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Convexifying State-Constrained Optimal Control Problem
Donggun Lee , Shankar A. Deka , Member, IEEE, and Claire J. Tomlin , Fellow, IEEE

Abstract—This article presents a method that convexifies
state-constrained optimal control problems in the control-input
space. The proposed method enables convex programming
methods to find the globally optimal solution even if costs and
control constraints are nonconvex in control and convex in state,
dynamics is nonaffine in control and convex in state, and state
constraints are convex in state. Under the above conditions,
generic methods do not guarantee to find optimal solutions,
but the proposed method does. The proposed approach is
demonstrated in a 16-D navigation example.

Index Terms—Nonlinear control systems, optimal control.

I. INTRODUCTION

This article focuses on state-constrained optimal control problems
(OCPs) for high-dimensional systems. Table I shows popular methods
in this field, and their theoretical assumptions for optimality, scability
to deal with high-dimensional systems, and existence of numerical
methods to guarantee to find optimal solutions. Multiple shooting [1]
and collocation methods [2] are direct methods that discretize OCPs
into finite-dimensional problems, and then apply numerical optimiz-
ers. They are computationally efficient and capable of handling high-
dimensional systems. However, they are guaranteed to find optimal
solutions only if the OCP’s costs and constraints are convex and the
dynamics is affine in the state and control. On the other hand, Pontrya-
gin’s minimum principle (PMP) [3] is an indirect method that provides
a set of necessary conditions for optimality, and then applies numerical
methods to find a solution that satisfies the PMP conditions. These PMP
conditions are sufficient for optimality under particular conditions [3,
Ch. 8], which are satisfied if the OCP’s costs and constraints are convex
in the state, dynamics is affine in the state, and the control constraint is
convex in the control. Thus, the PMP optimality conditions are more
general than the ones for the direct methods; however, they can be
highly nonconvex and nonlinear, making it challenging for numerical
methods to find a solution.

Other generic methods exist, but they are not appropriate for solving
state-constrained OCPs for high-dimensional systems. HJ analysis [4] is
induced by dynamic programming, so it guarantees optimality for gen-
eral OCPs. However, its computational complexity grows exponentially
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in the state dimension; thus, it is typically used for low-dimensional
systems. Koopman-based methods [5] lift nonlinear systems to higher
dimensional linear systems, but the state-of-the-art Koopman-based
methods still have not considered general state constraints. Branch-and-
Lift algorithms [6] also provide an ε-close approximation to the optimal
solution, but they require the exact computation of reachable sets, for
which one may need to employ computationally intensive methods
based on HJ analysis.

This article aims to relax the optimality conditions in a way similar
to the direct methods and PMP, while still guaranteeing to find opti-
mal solutions using numerical solvers. We draw our motivation from
convexification of the Hopf–Lax theory [7], which provides a unique
viscosity solution to HJ PDEs. Notably, the Hopf–Lax formula [7] for
a particular class of HJ PDEs is a convex optimization problem if the
terminal function is convex in the state. We observe that some OCPs
have nonconvex costs in the control-input space, but the Hopf–Lax
formulae [7] for HJ PDEs relevant to those OCPs are always convex
in the control-input space. This implies that the direct methods are
guaranteed to find the solution for the Hopf–Lax formula, while not
necessarily for the OCP. This article aims to extend the convexification
of the Hopf–Lax formula to general state-constrained OCPs, which is
a novel development given that Hopf–Lax theories have not yet dealt
with HJ PDEs relevant to state-constrained problems.

In prior related works [8], [9], convexification methods have been
developed under different assumptions. For example, the control-set
convexification method [8] convexifies nonconvex control sets and
assumes convex cost in the state and the control, linear dynamics, and
convex state constraints. On the other hand, the successive convexi-
fication method [9] provides a locally optimal solution for nonlinear
dynamics, convex cost, and convex state constraints. The work in [8]
is listed in Table I as a method for global optimality.

Fig. 1 illustrates our framework to convexify the OCP in the control-
input space. Given the OCP, we propose a convexified OCP (COCP)
without approximation; thus, the optimal costs of the OCP and the
COCP are the same and represented asϑ. The COCP applies the control
signal transformation technique in [7], which converts the control signal
variable α to a new variable β. Notably, the COCP is always convex
in the new control signal space. Thus, if the OCP’s functions and
constraints are convex only in the state but not necessarily in the control
input, direct methods are guaranteed to find the COCP’s optimal cost
(ϑ), state trajectory (x∗), and control signal (β∗). In particular, we will
prove that the COCP’s optimal state trajectory is also optimal for the
OCP. Additionally, we propose algorithms to find an optimal control
signal α∗ for the OCP from the COCP solution (x∗, β∗).

The contributions of this article are as follows.
1) We convexify general state-constrained OCPs in control. Our meth-

ods provide more general optimality conditions than any other
methods that are scalable for high-dimensional systems, as in
Table I.

2) We also propose a numerical algorithm that is guaranteed to find
the OCP’s optimal solution. This is not guaranteed by numerical
solvers that implement PMP.

The rest of this article is organized as follows. Section II presents
the problem description. Section III proposes the COCP and numerical
algorithms to compute an optimal solution to the OCP. Next, Section IV
presents convexity conditions for the COCP. Section V provides a
numerical example, and finally, Section VI concludes this article.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
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TABLE I
A COMPARISON OF DIFFERENT OCP METHODS. x AND a REPRESENT THE STATE AND CONTROL, RESPECTIVELY

Fig. 1. Goal is to find the OCP’s optimal value ϑ, optimal state trajec-
tory x∗, and optimal control signal α∗. Our COCP formulation converts
the control signal space α to β and then convexifies the OCP in the
control-input space without approximation. If the OCP’s functions and
constraints are convex only in the state space, the COCP’s functions
and constraints become convex in both state and control input spaces.
Thus, direct methods provide the COCP’s optimal solution ϑ, x∗, and
optimal control signal in the converted space β∗. Finally, our algorithm
generates the optimal control signal α∗ from β∗.

