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A Small-Gain Theory for Abstract Systems
on Topological Spaces

Michelangelo Bin , Member, IEEE, and Thomas Parisini , Fellow, IEEE

Abstract—We develop a small-gain theory for systems
described by set-valued maps between topological spaces.
We introduce an abstract notion of stability unifying the
continuity properties underlying different existing con-
cepts, such as Lyapunov stability of equilibria, sets, or mo-
tions, (incremental) input–output stability, asymptotic gain
properties, and continuity with respect to fast-switching
inputs. Then, we prove that a feedback interconnection en-
joying a given abstract small-gain property is stable. While,
in general, the proposed small-gain property cannot be
decomposed as the union of stability of the subsystems
and a contractiveness condition, we show that it is implied
by standard assumptions in the context of input-to-state
stable systems. Finally, we provide application examples
illustrating how the developed theory can be used for the
analysis of interconnected systems and design of control
systems.

Index Terms—Abstract systems, small-gain theorem, sta-
bility theory.

I. INTRODUCTION

IN ALL their different facets and variants, small-gain the-
orems constitute one of the most powerful classes of tools

for the analysis of interconnected systems and the design of
control schemes. The development of small-gain results can be
traced back at least to the 60’s in the context of input–output
operators between (extended) normed spaces of signals. See, for
instance, [1, Ch. III], [2], [3], and the subsequent extensions to
nonlinear [4], [5], [6], stochastic [7], and monotone [8] systems.
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The seminal work [9] developed a small-gain theory for input-
to-state stable (ISS) systems described by nonlinear differential
equations [10], [11]. The results in [9] were followed by exten-
sive research efforts aimed at extending the small-gain theory to
different domains and problems. In particular, [12] considered
ISS systems with saturations, [13] provided characterizations
in terms of Lyapunov functions, [14] extended the results of
[9] to general “ISS operators,” [15] to integral ISS systems,
and [16], [17], [18] to systems not necessarily ISS. Extensions to
time-varying and possibly nonuniformly ISS systems appeared
in [19] and [20], whereas [21], [22], [23], and [24] considered
discrete-time systems, and [25] abstract systems satisfying a
“weak semigroup property” (see also [26]). More recently,
small-gain results have been developed also for switching and
hybrid systems [18], [27], [28], [29], for infinite-dimensional
systems described by partial differential equations [30], [31], for
finite [29], [31], [32], [33], [34] and infinite [24], [35] networks,
and for stochastic systems [36]. See also [37] for a review.

The aforementioned small-gain results typically differ in
terms of the class of systems considered and the stability re-
quirements for the systems involved in the interconnection, but
they all share a common paradigm from which a “small-gain
principle” can be drawn: the interconnection of stable systems
satisfying a certain “small-gain condition” is itself stable. In
qualitative terms

stability of the subsystems
+

small-gain property
⇒ stability of the

interconnection
(1)

In this article, we develop a small-gain theory extending the
small-gain principle (1) to set-valued maps between topological
spaces. This leads to the following three main contributions.

1) It unifies different existing theorems developed for met-
ric spaces of trajectories and gives new insights on the
topological nature of the small-gain principle.

2) It enables the study of interconnections out of reach of
existing small-gain theorems (e.g., formed by systems
that do not satisfy ISS-like conditions).

3) It extends the small-gain principle to general maps be-
tween topological spaces not necessarily representing
trajectories of a dynamical system (See Example 2).

In this respect, we point out that the main methodological
corpus of this work is composed of Items 1) and 3), which estab-
lish a common framework for the small-gain principle. Instead,
item 2) is illustrated through examples (see Section VI). Indeed,
the application of the presented results to specific cases requires
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the definition of suitable topological spaces and a preliminary
analysis, both of which are problem-specific and, hence, not
treated here systematically.

Going into the specifics of the framework and the main result
of the article, we describe systems in terms of set-valued maps
between arbitrary sets. These sets can be endowed with different
topologies turning them into topological spaces. For each choice
of such topologies, we define “stability” as a property similar
to upper semicontinuity generalizing the continuity properties
implied by the usual notions of Lyapunov stability of equilibria,
sets, or motions, global or local (incremental) stability, and
asymptotic gain. In particular, the continuity conditions under-
lying any of these properties can be obtained in terms of the
proposed notion of stability for a specific choice of the involved
topological spaces.

Given a feedback interconnection of two systems of this kind,
we introduce an abstract small-gain property, and we prove a
small-gain theorem stating that such property implies stability
of the interconnection. The proposed small-gain property is an
abstraction of the joint condition “stability of the subsystems
+ small-gain property” of (1) that, however, does not admit a
similar decomposition but is a unique requirement. Neverthe-
less, we show that, in an ordinary ISS context, “stability of
the subsystems + small-gain condition” implies the proposed
small-gain property.

Finally, in this connection, we emphasize that the presented
results only concern the continuity conditions implied by the
global stability and asymptotic gain properties [11] and not
directly ISS. While for finite-dimensional systems these proper-
ties imply (local) ISS, this is not generally true, for instance,
for hybrid (even of finite dimension) [38, Remark 3.3] and
infinite-dimensional [39], [40] systems. Therefore, in an ISS
context, the conclusions that can be drawn on the feedback
interconnection from the proposed theory are in general weaker
than ISS. Nevertheless, we remark that this is not necessarily a
shortcoming of the proposed theory, as it deals with spaces where
ordinary notions of uniform convergence or boundedness may
not make sense. Moreover, stronger properties, such as “uniform
asymptotic gain” [11], may be obtained by suitably redefining
or extending the input and output spaces and their topologies,
as discussed in Section V-E.

The article is organized as follows. In Section II, we introduce
the basic notions of systems and interconnections. In Section III,
we define the notion of stability and connect it to the usual global
stability and asymptotic gain properties in metric spaces. In Sec-
tion IV, we define the small-gain property, we establish the main
result, and we show that ISS implies the proposed small-gain
property. In Section V, we discuss further connections between
stability and other existing notions. Finally, in Section VI, we
present three examples illustrating how the proposed theory can
be used to handle interconnections of systems falling outside the
scope of existing small-gain theorems.

Notations and Preliminaries. We denote by R and N the set
of real and natural numbers, respectively (0 ∈ N). If ∼ is a
relation on a set S and s ∈ S, we let S∼s := {z ∈ S : z ∼ s}.
By F : X ⇒ Y we denote a set-valued map from X to Y . If
S ⊆ X , we letF (S) := ∪s∈SF (s). Accordingly, F (∅) = ∅. If
X = A×B, S ⊆ A, and Z ⊆ B, then F (S,Z) = F (S × Z).

We denote by domF the set of x ∈ X for which F (x) is
nonempty, and by ranF := F (domF ) the range of F . For
V ⊆ Y , we denote by FL(V ) := {x ∈ X : F (x) ∩ V �= ∅}
and FU(V ) := {x ∈ X : F (x) ⊆ V } the lower and upper in-
verse, respectively. If F (x) is a singleton for all x ∈ domF ,
we identify F with the function f : domF → Y satisfying
f(x) ∈ F (x) for allx ∈ domF . The graph of a mapF is defined
as graphF := {(x, y) ∈ X × Y : y ∈ F (x)}.

A topological space is a pair (X , τ) where X is a set and τ
is a collection of subsets of X which contains ∅ and X itself
and is closed under finite intersections and arbitrary unions.
The elements of τ are called open sets. A neighborhood of a
point x ∈ X is a subset of X containing an open set containing
x. A neighborhood of a set X ⊆ X is a subset of X contain-
ing a neighborhood of every point of X . The set of all the
neighborhoods of X ⊆ X is denoted by Nτ (X) (or Nτ (x) if
X = {x}). When τ is clear from the context we omit it and,
for instance, we write X for (X , τ) and N (·) for Nτ (·). If
not otherwise specified, we shall assume every X ⊆ X to be
endowed with the subset topology τX := {O ∩X : O ∈ τ}
and, if (X1, τX1

), . . . , (Xn, τXn
) are topological spaces, their

product X1 × · · · × Xn will be assumed to be endowed with
the product topology denoted by τX1

⊗ · · · ⊗ τXn
. A net on a set

X is a map x : I → X from a directed set I to X . We denote
nets also by (xj)j∈I .

For t > 0, we denote by Ct(X) the set of continuous func-
tions [0, t)→ X , and we let C(0,∞](X) := ∪t∈(0,∞]Ct(X). A
continuous function k : R≥0 → R≥0 is of class-K if it is strictly
increasing and k(0) = 0. We denote by k−1 : ran k → R≥0 the
inverse of k. Notice that, if k is of class-K, there always exists
ε > 0 so that [0, ε) ⊆ ran k = dom k−1. Hence, k−1(s) exists
for all sufficiently small s > 0.

II. SYSTEMS

In this section, we introduce the basic notions we use to model
systems and their interconnections.

A. Systems as Mappings

Throughout the article, systems are represented by set-valued
maps between sets.

Definition 1 (Systems): A system is a triple (D,Y,Ψ) in
which D and Y are sets and Ψ : D ⇒ Y is a set-valued map.

The setD is called the input space, and its elements the inputs
of the system. The set Y is called the output space, and its
elements the outputs of the system. A system with domΨ = ∅

is called trivial. Since d /∈ domΨ implies Ψ(d) = ∅, then
Ψ(D) = Ψ(D ∩ domΨ), for all D ⊆ D.

