [38], [39].

The expectations at the terminal step (33) can be computed as

aT ≈
∑
i

Wn
i �T (ΛT ξni + x̂T )
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Algorithm 2: Sigma-Point Dynamic Programming (SPDP).

Input: Initial state x̂1, nominal control ûk, for k = 1, . . . , T − 1,
nominal state x̂k, for k = 2, . . . , T , terminal covariance ΣT , and
joint covariance Σk

Output: Update ûk and x̂k

1: Backward pass:
2: Given ΣT , compute aT , bT , and CT using (37)
3: Compute VT , vT , and ST using (32)
4: for k = T − 1 to 1 do
5: Given Σk, compute aQ, bQ and CQ using (36).
6: Compute the coefficients of Qk(xk, uk) using (30).
7: Compute d and K using (10), and vk and Sk using (12).
8: end for
9: Forward pass:

10: Start from x̂1.
11: for k = 1 to T − 1 do
12: ûk ← uk + δuk, where δuk is given by (11).
13: x̂k+1 ← fk(x̂k, ûk)
14: end for
15: Repeat from Step 1 until convergence.

bT ≈
∑
i

Wn
i �T (ΛT ξni + x̂T ) ξ

n
i

CT ≈
∑
i

Wn
i �T (ΛT ξni + x̂T ) (ξ

n
i [ξni ]

� − I). (37)

The sigma-point-based FHDP is summarized in Algorithm 2. Al-
though the algorithm is written in its simple form, it is also possible to
use the regularization and line search methods described in Section II-C
as part of it. Although in the line search, a straightforward way is to use
the original cost function as the merit function, in its implementation,
it is important to take into account that the cost function minimized by
the FHDP is not exactly the original cost function (see Section IV).

IV. THEORETICAL RESULTS

In this section, we discuss the computational complexity of DDP
and sigma-point FHDP methods, and prove the local convergence of
our proposed method.

A. Computational Complexity

Let us assume that the dimension of the state n dominates the
dimension of the control s. When implemented in form (8), the compu-
tational complexity of DDP in terms of function evaluations nominally
depend on the complexity of evaluating the first-order and the second-
order derivatives of the dynamics. Each of the first-order derivatives
in (6) require O(n2) operations. The second-order derivatives require
O(n3) operations. Therefore, the computational complexity of the DDP
method per iteration is O(Tn3), where T is the time horizon [16].
However, in some cases, we can decrease the complexity of DDP to
O(Tn2) [40] by using AD directly on Qk as described in Section II-D.

In sigma-point methods, the computational complexity in terms of
number of function evaluations is equal to the number of sigma-points.
For instance, in Gauss–Hermite quadrature rule with order p, the
number of required sigma-points is pm, where m = n+ s. In this rule,
the number of evaluation points grows exponentially with the state and
control dimensions. On the other hand, in the fifth-order symmetric
cubature rule [41] (i.e., the fifth-order unscented transform), the number
of required sigma-points is 2 m2 + 1 and in the seventh-order rule it

is (4 m3 + 8 m+ 3)/3 (see, e.g., [42]). Therefore, the total computa-
tional complexity per iteration is O(Tm2) when using the fifth-order
rule and O(Tm3) when using the seventh-order rule.

B. Convergence Analysis

In this section, we study the local convergence of the FHDP method.
It is already known that DDP converges quadratically to the unique
minimizer u∗1:T−1 in well-defined conditions [14], [15], [16]. These
results can be summarized as follows.

Lemma 1 (DDP convergence): Assume that �k, k = 1, . . . , T and
fk, k = 1, . . . , T − 1 are three times continuously differentiable with
respect to xk and uk, and the second derivative of Qk with respect to
uk is positive definite for all k. Furthermore, assume that the iterates
(x

(i)
1:T , u

(i)
1:T−1) produced by DDP are contained in a convex set D,

which also contains the minimizer (x∗1:T , u
∗
1:T−1). Then, the sequence

of DDP iterates u(i)
1:T−1 converges quadratically in the sense that where

exist c > 0 such that

‖u(i+1)
k − u∗k‖ ≤ c ‖u(i) − u∗k‖2. (38)

Our aim is now to prove the convergence of the proposed Fourier–
Hermite dynamic programming (FHDP) method by constructing a
modified model such that when we apply DDP on it, it exactly re-
produces the FHDP result. For that purpose, let us first introduce the
following lemma.

