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Novel Results on Output-Feedback LQR Design
Adrian Ilka , Member, IEEE, and Nikolce Murgovski

Abstract—This article provides novel developments in
output-feedback stabilization for linear time-invariant sys-
tems within the linear quadratic regulator (LQR) framework.
First, we derive the necessary and sufficient conditions for
output-feedback stabilizability in connection with the LQR
framework. Then, we propose a novel iterative Newton’s
method for output-feedback LQR design and a computa-
tionally efficient modified approach that requires solving
only a Lyapunov equation at each iteration step. We show
that the proposed modified approach guarantees conver-
gence from a stabilizing state feedback to a stabilizing
output-feedback solution and succeeds in solving high-
dimensional problems where other, state-of-the-art meth-
ods, fail. Finally, numerical examples illustrate the effective-
ness of the proposed methods.

Index Terms—Controller design, linear quadratic regu-
lator (LQR), linear time-invariant (LTI) system, Newton’s
method, output-feedback, stability.

I. INTRODUCTION

ONE of the most fundamental problems in the control
theory is the linear quadratic regulator (LQR) design prob-

lem [1]. The so-called infinite horizon linear quadratic problem
of finding a control function u(t) = −Kx(t) for x0 ∈ Rnx that
minimizes the cost functional

J =
1

2

∫ ∞

0

(
x(t)TQx(t) + uT (t)Ru(t)

+2xT (t)Nu(t)
)
dt (1)

with R > 0, Q−NR−1NT ≥ 0 subject to x(0) = x0, and

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(2)
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has been studied by many authors [1], [2], [3], [4], where
x(t) ∈ Rnx , y(t) ∈ Rny , and u(t) ∈ Rnu denote the state,
measurable output, and the control input vectors, respectively.
Furthermore, A ∈ Rnx×nx , B ∈ Rnx×nu , and C ∈ Rny×nx are
constant known matrices.

Often it is not possible or economically feasible to measure
all the state variables. In this case, an output-feedback control
law defined as

u(t) = −Fy(t) (3)

would be more beneficial. However, finding an optimal output-
feedback control law in the form (3), which minimizes (1),
is still one of the most important open questions in control
engineering, despite the availability of many approaches and
numerical algorithms, as it is pointed out in [5] and [6]. This
is mainly due to the lack of testable necessary and sufficient
conditions for output-feedback stabilizability.

Furthermore, the majority of algorithms for the output-
feedback LQR design are formulated in terms of linear matrix
inequalities (LMIs) [7], [8], [9], [10], [11], [12], [13], [14] or bi-
linear matrix inequalities (BMIs) [15], [16], [17], [18], [19], [20].
These algorithms are dependent on the used BMI/LMI solvers
and could work well for small/medium-sized problems, but may
fail to converge to a solution or become computationally too
heavy as the problem size increases [21]. In addition, available it-
erative numerical algorithms with guaranteed convergence, such
as [22] and [23], or algorithms using nonlinear programming
(NLP) such as [24] and [25], as well as the recently introduced
ray-shooting-method-based approaches, e.g., [21] and [26], un-
fortunately require a selection of an initial stabilizing output-
feedback gain. However, a direct procedure for finding such a
gain is unknown and could be hard to get, as highlighted in [5].
The author in [27] has proposed a state-feedback projection
theory to bypass the need of a stabilizing output-feedback gain.
However, the introduced iterative controller design problem re-
sults in a coupled nonlinear matrix equations, and conditions for
the existence and global uniqueness are neither introduced nor
discussed. Furthermore, the proposed Newton approach ensures
only sufficient conditions for output-feedback stabilizability.
Finally, the authors in [28] proposed an algorithm that iterates
a Riccati equation from an initial state-feedback solution, but it
applies to a restrictive problem description and its convergence
has not been proven.

In general, finding stabilizing static output-feedbacks (SOFs)
is suspected to be nondeterministic polynomial-time hard (NP-
hard), as it is discussed in [5], [21], and [26]. The problem is
known to be NP-hard if structural constraints or bounds are
imposed on the entries of the controllers, see, e.g., [29] and
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[30]. Furthermore, minimal-norm SOFs with bounded entries,
pole-placement, and simultaneous stabilization via SOFs are
also considered to be NP-hard (see [21], [29], and [31], respec-
tively). Moreover, the authors in [5] have reviewed results from
the computational complexity theory to suggest that “such hope
that someone can come up with an algorithm that can solve most
of the SOFs problems in practice may not be realistic, at least for
moderate and large-size problems.” This prediction/prognosis
from 20 years afar has been more or less proven since, as
described previously, after years of extensive research in this
filed, there are still unsolved problems, especially if we consider
large-size problems.

Even though most of the output-feedback problems are con-
sidered to be NP-hard, we have shown in our recent paper [32]
that within the LQR framework, it is possible to find SOFs in
a reasonable time even for large-scale systems. In this article,
we expand and complete our results from [32]. First, we derive
the necessary and sufficient conditions for output-feedback sta-
bilizability in connection with the LQR framework. Then, we
propose a novel iterative output-feedback LQR design approach
for linear time-invariant (LTI) systems, using Newton’s method.
Afterwards, we show that with a simple modification, a new
iterative algorithm can be obtained which has a guaranteed
convergence to an optimal output-feedback solution from any
stabilizing state-feedback solution. In addition, the proposed
modified algorithm requires solving only a Lyapunov equation
at each iteration step, which is computationally much more
tractable than algorithms in the literature, including approaches
based on LMIs, BMIs, NLP, and ray-shooting methods. Fi-
nally, we propose/review some simple and useful modifica-
tions/extensions.

The mathematical notation of this article is as follows. The
set of real and complex numbers are denoted by R and C,
respectively. Given a matrix C ∈ Rny×nx , its pseudoinverse is
denoted by C+. For matrices A,B ∈ Rnx×nx , their Hadamard
(Schur) and Kronecker products are denoted by A ◦B and
A⊗B, respectively. Matrices, if not explicitly stated, are as-
sumed to have compatible dimensions. The real part of a com-
plex number z is denoted by �(z). Finally, for any positive
integernx, thenx × nx identity and zero matrices are denoted by
Inx

, 0nx
∈ Rnx×nx , respectively. For matrices, ‖.‖ means any

matrix norm, consequently, ‖.‖F , and ‖.‖2 means the Frobenius
and induced 2-norm, respectively.