The notion of systems provided by Definition 1 resembles that
of [2] and [6], with the difference that hereD and Y are generic
sets, and not necessarily normed spaces of signals. Moreover,
Definition 1 also fits the behavioral framework of [41], as the set
graphΨ is a behavior onD × Y in the sense of [41, Def. 1.2.1].
In this connection, we observe that seeing Ψ as a map D ⇒
Y , instead of a map ΨL : Y ⇒ D, is a matter of convention as
graphΨ and graphΨL are isomorphic.

Definition 1 is sufficiently general to include most of the
usual definitions of interest in control theory, such as transfer
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Fig. 1. Feedback interconnection of Σ1 and Σ2.

functions, ordinary/partial differential equations or inclusions,
and hybrid systems, as shown in the following example.

Example 1: Consider the hybrid inclusions [42]{
ẋ ∈ F (x, u) (x, u) ∈ C
x+ ∈ G(x, u) (x, u) ∈ D

(2)

with C,D ⊆ R
n × R

m, n,m ∈ N, and F,G : Rn × R
m ⇒

R
n. With X0 ⊆ {x ∈ R

n : ∃u ∈ R
m, (x, u) ∈ C ∪D} and U

the set of hybrid inputs [38] onRm, letD := X0 × U . Moreover,
let Y be the set of hybrid arcs [38], [42] on R

n. For each
(x0, u) ∈ D, let Ψ(x0, u) ⊆ Y be the set of all x ∈ Y such that
(x, u) is a solution pair to (2) with x originating at x0. Then,
(D,Y,Ψ) is a system in the sense of Definition 1.

In addition, Definition 1 extends beyond dynamical systems.
It can be used to model algebraic maps, solution mapping of
optimization problems, or other relations capturing only some
specific aspects of dynamics. For instance, Example 2 hereafter
deals with limit sets, used in control to characterize the steady-
state trajectories of a system [43], [44].

Example 2: In the setting of Example 1, fix u = 0 and
let X0 ⊂ R

n be compact. Let S(X0) be the set of all com-
plete solutions x of (2) originating in X0 and correspond-
ing to u = 0. Suppose that S(X0) �= ∅ and, for each τ ≥ 0,
define the reachable tail Rτ (X0) := {x(t, j) ∈ R

n : x ∈
S(X0), (t, j) ∈ domx, t+ j ≥ τ}. Then, {Rτ (X0) : τ ≥ 0}
is a filter base [45, Sec. 1.6] whose (possibly empty) set of
cluster points Ω(X0) := ∩τ≥0Rτ (X0) is the Ω-limit set of (2)
from X0 (and with u = 0). Let D be the set of all compact
subsets X0 of Rn, Y = R

n, and Ψ : D ⇒ Y the set-valued map
Ψ(X0) := Ω(X0). Then, (D,Y,Ψ) is a system in the sense of
Definition 1 representing the mapping between sets of initial
conditions and the corresponding attractor.

B. Interconnections

Let Σ1 = (D1,Y1,Ψ1) and Σ2 = (D2,Y2,Ψ2) be systems.
As a first case, assume that D1 = D2 and let D := D1 = D2.
The parallel interconnection of Σ1 and Σ2 is defined as the sys-
tem (D,Y,Ψ) with Y := Y1 × Y2, Ψ : D ⇒ Y , d �→ Ψ(d) :=
Ψ1(d)×Ψ2(d), and domΨ = domΨ1 ∩ domΨ2.

As a second case, assume that Y1 ⊆ D2. The series intercon-
nection of Σ1 and Σ2 is defined as the system (D,Y,Ψ) with
D := D1,Y := Y2,Ψ : D ⇒ Y , d �→ Ψ(d) := Ψ2(Ψ1(d)), and
domΨ = {d ∈ D1 : Ψ1(d) ∩ domΨ2 �= ∅}.

Finally, assume that, for some sets V1, V2, D′1, and D′2 such
that Y1 ⊆ V2 and Y2 ⊆ V1, we have D1 = V1 ×D′1 and D2 =
V2 ×D′2 (see Fig. 1). Then, a feedback interconnection of Σ1

and Σ2 is a system Σ = (D,Y,Ψ) with D := D′1 ×D′2, Y :=

Y1 × Y2, domΨ ⊆ D and, for all d = (d1, d2) ∈ domΨ,

Ψ(d) := {(y1, y2) ∈ Y : y1 ∈ Ψ1(y2, d1), y2 ∈ Ψ2(y1, d2)} .
(3)

LetF(Σ1,Σ2) denote the set of all feedback interconnections
ofΣ1 andΣ2. Let� be the partial order onF(Σ1,Σ2) such that,
for every two (D,Y,Ψ), (D,Y,Ψ′) ∈ F(Σ1,Σ2), (D,Y,Ψ) �
(D,Y,Ψ′) if and only if graphΨ ⊆ graphΨ′. Then, every
totally ordered subset T of F(Σ1,Σ2) has an upper bound in
F(Σ1,Σ2) given by (D,Y,Ψ) with

graphΨ =
⋃

(D,Y,Ψ)∈T
graphΨ.

Since (F(Σ1,Σ2),�) is also upward directed, as for every
(D,Y,Ψ), (D,Y,Ψ′) ∈ F(Σ1,Σ2), the system (D,Y,Ψ) ∈
F(Σ1,Σ2) obtained with graphΨ = graphΨ ∪ graphΨ′ is an
upper bound for both (D,Y,Ψ), (D,Y,Ψ′), then Zorn’s Lemma
guarantees the following.

Lemma 1: F(Σ1,Σ2) has a unique maximal element.
We call such a unique maximal element the feedback inter-

connection of Σ1 and Σ2.
The parallel interconnection of any two nontrivial systems

is nontrivial when domΨ1 ∩ domΨ2 �= ∅. The series inter-
connection is nontrivial if domΨ2 ∩ ranΨ1 �= ∅. Nontriviality
of feedback interconnections is instead not straightforward, as
illustrated by the following example.

Example 3: Consider the systems Σ1 := (U ×X0,1,X ,Ψ1),
Σ2 := (U ×X0,2,X ,Ψ2) in which X0,1, X0,2 ⊆ R, U = X =
C(0,∞](R), and Ψ1 and Ψ2 are defined as the solution maps of
the differential equations

ẋ1 =

{
−1 if x1u1 > 0

1 otherwise,
x1(0) ∈ X0,1, (4a)

ẋ2 = u2x2, x2(0) ∈ X0,2. (4b)

Consider the feedback interconnection of Σ1 and Σ2 given by
the system Σ = (X0,X 2,Ψ) with X0 := X0,1 ×X0,2, and Ψ
the solution map of

ẋ1 =

{
−1 if x1x2 > 0

1 otherwise
ẋ2 = x1x2. (5)

When Σ1 is considered alone, the set {(u1, x1) ∈ domΨ1 :
x1 = 0}may be nonempty, and hence, x1(0) = 0 may be a pos-
sible initial condition. In fact,x1(t) = t for all t ≥ 0 is a solution
of (4a) corresponding tox1(0) = 0 andu1(t) = −1 for all t ≥ 0.
Likewise, anyx2(0) > 0 is a feasible initial condition for (4b) for
all continuous u2. However, for every feedback interconnection
of Σ1 and Σ2, necessarily {(x1, x2) ∈ X0 : x1 = 0 and x2 >
0} �⊆ domΨ, so that we cannot have simultaneously x1(0) = 0
and x2(0) > 0.

With reference to (3), define the projections

Υ1(d) := {y1 ∈ Y1 : ∃y2 ∈ Y2, (y1, y2) ∈ Ψ(d)} ,
Υ2(d) := {y2 ∈ Y2 : ∃y1 ∈ Y1, (y1, y2) ∈ Ψ(d)} . (6)

Clearly,

Ψ(d) ⊆ Υ1(d)×Υ2(d), ∀d ∈ D. (7)
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The following lemma, proved in Appendix A, provides an
alternative characterization ofΥ1 andΥ2 that plays an important
role in the main result given later in Section IV.

Lemma 2: For all d ∈ D, Υ1(d) ⊆ Ψ1(Υ2(d), d1), Υ2(d) ⊆
Ψ2(Υ1(d), d2), and

Υ1(d) = {y1 ∈ Y1 : y1 ∈ Ψ1(Ψ2(y1, d2), d1)} ,
Υ2(d) = {y2 ∈ Y2 : y2 ∈ Ψ2(Ψ1(y2, d1), d2)} . (8)

Remark 1: In view of (7) and (8), the elements of
Ψ(d) are fixed points of the maps Ψ1(Ψ2(·, d2), d1) and
Ψ2(Ψ1(·, d1), d2), respectively. This, however, is only a nec-
essary condition since, in general, Υ1(d)×Υ2(d) �⊆ Ψ(d).
Namely, pairs of fixed points of the aforementioned maps
need not be elements of Ψ(d), although they always belong to
Υ1(d)×Υ2(d).

III. STABILITY

In this section, we introduce a notion of stability for systems
satisfying Definition 1. We then discuss its relationship with
the properties of global stability and asymptotic gain. This
enables us to make a direct connection with ISS systems. Instead,
connections with other notions, such as Lyapunov stability and
incremental stability, are discussed later in Section V.

A. Stability as a Topological Notion

As for continuity, stability is defined with reference to a topol-
ogy τD defined on the input space D and a topology τY defined
on the output spaceY . Different choices of these topologies lead
to different notions of stability.

Definition 2 (Stability): Let (D, τD) and (Y, τY) be topologi-
cal spaces. A system (D,Y,Ψ) is said to be stable atD ⊆ Dwith
respect to (τD, τY) (or, briefly, (τD, τY)-stable at D) if, for every
Y ∈ N (Ψ(D)), there exists U ∈ N (D), such that Ψ(U) ⊆ Y .