In terms of notation in this article, the subscript ∗ denotes optimality,
and the superscript ∗ denotes the Legendre–Fenchel transformation.
For example, α∗ is an optimal control signal, and H∗ is the Legendre–
Fenchel transformation of a function H. The double superscript ∗∗

denotes the biconjugate, double Legendre–Fenchel transformation:
H∗∗ = (H∗)∗.

II. STATE-CONSTRAINED OCP

Consider a state trajectory x : [0, T ] → Rn solving the ODE

ẋ(t) = f(t, x(t), α(t)), t ∈ [0, T ], x(0) = x0 ∈ Rn, (1)

where f : [0, T ]× Rn ×A → Rn is the system dynamics, x0 is the
initial state, α ∈ A is the measurable control signal where A is the set
of admissible control signals:

A := {α : [0, T ] → A | ‖α‖L∞(0,T ) < ∞} (2)

and A is a compact subset in Rm. We would like to solve a finite-
horizon, state-constrained OCP for the above dynamical system with
respect to a cost ϑ, which we describe next.

State-constrained OCP: Given the dynamical system (1)–(2), solve

ϑ := lim
ε→0+

ϑε (3)

where

ϑε := inf
α∈A

∫ T

0

L(t, x(t), α(t))dt+ g(x(T )) (4)

subject to c(t, x(t)) ≤ ε, t ∈ [0, T ] (5)

where x solves (1). Here, L : [0, T ]× Rn ×A → R is the stage cost,
g : Rn → R is the terminal cost, and c : [0, T ]× Rn → R is the state

constraint. For example, c(t, ·) can represent unsafe regions in the state
space over t ∈ [0, T ], so that c(t, x) < 0 for x ∈ Rn away from the
unsafe regions, c(t, x) = 0 for x on the boundary of the unsafe regions,
and c(t, x) > 0 for x in the unsafe regions.

In this article, we adopt the extended value setting [10, Ch. 3.1.2]
for all optimization problems, which adds ∞ to the objective function
if constraints are not satisfied. For example, ϑε can be written as

ϑε= inf
α∈A

∫ T

0

L(t, x(t), α(t))dt+g(x(T ))+ max
t∈[0,T ]

I(c(t, x(t))≤ε)

(6)

where

I(“condition”) =

{
0, “condition” is satisfied
∞, otherwise.

(7)

In this extended value setting, the limit defined byϑ in (3) exists. This is
because ϑε1 ≤ ϑε2 for any ε1 > ε2 > 0. Thus, as ε converges to zero,
the limit of ϑε exists in R ∪ {∞}.

Also note that ϑ and ϑ0 are different because the set of state
trajectories solving (1) is not compact. Consider a case in which
maxt∈[0,T ] c(t, x(t)) > 0 for all α ∈ A, but there exists a sequence of
αk ∈ A such that limk→∞ maxt∈[0,T ] c(t, xk(t)) = 0, where xk solves
(1) for αk. In this case, ϑ0 is ∞, but ϑ is finite. On the other hand, if A
is convex, the set of state trajectories solving (1) becomes compact [4].
In that case, ϑ0 = ϑ.

In this article, we assume the following.
Assumption 1 (Continuity and compactness):

A1. the control set A is compact;
A2. f = f(t, x, a) : [0, T ]× Rn ×A → Rn is Lipschitz continuous

in (t, x) for each a ∈ A, and uniformly continuous in a for each
(t, x);

A3. the stage cost L = L(t, x, a) : [0, T ]× Rn ×A → R is contin-
uous in (t, x, a) and, for each a, is locally Lipschitz in (t, x);

A4. the terminal cost g = g(x) : Rn → R is continuous in x and
locally Lipscthiz in x;

A5. the state constraint c = c(t, x) : [0, T ]× Rn → R is continuous
in (t, x) and, for each t, is locally Lipschitz in x.

Assumptions A1 and A2 guarantee a unique state trajectory for the
dynamics (1). Since we consider a bounded time interval, all state
trajectories are also bounded. Thus, Assumptions A3 and A4 are enough
to ensure that the integration of the cost in ϑ is bounded.

III. COCPS

Section III-A presents the theorem for the COCP, and Section III-B
builds up mathematical background to prove the theorem, which is done
in Section III-C.
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A. COCP

Consider a multivalued map: for (t, x) ∈ [0, T ]× Rn,

B(t, x) := {b | b = −f(t, x, a), a ∈ A} ⊂ Rn (8)

wheref andA are the dynamics and the control constraint of the system,
respectively. B(t, x) is compact for all (t, x) since A is compact and
f is uniformly continuous in a as in Assumption 1. Consider a state
trajectory solving

ẋ(t) = −β(t), t ∈ [0, T ], x(0) = x0

β(t) ∈ co(B(t, x)), t ∈ [0, T ]
(9)

where “co” represents a convex-hull operation. We assume that β is a
measurable control signal. With respect to this differential inclusion,
we propose our convexifying method in the following theorem, which
will be later proved in Section III-C.

Theorem 1 (COCP): Suppose Assumption 1 holds. Define

ϑ̄ := inf
β

∫ T

0

H∗(t, x(t), β(t))dt+ g(x(T )) (10)

subject to c(t, x(t)) ≤ 0, t ∈ [0, T ] (11)

where x and β satisfy (9), H : [0, T ]× Rn × Rn → R is defined as

H(t, x, p) := max
a∈A

[−p · f(t, x, a)− L(t, x, a)] (12)

and H∗ is the Legendre–Fenchel transformation (convex conjugate) of
H with respect to the costate p:

H∗(t, x, b) := sup
p∈Rn

[p · b−H(t, x, p)]. (13)

Then, ϑ in (3) and ϑ̄ are the same

ϑ = ϑ̄. (14)

Both H in (12) and H∗ in (13) adopt the extended-value settings.
However, for each (t, x), H is finite for all p since A is compact as
in Assumption A1; on the other hand, H∗ is ∞ for some b ∈ Rn.
The Legendre–Fenchel transformation always provides a closed proper
convex function; thus, the new stage cost H∗ is convex in the new
control b.