Lemma 2 (Relationship of Taylor and Fourier–Hermite series): Let
us consider a scalar function g(y) and define the following Weierstrass
type of transform:

ḡ(y) =

∫
g(z)N (z | y,Σ) dz. (39)

Let us also assume that ḡ(y) is at least three times continuously dif-
ferentiable, which can be ensured by, for example,

∫ ‖z‖3 |g(z)| N (z |
y,Σ) dz <∞. Then, the Taylor series expansion of ḡ(y′) matches the
Fourier–Hermite expansion of g(y′) with respect to N (z | y,Σ) up to
an additive constant.

Proof: When z ∼ N (z | y,Σ), integration by parts gives

E[g(z)H1(Λ
−1(z − y))] = Λ� E[Gz(z)]

E[g(z)H2(Λ
−1(z − y))] = Λ� E[Gzz(z)] Λ (40)

whereΣ = ΛΛ�. Substituting to (25) then gives the following Fourier–
Hermite series for g(y) with respect to N (z | y,Σ):
g(y′) ≈ E[g(z)] + E[Gz(z)]

�(y′ − y)

+
1

2
(y′ − y)�E[Gzz(z)] (y

′ − y)− 1

2
tr {E[Gzz(z)] Σ}

(41)

where the expectations are over N (z | y,Σ).
For the Taylor series expansion of (39), we can change variables by∫
g(z)N (z | y,Σ) dz =

∫
g(y + ξ)N (ξ | 0,Σ) dξ, which after dif-

ferentiation under integral and changing back to z gives

Ḡy(y) =

∫
Gz(z)N (z | y,Σ) dz

Ḡyy(y) =

∫
Gzz(z)N (z | y,Σ) dz. (42)

In the notation of (41), we have ḡ(y) = E[g(z)], Ḡy(y) = E[Gz(z)],
and Ḡyy(y) = E[Gzz(z)], and hence the Taylor series expansion of
ḡ(y′) becomes

ḡ(y′) ≈ E[g(z)] + E[Gz(z)]
�(y′ − y)

+
1

2
(y′ − y)�E[Gzz(z)] (y

′ − y) (43)
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which is the same as (41) except for the last term which is constant
in y′. �

Lemma 3 (Equivalent DDP model): Consider a transformation of
the problem (1) and (2), where we replace the end-condition with

�̄T (xT ) =

∫
�T (x

′
T )N (x′T | xT ,ΣT ) dx

′
T (44)

and the cost at time step k by

�̄k(xk, uk) = Q̄k(xk, uk)− Vk+1(fk(xk, uk)) (45)

where the transformed action-value function is defined by

Q̄k(xk, uk) =

∫∫
[�k(xk,

′ u′k) + Vk+1(fk(xk,
′ u′k))]

×N ([x′k;u
′
k] | [xk, uk],Σk) du

′
k dx

′
k. (46)

Then, the iteration produced by applying DDP to the modified model
exactly matches the iterations generated by FHDP.