When τD and τY are clear from the context they are omitted,
and we say that the system is stable at D. If D = {d} is a
singleton, we say that the system is stable at d instead of at
{d}. Stability at D ⊆ D is implied by upper semicontinuity of
Ψ at each point of D. Indeed, every Y ∈ N (Ψ(D)) contains
a set of the form ∪d∈DYd with Yd ∈ N (Ψ(d)). If, for each
d ∈ D, Ψ is upper semicontinuous at d, we can find Od ∈
N (d) such that Ψ(Od) ⊆ Yd. Then, O := ∪d∈DOd ∈ N (D)
and Ψ(O) ⊆ ∪d∈DYd ⊆ Y . Nevertheless, the converse does not
hold. Namely, stability atD does not imply upper semicontinuity
of Ψ at each point of D. Indeed, as a trivial counterexample,
notice that every system is stable atD (sinceD is a neighborhood
of itself) without any relation to upper semicontinuity of Ψ at
any point of D.

Remark 2: We underline that the notion of stability given in
Definition 2 is aimed at generalizing the continuity properties
implied by the notion of Lyapunov stability of autonomous
differential/difference equations and global stability à la [11]
for systems with input, both of which are properties of the
map Ψ, and not convergence or attractiveness, which are instead
properties of the specific inputs and outputs of Ψ.

Remarkably, parallel interconnections are stable at a point
if so are the interconnected systems, whereas series intercon-
nections of stable systems are stable at both points and sets.

Specifically, let Σ1 = (D1,Y1,Ψ1) and Σ2 = (D2,Y2,Ψ2) be
systems, and let Σp = (Dp,Yp,Ψp) and Σs = (Ds,Ys,Ψs)
denote their parallel and series interconnection (see Section II-B)
whenever they make sense. LetD1,D2,Y1, and Y2 be endowed
with some topologies, and Yp = Y1 × Y2 with the product
topology (in the parallel case, Dp = D1 = D2; hence D1 and
D2 are given the same topology). Then, the following holds.1

Proposition 1: If Σ1 and Σ2 are stable at d ∈ Dp, then Σp is
stable at d. If Σ1 is stable at D ⊆ Ds, and Σ2 is stable at Ψ1(D),
then Ψs is stable at D.

Proposition 1 is proved in Appendix B. Stability of feedback
interconnections between Σ1 and Σ2 is instead more delicate,
and it is indeed the main object of this article. We conclude
this section with the following technical lemma (proved in
Appendix C), which is used by several forthcoming results.

Lemma 3: Let A and B be topological spaces, and let A ⊆
A and B ⊆ B. Every neighborhood of A×B in the product
spaceA× B contains a neighborhood ofA×B of the formU ×
V , where U ∈ N (A) and V ∈ N (B). In particular, a system
(D,Y,Ψ) with D = A× B is stable at A×B ⊆ A× B if and
only if for everyY ∈ N (Ψ(A×B)), there existU ∈ N (A) and
V ∈ N (B) such that Ψ(U × V ) ⊆ Y .

B. Connections With Global Stability

Let (X, | · |), (U, | · |), and (Y, | · |) be seminormed linear
spaces (for ease of notation, we denote all seminorms by | · |).
Let (TU ,≥) and (TY ,≥) be (possibly different) directed sets,
and let (U , | · |) and (Y, | · |) be seminormed linear spaces (under
the pointwise operations) of functions TY → Y and TU → U ,
respectively. The elements of X may represent initial/boundary
conditions or parameters. The elements of U represent exoge-
nous input signals, and those of Y the system’s outputs. Let
D := X × U , and suppose a system Σ = (D,Y,Ψ) is defined
such that, for some class-K functions α and κ,

∀(x, u, y) ∈ graphΨ, |y| ≤ max {α(|x|), κ(|u|)} . (9)

When |y| := supt∈TY |y(t)| and |u| := supt∈TU |u(t)|, Con-
dition (9) is a global stability property implied by ISS. If,
instead, TU = R≥0 and |u| := (

∫∞
0 |u(t)|2dt)1/2, we obtain

an “integral” variant of global stability, implied by integral
ISS [46]. In general, different notions of stability can be ob-
tained for different choices of the seminorms [46]. In any
case, (9) implies stability, in the sense of Definition 2, of Σ
at D� := {(x, u) ∈ X × U : |x| = 0, |u| = 0} with respect to
(τD, τY), where τY is the topology induced on Y by its semi-
norm, and τD is the product topology on D induced by the
seminorms on X and U . Indeed, (9) implies Ψ(D�) ⊆ {y ∈
Y : |y| = 0}, and every neighborhood Y of Ψ(D�) contains a
set of the form Bε := {y ∈ Y : |y| < ε} for some ε > 0 small
enough so as ε ∈ ranα ∩ ranκ. As τD is induced by the semi-
norm |(x, u)| := max{|x|, |u|}, then the set U := {(x, u) ∈
D : |(x, u)| < min{α−1(ε), κ−1(ε)}} is a neighborhood ofD�,
and Ψ(U) ⊆ Bε ⊆ Y .

1Proposition 1 concerns parallel and series interconnections of “input–output”
systems in the sense that we do not consider initial conditions as extra inputs as in
Example 1. Thus, in case of dynamical systems, Proposition 1 has to be intended
for fixed initial conditions. Nevertheless, the extension to the case where initial
conditions are taken into account is straightforward.
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C. Connections With Asymptotic Gain

In this section, we show that the asymptotic gain property
implies stability according to Definition 2 for a specific choice
of the topology of the input and output spaces. In particular, let
(Z, | · |) be a seminormed linear space, (TZ ,≥) be a directed
set, and Z be a linear space (under the pointwise operations) of
functions TZ → Z. For all ζ ∈ Z , define

lim sup |ζ| := inf
t∈TZ

sup
s≥t
|ζ(s)|

(we set lim sup |ζ| :=∞ if lim sup |ζ| does not exist in R). For
every ε ≥ 0, define the set

Oε := {ζ ∈ Z : lim sup |ζ| < ε}

which is nonempty whenever ε > 0 since it contains the zero
function. The collection β := {Z} ∪ {Oε : ε > 0} generates a
topology τZ on Z that we call the limsup topology. Moreover,
β is a base for (Z, τZ) [45, Prop. 1.2.1].

In the same setting of Section III-B, suppose that all u ∈ U
and y ∈ Y are bounded and there exists a class-K function ρ
such that

∀(x, u, y) ∈ graphΨ, lim sup |y| ≤ ρ (lim sup |u|) . (10)

Condition (10) is an asymptotic gain property (implied by ISS).
Let τU and τY denote the limsup topologies on U and Y ,
respectively, and let τX be any topology on X . Then, for every
S ⊆ X , (10) implies that Ψ is stable at D� := S × {u ∈ U :
lim sup |u| = 0} with respect to (τX ⊗ τU , τY ). Indeed, (10)
implies that Ψ(D�) ⊆ {y ∈ Y : lim sup |y| = 0}. Hence, ev-
ery neighborhood V of Ψ(D�) contains a set of the form
Yε := {y ∈ Y : lim sup |y| < ε} for a sufficiently small ε > 0
satisfying ε ∈ ran ρ. Therefore, with δ := ρ−1(ε), the set Uδ :=
{u ∈ U : lim sup |u| < δ} is such that X × Uδ ∈ N (D�) and,
in view of (10), y ∈ Yε ⊆ V for all y ∈ Ψ(X × Uδ).

IV. ABSTRACT SMALL-GAIN THEORY

A. The Small-Gain Property

Consider two systems Σ1 = (D1,Y1,Ψ1) and Σ2 =
(D2,Y2,Ψ2) such thatD1 = V1 ×D′1 andD2 = V2 ×D′2, with
Y2 ⊆ V1 and Y1 ⊆ V2. Moreover, consider a feedback in-
terconnection Σ = (D,Y,Ψ) of Σ1 and Σ2 (not necessarily
the maximal one) obtained as specified in Section II-B with
D := D′1 ×D′2, Y := Y1 × Y2, and Ψ defined as in (3) (see
Fig. 1). We associate with Σ the maps Γ12 : Y1 ×D ⇒ Y1 and
Γ21 : Y2 ×D ⇒ Y2 defined as

Γ12(y1, d) := Ψ1(Ψ2(y1, d2), d1)

Γ21(y2, d) := Ψ2(Ψ1(y2, d1), d2).

Moreover, for (i, j) = (1, 2), (2, 1) and n ∈ N≥1, we define the
maps Γn

12 and Γn
21 according to the following recursion:

Γ1
ij(yi, d) := Γij(yi, d),

Γn+1
ij (yi, d) := Γij(Γ

n
ij(yi, d), d), ∀n ∈ N≥1,

for all yi ∈ Yi and all d ∈ D. The maps Γ12 and Γ21 satisfy the
following property.

Lemma 4: For every (i, j) ∈ {(1, 2), (2, 1)}, D ⊆ D, yi ∈
Υi(D), and n ∈ N≥1, it holds that yi ∈ Γn

ij(yi, D).
Proof: Pick arbitrarily D ⊆ D and yi ∈ Υi(D). Then, there

exists d ∈ D such that yi ∈ Υi(d). In view of (8),

yi ∈ Γij(yi, d). (11)

Suppose that, for some n ∈ N≥1,

yi ∈ Γn
ij(yi, d). (12)

Then, (12) implies that Γij(yi, d) ⊆ Γij(Γ
n
ij(yi, d), d) =

Γn+1
ij (yi, d). Thus, (11) implies that yi ∈ Γn+1

ij (yi, d). As (11)
is (12) with n = 1, we conclude by induction that (12), and
hence yi ∈ Γn

ij(yi, D), hold for every n ∈ N≥1. Since D and
yi ∈ Υi(D) were arbitrary, the claim follows. �

We endow D with a topology τD and Y with a topology τY .
Then, the following definition formalizes the small-gain con-
dition used in this article to establish stability, with respect to
(τD, τY), of the feedback interconnection Σ.