II. NECESSARY AND SUFFICIENT CONDITIONS FOR

OUTPUT-FEEDBACK STABILIZABILITY

This section formulates the necessary and sufficient condi-
tions for output-feedback stabilizability in the LQR framework,
essential for the main results.

Considering the system (2) and the output-feedback control
law (3), let us first recall some related terminology.

Definition 1: A square matrixA ∈ Rnx×nx is said to be stable
if and only if for every eigenvalue λi of A, �(λi) ≤ 0.

Definition 2: The pair (A,B) is said to be stabilizable if and
only if there exists a real matrixK ∈ Rnu×nx such thatA−BK
is stable.

Definition 3: The pair (A,C) is said to be detectable if and
only if there exists a real matrix L ∈ Rnx×ny such that A− LC
is stable.

Definition 4: The system (2) is said to be SOF stabilizable
if and only if there exists a real matrix F ∈ Rnu×ny such that
A−BFC is stable.

Then, the novel necessary and sufficient stability conditions
for output-feedback stabilizability in the LQR framework can
be formulated as follows.

Theorem 1: The system (2) is SOF stabilizable if and only if
the pair (A,B) is stabilizable, the pair (A,C) is detectable and
there exist real matrices F ∈ Rnu×ny and G ∈ Rnu×nx such
that

FC −R−1(BTP +NT ) = G (4)

where P ∈ Rnx×nx is the real symmetric positive semidefinite
solution of

ATP + PA+Q+GTRG

− (PB +N)R−1(BTP +NT ) = 0 (5)

for given Q ∈ Rnx×nx , N ∈ Rnx×nu , and R ∈ Rnu×nu matri-
ces satisfying [

Q, N
NT , R

]
≥ 0, R > 0. (6)

Proof: We will first prove the necessity of Theorem 1. As-
sume that A−BFC is stable for some F , i.e., the system (2) is
output-feedback stabilizable. Then, the pair (A,B) is stabiliz-
able sinceA−BK is stable forK = FC, and consequently, the
pair (A,C) is detectable, since A− LC is stable for L = BF .
Furthermore, because A−BFC is stable, there exists a unique
symmetric positive semidefinite matrix P (see Appendix A for
details), such that

(A−BFC)TP + P (A−BFC) +Q

+ CTFTRFC − CTFTNT −NFC = 0.
(7)

Rearranging (7), one can obtain

ATP + PA+Q

− (PB +N)R−1(BTP +NT )

+
(
FC −R−1(BTP +NT )

)T
R (FC

−R−1(BTP +NT )
)
= 0. (8)

Hence, setting G = FC −R−1(BTP +NT ) implies the ne-
cessity of Theorem 1.

Now assume that the pair (A,B) is stabilizable, the pair
(A,C) is detectable and there exist real matrices F and G
satisfying (4). From (4) and (5), it follows that (7) is satisfied.
From the second condition, it follows that A− LC is stable for
some L. Noting that

(A− LC) =

(
(A−BFC)− [L, −B]

[
C
FC

])
(9)
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it follows that the pair(
A−BFC,

[
C
FC

])
(10)

is detectable as well. SinceP is symmetric and positive semidef-
inite, we conclude from (7) that A−BFC is stable, and hence,
the sufficiency of Theorem 1 is proved as well. �

Remark 1: Similar conditions for output-feedback stabiliz-
ability have been obtained in [28, Th. 1], but for a restricted
problem formulation with Q = CTC, R = I , and N = 0.

From Theorem 1 follows that if the system (2) is output-
feedback stabilizable, then there exists a state feedback gain
K = FC such that A−BK is stable. If C is a square and non-
singular matrix, then we can easily express the output-feedback
gain as F = KC−1. However, for most of the output-feedback
problems, the matrix C is nonsquare, i.e., noninvertible. There-
fore, by expressing the output-feedback gain using a pseudoin-
verse asF = KC+, a so-called pseudoinverse error appears that
can be calculated as

G = FC −K (11)

which is identical to (4), since K = R−1(BTP +NT ). Hence,
from the aforementioned and the Theorem 1, it follows that if
the system (2) is output-feedback stabilizable, then for given
Q, R, and N matrices satisfying (6), there exists a real positive
semidefinite matrix P such that (5) is fulfilled for

G = FC −K = FC −R−1(BTP +NT ) (12)

F = KC+ = R−1(BTP +NT )C+. (13)

The next identity is straightforward and used later to obtain
the main results.

Identity 1: Suppose that F = R−1(BTP +NT )C+ and
G = FC −R−1(BTP +NT ). Then, the following statements
are identical:

1) R(P ) = ATP + PA+Q+GTRG

− (PB +N)R−1(BTP +NT ) (14)

2) R(P ) = Q̃+GTRG+ ÃTP + PÃ− PS̃P (15)

3) R(P ) = (A−BFC)TP + P (A−BFC) +Q

+ CTFTRFC − CTFTNT −NFC (16)

where Ã = A−BR−1NT , Q̃ = Q−NR−1NT , and
S̃ = BR−1BT .

Proof: The identity can be proved by substituting back all the
denotations. �

III. INFINITE HORIZON OUTPUT-FEEDBACK LQR DESIGN

Equations (14)–(16) are algebraic Riccati-like equations. In
general, Newton’s method and its modifications are widely used
to solve algebraic Riccati equations [33], [34], [35]. Inspired
by [33] and [34], in this section, we first propose a Newton’s-
method-based algorithm to design stabilizing SOF controllers.
Then, we show that by a simple modification, a computationally
similarly tractable stabilizing output-feedback controller design

approach can be obtained, while guaranteeing convergence from
any initial state-feedback LQR solution. Finally, after a short
sensitivity analysis, we show the relation of these approaches to
the infinite horizon output-feedback LQR problem (i.e., to find
a control law in the form (3), minimizing the cost function (1),
subject to system dynamics (2) and initial state x0).