B. Mathematical Formulation and Optimal Control Analysis

In order to establish the relationship between the OCP and the COCP
proposed in Theorem 1, we will first build the relationship between two
control inputs a in the OCP and b in the COCP.

For b ∈ Rn, define

Lb(t, x, b) := min
a∈A

L(t, x, a) subject to f(t, x, a) = −b. (15)

Lemma 1: Suppose Assumption 1 holds. Then, Lb and H defined
in (15) and (12), respectively, have the following properties:

(Lb)∗(t, x, p) = H(t, x, p) in [0, T ]× Rn × Rn (16)

(Lb)∗∗(t, x, b) = H∗(t, x, b) in [0, T ]× Rn × Rn (17)

Dom(H∗(t, x, ·)) = {b |H∗(t, x, b) < ∞} = co(B(t, x)). (18)

Here, (Lb)∗ andH∗ are the Legendre–Fenchel transformations (convex
conjugate) of Lb and H , respectively, with respect to p for each (t, x).
The double Legendre–Fenchel transformation of Lb, i.e. (Lb)∗∗ =
((Lb)∗)∗, is the biconjugate of Lb. Dom(H∗(t, x, ·)) represents the
domain of H∗(t, x, ·), and co(B(t, x)) represents the convex-hull of
B(t, x).

Fig. 2. Bottom 2-D space represents b ∈ R2, and the vertical axis rep-
resents function values. For fixed (t, x), 1©(⊂ R2) is B(t, x), the domain
of Lb(t, x, ·). The union of 1© and 2©(⊂ R2) is the domain of H∗(t, x, ·),
which is a convex-hull of 1©. The curvature 3© represents Lb(t, x, ·),
and the curvatures 3© and 4© represent H∗(t, x, ·). In the illustrated ex-
ample, for b ∈ co(B(t, x)) and b /∈ B(t, x), there exists b1, b2 ∈ B(t, x)
such that the vector [H∗(t, x, b), b] is a convex combination of vectors
[Lb(t, x, b1), b1] and [Lb(t, x, b2), b2].

Proof: (i) Proof of (16) and (17)
Under the measurable assumptions onα andβ, a state-unconstrained

problem

V1(t, x) := inf
α∈A

∫ T

t

L(s, x(s), α(t))ds+ g(x(T )) (19)

where x solves ẋ(s) = f(s, x(s), α(s)), x(t) = x, is equivalent to

V2(t, x) := inf
β

∫ T

t

Lb(s, x(s), β(s))ds+ g(x(T )) (20)

where x solves ẋ(s) = −β(s), β(s) ∈ B(s, x(s)), where B is defined
in (8), and x(t) = x. For a rigorous proof of this equivalence in the
sense of differential inclusion, the reader is referred to [11, Ch. 4.1,
Fillipov’s Theorem]. Then, the corresponding HJ PDEs [12] for V1 and
V2 are the same; thus, the Hamiltonians in the HJ PDEs are the same:
maxb∈B(t,x)[p · b− Lb(t, x, b)] = H(t, x, p). Hence, H ≡ (Lb)∗ and
H∗ ≡ (Lb)∗∗.

(ii) Proof of (18)
Case 1: b ∈ co(B(t, x))

There exist bi ∈ B(t, x) and γi ≥ 0 (
∑I

i=1 γi = 1) such that b =∑I
i=1 γibi. Since H∗(t, x, ·) is convex in b,

H∗(t, x, b) ≤
I∑

i=1

γiH
∗(t, x, bi) < ∞

since each of H∗(t, x, bi) is finite.
Case 2: b /∈ co(B(t, x))
For two closed convex sets {b} and co(B(t, x)), the separating

hyperplane theorem [10, Ch. 2.5] implies that there exists a hyper-
plane (P : Rn → R): P (b′) := p′ · b′ + c such that P (b′) is positive if
b′ /∈ co(B(t, x)); otherwise, P (b′) is nonpositive. By picking p = γp′

where γ ∈ R,

H∗(t, x, b) = sup
p

inf
b′
[p · (b− b′) + Lb(t, x, b′)]

≥ sup
γ

inf
b′
[γp′ · (b− b′) + Lb(t, x, b′)] = ∞

since p′ · (b− b′) > 0 for all b′ ∈ co(B(t, x)). �
Fig. 2 illustrates that the epigraph of H∗(t, x, ·) is the convex-hull

of the epigraph of Lb(t, x, ·) for fixed (t, x) [13, Ch. 4]. Thus, for
any b ∈ co(B(t, x)), there are a finite number (I) of weights γi and
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control inputs bi ∈ B(t, x) such that the pair of (H∗(t, x, b), b) is a
convex combination of (Lb(t, x, bi), bi)with weightsγi (

∑I
i=1 γi = 1,

γi ≥ 0):[
H∗(t, x, b)

b

]
=

I∑
i=1

γi

[
Lb(t, x, bi)

bi

]
=

I∑
i=1

γi

[
L(t, x, ai)

−f(t, x, ai)

]

(21)

where ai satisfies Lb(t, x, bi) = L(t, x, ai). Notably, I depends on
(t, x, b). In general, I is less than or equal to n+ 1, but I is 1 if b ∈
B(t, x).

Equation (18) in Lemma 1 implies that the domain ofH∗(t, x, ·) con-
tains the domain of Lb(t, x, ·) for each (t, x). Even though co(B(t, x))
is convex in b ∈ Rn, Dom(H∗(t, ·, ·)) = {(x, b) | b ∈ co(B(t, x))} is
generally nonconvex in (x, b) ∈ Rn × Rn for each t ∈ [0, T ].