Definition 3 (Small-gain property): The feedback intercon-
nection Σ is said to satisfy the small-gain property at D� ⊆ D
with respect to (τD, τY) if, for every Y ∈ N (Ψ(D�)), there
exists D ∈ N (D�), such that:

∀y = (y1, y2) ∈ Y \ Y, ∃n1, n2 ∈ N≥1,

s.t. Γn1
12 (y1, D)× Γn2

21 (y2, D) ⊆ Y. (13)

Remark 3: Condition (13) in Definition 3 is a “contraction”
requirement for the maps Γ12 and Γ21 that plays in our setting
the role of “stability of the subsystems + small-gain property”
of typical ISS contexts [cf., (1)]. However, we stress that, unlike
(1), Definition 3 is a single condition that, up to the authors’
knowledge, cannot be expressed in terms of the composition
of stability of Σ1 and Σ2 and a contraction property. Indeed,
in general, the set D� may not even be a product of the form
D�

1 ×D�
2 . Nevertheless, later in Section IV-C, we show that ISS

implies Definition 3.
Remark 4: Computing Γ12 and Γ21 may be difficult, if not

impossible, for nontrivial interconnections. Fortunately, their
computation is generally not needed for checking whether the
condition (13) holds. Indeed, (13) can be usually checked by
using some known property of the systems involved. In the
following, we provide several instances where this is the case,
i.e., Propositions 2 and 3, and the examples in Section VI.

B. Main Result

In this section, we prove the main result of this article, estab-
lishing that a feedback interconnection of two systems satisfying
the small-gain property of Definition 3 is stable. As in the pre-
vious section, we consider two systems Σ1 = (D1,Y1,Ψ1) and
Σ2 = (D2,Y2,Ψ2), where D1 = V1 ×D′1 and D2 = V2 ×D′2,
with Y2 ⊆ V1 and Y1 ⊆ V2. Then, we consider a feedback
interconnection Σ = (D,Y,Ψ) of Σ1 and Σ2 as specified in
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Section II-B, with D := D′1 ×D′2, Y := Y1 × Y2, and Ψ de-
fined as in (3). Finally, we endow D with a topology τD and Y
with a topology τY .

Theorem 1 (Small-gain Theorem): If Σ satisfies the small-
gain property at D� ⊆ D with respect to (τD, τY), then it is
(τD, τY)-stable at D�.

Proof: Pick Y ∈ N (Ψ(D�)) arbitrarily, and let D ∈ N (D�)
be such that (13) holds. Equation (7) implies that

Ψ(D) ⊆
⋃
d∈D

(Υ1(d)×Υ2(d)) ⊆ Υ1(D)×Υ2(D)

=((Υ1(D)×Υ2(D)) \ Y ) ∪ ((Υ1(D)×Υ2(D)) ∩ Y )

⊆ ((Υ1(D)×Υ2(D)) \ Y ) ∪ Y. (14)

For every (y1, y2) ∈ (Υ1(D)×Υ2(D)) \ Y , Lemma 4 implies
that

y1 ∈ Γn1
12 (y1, D), y2 ∈ Γn2

21 (y2, D), ∀n1, n2 ∈ N≥1. (15)

For each y = (y1, y2) ∈ (Υ1(D)×Υ2(D)) \ Y , let n1 and n2

be such that (13) holds. Then, (13) and (15) imply that

(Υ1(D)×Υ2(D)) \ Y =
⋃

y∈(Υ1(D)×Υ2(D))\Y
{y1} × {y2}

⊆
⋃

y∈(Υ1(D)×Υ2(D))\Y
Γn1
12 (y1, D)× Γn2

21 (y2, D)

⊆ Y.

Hence, we deduce from (14) that Ψ(D) ⊆ Y .
In this way, we have shown that, for every Y ∈ N (Ψ(D�)),

there exists D ∈ N (D�), such that Ψ(D) ⊆ Y . Namely, Σ is
stable at D�. �

C. Connections With Other Small-Gain Theorems

In this section, we establish a relationship between the small-
gain property given in Definition 3 and some existing small-
gain theorems applying to ISS systems. Specifically, we show
that “stability of the subsystems + small-gain property” in (1)
(with stability meaning ISS) implies the small-gain condition of
Definition 3. For simplicity, we focus on stability of the origin.
Nevertheless, the same arguments can be extended to stability
of sets or motions, by resorting to the corresponding notions
described later in Section V.

With (i, j) ∈ {(1, 2), (2, 1)}, let (Xi, | · |), (Ui, | · |), and
(Yi, | · |) be seminormed linear spaces (as before, we denote all
seminorms by | · |). Let (TUi ,≥) and (TYi ,≥) be directed sets,
and Ui and Yi be linear spaces (under the pointwise operations)
of bounded functions TYi → Yi and TUi → Ui, respectively.
Finally, let Ψi : Yj ×Xi × Ui ⇒ Yi. With D′i := Xi × Ui and
Di := Yj ×D′i, the triple Σi = (Di,Yi,Ψi) is a system in the
sense of Definition 1. The set Xi may represent initial/boundary
conditions in an initial value problem, while Ui contains exoge-
nous inputs.

We define OXi
:= {xi ∈ Xi : |xi| = 0}, OUi := {ui ∈

Ui : supt∈TUi |ui(t)| = 0}, and OYi := {yi ∈ Yi : supt∈TYi
|yi(t)| = 0}. Moreover, we assume that there exist class-K

functions αi, �i, κi such that

sup
t∈TYi

|yi(t)| ≤ max

{
αi (|xi|) , �i

(
sup
t∈TYj

|yj(t)|
)

κi

(
sup
t∈TUi

|ui(t)|
)}

, (16a)

lim sup |yi| ≤ max

{
�i (lim sup |yj |) , κi (lim sup |ui|)

}

(16b)

hold for all (yj , xi, ui, yi) ∈ graphΨi. Condition (16a) relates
to global stability and (16b) to asymptotic gain. Both are im-
plied by ISS. Finally, we suppose that the following small-gain
condition holds:

�ij(s) := �i(�j(s)) < s, ∀s ∈ R>0. (17)

First, we show that Conditions (16a) and (17) imply the
small-gain property of Definition 3 with respect to the uniform
seminorm topology. To this end, for i = 1, 2, we define on
Ui and Yi the seminorms |ui| := supt∈TUi |ui(t)| and |yi|
:= supt∈TYi |yi(t)|, respectively. The product topology
τD on D := D′1 ×D′2 is generated by the seminorm
|(x1, u1, x2, u2)| := maxi=1,2{|xi|, |ui|}. Likewise, the
product topology τY on Y := Y1 × Y2 is generated
by |(y1, y2)| := max{|y1|, |y2|}. Consider a feedback
interconnectionΣ = (D,Y,Ψ) ofΣ1 andΣ2, defined according
to Section II-B, and letOD := OX1

×OU1 ×OX2
×OU2 . Then,

the following holds (the proof is given in Appendix D).
Proposition 2: Suppose that, for all (i, j) ∈ {(1, 2), (2, 1)},

(17) holds and every (yj , xi, ui, yi) ∈ graphΨi satisfies (16a).
Then, Σ satisfies the small-gain property of Definition 3 at OD
with respect to (τD, τY).

In view of Proposition 2, we can apply Theorem 1 to conclude
that the interconnection Σ is stable at OD. This implies the
following continuity property:

∀ε > 0, ∃δ > 0, ∀(x1, u1, x2, u2, y1, y2) ∈ graphΨ,

max{|x1|, |x2|, |u1|, |u2|} < δ ⇒ max{|y1|, |y2|} < ε.
(18)

Next, we show that, for the previously defined feedback
interconnection Σ of Σ1 and Σ2, the bounds (16b) and (17)
also imply the small-gain condition of Definition 3 with respect
to the limsup topology on Ui and Yi (and any topology on Xi).
To this end, we endow Xi with an arbitrary topology τXi

, we
give Ui and Yi the respective limsup topologies, as described in
Section III-C, and we let τ ′D and τ ′Y be the product topologies
onD andY , respectively. For i = 1, 2, defineLUi := {ui ∈ Ui :
lim sup |ui| = 0},LYi := {yi ∈ Yi : lim sup |yi| = 0}, and let
LD := X1 × LU1 ×X2 × LU2 . Then, the following result holds
(the proof is in Appendix E).

Proposition 3: Suppose that, for all (i, j) ∈ {(1, 2), (2, 1)},
(17) holds and every (yj , xi, ui, yi) ∈ graphΨi satisfies (16b).
Then, Σ satisfies the small-gain property of Definition 3 at LD
with respect to (τ ′D, τ

′
Y).

In view of Proposition 3, we can use Theorem 1 to deduce from
(16b) and (17) that the interconnection Σ is also (τ ′D, τ

′
Y)-stable
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at LD. This implies that [cf., (18)]

∀ε > 0, ∃δ > 0, ∀(x1, u1, x2, u2, y1, y2) ∈ graphΨ,

max
i=1,2

lim sup |ui| < δ ⇒ max
i=1,2

lim sup |yi| < ε. (19)

To summarize, Theorem 1 allows us to conclude from the
global stability and asymptotic gain properties (16) (hence,
from ISS), and the small-gain condition (17), that the feedback
interconnection Σ of the two subsystems Σ1 and Σ2 satisfies
the continuity conditions (18) and (19), which are the same
continuity conditions implied by ISS of Σ.