A. Newton’s Method for Stabilizing SOF Controller Design

The Fréchet derivative of a matrix function
R : Fnx×nx → Fnx×nx at matrix P is a linear function
L : Fnx×nx → Fnx×nx , X → L(P,X) such that for all
X ∈ Fnx×nx

R(P +X)−R(P )− L(P,X) = o(‖X‖) (17)

where the norm is any matrix norm and F = R or C [36],
[37]. The Fréchet derivative, if it exists, can be shown to be
unique [38]. Consider R defined by the Riccati like matrix
equation (15). Then, its Fréchet derivative at the matrix P is
given by (see Appendix C)

L(P,X) = HT
1 (P )X +XH1(P ) +HT

2 (P )XZ

+ ZTXH2(P ) (18)

where Z = C+C, and

H1(P ) = Ã− S̃PZ −BR−1NTZ +BR−1NT (19)

H2(P ) = S̃PZ − S̃P +BR−1NTZ −BR−1NT . (20)

Now, we can formulate the Newton’s method in Banach space
(see [35] and [39]) for the solution of (15) as follows:

Pj+1 = Pj + (L(Pj , Xj))
−1R(Pj), j = 1, 2, . . . . (21)

Furthermore, we can compute Pj+1 directly from (21) as

Pj+1 = Pj +Xj , j = 1, 2, . . . (22)

where Xj is solved from

HT
1 (Pj)Xj +XjH1(Pj) +HT

2 (Pj)XjZ

+ ZTXjH2(Pj) = −R(Pj).
(23)

Equation (23) is a generalized Sylvester equation, which can be,
based on Identity 1, rewritten to the form

4∑
i=1

WjiXjUji = −R(Pj) (24)

where

Wj1 = AT − CTFT
j BT , Uj1 = I

Wj2 = GT
j B

T , Uj2 = Z

Wj3 = I, Uj3 = A−BFjC

Wj4 = ZT , Uj4 = BGj .

Lemma 1: Suppose that Ā ∈ Fm×n, B̄ ∈ Fp×q , and
X̄ ∈ Fn×p. Then,

vec(ĀX̄B̄) =
(
B̄T ⊗ Ā

)
vec(X̄). (25)
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Proof: For proof, see [40, Lemma 4.3.1, p. 254]. �
Definition 5: Since the Fréchet derivative L(P,X) is linear

in X , applying Lemma 1 to the left-hand side of (24) gives

vec(L(Pj , Xj)) =

(
4∑

i=1

Uj
T
i ⊗Wji

)
vec(Xj)

= KLj
vec(Xj)

(26)

whereKL ∈ Fn2
x×n2

x is called the Kronecker form of the Fréchet
derivative.

The generalized Sylvester equation (24) has a unique solution
if and only if KL is nonsingular. In this case, the solution can be
obtained analytically as

vec(Xj) = K−1
Lj

vec(−R(Pj)) (27)

or can be approximated either by gradient-based iterative meth-
ods (such as [41], [42], and [43]), or by any other methods in
the literature.

The proposed Newton’s method for the SOF controller design
using (22) and (23) is summarized in Algorithm 1.

Remark 2: It follows from (24) that ifC = I , thenZ = I and
the generalized Sylvester equation (24) reduces to

(A−BKj)
TX +X(A−BKj) = −ATPj − PjA

−Q+ (BTPj +NT )TR−1(BTPj +NT ). (28)

Hence, the Algorithm 1 becomes equivalent to [34, Algorithm
1.1] for the state-feedback LQR design.

Remark 3: Algorithm 1 has a termination condition that de-
pends on a constant ε > 0, ε → 0, which describes the expected
tolerance on the numerical solution. For example ε = 10−d

means d digit desired accuracy in the numerical solution.
The results from this subsection are used only as an inter-

mediate step to obtain the main results, the modified Newton’s
method. Therefore, global convergence and existence of a sta-
bilizing solution remains to be proven. Although, standard local
q-quadratic convergence results for Newton’s method apply [41,
Th. 5.2.1], as detailed in [42, Th. 1]. In particular, if Newton’s

method is started sufficiently close to a solvent for which the
Fréchet derivative is nonsingular, the iteration converges with a
quadratic rate. The Kantorovich theorem can also be applied to
provide sufficient conditions for the existence of a solvent and
convergence of Newton’s method to that solvent [41, Th. 5.3.1].

Remark 4: Based on standard results for Newton’s method
(see [41, Th. 5.2.1] and [42, Th. 1]), Algorithm 1 requires an
initial guess P1 = PT

1 , which is close enough to a solvent for
which the Fréchet derivative (i.e., KL) is nonsingular. However,
a direct procedure to get such initial guess is out of the topic of
this article, since the results from this subsection are only used
as an intermediate step to obtain the main results, the modified
Newton’s method.

In the next subsection, we show that with a simple mod-
ification, a new iterative algorithm can be obtained that has
a guaranteed convergence from any stabilizing state-feedback
solution to an output-feedback solution.

B. Modified Newton’s Method for Stabilizing SOF
Controller Design

In order to calculate the Newton step in the Algorithm 1, we
need to solve the generalized Sylvester equation (24). In this
subsection, we show that with a simple modification, we can
approximate the Newton step and converge to a solution with
similar computational effort, but with a guaranteed convergence
from any state-feedback solution.

By freezing the matrix G in (15), the term GTRG becomes
a constant during an iteration step and the Fréchet derivative
reduces to

L̂(Pj , Xj) = (Ã− S̃Pj)
TXj +Xj(Ã− S̃Pj) (29)

and the Newton’s method to

(Ã− S̃Pj)
TXj +Xj(Ã− S̃Pj) = −R(Pj) (30)

Pj+1 = Pj +Xj , j = 1, 2, . . . . (31)

Equation (30) is a Lyapunov equation, which can be solved
efficiently and with much less computational effort than solving
(24) with (27) or with other iterative methods.

The Algorithm 2 summarizes the proposed modified New-
ton’s method for the SOF controller design using (29)–(31).