Proof: Substituting the modified cost function (45) to (5) reduces
the action value function to (46). Then by Lemma 2, the second-order
Taylor series expansions of the action-value function taken around
x̂T and x̂k, ûk match the Fourier–Hermite series expansions up to a
constant, which only depends on the nominal trajectory. The maxima
of the Taylor-series based action-value functions with respect to the
uk also match the maxima obtained from the Fourier–Hermite series
expansions (up to the constant). Therefore, the control laws are the same
and as the forward passes are the same, the iterations produce exactly
the same result. �

Theorem 1 (Quadratic Convergence of FHDP): Assume that fk is
three times continuously differentiable and the transformed problem de-
fined in Lemma 3 has a unique solution (x̄∗1:T , ū

∗
1:T−1) within a convex

set D. Further assume that the second derivatives of the transformed
action-value function in (46) with respect to uk are positive definite
and all the iterates produced by FHDP (x̄

(i)
1:T , ū

(i)
1:T−1) ∈ D. Then, the

sequence of iterates ū(i)
1:T−1 produced by FHDP converges quadratically

to the solution in the sense that where exist c̄ > 0 such that

‖ū(i+1)
k − ū∗k‖ ≤ c̄ ‖ū(i) − ū∗k‖2. (47)

Proof: By Lemma 3, FHDP can be seen as DDP, which finds the
optimum of a transformed problem defined by (44), (45), and (46). The
assumptions ensure that assumptions for Lemma 1 are satisfied which
leads to the result. �

Remark 1: Because the transformed model reduces to the original
model when ΣT ,Σk → 0, in this limit, the results of FHDP and DDP
match.

Remark 2: In Theorem 1, we had to assume that the dynamics are
three times differentiable to adapt the existing DDP convergence results
to the current setting. However, as the Fourier–Hermite expansion is
always formed for Qk, the convergence result should apply even in the
case that the dynamics are not three times differentiable as long as the
transformed Q̄k is smooth, which it in very general conditions is.

V. EXPERIMENTS

To demonstrate the performance of our proposed method, we con-
sider the classical pendulum and cart-pole models and compare to the
classical DDP and the unscented DP (UDP) in [18]. All the algorithms
were implemented in MATLAB 2021b using its AD functionality. All
experiments were carried on a CPU using AMD EPYC 7643 with 48
Cores and 2.3 GHz.2

2The source code is available at https://github.com/EEA-sensors/
FourierHermiteDynamicProgramming.git

Fig. 1. Reduction in cost for pendulum swing-up problem by using
DDP, unscented DP (UDP), and sigma-point based FHDP (SPDP). Re-
sults of SPDP in (a) are with Gauss–Hermite rule with p = 3 (SPDP-GH)
and different values of ΣT and Σk. In (b), the results of SPDP are with
different integration rules: SPDP-GH is with the Gauss–Hermite (p = 3),
third (SPDP-UT3), fifth (SPDP-UT5), and seventh (SPDP-UT7) order
cubature/unscented rules.

A. Pendulum Swinging Experiment

First, we consider a pendulum swing-up problem, which was also
used in [18]. The goal is to swing the pendulum from downward position
(θ = 0) to upward (θ = π) position by using an input torque u as
control. We define the state of the pendulum as x = [θ, θ̇]�, and use
a quadratic cost function of the form

J =
1

2
(xT − xg)

�WT (xT − xg)

+
T−1∑
k=1

{
1

2
(xk − xg)

�W (xk − xg) + u�kRuk

}
. (48)

The parameters of the pendulum model and the cost function are
the same as in [18]. We discretize the dynamics using a fourth-order
Runge–Kutta method with a zero-order hold on u. The step size is set
to 0.1 and T = 50. We set the initial and final states to be x1 = [0, 0]�

and xg = [π, 0]�, respectively.
Fig. 1(a) and (b) show the total cost of the trajectory as a function