V. CONNECTIONS WITH OTHER STABILITY NOTIONS

In this section, we present some relevant cases, obtained for
a specific choice of (D, τD), (Y, τY), and Ψ, that connect the
stability notion given by Definition 2 with more common notions
of stability used in control and systems theory.

A. Lyapunov Stability of Motions

Consider a differential equation of the form

ẋ = f(x), (20)

with x ∈ R
n, n ∈ N, f : Rn → R

n, X0 ⊆ R
n, and X :=

C(0,∞](R
n). Let

ρ∞(x, y) :=

{
supt∈domx |x(t)− y(t)|, if domx = dom y,

∞, otherwise,

and let ρ(x, y) := min{ρ∞(x, y), c} for an arbitrary c > 0.
Lemma 5: ρ is a metric on X .
Proof: Clearly, ρ is symmetric and ρ(x, y) = 0 ⇐⇒ x = y.

It remains to show that ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for arbi-
trary x, y, z ∈ X . If domx �= dom y, then no z ∈ X satis-
fies dom z = domx and dom z = dom y. Hence, ρ(x, z) +
ρ(z, y) ≥ c = ρ(x, y). If, instead, domx = dom y, then either
dom z = domx = dom y, in which case the inequality follows
by the definition of ρ∞, or ρ(x, z) + ρ(z, y) = 2c ≥ ρ(x, y).�

Let X0 be given the Euclidean topology, and X be given
the topology induced by ρ. Moreover, let Ψ be the solution
map of (20), mapping initial conditions x0 ∈ X0 to maximal
solutions x ∈ X satisfying x(0) = x0. Let x∗0 ∈ X0 be such
that Ψ(x∗0) is single-valued and x∗ ∈ Ψ(x∗0) is complete (i.e.,
domx∗ = [0,∞)). Then, system (X0,X ,Ψ) is stable at x∗0 in
the sense of Definition 2 if and only if

∀ε > 0, ∃δ(ε) > 0,

|x0 − x∗0| < δ(ε)⇒ ∀x ∈ Ψ(x0), ρ(x
∗, x) < ε. (21)

Notice that, by definition of ρ, (21) implies that, for all initial
conditions inside a sufficiently small neighborhood of x∗0, the
corresponding solutions are complete. We observe that, when Ψ
is single-valued and every solution of (20) originating in X0 is
complete, condition (21) (which, we recall, is Definition 2 in this
context) equals Lyapunov stability of the motion x∗ = Ψ(x∗0).

B. Lyapunov Stability of Sets

In the same setting of Section V-A, letA ⊆ X0 be nonempty,
closed, and forward-invariant (i.e., ranx ⊆ A for all x ∈

Ψ(A)). With c > 0 arbitrary, define

ρA(x) := min {supt∈domx |x(t)|A, c} ,
where |x|A := infa∈A |x− a| denotes the distance of x to A.
Then, ρA induces a topology on X as specified by the following
lemma.

Lemma 6: For every ε ≥ 0, letOε := {x ∈ X : ρA(x) < ε}.
Then, τA := {Oε : ε ≥ 0} is a topology on X .

Proof: Both∅ = O0 andX = Oc+1 belong to τA. Moreover,
since X = Oε for all ε > c, then, for every ε1, ε2 ≥ 0, Oε1 ∩
Oε2 = Omin{ε1,ε2} ∈ τA. Finally, pickE ⊆ R≥0 arbitrary. Since
ε �→ Oε is increasing (in the sense of inclusion), if E ⊆ [0, c],
then∪ε∈EOε = OsupE ; otherwise,∪ε∈EOε = X . In both cases,
∪ε∈EOε ∈ τA. �

A sequence (xn)n∈N converges in τA to a limit x if, for every
ε > 0, there existsn∗(ε) ∈ N, such that ρA(xn) < ρA(x) + ε for
all n ≥ n∗(ε). Clearly, if (xn)n∈N converges to x, it converges
to every other z satisfying ρA(z) = ρA(x). In particular, if xn

converges to an x satisfying ρA(x) = 0 (namely, ρA(xn)→ 0),
we say that (xn)n∈N converges to A and write xn →τA A.

The topology τA has the following property, establishing the
equivalence between convergence of x to A in the usual sense
and convergence of the “tails” of x to A in τA.

Proposition 4: Let x ∈ X be such that domx = [0,∞).
Then, limt→∞ |x(t)|A = 0 if and only if there exists a sequence
(tn)n∈N in R≥0 such that the sequence (xn)n∈N inX with terms
xn(·) := x(tn + ·) converges to A in τA.

Proof: (Only If) If |x(t)|A → 0, for every sequence (εn)n∈N
with εn ∈ (0, c) satisfying εn → 0, there exists a sequence
(tn)n∈N in R≥0 such that |x(s)|A < εn for all s ≥ tn. This
implies ρA(xn) = supt≥0 |xn(t)|A = supt≥tn |x(t)|A →n 0.
Namely, xn →τA A.

(If) Let (tn)n∈N be a sequence in R≥0 such that xn →τA A.
Then, for every ε ∈ (0, c), there exists n∗(ε) ∈ N such that
ρA(xn) < ε for all n ≥ n∗(ε). This implies that |x(s)|A < ε for
all s ≥ tn and all n ≥ n∗(ε). Thus, limt→∞ |x(t)|A = 0. �

Let τ ′A be the topology onX0 generated by the family {X0} ∪
{Qδ : δ > 0}, in which Qδ := {x0 ∈ X0 : |x0|A < δ}. Then,
(X0,X ,Ψ) is (τ ′A, τA)-stable atA in the sense of Definition 2 if
and only if for each ε > 0, there exists δ > 0, such that |x0|A < δ
implies supt∈domx |x(t)|A < ε for all x ∈ Ψ(x0). In turn, this
coincides with the usual notion of Lyapunov stability of a closed
forward invariant set A [47].

C. Incremental Input–Output Stability

Given a pseudometric space (S, ρ), for every ε > 0 define
the set Oε := {(a, b) ∈ S × S : ρ(a, b) < ε}. Then, the family
βδS := {Oε : ε > 0} ∪ {S × S} generates a topology τδS on
S × S that we call the incremental topology. Moreover, βδS is
a base for (S × S, τδS) [45, Prop. 1.2.1].

In the same setting of previous Section III-B, suppose now
that instead of (9) we have

∀(x, u, y), (x′, u′, y′) ∈ graphΨ,

|y − y′| ≤ max {α(|x− x′|), κ(|u− u′|)} . (22)

Condition (22) is the equivalent of (9) for incremental ISS
systems [48]. Define the system δΣ := (δD, δY, δΨ), where
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δD := D ×D, δY := Y × Y , and δΨ : δD ⇒ δY , (d1, d2) �→
Ψ(d1)×Ψ(d2). Endow δD and δY with the respective in-
cremental topologies. Then, by the same arguments used in
Section III-B, one can show that (22) implies that the system δΣ
is stable at the diagonal set δD� := {((x, u), (x′, u′)) ∈ δD :
|x− x′| = 0, |u− u′| = 0}.

Remark 5: {Oε : ε > 0} is a special case of a diagonal
uniformity [49, Sec. 3.15], generalizing in topology the notion of
uniform continuity. Indeed, in this sense, input–output stability
(9) relates to continuity in the same way as its incremental
version (22) relates to uniform continuity.

D. Weak Stability and Switching Controls

Many applications of control, such as PWM-based regulation
of electric machines [50] or sliding-mode control [51], employ
control signals that switch between quantized values (see also the
example in Section VI-C). As the switching frequency increases,
the controlled system’s trajectories get closer to those one would
obtain with a control law given by the average of the switched
signal. This is a fundamental phenomenon that, in the same
setting of Section III-B, can be characterized in terms of stability
according to Definition 2, in which the input space is endowed
with the weak topology.

Specifically, consider the same setting of Section III-B with
TY = TU = [0, t] for some t > 0, X = Y = R

n, n ∈ N>0,
U = R,2 U = L∞[0, t] the space of essentially bounded func-
tions [0, t]→ U with the seminorm |u| := inf{c ≥ 0 : |u(s)| ≤
c for almost all s ∈ [0, t]}, and Y the space of absolutely con-
tinuous functions [0, t]→ Y with the uniform norm. Let Ψ be
the solution map of

ẏ = f(y) + g(y)u

where f and g are continuously differentiable. For simplicity,
suppose that Ψ(x, u) is single valued at each (x, u) ∈ domΨ.
Let ((xi, ui))i∈I be an equibounded net in domΨ. If, for
some (x∗, u∗) ∈ domΨ, xi → x∗ and ui → u∗ weakly, then
Ψ(xi, ui)→ Ψ(x∗, u∗) uniformly (this can be deduced by the
same arguments used in [52, Th. 1]). Hence, with τY the topology
of uniform convergence on Y , τX the Euclidean topology on
X , τU the weak topology on U , and τD the product topology
on D := X × U , the system (D,Y,Ψ) is (τD, τY)-stable at
(x∗, u∗).

In particular, let Q ⊆ U be a compact (possibly finite) set
where “implementable” control inputs can take values (for in-
stance,Q contains the upper and lower values of a PWM signal),
and let coQ denote its convex hull. Let u∗ ∈ coQ be a nominal,
but possibly “not implementable” (i.e., u∗ /∈ Q), steady value
for the control input on [0, t] and, with (Ti)i∈N a sequence of
periods Ti ∈ (0, t) satisfying Ti → 0, let (ui)i∈N be a sequence
of periodic piecewise-continuous control inputs of period Ti,
with values in Q, and satisfying

1

Ti

∫ Ti

0

ui(τ)dτ →i u
∗. (23)

2Generalizations to the case in which U = R
m for some m > 1 are straight-

forward but not considered for simplicity.