1) Convergence: In this subsubsection, we show that under
certain assumptions, Algorithm 2 has a guaranteed convergence
from a stabilizing starting guess P1 (i.e., Ã− S̃P1 is stable for
some Q̃ ≥ 0), to a stabilizing output-feedback solution.

Let us recall some results relating to the convergence proof.
Definition 6: The inertia of a matrix W ∈ Rn×n is the

triple In(W ) = (π(W ), ν(W ), δ(W )), where π(W ), ν(W ),
and δ(W ) are the number of eigenvalues with positive, negative,
and zero real part, respectively [44, p. 7].

Lemma 2: If H = HT ∈ Rn×n, A ∈ Rn×n, and W > 0 ∈
Rn×n satisfy AH +HAT = −W ≤ 0, and δ(A) = 0, then
In(−H) ≤ In(A). �

Proof: For proof see [45, Proposition 1, p. 447].
Lemma 3: Let H = HT ∈ Rn×n, A ∈ Rn×n, W > 0 ∈

Rn×n, and C ∈ Rl×n satisfy AH +HAT = −W ≤ CTC,
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where (A,C) defines a detectable pair. Then, ν(A) = n if and
only if ν(H) = 0.

Proof: For proof, see [44, Lemma 8, p. 7]. �
The next Proposition shows that if the conditions described in

Theorem 1 hold, then with a stabilizing starting guess (P1) the
Algorithm 2 cannot fail due to a singular Lyapunov operator.

Proposition 1: Suppose that the conditions in Theorem 1
hold, and the pair (Ã, C̃q) is detectable, where Q̃ = C̃T

q C̃q is a

full-rank factorization of Q̃. IfP1 is stabilizing, and Algorithm 2
is applied to (15), then the Lyapunov operator of the Lyapunov
equation in step 7 from Algorithm 2 is nonsingular for all j and
the sequence of approximate solutions Xj is well defined.

Proof: Suppose that the pair (Ã, C̃q) is detectable. From step
7 from Algorithm 2 applied to (15), we can get

(Ã− S̃Pj)
T (Pj +Xj) + (Pj +Xj)(Ã− S̃Pj)

= −Q̃−GT
j RGj − PjS̃Pj ≤ −Q̃ (32)

since Q̃ and S̃ are positive semi-definite, due to Q−
NR−1NT ≥ 0 and R > 0. From (32) follows that if Ã− S̃Pj

is stable, then Ã− S̃(Pj +Xj) is also stable. Furthermore,
Lemma 3 implies that Pj +Xj is positive semidefinite. The
Lyapunov operator corresponding to the Lyapunov equation in
step 7 from Algorithm 2 is well defined, precisely as

Ω̃j(Xj) = (Ã− S̃Pj)
TXj +Xj(Ã− S̃Pj) (33)

for Xj ∈ Rnx×nx and j = 1, 2, . . ..
Let us recall the following Lemma. �
Lemma 4: Suppose that {Pj}∞j=2 is a sequence of symmetric

matrices such that {R(Pj)}∞j=2 is bounded. If the pair (Ã, B)

is stabilizable and Ã− S̃Pj is stable for each j = 2, . . ., then
{Pj}∞j=2 is bounded.

Proof: For proof, see [34, Lemma 2.3, p. 696]. �
Remark 5: If R(Pj) �= 0, i.e., if Pj is not a solution of (15),

then the Newton step (of Algorithm 2) is a descent direction of
‖R(Pj +Xj)‖F . It follows that we have ‖R(Pj +Xj)‖F ≤
‖R(Pj)‖F and ‖R(Pj +Xj)‖F = ‖R(Pj)‖F if and only if
R(Pj) = 0. That is, the residual decreases as long as Pj is not
a solution of (15).

Remark 6: It is important to note that P1 ≥ P2, where P1

is the initial guess, is not true in general. This is one of the
drawbacks of Newton’s methods. In [33] and [34], the authors
have introduced a step-size control (for state-feedback LQR
design), which can efficiently solve the problem of a potentially
disastrous first Newton step.

Collecting the results so far, we have the following conver-
gence result for the modified Newton’s method.

Theorem 2: Suppose that the pair (Ã, B) is stabilizable, the
pair (Ã, C̃q) is detectable, and there exist real matrices F and G
such that FC −R−1(BTP +NT ) = G. If Algorithm 2 is ap-
plied to (15) with a stabilizing starting guess P1 (i.e., Ã−BK1

is stable for some Q̃ ≥ 0), then P ∗ = limj→∞ Pj exists and is
the stabilizing solution of the generalized Riccati-like equation
(15).

Proof: The proof follows from Theorem 1, Lemmas 2, 3, and
4, and Proposition 1. �

Remark 7: The assumption that the pair (Ã, C̃q) is detectable,
where Q̃ = C̃T

q C̃q is a full-rank factorization of Q̃, is a require-
ment even for the standard state-feedback LQR design.

Remark 8: If C = I , then G = 0 and the Algorithm 2 be-
comes equivalent to [34, Algorithm 1.1] for the state-feedback
LQR design (or to [33, Algorithm 1], if we require controllability
of the pair (Ã, B) and observability of the pair (Ã, C̃q)).

Remark 9: From Theorem 2 follows that the convergence
rate of Algorithm 2 is at least sublinear. We have observed from
the examples studied later in Section V that the convergence
rate is in fact linear, if Ã− S̃P ∗ has no eigenvalues on the
imaginary axis, although further investigation is needed for a
formal proof. If Ã− S̃P ∗ has eigenvalues on the imaginary
axis, the convergence behavior remains an open problem (as
it is still an open problem even for the standard state-feedback
LQR design; see, for example, [34, Remark 1.1]).

Remark 10: If the system (2) is stabilizable and (Ã, C̃q) is
detectable, then the standard state-feedback LQR solution for
(2) for some Q̃ ≥ 0 always gives a P1 for which Ã− S̃P1 is
stable.