Using the above analysis for two pointwise control inputs a, b, we
now find the relationship between the OCP’s and the COCP’s control
signals (α and β, respectively). Consider a measurable control signal
(β) and state (x) trajectories solving the dynamics (9). Assume that β
is Riemann integrable in (0, T ). For some δ > 0, consider a temporal
discretization: {t0 = 0, . . .tK = T} such that Δtk := tk+1 − tk <
δ∀k = 0, . . .,K − 1. Note that the step size does not need to be fixed
in this temporal discretization. We define a control signal αε ∈ A: for
k = {0, . . .,K − 1},

αε(t) = ak
i , t ∈

[
tk +

i−1∑
j=1

γk
j Δtk, tk +

i∑
j=1

γk
j Δtk

)
(22)

where ak
i and γk

i are, respectively, the ith control and coefficient in (21)
for t = tk, x = x(tk), and b = β(tk), where i = 1, . . ., Ik. Then, we
will prove that xε solving (1) for αε is close to x, and the integration of
the stage and terminal costs of the OCP induced by αε is also close to
the counterpart of the COCP induced by β.

Theorem 2: Suppose Assumption 1 holds. Consider any measurable
control signal β and state trajectory x solving (9). Assume that β
is Riemann integrable in [0, T ]. Then, for any ε > 0, there exists
δ > 0 such that, for any discretization {t0 = 0, . . ., tK = T} where
|Δtk| < δ, k = 0, . . .,K − 1, we have

‖x− xε‖L∞(0,T ) < ε (23)

and ∣∣∣∣
∫ T

0

H∗(t, x(t), β(t))dt+ g(x(T ))

−
∫ T

0

L(t, xε(t), αε(t))dt− g(xε(T ))

∣∣∣∣ < ε (24)

where xε solves (1) for αε in (22).
Proof: We will first prove that x and xε are close within an ε-bound

in the L∞-norm. We will define two more state trajectories x0 and x1,
and then show x is close to x0, x0 is close to x1, and x1 is close to xε.
Here, x0 solves (9) for a piecewise constant control generated from β
on {t0, . . ., tK}:

ẋ0(t) = −β(tk), t ∈ [tk, tk+1), x0(0) = x0. (25)

By the control decomposition in (21), we have Ik number of (bki , a
k
i , γ

l
i)

pairs for t = tk,x = x(tk), and b = β(tk) such that bki ∈ B(tk, x(tk)),
ak
i ∈ A, γk

i ≥ 0,
∑Ik

i=1 γ
k
i = 1 and

H∗(tk, x(tk), β(tk)) =
Ik∑
i=1

γk
i L

b(tk, x(tk), b
k
i )

=

Ik∑
i=1

γk
i L(tk, x(tk), a

k
i ) (26)

β(tk) =

Ik∑
i=1

γk
i b

k
i , bki = −f(tk, x(tk), a

k
i ). (27)

Consider partitioning each interval [tk, tk+1) into Ik intervals
[tk,i, tk,i+1) := [tk +

∑i−1
j=1 γ

k
j Δtk, tk +

∑i
j=1 γ

k
j Δtk) as in (22),

where tk,0 = tk and tk,̄ik = tk+1, and design a new piecewise constant
control signal β1

β1(t) = bki+1, t ∈ [tk,i, tk,i+1). (28)

We define x1 as the solution of (9) corresponding to this input β1.
(i) Show ‖x− x0‖L∞(0,T ) < ε
Since β is Riemann integrable, for all ε, there exists δ1 > 0 such that

‖x0 − x‖L∞(t,T ) < ε if δ ≤ δ1.
(ii) Show ‖x0 − x1‖L∞(0,T ) < ε
From (27),x0(tk) = x1(tk) for allk = 0, . . .,K. For t ∈ [tk, tk+1),

we have

‖x1(t)− x0(t)‖ ≤
∫ t

tk

‖ − β1(s) + β(tk)‖ds. (29)

Note that the set of states that can be reached

X := {x(t) | x solves (1) for some α ∈ A, t ∈ [0, T ]} (30)

is bounded since Assumption A2 holds. Thus,

c1 := max
t∈[0,T ],x∈cl(X ),a∈A

‖f(t, x, a)‖ (31)

is finite, where cl(X ) is the closure of X . Since ‖ − β1(s) + β(tk)‖
is less than 2c1, we conclude the right-hand side of (29) is less than or
equal to 2c1δ.

(iii) Show ‖x1 − xε‖L∞(0,T ) < ε
We will first prove xε(tk,i+1) is close to x1(tk,i+1) for all

k = 0, . . .,K − 1, i = 1, . . ., Ik. We have,

‖xε(tk,i+1)− x1(tk,i+1)‖ ≤ ‖xε(tk,i)− x1(tk,i)‖

+

∫ tk,i+1

tk,i

‖f(s, xε(s), ak
i+1)− f(tk, x(tk), a

k
i+1)‖ds.

(32)

By Assumption A2, ‖f(s, xε(s), ak
i+1)− f(tk, x(tk), a

k
i+1)‖ is less

than or equal to Lf (s− tk + ‖xε(s)− x(tk)‖). Moreover,

‖xε(s)− x(tk)‖ ≤ ‖xε(tk,i)− x1(tk,i)‖+ 4c1δ + ε (33)

since ‖xε(s) − xε(tk,i)‖ < c1δ, ‖x1(tk,i) − x1(tk)‖ < c1δ,
‖x1(tk)− x0(tk)‖ < 2c1δ, and ‖x0(tk)− x(tk)‖ < ε, where c1 is
defined in (31). Hence, we get

‖xε(tk,i+1)− x1(tk,i+1)‖+ c2δ + ε ≤
(1 + Lf (tk,i+1 − tk,i))(‖xε(tk,i)− x1(tk,i)‖+ c2δ + ε) (34)

where c2 = 1 + 4c1. Furthermore,

tk,′i′ ≤tk,i∏
k,′i′

(1 + Lf (tk,′i′ − tk,′i′−1))

≤
tk,′i′ ≤T∏

k,′i′
(1 + Lf (tk,′i′ − tk,′i′−1)) ≤

(
1 +

LfT

m̄

)m̄

< eLfT .

(35)

The second inequality follows from Jensen’s inequality for log. Thus,
(34) and (35) imply

‖xε(tk,i+1)− x1(tk,i+1)‖ ≤ (eLfT − 1)(c2δ + ε). (36)

For t ∈ (tk,i, tk,i+1), we can similarly show ‖xε(t)− x1(t)‖ ≤
(eLfT − 1)(c3δ + ε) for some c3 > 0.