Then, by denoting by u∗ also the constant function equal to u∗

at every s ∈ [0, t], the following result holds.
Lemma 7: ui → u∗ weakly.
Lemma 7, proved in Appendix F, allows to conclude that

we can substitute a given arbitrary reference control input u∗,
constant on subsequent intervals of the form [tk, tk+1), with
a second control input u with quantized values possibly very
different from u pointwise (provided that u is periodic on each
[tk, tk+1) with mean value equal to u∗(tk)). The resulting effect
is a deviation of the corresponding solution y from the one
produced by u∗ that can be made arbitrarily small on each
compact interval by taking the period of u sufficiently small.

E. Uniform Asymptotic Gain

The asymptotic gain condition (10) does not say anything
about the convergence rate of y. Typically, stronger conditions
asking for uniformity of convergence may be useful, for in-
stance, to establish uniform ISS. In the same setting of Sec-
tion III-B and III-C, let (X, τX) be compact, and let U� :=
{u ∈ U : |u| = 0}. By following [11], we say that the system
(X × U ,Y,Ψ) has the uniform asymptotic gain property if there
exists a class-K function κ such that

∀ε > 0, ∃T (ε) ∈ TY ,

∀(x, u, y) ∈ graphΨ, sup
s≥T (ε)

|y(s)| ≤ ε+ κ(|u|). (24)

Now, we construct an extended system Σ′, obtained by “in-
cluding time” as input inΣ, for which Condition (24) implies sta-
bility in the sense of Definition 2. Let T := TY ∪ {∞}, in which
∞ satisfies t <∞ for all t ∈ TY . Then, we define the family of
intervals I := {Is ⊆ T : s ∈ T \ {∞}}, in which Is := {t ∈
T : t ≥ s}, and we let τT be the topology generated by I. In
this topology, Is is a neighborhood of∞ for every s ∈ T \ {∞}.
Next, for every y ∈ Y , define |y(∞)| := lim sup |y|. Then,
we define the system Σ′ := (D′,Y′,Ψ′), by letting D′ := T ×
X × U ,Y′ := R≥0, domΨ′ := T × domΨ, and Ψ′(t, x, u) :=
{|y(t)| : y ∈ Ψ(x, u)}. With τD := τT ⊗ τX ⊗ τU and τY′ the
standard Euclidean topology on R≥0, the following result holds.

Proposition 5: If Σ has the uniform asymptotic gain property
(24), then Σ′ is (τD, τY′)-stable at {∞} ×X × U�.

Proof: If (X × U�) ∩ domΨ = ∅, the result is true; other-
wise, first notice thatΨ′({∞} ×X × U�) = {0}. Indeed, every
s ∈ Ψ′({∞} ×X × U�) satisfies s = |y(∞)| = lim sup |y| for
some y ∈ Ψ(X,U�), and (24) implies lim sup |y| = 0. Pick a
τY′-neighborhood W of 0. Then, for sufficiently small ε > 0,
[0, 2ε] ⊆W and ε ∈ ranκ. Let Vε := IT (ε) ×X × Uε, with
T the same as in (24), and Uε := {u ∈ U : |u| < κ−1(ε)}.
Then, Vε is a neighborhood of {∞} ×X × U� and, in
view of (24),Ψ′(Vε) = {|y(t)| : t ≥ T (ε), y ∈ Ψ(X,Uε), } ⊆
[0, 2ε] ⊆W . �

F. Practical Stability

In this section, we consider the case in which, as in [9], a
further bias term appears in properties of the kind of global
stability (9) and asymptotic gain (10). We specifically develop
the asymptotic gain case as a simple example to introduce a



4502 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 8, AUGUST 2023

methodology that can be extended to other similar contexts. In
particular, in the same setting of Section III-C, suppose that,
instead of (10), the following property holds:

∀(x, u, y) ∈ graphΨ, lim sup |y| ≤ ρ(lim sup |u|) + b, (25)

in which b > 0 is a bias term. While the presence of b ruins stabil-
ity when Y has the limsup topology, stability still applies if Y is
given the topology τ bY generated by the family {Y} ∪ {Oε : ε >
b}where, as in Section III-C,Oε := {y ∈ Y : lim sup |y| < ε}.
Indeed, in view of (25), for every S ⊆ X , D� := S × {u ∈ U :
lim sup |u| = 0}maps toΨ(D�) ⊆ {y ∈ Y : lim sup |y| ≤ b},
and every τ bY -neighborhood Y of Ψ(D�) contains a set of the
form Ob+ε for all sufficiently small ε ∈ ran ρ ∩ R>0. Then,
D := X × {u ∈ U : lim sup |u| < ρ−1(ε)} is a neighborhood
of D� and Ψ(D) ⊆ Y .

VI. APPLICATION EXAMPLES

A. RMS Rejection of Unknown Disturbances

Consider the system

ẋ = f(x) + w + u,

in which x(t) ∈ R is the state variable, w : R≥0 → R is a
bounded unmeasured disturbance, u(t) ∈ R is a control input,
and f is an uncertain Lipschitz function whose nominal value
f� has Lipschitz constant � > 0.

Define the asymptotic root mean square of x as

|x|aRMS := lim sup
t→∞

√
1

t

∫ t

0

x(s)2ds.

Given an arbitrary but fixed ε > 0, we consider the problem of
designing a controller ensuring that |x|aRMS ≤ ε at front of every
bounded disturbance w unknown a priori and for all sufficiently
small deviations of f from f�.

We assume to measure the state x of the plant subject to a
small, bounded and smooth additive disturbance ν. In particular,
we assume to measure y := x+ ν with ν ∈ V , in which V
denotes the set of bounded continuously differentiable functions
R≥0 → R with bounded derivative.

We propose the following controller:

η̇ = αmax{0, y2 − ε2}η, η(0) �= 0,

u = −ky − αyη2,

in which α > 0 and k ≥ �+ 3 are arbitrary (larger values of
α lead to faster convergence). The closed-loop system can be
written in terms of y as

ẏ = f(y − ν)− ky − αyη2 + w + ν̇ (26a)

η̇ = αmax{0, y2 − ε2}η, η(0) �= 0. (26b)

Denote byLip(�+ 1) the set of Lipschitz functionsR→ Rwith
Lipschitz constant strictly less than �+ 1. Consider (26a) and
notice that, since k ≥ �+ 3, we have

d

dt

(
1

2
y2
)
≤ −y2 − αη2y2 + w̄2/4 (27a)

≤ −y2 + w̄2/4 (27b)

for all f ∈ Lip(�+ 1), in which w̄ := |w|+ (�+ 1)|ν|+ |ν̇|
is bounded. Hence, for all f ∈ Lip(�+ 1), η continuous, w

continuous and bounded, and ν ∈ V , we have that y (hence,
x) is bounded. Therefore, the corresponding solution of (26a) is
defined for all t ≥ 0 and bounded.

Take F := Lip(�+ 1), X0 := R, H the set of absolutely
continuous functions R≥0 → R,W the set of bounded contin-
uous functions R≥0 → R, D1 = H×X0 ×F ×W × V , and
Y1 the set of bounded continuous functions R≥0 → R. We
model (26a) as a system Σ1 = (D1,Y1,Ψ1) in which, for
each (η, x0, f, w, ν) ∈ D1, Ψ1(η, x0, f, w, ν) equals the max-
imal solution of (26a) satisfying y(0) = x0 + ν(0) (implying
x(0) = x0) and subject to the inputs w, ν, and η.

Similarly, with H0 := R \ {0}, we model (26b) as a system
Σ2 = (D2,Y2,Ψ2) in which D2 = Y1 ×H0, Y2 = H, and, for
each (y, η0) ∈ D2, Ψ2(y, η0) is the solution of (26b) originating
at η0 and subject to y, i.e.,

t �→ exp

(∫ t

0

αmax
{
0, y(s)2 − ε2

}
ds

)
η(0), (28)

which is defined for all t ≥ 0.
We consider the feedback interconnection of Σ1 and Σ2,

resulting in the system Σ = (D,Y,Ψ) defined as specified
in Section II-B, with D = X0 ×F ×W × V ×H0 and Y =
Y1 × Y2. We give X0,F , H0,W , V , and Y2 the trivial topology
andY1 the topology τY1 generated by the collection {Qμ : μ >
ε} with Qμ := {y ∈ Y1 : |y|aRMS < μ}. We then give D and
Y the respective product topologies τD and τY .