C. Sensitivity Analysis

It is well known that the Newton’s-method-based approaches,
in general, are highly sensitive to ill-conditioning. Condition
numbers measure the sensitivity of a problem to perturba-
tion in the data. The unstructured absolute condition number
cond(R(P )) can be expressed in terms of the Fréchet derivative
of R(P ) in (15), evaluated at P

cond(R(P )) = max
X �=0

‖L(P,X)‖
‖X‖ =: ‖L(X)‖. (34)
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By applying a Frobenius norm

cond(R(P )) = max
X �=0

‖L(P,X)‖F
‖X‖F

= max
X �=0

‖vec (L(P,X)) ‖2
‖vec(X)‖2

= ‖KL‖2 (35)

the problem of computing cond(R(P )) reduces to finding the
2-norm of KL. The relative condition number of R(P ) at P ,
denoted by rcond(R(P )), can be written in terms of the absolute
condition number cond(R(P )) (see, [46, Sec. 2, p. 776]) as

rcond(R(P )) = cond(R(P ))
‖P‖

‖R(P )‖ . (36)

For structured condition numbers of R(P ) at P , as well as for
level-2 condition numbers using higher order Fréchet deriva-
tives, see [46] and [47] and references therein. The effect of
condition numbers on convergence will be investigated later in
Section V.

D. Connection to Infinite-Horizon LQR With Output
Feedback

This subsection describes the relation of Algorithms 1 and 2 to
infinite-horizon LQR with output feedback. First, let us recall the
necessary conditions for the solution of the LQR problem with
output feedback, i.e., the existence of a control law in the form (3)
minimizing (1) subject to (2) with R > 0, Q−NR−1NT ≥ 0
and x(0) = x0.

Lemma 5: The necessary conditions for the solution of the
LQR problem with output feedback are given by

0 = AT
c P + PAc +Q+ CTFTRFC − CTFTNT

−NFC (37)

0 = AcY + Y AT
c + Xx0

(38)

0 = RFCY CT − (BTP +NT )Y CT (39)

with Xx0
= x0x

T
0 and Ac = A−BFC.

Proof: For proof, see [48, p. 297–302]. �
The dependence of Xx0

in (38) in the initial states x0 makes
the optimal gain dependent on the initial state through (38). In
many applications, x0 may not be known (which is typical for
the output-feedback design, as it is pointed out in [48]). It is usual
(see, for example, [49]), to sidestep this problem by replacing

Xx0
≡ E{Xx0

} (40)

where E{Xx0
} = E{x0x

T
0 } is the initial autocorrelation of the

state. Usually, it is assumed that nothing is known of x0 except
that it is uniformly distributed on a surface described by Xx0

.
Most of the papers on the output-feedback LQR design assume
that the initial states are uniformly distributed on the unit sphere,
i.e., Xx0

= I (e.g., [14], [18], [48], and [50]).
The next theorem describes how Algorithms 1 and 2 are

connected to the initial condition problem described previously.

Theorem 3: The solution of Algorithms 1 and 2 satisfies the
necessary conditions described by (37)–(39) in Lemma 5 if and
only if Y = I and Xx0

= −Ac −AT
c .

Proof: From (39), it follows that

F = R−1(BTP +NT )Y CT (CY CT )−1. (41)

By assuming that Y = I , (41) reduces to

F = R−1(BTP +NT )CT (CCT )−1

= R−1(BTP +NT )C+ (42)

which is identical to the step 3 in Algorithms 1 and 2. Further-
more, from (38) for Y = I , it follows that

Xx0
= −Ac −AT

c . (43)

Finally, setting G = FC −R−1(BTP +NT ) and by rearrang-
ing (37), we can get (14), which is equivalent (see Identity 1)
to the step 5 in Algorithms 1 and 2. Hence, the proof is
completed. �

Remark 11: The initial state x0 is generally free and so is Y ,
which is a function of Xx0

. Hence, instead of guessing Xx0
= I ,

we may guess forY = I , and thus, the nonlinearity inY in (37)–
(39) disappears. So, one can get a simple Riccati-like equation
(37), which can be solved easily using Algorithm 1 or 2.

A direct comparison of setting Xx0
= I versus Y = I will be

investigated in Section V.

E. Output-Feedback LQR Problem With Known Initial
Conditions

In the previous Section III-D, we have shown the relation of
Algorithms 1 and 2 to output-feedback LQR problem, and that
the proposed algorithms involve less nonlinearities compared to
other approaches in the literature when the initial conditions are
not given priory, i.e., x0 is unknown. In this subsection, we show
(see Algorithm 3) how the Algorithm 2 can be extended if the
initial conditions are known.

The numerical examples in Section V suggest that Algo-
rithm 3 converges to a solution if R(P ) is well-conditioned. But
at this writing, we are not aware of a proof for this conjecture.
Although, if Xx0

= x0x
T
0 is symmetric and positive definite,
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and if all uncontrollable state variables of the system (2) are
asymptotically stable, then Ac is negative definite. Hence, Yi+1

exists and is symmetric and positive definite. It follows that Yi+1

has a full rank and if CYi+1C
T is nonsingular, the Lyapunov

operator corresponding to the Lyapunov equation in step 7 from
Algorithm 3 is well defined, precisely as

Ωi(Yi+1) = AcYi+1 + Yi+1A
T
c + Xx0

(44)

for Yi+1 ∈ Rnx×nx and i = 1, 2 . . .. Hence, Algorithm 3 cannot
fail due to a singular Lyapunov operator in step 7. Therefore, if in
step 3 of Algorithm 3, the Algorithm 2 succeeds in finding Fi at
each step, then Algorithm 3 produces a sequence of symmetric
matrices {Yi}∞i=2 and limi→∞ Yi = Y ∗, whereY ∗ is the solution
satisfying (37)–(39).

IV. USEFUL TECHNIQUES, EXTENSIONS, AND

MODIFICATIONS

The control law (3) is defined in an SOF form. Many differ-
ent controller structures can be transformed to this SOF form,
like proportional-integral (PI), realizable proportional-integral-
derivative (PIDf ), realizable proportional-derivative (PDf ),
realizable derivative (Df ), even full/reduced order dynamic
output-feedback controllers (DOF), dynamic output-feedback
with integral and realizable derivative part (DOFIDf ), or dy-
namic output-feedback with realizable derivative part (DOFDf ),
by augmenting the system with additional state variables. For
more information, see [14].