To sum up (i)–(iii), we conclude that, for any small ε > 0, we can
find δ such that ‖x− xε‖L∞(0,T ) < ε.
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(iv) Prove (24). Define a discrete sum of H∗:

S :=
K−1∑
k=0

H∗(tk, x(tk), β(tk))(tk+1 − tk) + g(x(T )).

Since H∗ is proper and β is Riemann integrable, H∗(t, x(t), β(t)) is
also Riemann integrable. Thus, for any ε1, there exists δ such that∣∣∣∣

∫ T

0

H∗(t, x(t), β(t))dt+ g(x(T ))− S

∣∣∣∣ < ε1. (37)

We can show S is close to
∫ T

0
L(t, xε(t), αε(t))dt+ g(xε(T )) by

utilizing similar techniques used to prove ‖x− xε‖L∞(0,T ) < ε. In the
proof, it is also necessary to use the fact that L is locally Lipschitz in
(t, x) ∈ [0, T ]× cl(X ) and g is locally Lipschitz in x ∈ cl(X ), where
X is defined in (30). �

Consider the case where the COCP is feasible and has optimal
control signal β∗ and state trajectory x∗. Then, Theorem 2 provides
the corresponding (xε

∗, α
ε
∗) whose OCP cost without state constraints

is close to the COCP’s optimal cost, and xε∗ is close to the COCP’s
optimal state trajectory within ε-distance in L∞-norm. As the time-step
variable δ converges to 0, we can force ε to converge to 0. This
implies that xε

∗ converges to the COCP’s optimal state trajectory x∗.
Thus, the OCP’s state constraint would be satisfied at the limit of
ε at 0: limε→0 maxt∈[0,T ] c(t, x

ε
∗(t)) ≤ 0 although the limit point of

αε
∗ might not exist. However, we need more careful analysis as to

whether the OCP’s optimal value is finite. On the other hand, where
the COCP is infeasible, Theorem 2 does not help us analyze if the
OCP’s optimal value is finite or not. In the following section, we rule
out these mathematical issues and complete the proof of Theorem 1,
which states that the OCP and the COCP are equivalent.

C. Proof for the COCP

This section proves Theorem 1 using mathematical background from
Section III-B.

Proof for Theorem 1: We will prove that the two epigraphs of ϑ and
ϑ̄ are the same. We first define a function J = J(z, α)

J(z, α) := max

{
max
t∈[0,T ]

c(t, x(t)),

∫ T

0

L(t, x(t), α(t))dt+ g(x(T ))− z

}
(38)

where x solves (1) for α, and z represents the value-axis variable.
The authors in [4] proved that the zero sublevel set of infα J(z, α)
is the epigraph of ϑ0 if A is convex. In contrast, we do not assume
that A is convex. However, the proof in [4, Th. 3.1] can be easily
modified to show the zero sublevel set of J(z, α) is the epigraph
of ϑ:

ϑ = min z subject to inf
α∈A

J(z, α) ≤ 0. (39)

Similarly, we define a function J̄ = J̄(z, β)

J̄(z, β) := max

{
max
t∈[0,T ]

c(t, x(t)),

∫ T

0

H∗(t, x(t), β(t))dt+ g(x(T ))− z

}
(40)

where x solves (9) for β, so that the zero sublevel set of infβ J̄(z, β)
represents the epigraph of ϑ̄:

ϑ̄ = min z subject to inf
β

J̄(z, β) ≤ 0 (41)

where β(t) ∈ co(B(t, x(t))) for all t ∈ [0, T ].

Algorithm 1: Computing the OCP’s Optimal State Trajectory and
Control Signal.

1: Output: OCP’s optimal state trajectory xε∗ and control signal
αε
∗

2: Solve ϑ̄ (COCP) in (10) subject to (11), and get x∗, β∗ by
multiple shooting or collocation methods

3: On a temporal discretization: {t0 = 0, . . ., tK = T}, for
each k = 0, . . .,K − 1, find Ik-number of (ak

i , b
k
i , γ

k
i )

solving (21) for t = tk, x = x∗(tk) and b = β∗(tk)
4: Additionally discretize each temporal interval:

[tk, tk+1) =

Ik⋃
i=1

[
tk +

i−1∑
j=1

γk
j Δtk, tk +

i∑
j=1

γk
j Δtk

)
(45)

5: Design αε
∗ using ak

i by (22) and compute xε
∗ solving (1)

(i) infα J(z, α) ≥ infβ J̄(z, β)
For any state (x) and control (α) trajectories solving (1), define a

control signal (β):

β(t) = −f(t, x(t), α(t)) ∈ B(t, x(t)), t ∈ [0, T ].

Then, x and β solve ẋ(t) = −β(t) for t ∈ [0, T ] and x(0) = x0. By
Lemma 1, L(t, x(t), α(t)) = Lb(t, x(t), β(t)) ≥ H∗(t, x(t), β(t))
for all t ∈ [0, T ]. This implies that

J(z, α) ≥ J̄(z, β) ≥ inf
β

J̄(z, β).

Since the above inequality holds for all x and α, we conclude
infα J(z, α) ≥ infβ J̄(z, β).

(ii) infα J(z, α) ≤ infβ J̄(z, β)
By Assumption A2, the set of all feasible states X :=

{x(t) | x solves (1) for some α ∈ A, t ∈ [0, T ]} is bounded. Since
cl(X ) is compact, Assumption A5 implies that c(t, ·) is locally Lip-
schitz in x ∈ cl(X ) for some constant Lc > 0. For any state (x) and
control (β) trajectories solving (9), by Theorem 2, there exists xε andαε

that solve (1) and satisfy (23) and (24) for any ε > 0. Then, J̄(z, β) ≥
J(z, αε)−max{1, Lc}ε ≥ infα J(z, α)−max{1, Lc}ε. Since this
inequality holds for any x, β solving (9) and ε > 0, infβ J̄(z, β) ≥
infα J(z, α).