Next, we prove that system Σ satisfies the small-gain prop-
erty at D� := X0 × {f�} × {0} × {0} ×H0 ⊆ Dwith respect
to (τD, τY), where, we recall, f� ∈ F is the nominal value
for f , and where we denoted by 0 the zero function t �→
0. Notice that (27b) implies Ψ(D�) ⊆ Q0 × Y2, in which
Q0 := {y ∈ Y1 : |y|aRMS = 0}. Then, since Y2 has the triv-
ial topology, it suffices to show that for every μ > ε, there
exists D ∈ N (D�), and for every ȳ ∈ Y1 \ Qμ, there exists
nȳ , such that Γ

nȳ

12 (ȳ, D) ⊆ Qμ. Pick μ > ε and let D :=
D = X0 ×F ×W × V ×H0, which is in N (D�). Pick ȳ ∈
Y1 \ Qμ arbitrarily. Then, |ȳ|aRMS ≥ μ > ε, which implies
that, given any μ̄ ∈ (ε, μ), for all T > 0, there exists t ≥
T such that

∫ t

0 ȳ(s)2ds ≥ μ̄2t. In turn, this implies that for

all T > 0, there exists t ≥ T , such that
∫ t

0 max{0, ȳ(s)2 −
ε2}ds ≥

∫ t

0 (ȳ(s)
2 − ε2)ds ≥ (μ̄2 − ε2)t. In view of (28), this

implies that every η ∈ Ψ2(ȳ, H0) satisfies |η(t)| → ∞. There-
fore, in view of (27a), and since for each (w, ν) ∈ W × V ,
w̄ is bounded, we obtain y(t)→ 0 and |y|aRMS = 0 < μ for
all y ∈ Ψ1(Ψ2(ȳ, H0), X0,F ,W,V) = Γ12(ȳ, D). This proves
that Γnȳ

12 (ȳ, D) ⊆ Qμ for nȳ = 1.
As D does not depend on μ, the previous analysis and

Theorem 1 imply that, for every (x(0), η(0)) ∈ X0 ×H0, the
solutions of (26) obtained with f ∈ Lip(�+ 1) and subject to
(w, ν) ∈ W × V satisfy |y|aRMS ≤ ε. Finally, since

|y − ν|aRMS ≤
(
1 +

ε

2ε

)
|y|aRMS +

(
1 +

2ε

ε

)
|ν|aRMS

for all ε > 0, we conclude that, for every ε > 0, there exists
δ(ε) := ε2

2ε+4ε > 0, such that for every pair (x(0), η(0)) ∈ X0 ×
H0 of initial conditions, the solutions of (26) obtained with f ∈
Lip(�+ 1) and subject to (w, ν) ∈ W × V with |ν|aRMS ≤ δ(ε)
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satisfy |x|aRMS = |y − ν|aRMS ≤ ε+ ε. This implies that the
property |x|aRMS ≤ ε is obtained robustly with respect to the
measurement uncertainty ν. Namely, if ν = 0, then |x|aRMS ≤
ε; otherwise, the above-claimed continuity property between
|ν|aRMS and |x|aRMS holds.

B. Robust Global Attractiveness Without ISS

Consider the forced Susceptible-Infected system

Ṡ = −βSI, İ = βSI − γI + v, (29)

with β > γ > 0, S(0), I(0) ≥ 0, and v ∈ V , where V is the
set of bounded continuous functions R≥0 → R≥0. It is well
known that, when v = 0, the setA := {(S, I) ∈ R

2
≥0 : I = 0}

is globally attractive. Yet A is not Lyapunov stable. Moreover,
the I subsystem is not ISS with respect to the input (S, v), nor
the S subsystem is ISS with respect to I . Hence, attractiveness
of A cannot be concluded by means of canonical small-gain
arguments for ISS systems. Instead, as detailed in the rest of this
section, it can be proved by using Theorem 1. In particular, we
prove following stronger “robust attractiveness” property:

∀ε > 0, ∃ν̄ > 0, ∀(S(0), I(0), v) ∈ R
2
≥0 × V,

lim sup |v| < ν̄ ⇒ lim sup |(S, I)|A < ε (30)

where |(S, I)|A denotes the distance of (S, I) to A.
Let Y1 be the set of bounded nonincreasing continuous

functions R≥0 → R≥0, and Y2 the set of continuous functions
I : R≥0 → R≥0 that either are Lipschitz or satisfy I(t)→∞.
Define the system Σ1 := (D1,Y1,Ψ1), in which D1 = Y2 ×
R≥0 and Ψ1 is the solution map of Ṡ = −βSI mapping pairs
(I, S(0)) ∈ D1 to complete solutions S ∈ Y1. Define the sys-
tem Σ2 := (D2,Y2,Ψ2), in which D2 = Y1 × R≥0 × V and
Ψ2 the solution map of İ = βSI − γI + v mapping triples
(S, I(0), v) ∈ D2 to complete solutions I ∈ Y2. Then, system
(29) can be seen as a feedback interconnectionΣ = (D,Y,Ψ) of
the previous two systems (see Section II-B), withD = R

2
≥0 × V ,

Y = Y1 × Y2, and Ψ mapping triples (S(0), I(0), v) to com-
plete solutions (S, I) of (29). We endow R

2
≥0 and Y1 with the

respective trivial topologies, and we giveY2 andV the respective
limsup topologies (see Section III-C).

Let D� := {(S0, I0, v) ∈ D : I0 = 0, v = 0}. Then, every
(S, I) ∈ Ψ(D�) satisfies (S(t), I(t)) ∈ A for all t ∈ R≥0.
Moreover, Σ satisfies the small-gain property of Definition 3 at
D�. Since Y1 and R

2
≥0 have the trivial topology, to show this it

suffices to show that for every ε > 0, there exists ν̄ = ν̄(ε) > 0,
and for every Ī ∈ Y2 \Oε (as in Section III-C,Oε := {I ∈ Y2 :
lim sup |I| < ε}), there exists nI , such that

I = ΓnI
21 (Ī , (S0, I0, v))⇒ lim sup |I| < ε (31)

for all S0, I0 ∈ R≥0 and v ∈ V satisfying lim sup |v| < ν̄. Pick
ε > 0, let ν̄ := εγ, and pick Ī ∈ Y2 \Oε. Since Ī /∈ Oε, then
lim sup |Ī| ≥ ε > 0. Since Ī is continuous, Ī(t) ≥ 0 for all t,
and either Ī(t)→∞ or it is Lipschitz, we conclude that S̄(t)→
0 for all S̄ ∈ Ψ1(Ī ,R≥0). From (29), we then obtain that, for all
such S̄, we have lim sup |I| ≤ lim sup |v|/γ < ε for every I ∈
Ψ2(S̄,R≥0, v) with v ∈ V satisfying lim sup |v| < ν̄. Hence,
(31) holds with nI = 1.

Therefore, by using Theorem 1, we finally conclude that Σ is
stable at D�. As the set R2

≥0 of initial conditions has the trivial
topology, and |(S, I)|A = |I|, this implies (30).

C. Automatic Frequency Regulation in PWM Control

Consider an electrical motor described by the linear system

ẋ = Ax+Bu, y = Cx, (32)

with x(t) ∈ R
n, n ∈ N, u(t), y(t) ∈ R, and A Hurwitz. The

output y represents the rotor’s angular velocity, andu is the input
voltage. We consider a control system that can only generate
quantized switching voltages taking the value V or −V at a
given time instant, with V > 0. This is typical of controllers im-
plemented by power converters [50]. Given an ideal input profile
u� : R≥0 → [−V, V ] (which can take any value in-between−V
and V ), the controller approximates u� by means of a function
ûT : R≥0 → {−V, V } satisfying

1

Tk

∫ tk+1

tk

ûT (s)ds = u� (tk) , ∀k ∈ N, (33)

where Tk := tk+1 − tk ∈ [Tmin,∞), with Tmin > 0. The se-
quence T = (Tk)k∈N represents a time-varying switching pe-
riod, and it is a degree of freedom. Moreover, due to the presence
of unavoidable uncertainty in the controller implementation, we
suppose that the actual generated control is uT := ûT + ν, with
ν : R≥0 → R a bounded additive perturbation. The controller
measures the error eT := y� − yT between the ideal output y�

that would be produced by (32) with u� and x(0) = 0, and the
actual output yT produced by uT for some x(0) ∈ R

n. The
control goal is to tune the sequence Tk online to eventually
reduce the error below a prespecified threshold ε� > 0.3

The error eT is bounded, and by means of arguments similar
to those used in proving Lemma 7, it can be shown that, when
ν = 0, for every ε > 0, there exists σ̄ = σ̄(ε) > 0 such that, for
every yT obtained with a sequence T satisfying Tk ≤ σ̄(ε) for
all but at most finite k, lim sup |eT | ≤ ε. We assume thatTmin <
σ̄(ε�), so as the set of sequences T for which lim sup |eT | ≤ ε�

when ν = 0 is nonempty.
We focus on decision strategies (continuous- or discrete-time)

adapting Tk iteratively in such a way that
P1. Tk ≤ Th, for k ≥ h;
P2. there exist α ∈ N and ω : [Tmin,∞)→ [Tmin,∞) sat-

isfying limm→∞ ωm(s) = Tmin for all s ∈ [Tmin,∞)
such that, if |eT (t)| > ε� for some t ∈ [tk−1, tk+α], then
Tk+α = tk+α+1 − tk+α ≤ ω(Tk−1).