Since the proposed algorithms (Algorithms 1–3) belong to the
LQR framework, all the well-known techniques, modifications,
and extensions of the standard LQR design can be applied here
as well. Therefore, one can apply the following:

1) Bryson’s rules [51, Sec. 5.2] for selecting the weighting
matrices Q and R;

2) methods/techniques in [48] for damping, decoupling,
tracking, disturbance rejection, etc., controller design;

3) techniques in [52] for different eigenvalue placements
(pole-placement techniques in LQ) and guaranteed con-
vergence rate;

4) techniques in [53] and [54] for frequency weighting (fre-
quency shaped LQ);

5) some other methods/techniques in the LQR framework;
see, e.g., [48] and [51] and references therein.

V. NUMERICAL EXAMPLES

In order to show the viability of the previous proposed algo-
rithms (Algorithms 1–3), we have prepared two sets of examples.
The first set of examples contains 1000 randomly generated SOF
stabilizable state-space systems (via MATLAB’s rss subrutin).
The second set of examples are all the SOF stabilizable examples
from the COMPleib library [55].

As algorithms to be compared, the iterative LMI (iLMI)
method from [14] and the BMI formulation of the output-
feedback LQR (OFLQR) problem (see Appendix B, Lemma 7)
have been chosen. All examples and numerical solutions
have been carried out on ASUS ZenBook UX480F (Intel(R)
Core(TM) i7-8565 U CPU at 1.80 GHz, 16-GB RAM) laptop
computer using MATLAB 2018b [56]. Furthermore, BMI and

TABLE I
GROUPS OF EXAMPLES IN THE FIRST SET OF EXAMPLES

iLMI formulations have been carried out by the Penlab BMI
solver v. 1.04 [57] and by Mosek LMI solver v. 9.0.103 [58]
using YALMIP R20190425 [59]. Finally, the proposed algo-
rithms (Algorithms 1–3) have been implemented in MATLAB
programming language (see Listing 1–3), where for the Algo-
rithms 2 and 3, for the step 7, the built-in MATLAB lyap subrutin
has been used, and for the Algorithm 1, for the step 7, (27) is used.
Furthermore, in order to simplify the code of the Algorithm 2,
the Identity 1 has been used and (15) has been replaced with
(16).

MATLAB implementations and examples are fully provided
in Listing 1–3. The first set of examples, can be downloaded
from repository,1 while the second set of examples are all the
SOF stabilizable plants from the COMPleib library, which is
freely available (see [55]).

A. First Set of Examples

The first set of examples contains 1000 SOF stabilizable
examples in ten groups generated by MATLAB’s rss subrutin.2

Each group represents 100 examples with different size of
system order (see Table I). Hence, we can test the behavior and
effectiveness of the proposed algorithms and compare them to
other output-feedback algorithms in the LQR framework for
increasing number of states.

The weighting matrices have been chosen as Q = CTC,
R = I , and N = 0. The initial Lyapunov matrix for Algo-
rithms 1–3 is the optimal Lyapunov matrix from the standard
state-feedback LQR design. The stopping criterion and maxi-
mal iteration number for Algorithms 1–3 have been chosen as
ε = 10−12 and maxIteration = 9× 106. Finally, for Algorithm 3
and for the iLMI and BMI methods, the initial state matrix has
been chosen as Xx0

= I , i.e., it has been assumed that the initial
states are uniformly distributed on the unit sphere.

The effect of increasing the number of states on the running
time of one iteration and on the number of iterations of Al-
gorithms 1 and 2 are shown in Figs. 1 and 2. The effect of
increasing the number of states on the rcond(R(P )) and on the
number of iterations of Algorithms 1 and 2 is shown in Fig. 3. It
can be observed that the number of iterations, and therefore, the
overall running times of Algorithms 1 and 2 are sensitive to the
relative condition number of (14) (rcond(R(P ))). That was to be
expected, since it is well known that the Newton’s-method-based
approaches, in general, are sensitive to ill-conditioning. The
effect of increasing the number of states on the average running
times and on solved examples of Algorithms 1–3, and of the
iLMI and BMI methods are shown in Fig. 4. It can be observed

1https://www.ilka.eu/FirstSetOfExamples.zip
2The MATLAB’s rss subrutin generates a random stable system, therefore

all the examples are SOF stabilizable as well (since one can select the output-
feedback gain as zero and the closed-loop system will be stable).
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Fig. 1. Effect of increasing the number of states on the running time of
one iteration and on the number of iterations of Algorithm 1.

Fig. 2. Effect of increasing the number of states on the running time of
one iteration and on the number of iterations of Algorithm 2.

that the Algorithm 2 outperformed all the other algorithms and
methods since it has solved all the examples in this test set, while
the running time was very close or sometimes better than the run-
ning time of Algorithm 1. Furthermore, it can be observed that
even though for the Algorithm 1 we do not have a convergence
proof from a state-feedback solution (as for Algorithm 2), it has

Fig. 3. Effect of increasing the number of states on the rcond(R(P ))
and on the number of iterations of Algorithms 1 and 2.

solved many more examples than the iLMI or the BMI methods.
Furthermore, Algorithm 3 for nx ≥ 30 failed to converge to a
solution for few examples. It should be noted that for all those
examples the rcond(R(P )) > 1010, and even the Algorithm 2
has struggled, since the number of iterations for those examples
was higher than 104, while for the rest of the examples in those
groups was smaller with almost 1 or 2, sometimes with 3–4
orders of magnitude. This is the reason for that large trajectory
of number of iterations of Algorithm 2 in Fig. 2 for nx > 10.

Finally, Fig. 5 compares how far the actual linear quadratic
cost is for some randomly generated initial state conditions (x0

within a unit sphere) forXx0
= I and forY = I from the optimal

output-feedback cost (minimizing the linear quadratic cost for
the givenx0). It can be observed that the distribution of distances
from the optimal cost for different initial conditions for Y = I ,
i.e., for Algorithm 2, is comparable with the choice of setting
Xx0

= I . Hence, Algorithm 2 is a viable approach for the output-
feedback LQR design with unknown initial conditions.