(iii) Since infα J(z, α) and infβ J̄(z, β) are the same, the epigraphs
of ϑ and ϑ̄ are the same, and (39) and (41) conclude ϑ ≡ ϑ̄. �

Remark 1:
1) The optimal costs for the OCP and the COCP are the same. Also,

the COCP is feasible if and only if the OCP for ϑε is feasible for
all ε > 0.

2) For a feasible COCP whose optimal control signal is β∗ and state
trajectory is x∗, we can construct αε

∗ as in (22) with a temporal dis-
cretization {t0 = 0, . . ., tK = T}. Then, Theorems 1 and 2 imply
uniform convergence of the following three terms as ε converges
to 0:

xε
∗ → x∗ (42)∫ T

0

L(t, xε
∗(t), α

ε
∗(t))dt+ g(xε

∗(T )) → ϑ (43)

c(t, xε
∗(t)) → c(t, x∗(t)) ∀t ∈ [0, T ], (44)

where xε
∗ solves (1) for αε

∗, and c(t, x∗(t)) ≤ 0 for all t ∈ [0, T ].

D. Numerical Algorithm

Algorithm 1 presents a numerical algorithm to compute an optimal
state trajectory (x) and a control signal (α) for the OCP using the COCP
in Theorem 1.
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Algorithm 2: Computing the OCP’s Optimal State Trajectory and
Control Signal to Mitigate Chattering Behavior.

1: Output: OCP’s approximate optimal state trajectory x̃ and
control signal α̃

2: Solve ϑ̄ (COCP) in (10) subject to (11), and get x∗, β∗ by
multiple shooting or collocation methods

3: Solve the following problem whose optimal cost is 0:

inf
α̃

∫ T

0

‖x̃(t)− x∗(t)‖dt, (46)

where x̃ solves ˙̃x(t) = f(t, x̃(t), α̃) and x̃(0) = x0.

We first numerically compute an optimal state trajectory (x∗) and a
control signal (β∗) for the COCP in Theorem 1. The choice of method
to solve ϑ̄(= ϑ) on line 2 of Algorithm 1 is open to the user, for
example, direct methods with various optimizers [14] could be used.
The rest of the algorithm is designed to find the numerical-optimal
control signal αε

∗ and state trajectory xε
∗. On line 3 of Algorithm 1,

we find a pair of (ak
i , b

k
i , γ

k
i ) satisfying (21) for t = tk, x = x∗(tk),

and b = β∗(tk). As explained in Section III-B and Fig. 2, these
pairs can be analytically found using the biconjugate’s geometrical
property: (β∗(tk),H∗(tk, x∗(tk), β∗(tk))) is a convex combination
of (bki , L

b(tk, x∗(tk), bki ))s. At last, on lines 4 and 5, we design αε
∗

and compute xε
∗ by solving (1). Note that the additional temporal

discretization on line 4 could result in a frequent control-switching
behavior unless β∗(t) ∈ B(t, x∗(t)) for all t.

To resolve this chattering issue, we propose another algorithm if
the stage cost does not depend on the control input. As in Remark 1,
the OCP’s state trajectory solving (1) for the designed control signal
αε
∗ (22) uniformly converges to the COCP’s optimal state trajectory.

Algorithm 2 utilizes this fact to avoid the control-switching behavior
by removing the additional temporal discretization. Instead, Algorithm
2 has one additional optimal-control solving step as in line 3. For the
OCP (46), direct methods result in nonconvex problems, but we know
the optimal cost is always 0. Thus, if iterative algorithms to solve (46)
converge to a local minimum with nonzero cost, then we can reinitialize
a solution candidate and iterate again until the cost is close to 0. This
is a big difference compared to direct methods, since it is hard to get
any sense of how close locally optimal solutions by direct methods are
to the optimal solution.

IV. CONVEXITY ANALYSIS FOR THE COCP

This section investigates conditions under which the COCP has
more general convexity conditions than the OCP using direct meth-
ods, including multiple shooting and collocation methods. The direct
methods discretize the OCP on a temporally {t0 = 0, . . ., tK = T} and
implicitly contain numerical methods, such as Euler or Runge–Kutta
methods, to solve ordinary differential equations or integral equations.

Denote x[k] = x(tk) and α[k] = α(tk). x denotes both state trajec-
tories x(·) in continuous time and sequences x[·] in discrete time, and
the same notation rule is applied to α as well.

The direct methods result in finite-dimensional convex optimiza-
tion problems in x[0], α[0], . . ., x[K], α[K] ∈ R(n+m)×(K+1) if the
following convexity conditions hold: for each t, the stage cost L is
convex in (x, a) ∈ Rn × Rm, the terminal cost g is convex in x ∈ Rn,
the control constraint set A is convex in Rm, the dynamics f is affine
in (x, a) ∈ Rn × Rm, and the state constraint function c is convex in
x ∈ Rn. Then, numerical methods for convex programming guarantee
optimality. The above argument works for any different numerical in-
tegration methods, including the midpoint, trapezoidal, and Simpson’s
rule, and numerical ODE solving methods, including linear multistep
and Runge–Kutta methods.

In this section, we analyze convexity conditions for the COCP’s cost,
constraint functions and dynamics, and verify the benefit of solving the
COCP reformulation by direct methods over solving the original OCP
formulation.

Suppose the stage cost L can be decomposed into the state- and
control-dependent parts:

L(t, x, a) = Lx(t, x) + La(t, a). (47)

We first analyze the convexity conditions for the COCP’s stage cost
(H∗).

Lemma 2: Suppose (47) holds. Then,

H∗(t, x, b) = Lx(t, x) + (Ha)∗(t, x, b) (48)

where H∗ is defined in (13),

Ha(t, x, p) := max
a∈A

[−p · f(t, x, a)− La(t, a)] (49)

(Ha)∗(t, x, b) := sup
p
[p · b−Ha(t, x, p)]. (50)

Proof: By (15), Lb(t, x, b) = Lx(t, x) + (La)b(t, x, b), where
(La)b(t, x, b) = mina L

a(t, a) subject to f(t, x, a) = −b. From the
definition of H in (12) and the fact that (Lb)∗ ≡ H (see Lemma 1),

H(t, x, p) = −Lx(t, x) +Ha(t, x, p)

where Ha(t, x, p) = ((La)b)∗(t, x, p). Thus,

H∗(t, x, b) = Lx(t, x) + (Ha)∗(t, x, b).