of the iteration number with DDP, UDP, and sigma-point based FHDP
(SPDP) methods. As the aim is to compare the performance of DDP,
UDP, and different variations of SPDP methods, in Fig. 1(a), we use
SPDP with Gauss–Hermite quadrature rule of order p = 3 (we call
this SPDP-GH) and set Σk ∈ {10−6I, 10−3I, 10−1I}, where I is the
identity matrix and ΣT similarly. As can be seen from the figure, all
the compared methods except for one SPDP converge to a very similar
total cost. In the first few iterations, all methods have approximately
similar total cost. In later iterations, however, SPDP-GH with the large
covariance, say ΣT = 10−1I and Σk = 10−1I , is slower to reduce the
cost and hence requires more iterations to converge. This is expected
because a large value for the covariance corresponds to FH expansion,
which averages the function over a large area around the nominal point.
On the other hand, with a small covariance, say ΣT = 10−1I , and
Σk = 10−1I , the SPDP method coincides with DDP, which confirms
the theoretical analysis of the method in Section IV-B. It can be seen
that in this experiment both DDP and SPDP have better convergence
speed than UDP. SPDP-GH with ΣT = 10−1I , and Σk = 10−1I has a
slightly better cost reduction compared to DDP (see SPDP-GH (10−6I)
curve after 30 iterations).

Fig. 1(b) shows the performance of SPDP method with different
sigma-point schemes. The schemes are Gauss–Hermite quadrature rule
with p = 3, ΣT = 10−1I , and Σk = 10−1I (SPDP-GH), third (SPDP-
UT3), fifth (SPDP-UT5), and seventh order (SPDP-UT7) unscented
transforms, that is, spherical cubature rules [42]. We can see that the

https://github.com/EEA-sensors/FourierHermiteDynamicProgramming.git
https://github.com/EEA-sensors/FourierHermiteDynamicProgramming.git
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TABLE I
AVERAGE RUN TIMES AND THE NUMBER OF SIGMA POINTS OF DDP, UDP,

AND DIFFERENT VARIATIONS OF SPDP METHODS IN PENDULUM SWING-UP
PROBLEM

third-order cubature/unscented rule is not sufficient for computing the
integrals for Fourier–Hermite coefficients as discussed in Section III-C
[see the curve of SPDP-UT3 in Fig. 1(b)]. The SPDP-GH, SPDP-UT5,
and SPDP-UT7 methods converge with approximately similar number
of iterations as DDP, and the performance is practically independent of
the integration rule used.

Table I lists the average run times (in seconds) to compute backward
and forward passes per iteration. As we can see, DDP requires more
computational time due to computing the derivatives appearing in (8).
UDP requires less time since the method avoids computing derivatives
offk. However, it requires computing the derivatives of lk and backward
propagation of sigma points. The computational speed of SPDP mainly
depends on the number of sigma-points used in the integration rule. We
also list the number of sigma-points that need to be evaluated for UDP
and SPDP methods in Table I. The number of sigma points at terminal
step T and at step k are denoted as mT and mk, for k = 1, . . . , T − 1.
It is clear from this table that SPDP is faster than the other methods.
The run times for SPDP-UT5 are the fastest among all the methods,
because the number of evaluation points in SPDP-UT5 is the least of
the SPDP methods.

B. Cart-Pole Experiment

In this experiment, we consider a cart-pole balancing problem,
where the aim is to balance the pole in upward position by applying
an external force u to move the cart in the horizontal direction. The
similar experiment was also performed in [18]. The cart with mass
mc is attached to a pole with mass mp and length l. We denote the
state of this system as x = [v, θ, v̇, θ̇]�, where v and v̇ are the position
and the velocity of the cart, respectively, and θ and θ̇ denote the angle
and angular speed of the pole, respectively. We set the initial and final
states to be x1 = [0, 0, 0, 0]� and xg = [0, π, 0, 0]�, respectively. The
differential equations of this cart-pole system can be found in [43]. We
discretize the dynamics using fourth-order Runge–Kutta integration
and zero-order hold for the control u. We use a cost function of similar
form as (48) and set the values mp, mc, l, g, WT , W , and R to be the
same as in [18]. The step size is set to be 0.1 and T = 50.