B. Second Set of Examples

The second set includes all the continuous-time SOF stabiliz-
able examples from the COMPleib library [55] (see Table II),
i.e., all the examples expect the ten reduced-order control (ROC)
instances, and the four examples pointed out in [60], which
are not continuous-time stabilizable (REA4, NN3, NN10, and
NN12, indicated with the a superscript in Table II). This rich-full
library contains benchmark examples from a wide spectrum
of real-world applications and academic problems even with
nx > 4000. Therefore, we can test the behavior and effective-
ness of our proposed algorithms on large-scale stable/unstable
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TABLE II
OUTPUT-FEEDBACK LQR BENCHMARKS ON COMPleIB PLANTS

plants as well. For better highlighting the benefits of the proposed
methods, the iLMI and the BMI formulation have been evaluated
on the COMPleib library as well.

The weighting matrices for all examples have been chosen as
Q = CTC + αI , R = I , and N = 0, where α = 10−9. The αI

has been introduced to ensure the positive-definiteness of the Q
matrix, as most of the examples in the COMPleib library are
ill-conditioned causing the CTC to became negative definite
due to numerical errors. The initial Lyapunov matrix for the
Algorithm 2 is the optimal Lyapunov matrix from the standard
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Fig. 4. Effect of increasing the number of states on the average run-
ning times and on solved examples of Algorithms 1–3, and of the iLMI
and BMI methods.

Fig. 5. Distributions of distances from optimal cost for different initial
conditions.

state-feedback LQR design. Furthermore, the stopping criterion
and maximal iteration number for Algorithm 2 have been chosen
as ε = 10−12 and maxIteration = 9× 106. For the iLMI and
BMI methods, theXx0

has been chosen asXx0
= I , and all other

solver related parameters for the Mosek LMI and Penlab BMI
solvers have been kept as default.

The results summarized in Table II indicate that the proposed
approach is superior compared to BMI and iLMI formulations.
While the proposed Algorithm 2 has solved 92% (101/110)
of the examples, the iLMI formulation 63% (59/110) and the
BMI formulation only 17% (19/110). That is, Algorithm 2
solved 71% more examples than iLMI, and 432% more than the
BMI method. In addition, even with the built-in MATLAB lyap
subrutin, which is not well-suited for large-scale problems, we
were able to solve examples with order higher than 4000 within
minutes. The LAH example, see Table II, well demonstrates that

the proposed approach is computationally much more tractable
than approaches based on LMIs and/or BMIs . While the Algo-
rithm 2 converged to a solution in 1.23ms, it took 31.20 s for
the iLMI formulation, and 8.28 h for the BMI one.

The results with Algorithm 2 can be further divided into four
groups.

1) Examples that can be solved without any problem with
the Algorithm 2 (73%, 80/110 examples).

2) Examples where we had to use the balreal MATLAB
subrutin to balance the system matrices in order to get
convergence to a solution with the Algorithm 2 (19%, 21
examples: AC9, AC14, HE5, JE1, JE2, JE3, TG1, WEC1,
WEC2, WEC3, UWV, TF1, CDP, NN5, NN13, NN14,
HF2D1, HF2D2, HF2D5, HF2D6, HF2D7, and HF2D8).
These examples are also indicated with the b superscript
and with gray color in Table II.

3) Examples where we had to allow large maximal iteration
number (>109) in order to converge to a solution with the
Algorithm 2 (2%, two examples: AC9 and CDP).

4) Examples where the Algorithm 2 has failed to converge
to a solution (8%, nine examples: AC10, AC13, AC18,
HE1, TF3, NN6, NN7, NN9, and NN17).

The COMPleib library well demonstrates that without proper
regularization or preconditioning, the proposed algorithms may
fail to converge due to numerical issues. The same is true for
the iLMI and BMI methods. Table II also indicates that with
system balancing (in our case with the built-in MATLAB balreal
subrutin), we are able to solve 26% more examples with the Al-
gorithm 2 than without any system balancing. This number can
be further increased by preconditioning the Lyapunov/Sylvester
equation within the Newton’s method similarly as in [35]. Fur-
thermore, the proposed approach can be easily extended with
exact line-search, similarly as it is done in [33] and [34] to speed
up the convergence and to reduce the overall running time even
further.

In Remark 9, we have discussed that the convergence rate of
the Algorithm 2 is at least sublinear. However, we have observed
from the aforementioned examples that the convergence rate is
in fact linear, if Ã− S̃P ∗ has no eigenvalues on the imaginary
axis. Convergence rates of the proposed Algorithms 1 and 2 on
different COMPleib plants (AC3, AC4, and DIS2), for initial
Lyapunov matrices obtained from the standard state-feedback
LQR design, are shown in Figs. 6 and 8. Convergence rates of
the Algorithms 1 and 2 on the COMPleib plant AC3 for random
initial Lyapunov matrices are shown in Figs. 7 and 9. From the
figures, it can be observed that the convergence rate is quadratic
for Algorithm 1 and is linear for Algorithm 2, if the initial
Lyapunov matrix is calculated by the standard LQR design,
and that it becomes quadratic/linear in the neighborhood of the
solution when the Lyapunov matrix is randomly initialized.

In summary, the proposed algorithms, unlike other methods
based on linear/bilinear matrix inequalities, NLPs, and ray-
shooting methods, can solve almost all the SOF examples in
the COMPleib library (most of them within milliseconds). Until
now it has been achieved only by some multivariate direct
search methods applied to SOF stabilization in [60]. However,
the author’s attention in that publication was restricted to SOF
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Fig. 6. Convergence rate of the Algorithm 2 on COMPleib plants AC3,
AC4, and DIS2. The initial Lyapunov matrix is obtained by the standard
state-feedback LQR design. It can be observed that the convergence
rate is linear.

Fig. 7. Convergence rate of the Algorithm 2 on COMPleib plant AC3
for random initial Lyapunov matrices. It can be observed that the con-
vergence rate becomes linear in the neighborhood of the solution.