�
This lemma shows that the COCP’s stage cost (H∗) is decomposed

into the control-independent (Lx) and control-dependent ((Ha)∗) parts.
One may observe that the COCP’s control-independent stage cost (Lx)
is exactly the same as the OCP’s counterpart (Lx). Thus, if the OCP’s
stage cost does not depend on the control, the COCP’s stage cost is the
same as the OCP’s stage cost.

Corollary 1: If L(t, x, a) = Lx(t, x), then H∗(t, x, b) = L(t, x).
Lemma 2 implies that the convexity of the COCP’s stage cost H∗ is

also affected by the OCP’s dynamics f .
Lemma 3 (Convexity of the stage cost): Suppose Assumption 1 and

(47) hold. If Lx(t, ·) is convex in x ∈ Rn for each t ∈ [0, T ] and the
dynamics f is in the following form:

f(t, x, a) = M(t)x+ ϕ(t, a) (51)

where M(·) is a time-varying linear matrix and ϕ is a general nonlinear
function, then

H∗(t, x, b) = Lx(t, x) + (H̄a)∗(t, b+M(t)x) (52)

where

H̄a(t, p) := max
a∈A

[−p · ϕ(t, a)− La(t, a)] (53)

and H∗(t, ·, ·) is convex in (x, b) ∈ Rn × Rn for each t ∈ [0, T ].
Note that H̄a(t, p) is independent of x and convex in p for each t.
Proof: By (49) and (50),

Ha(t, x, p) = − p · (M(t)x) + H̄a(t, p)

(Ha)∗(t, x, b) = sup
b∈Rn

p · (b+M(t)x)− H̄a(t, p)

= (H̄a)∗(t, b+M(t)x).

By Lemma 2,

H∗(t, x, b) = Lx(t, x) + (H̄a)∗(t, b+M(t)x).

Since (H̄a)∗(t, ·) is convex in b and b+M(t)x is affine in (x, b),
(Ha)∗(t, ·, ·) is convex in (x, b). Therefore, H∗(t, ·, ·) is convex in
(x, b) for each t ∈ [0, T ] if Lx(t, ·) is convex in x for each t ∈ [0, T ].
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TABLE II
CONVEXITY CONDITIONS FOR THE OCP AND COCP

We define the control constraint of the COCP in (x, b): for t ∈ [0, T ],

B̄(t) := {(x, b) ∈ Rn × Rn | b ∈ co(B(t, x))} (54)

where B(t, x) is defined in (8).
Lemma 4 (Convexity of the control constraint): Suppose Assump-

tion 1 and (51) hold. Then, B̄(t) is convex in (x, b) ∈ Rn × Rn for
each t ∈ [0, T ].

Proof: Consider (x1, b1), (x2, b2) ∈ B̄(t), and d ∈ [0, 1]. Since
bj ∈ co(B(t, xj)) for j = 1, 2, there exist a finite number of ajl and

γjl ∈ [0, 1] (
∑Ij

l=1 γjl = 1 for each j) such that

bj = −M(t)xj −
Ij∑
l=1

γjlϕ(t, ajl).

Using this, we have

db1 + (1− d)b2 +M(t)(dx1 + (1− d)x2) =

−
I1∑
l=1

dγ1,lϕ(t, a1,l)−
I2∑
l=1

(1− d)γ2,lϕ(t, a2,l).

(55)

Since co({−ϕ(t, a) | a ∈ A} is a convex set, both the left- and right-
hand sides of (55) belong to co({−ϕ(t, a) | a ∈ A}. Thus, db1 + (1−
d)b2 belongs to co(B(t, dx1 + (1− d)x2)). �

Table II summarizes the convexity conditions for the OCP and the
COCP. If all the convexity conditions for the OCP are satisfied, the ones
for the COCP are also satisfied. However, the opposite is not true.

Remark 2 (Benefits of the COCP): The COCP converts the OCP’s
nonconvexity in the control space to convexity. The convexity condi-
tions for the COCP do not require that
1) the control constraint A is convex;
2) the control-dependent stage La(t, a) in (47) is convex in a ∈ A ⊂

Rm for each t ∈ [0, T ];
3) the control-dependent dynamics ϕ(t, a) in (51) is affine in a ∈ A

for each t ∈ [0, T ].

V. EXAMPLES AND DEMONSTRATIONS

We now introduce a 16-D example that illustrates the benefits of
our COCP approach. For numerical computation, a computer with a
2.8-GHz Quad-Core i7 CPU and 16-GB RAM was used.

We consider four 4-D nonlinear vehicles (16-D): x(t) =
[x1(t); x2(t); x3(t); x4(t)] ∈ R16, xl(t) = [xl(t, 1); xl(t, 2); xl(t, 3);
xl(t, 4)] ∈ R4, and

ẋl(t) = f(t, xl(t), αl(t)) = [xl(t, 2); αl(t, 1) cos(αl(t, 2))

xl(t, 4); αl(t, 1) sin(αl(t, 2))]
(56)

where l ∈ {1, 2, 3, 4} is the agent index. xl(t, 1) and xl(t, 2) are
horizontal position and velocity in the 2-D space, xl(t, 3) and xl(t, 4)
are vertical position and velocity in the 2-D space, and αl(t, 1) and
αl(t, 2) are the magnitude of the acceleration and the angle of agent l,
respectively, at time t ∈ [0, 10].

Fig. 3. (a) 16-D nonlinear system with four vehicles attempting to
track their reference trajectories and maintain formation. The optimal
state trajectories are computed by our COCP and Algorithm 1. The
four vehicles start with a perfect square formation but compress their
formation to avoid obstacles. (b) Five numericals α1(·, 2) computed by
the five methods. Our COCP with Algorithm 1 shows control switching
behavior. Algorithm 2 mitigates this, demonstrating a similar value of the
sum of numerical derivatives of control signals with the other methods,
as shown in Table III.