Similar to pendulum example, we investigate the performance of
the methods in reducing total cost. The results of SPDP method with
different covariances and different integration schemes are shown in
Fig. 2(a) and (b). In this case, the covariance of SPDP affects the
behavior more than in the pendulum experiment. For the first few
iterations in Fig. 2(a), all methods have a fast cost reduction, fastest
being SPDP with 10−1I covariance. For the later iterations, the methods
have different speeds of cost reduction. With larger covariances [see
SPDP-GH (10−1I) and SPDP-GH (10−3I) in Fig. 2(a)], SPDP method
is slower in reducing the total cost and does not reach convergence
within the 100 iterations shown in the figure. With smaller covariances,
SPDP has similar behavior as DDP. What is interesting in this figure
is that SPDP-GH (10−6I) has better cost reduction compared to DDP
during intermediate iterations. The SPDP-GH (10−1I) has the fastest

Fig. 2. Reduction in cost for cart-pole balancing problem by using DDP,
unscented DP (UDP), and sigma-point-based FHDP (SPDP). Results in
(a) are with SPDP with Gauss–Hermite rule of order p = 3 (SPDP-GH)
and different values of ΣT and Σk, and in (b) for SPDP with different
integration rules and 10−6I covariance: GH with p = 3 (SPDP-GH), fifth
(SPDP-UT5), and seventh (SPDP-UT7) order cubature/unscented rules.

TABLE II
AVERAGE RUN TIMES AND THE NUMBER OF SIGMA POINTS OF DDP, UDP,

AND DIFFERENT VARIATIONS OF SPDP METHODS IN CART-POLE
BALANCING PROBLEM

TABLE III
AVERAGE RUN TIMES AND THE NUMBER OF SIGMA POINTS OF DDP, AND
DIFFERENT VARIATIONS OF SPDP METHODS IN QUADCOPTER PROBLEM

cost reduction until the first six iterations. After that, there is no
improvement. We also observed that the convergence of UDP method
was the fastest among all the methods. In Fig. 2(b), we can see that
the integration method has a slight effect on the performance, but the
results of SPDPs with different integration rules are practically the
same.

The average run times per iteration to compute the backward pass
and forward passes are listed in Table II. As in the pendulum case, the
SPDP methods are faster than the other methods, UT5-based method
being fastest of them. However, the margin to the UDP method is now
smaller as UDP requires a relatively smaller number of sigma points
than SPDP methods.

C. Quadcopter Experiment

Finally, we consider a multirotor uncrewed quadcopter, which has
four rotors with six degrees of freedom [44]. The state of the sys-
tem contains the 3-D coordinates, velocities, the orientation (roll,
pitch, yaw), and the angular velocities. There are four control in-
puts consisting of the total thrust produced by four rotors and the
input torques. The cost function is similar to (48) and fourth order
Runge–Kutta method is used for discretization. Table III shows the
results with different methods. DDP method is the slowest among
all while SPDP-UT5 and SPDP-UT7 showed competitive results.



6384 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 10, OCTOBER 2023

The SPDP-GH method is not feasible since the number of evalu-
ation points increases exponentially as the number of dimensions
increases.

VI. CONCLUSION AND DISCUSSION

In this article, we have proposed a Fourier–Hermite series based
FHDP algorithm and its derivative-free implementation sigma-point
dynamic programming (SPDP) that approximates the action-value
function using Fourier–Hermite series and sigma points. This is in
contrast to classical DDP, which is based on the use of Taylor series
expansion. This new SPDP has the performance close or better than
DDP algorithm and while it is computationally faster as the high order
derivatives do not need to be evaluated. As shown by the experiments, it
also can outperform another sigma-point-based DP method, unscented
dynamic programming (UDP), and it is also computationally faster in
the tested experiments. We have also proved the local second-order
convergence of the proposed method.

Although in the second experiment, UDP outperformed the proposed
method, in Fig. 2(a), we see that SPDP-GH with different ΣT ,Σk

produces different convergence behavior. Moreover, we notice a larger
cost reduction in SPDP-GH (10−1I) than UDP until sixth iteration. This
indicates that the covariance schedule of SPDP could be used to further
improve the convergence speed of the method, and this is also confirmed
by additional numerical experiments that we have done. However, we
leave the further investigation of the covariance schedule as a future
work.
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