Fig. 8. Convergence rate of the Algorithm 1 on COMPleib plants AC3,
AC4, and DIS2. The initial Lyapunov matrix is obtained by the standard
state-feedback LQR design. It can be observed that the convergence
rate is quadratic.

Fig. 9. Convergence rate of the Algorithm 1 on COMPleib plant AC3
for random initial Lyapunov matrices.

stabilization only, i.e., no attempt was made to optimize closed-
loop performance criteria relevant to control engineering. For
more comparison, the readers are referred to [61], where the
authors have evaluated different controller design approaches on
the COMPleib library (including frequency-domain approaches
minimizing H∞ and/or H2 norms as well).

VI. CONCLUSION

This article provides novel results on the SOF controller
design for LTI systems in the LQR framework. Even though most
of the output-feedback control problems are considered to be
NP-hard, we show that within the LQR framework, it is possible
to find SOFs in sublinear (linear) time even for large-scale
systems. The proposed framework, with novel necessary and
sufficient conditions for output-feedback stabilizability, opens
the possibility to use well-known methods, such as the Newton’s
methods, to design SOFs with guaranteed convergence from
a stabilizing state-feedback solution to a stabilizing output-
feedback solution. Hence, we can get computationally efficient
approaches that succeed in solving high-dimensional problems
where other, state-of-the-art methods fail.

The usability, tractability, and effectiveness is also verified on
more than 1000 numerical examples in addition to all the SOF
stabilizable plants from the COMPleib library. The proposed
Algorithm 2, unlike other methods based on linear/bilinear ma-
trix inequalities, NLPs, can solve almost all the SOF examples
in the COMPleib library (most of them within milliseconds).
Along this line, numerical results also indicate that the proposed
algorithms suffer from the well-known drawbacks of Newton’s
methods. Therefore, regularization and proper scaling is needed
to improve the usability of the proposed approaches for ill-
conditioned problems.

In terms of future works, the Lyapunov equation can be
preconditioned within the Newton’s method similarly as in [35],
and the proposed approaches can be easily extended with exact
line search, similarly as it is done in [33] and [34].

APPENDIX A
EXISTENCE OF P ≥ 0

Lemma 6: Let F ∈ Rnu×ny be given such that A−BFC
is stable. Substitution of u(t) = −Fy(t) = −FCx(t) into the
cost function (1) gives

J =

∫ ∞

0

x(t)T
(
Q+ CTFTRFC − CTFTNT

−NFC)x(t)dt. (45)

Since Q+ CTFTRFC − CTFTNT −NFC ≥ 0, because
R > 0 and Q−NR−1NT ≥ 0, and since A−BFC is stable,
it follows that the Lyapunov equation:

(A−BFC)TP + P (A−BFC)

= −Q− CTFTRFC + CTFTNT +NFC
(46)

has a unique solution P ≥ 0.
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Proof: For proof, see [62, Lemma 12.1, p. 283]. �

APPENDIX B
BMI FORMULATION OF THE OFLQR DESIGN PROBLEM

Lemma 7: The SOF LQR design problem can be formulated
as the following optimization problem:

min
F,P

(xT
0 Px0) (47)

subject to BMI and LMI constraints

(Ã−BFC)TP + P (Ã−BFC)

+ Q̃+ CTFTRFC ≤ 0 (48)

P ≥ 0. (49)

Proof: Assume that the Lyapunov candidate

V (x(t)) = x(t)TPx(t) (50)

is positive semidefinite. Then, from the Bellman–Lyapunov
inequality

V̇ (x(t)) + J(x(t)) ≤ 0 → V̇ (x(t)) ≤ −J(x(t)) (51)

where

J = x(t)T Q̃x(t) ≥ 0 (52)

which indicates that the closed-loop system is stable. Integrating
both sides from 0 to ∞, we can obtain the upper bound of the

cost function

J∞ ≤ V (x(0))− V (x(∞)) ≤ x(0)TPx(0) (53)

which completes the proof. �

APPENDIX C
FRÉCHET DERIVATIVE OF (15)

By substituting back F = R−1(BTP +NT )C+, G =
FC −R−1(BTP +NT ), S̃Q = NR−1NT , and S̃A =
BR−1NT to (15), and perturbing with X , we can get

R(P +X) =

+ Q̃+ ÃT (P +X) + (P +X)Ã

− (P +X)S̃(P +X) + ZT (P +X)S̃(P +X)Z

+ ZT (P +X)S̃AZ − ZT (P +X)S̃(P +X)

− ZT (P +X)S̃A + ZT S̃T
A(P +X)Z

+ ZT S̃QZ − ZT S̃T
A(P +X)− ZT S̃Q

− (P +X)S̃(P +X)Z − (P +X)S̃AZ

+ (P +X)S̃(P +X) + (P +X)S̃A

− S̃T
A(P +X)Z − S̃QZ + S̃T

A(P +X) + S̃Q. (54)
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By rearranging (54), we can get

R(P +X) = R(P ) + (Ã− S̃PZ + S̃A − S̃AZ)TX

+X(Ã− S̃PZ + S̃A − S̃AZ)

+ (S̃PZ − S̃P + S̃AZ − S̃A)XZ

+ ZTX(S̃PZ − S̃P + S̃AZ − S̃A)

+ ZTXS̃XZ − ZTXS̃X −XS̃XZ. (55)

Denoting

H1(P ) = (Ã− S̃PZ + S̃A − S̃AZ)

H2(P ) = (S̃PZ − S̃P + S̃AZ − S̃A)

L(P,X) = HT
1 (P )X +XH1(P ) +HT

2 (P )XZ

+ ZTXH2(P )

Eo(X) = (ZTXS̃XZ − ZTXS̃X −XS̃XZ)

we get R(P +X) = R(P ) + L(P,X) + Eo(X), or
R(P +X)−R(P )− L(P,X) = Eo(X). If P is the
solution of (15), then ‖R(P +X)‖F = ‖R(P )‖F = 0,
and consequently, ‖X‖F = 0. From this, follows that
lim‖X‖F→0 ‖Eo(X)‖F = 0, and L(P,X) is the Fréchet
derivative of (15) at P .
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