We define an OCP where four agents attempt to track their own
reference trajectories while maintaining formation:

inf
α

∫ 10

0

4∑
l=1

dist(xl(t), xl
r(t))dt (57)

subject to

⎧⎪⎨
⎪⎩
(56), xl(0) = xl

0

αl(t, 1) ∈ [−2, 2], αl(t, 2) ∈ [−π
6
, π
6
]

c(x(t)) ≤ 0, t ∈ [0, 10], l = 1, . . ., 4

(58)

where dist(xl(t), xl
r(t)) is the position distance of the agent l from

its reference trajectory in l2 norm, the four reference trajectories xlr
are in a square formation at each time, xl

0 is an initial state for
each agent l, as shown in Fig. 3, and the state constraint function
c includes obstacles and agent-collision avoidance constraints (cobs

and ccol, respectively): c(x(t)) = max{cobs(x(t)), ccol(x(t))}, where
cobs(x(t)) = maxl=1,2,3,4 max{xl(t, 1), −xl(t, 3)}, ccol(x(t)) =

maxi<j{ci,jcol }, and ci,jcol encodes an affine constraint to prevent collision
between agent i and j, for example, c1,2col = −x1(t, 3) + x2(t, 3) + 0.2.

The COCP formulation from Theorem 1 is

inf
β

∫ 10

0

4∑
l=1

dist(xl(t), xl
r(t))dt (59)

subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẋl(t) = −βl(t), xl(0) = xl

0

βl(t, 1) = −xl(t, 2), βl(t, 3) = −xl(t, 4)

(βl(t, 2))2 + (βl(t, 4))2 ≤ 4, |βl(t, 4)| ≤ 1

c(x(t)) ≤ 0, t ∈ [0, 10], l = 1, . . ., 4

(60)

where β(t) = [β1(t);β2(t);β3(t);β4(t)] ∈ R16 and βl(t) =
[βl(t, 1);βl(t, 2);βl(t, 3);βl(t, 4)] ∈ R4, l = 1, . . ., 4. The COCP’s
stage cost (H∗) is the same as the OCP’s (L) by Corollary 1. The
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TABLE III
PERFORMANCE COMPARISON WITH VARIOUS METHODS

second and third lines in (60) are explicit expression for co(B(t, x(t))).
We apply the Hermite–Simpson collocation method to the COCP with
Algorithms 1 and 2, for which the interior-point method [10, Ch. 11]
is utilized.

Table III compares performance of various methods in terms of
cost, computation time, L2-norm of the numerical derivative of control
signal α̇ (which measures the degree of control-switching behavior),
and finally, the success rate of convergence from a random initial guess.
We do not compare with the HJ methods [4], Branch-and-Lift [6],
and control-set convexification methods [8] because the HJ method
and Branch-and-Lift are intractable to handle this 16-D system, and
control-set convexification method [8] assumes convex cost, linear
dynamics, and convex state constraints. The three previous methods in
Table III are directly applied to the OCP. For all five methods in Table III,
we utilize interior-point methods [10, Ch. 11]. For each method, we run
numerical solvers with ten different solution candidates and provide
averages and standard deviations (in parentheses) for each performance
measure, if applicable.

Algorithm 1 can been seen to outperform the other methods in terms
of optimal cost, and has a much smaller standard deviation. This is
because Algorithm 1 is guaranteed to find a solution for any initial
solution, whereas the other methods do not. Also, Algorithm 1 uses
less computation time than the other methods, with the exception of
PMP. This is because the dimension of decision variables for PMP is
significantly lower than the other four methods: unlike the rest, the
decision variables for PMP do not depend on the number of temporal
discretization points but rather just on the costate dimensions. However,
it is important to note that faster computation time for PMP comes at
the expense of solution success rate. The interior-point method fails
to find solutions to the PMP optimality conditions for 70% of initial
solution candidates; by contrast, the interior-point solver guarantees
convergence to the globally optimal solution for Algorithm 1, and
convergence to a locally optimal solution for the direct methods for
any initial solution candidate.

We propose further improvements to our method from a practical
standpoint, by addressing chattering behavior, which is caused by the
subdiscretization in Algorithm 1’s line 4. As shown in Fig. 3(b) and
Table III, our Algorithm 2 improves upon this aspect. In addition to
smoother control than Algorithm 1, COCP with Algorithm 2 continues
to have a better average and standard deviation in cost than the remain-
ing three methods, and less computation time than multiple shooting
and collocations.

For robustness of controls and real-time computation, our approach
can be combined with model predictive control (MPC) [15]. We demon-
strate our preliminary results in Table IV, which shows the computation
time of Algorithm 1 for each receding horizon, and the accumulated
cost in the full time horizon [0,10]. We run numerical solvers with ten
different solution candidates, and Table IV provides averages (with-
out parentheses) and standard deviations (with parentheses) for each
measure. Smaller receding horizon results in shorter computation time
in each horizon but worse cost. Typically, longer receding horizons
generally help satisfy constraints and find better cost.

TABLE IV
COMPUTATION TIME AND COST OF COCP-MPC

VI. CONCLUSION

This article proposes a convexification formulation (COCP) for
state-constrained OCP and presents two algorithms to compute optimal
solutions. It has been proved that our COCP provides the OCP’s
optimal cost and state trajectory without approximation. Also, our
first algorithm is guaranteed to find optimal solutions if the OCP’s
functions and constraints are convex in the state, and not necessarily
in the control. This condition is more general than multiple shooting,
collocation, and PMP’s optimality conditions. Our simulation supports
these results. The frequent control-switching behavior induced by our
method is mitigated by our second algorithm that adds one more
optimal-control-solving step. Although the additional OCP induces a
nonconvex problem, its optimal cost is known to be zero. Using this fact,
we can run optimizers with multiple solution candidates to find optimal
solutions. Our simulation shows that the second algorithm has a similar
level of control-switching behavior compared to collocation. Lastly,
we demonstrate receding-horizon techniques to COCP for real-time
computation.
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