Let T denote the set of bounded sequences (Tk)k∈N in
[Tmin,∞), E denote the space of bounded continuous func-
tions e : R≥0 → R, and V := E . We can model the closed-
loop system as in Fig. 2 in terms of the feedback intercon-
nectionΣ = (D,Y,Ψ) betweenΣ1 = (D1,Y1,Ψ1) (D1 = E ×
[Tmin,∞) and Y1 = T ), mapping error signals eT ∈ E and

3Clearly, Tk = Tmin for each k would be the best choice in terms of
asymptotic bound. Nevertheless, higher switching frequencies are associated
with higher power consumption and possibly with more significant drawbacks
due to switching, such as unwanted vibrations and flickering phenomena. Hence,
it makes sense to seek larger switching periods guaranteeing the desired bound
on the error.
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Fig. 2. Closed-loop system in the example of Section VI-C.

initial conditions T0 ∈ [Tmin,∞) to sequences T ∈ T , and
Σ2 = (D2,Y2,Ψ2) (D2 = T × R

n × V andY2 = E), mapping
sequences T ∈ T , initial conditions x(0) ∈ R

n, and perturba-
tions ν ∈ V to error signals eT ∈ E . According to Section II-B,
D = [Tmin,∞)× R

n × V , Y = T × E , and Ψ is given by (3).
We give [Tmin,∞), R

n, and T the trivial topology, E
the topology τE generated by the collection {Eμ : μ > ε�},
where Eμ := {e ∈ E : lim sup |e| < μ} (cf., Section V-F), and
V the uniform-norm topology. We let D� := {(T0, x(0), ν) ∈
D : T0 = Tmin, x(0) = 0, ν = 0}. As Tmin < σ̄(ε�), as as-
sumed before, in view of P1 we have lim sup |e| ≤ ε� for all
(T, e) ∈ Ψ(D�). Moreover, since T , [Tmin,∞), and R

n have
the trivial topology, to show that the interconnection satisfies
the small-gain property of Definition 3 at D�, it suffices to
show that for every μ > ε� there exists ν̄ = ν̄(ε) > 0, and for
every ē ∈ E \ Eμ, there exists me ∈ N, such that, for every
(T0, x(0), ν) ∈ D with |ν|∞ < ν̄,

e = Γme
21 (ē, (T0, x(0), ν))⇒ lim sup |e| < μ. (34)

Pick arbitrarily μ > 0 and ē ∈ E \ Eμ and notice that, by lin-
earity, for all (T0, x(0), ν) ∈ D, e := Γ21(ē, (T0, x(0), ν)) =
Ψ2(Ψ1(ē, T0), x(0), ν) can be written as e = e0 + eν with
e0 = Ψ2(Ψ1(ē, T0), 0, 0) and lim sup |eν | ≤ c|ν|∞ for some
c > 0 depending only on A, B, and C. Take ν̄ < (μ−
ε�)/c, and pick (T0, x(0), ν) ∈ D such that |ν|∞ < ν̄. This
implies lim sup |eν | < μ− ε�. As ē /∈ Eμ, lim sup |ē| ≥ μ >
ε�. Hence, for each h, α ∈ N there exists � > h such that
sup |ē|[t�−1,t�+α] > ε�. Therefore, it follows from P1 and P2 that
T = Ψ1(ē, T0) satisfies Tk < σ̄(ε�) for all large enough k. As a
consequence, we conclude that necessarily lim sup |e0| ≤ ε�,
which implies lim sup |e| < μ. Hence, the small-gain prop-
erty (34) holds with me = 1.

Therefore, in view of Theorem 1, we claim that Σ is stable at
D�. As [Tmin,∞) and R

n have the trivial topology, this means
that, regardless of the actual value of the initial conditions x(0)
and T0, the controller produces an error whose limsup is larger
than ε� by an amount that continuously increases with the size
of the disturbance ν (in particular, if ν = 0, lim sup |e| ≤ ε�).

We underline that we made no strong stability assumption,
such as ISS, to achieve the above-mentioned result. Moreover,
how to characterize Σ1 in terms of ISS is also unclear. Indeed, a
map Ψ1 satisfying P1 and P2 may not be continuous in general.
For example, take Ψ1 as the function mapping every (e, T0) ∈
D1 to a sequence T with initial condition T0 and satisfying

Tk =

{
Tk−1/2 if supt∈[tk−1,tk] |e(t)| > ε�

Tk−1 otherwise.
(35)

Clearly, the sequence generated in this way fulfills P1 and P2.
Consider the metric |T − T ′| := supk∈N |Tk − T ′k| on T , and

Fig. 3. Simulation of Policy I1–I2.

the one induced by the uniform norm on E . Pick T0 := Tmin + 2
and let e ∈ E be the constant function e(t) := ε�. Then, in
view of (35), T = Ψ1(T0, e) satisfies Tk = T0 = Tmin + 2 for
all k ∈ N. Now, pick eε(t) := ε� + ε for some ε > 0. Then,
eε → e uniformly as ε→ 0. However, in view of (35), T ε :=
Ψ1(T0, eε) satisfies T ε

k ≤ Tmin + 1 for sufficiently large k.
Hence, |Ψ1(T0, e)−Ψ1(T0, eε)| ≥ 1 for all ε > 0, which im-
plies Ψ1(T0, eε) �→ Ψ1(T0, e) as ε→ 0. Thus, Ψ is not contin-
uous.

Fig. 3 shows a simulation obtained with the following decision
policy for T (m, ρ, and σ are auxiliary variables):

I1 start with m(t0) = p(t0) = 0 and σ(t0) = T0;
I2 for every k ∈ N:

� Define tk+1 := tk + σ(tk).
� Integrate the following equations over [tk, tk+1]:

ṁ = 0, σ̇ = 0, ρ̇ = max
{
0, e2T − ε�2

}
.

� If tk+1 −m(tk+1) ≥ 3, update the variables as

σ(tk+1)←
{
max

{
Tmin,

2
3σ(tk+1)

}
if ρ(tk+1) > 0

σ(tk+1) otherwise

ρ(tk+1)← 0, m(tk+1)← tk+1.

The kth term Tk of the sequence T generated in this way
is given by Tk = tk+1 − tk = σ(tk). The error signal eT is
obtained as eT = Cx̂− y with ˙̂x = Ax̂+Bu� and x̂(0) = 0.

Specifically, Fig. 3 shows three simulations obtained with ûT

defined as a PWM signal with variable period (according to
T ) and, within each period, a duty cycle chosen in such a way
that (33) holds,Tmin = 0.001, ε� = 0.05,V = 2, and ν given by
the interpolation of a pseudorandom signal uniformly sampled
from [0, Aν ], where Aν equals, respectively, 0.01, 0.5, and 1 in
the three simulations. As shown in the figure, the asymptotic
amplitude of the error gradually increases with |ν|∞. This is
consistent with our results that claim continuity of such increase.
The sequence T , instead suffers from an evident discontinuity
(in the previously defined uniform norm) when the amplitude
of ν provokes spikes of e(t) above ε�. In such case, indeed,
Tk decreases to Tmin despite the actual value of ν, whereas
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in the other two cases with Aν = 0.01 and Aν = 0.5, only a
small variation of Tk is observed. This behavior is caused by
the fact that, as for (35), also in this case Ψ1 is discontinuous.
Indeed, while discontinuity ofΨ1 does not invalidate our results,
it nevertheless implies that we have no guarantee that “small”
changes of ν reflect on “small” changes of T (with respect to
the previously defined metric).

VII. CONCLUSIONS

In this article, we proposed a small-gain theory for inter-
connections of abstract systems described by set-valued maps
between topological spaces. For systems of this kind, stability
is defined as a continuity property generalizing and unifying
the continuity conditions underlying commonly used stability
notions, including Lyapunov stability of motions or sets, (incre-
mental) input–output stability, and asymptotic gain properties.
Given a feedback interconnection of two subsystems, the main
result of the paper (Theorem 1) establishes the following impli-
cation:

small-gain property ⇒ stability of the
feedback interconnection

where the “small-gain property” is formally defined in Defini-
tion 3 and represents an abstraction, in the context of topological
spaces, of the joint condition “stability of the subsystems +
small-gain condition” of ordinary small-gain theories for input–
output operators or ISS systems. While the proposed small-gain
property does not admit, in general, a similar decomposition, we
proved in Section III that it is always implied by ISS.

The main contribution of the article is methodological, as the
presented results provide a common framework for small-gain
theories and extend the “small-gain principle” beyond intercon-
nections of systems defined between metric spaces of trajecto-
ries. Yet, the application of Theorem 1 to practical problems
might not be straightforward. The examples of Section VI do
suggest that the developed small-gain theory can provide a
useful tool to study complex interconnections uncovered by
other existing paradigms. However, its application does require
the definition of suitable topological spaces and a preliminary
analysis that are problem-specific and may not be easy. In this
respect, further research is required.

Moreover, the developed theory focuses on continuity at a set
or point, which is a local property. How to cover properties, such
as uniform convergence or Lagrange stability, within the same
setting of this article is still an open problem deserving further
research.

APPENDIX A

Proof of Lemma 2: Let (i, j) ∈ {(1, 2), (2, 1)}. If d /∈
domΨ, then Ψ(d) = ∅ and Υi(d) = ∅. Hence, the claim of
the lemma is vacuously true. Pick d = (d1, d2) ∈ domΨ and
yi ∈ Υi(d). Then, there exists yj ∈ Yj such that yi ∈ Ψi(yj , di)
and yj ∈ Ψj(yi, dj). This, in turn, implies that yj ∈ Υj(d).
Hence, yi ∈ Ψi(Υj(d), di). Since yi was arbitrary, we conclude
that Υi(d) ⊆ Ψi(Υj(d), di).

Let Si(d) := {yi ∈ Yi : yi ∈ Ψi(Ψj(yi, dj), di)}. To prove
(8), we have to show that Υi(d) = Si(d). Pick yi ∈ Υi(d).
Then, there exists yj ∈ Yj such that yi ∈ Ψi(yj , di) and yj ∈

Ψj(yi, dj). This, in turn, implies that yi ∈ Ψi(Ψj(yi, dj), di).
Thus, yi ∈ Si(d). Hence, we conclude that Υi(d) ⊆ Si(d).
Conversely, pick yi ∈ Si(d). Then, there exists yj ∈ Ψj(yi, dj)
such that yi ∈ Ψi(yj , di). By the definition (3), this implies
that (y1, y2) ∈ Ψ(d). Hence, yi ∈ Υi(d), which proves Si(d) ⊆
Υi(d). �

APPENDIX B

Proof of Proposition 1: Pick Y ∈ N (Ψp(d)). SinceΨp(d) =
Ψ1(d)×Ψ2(d), by Lemma 3 we can find O1 ∈ N (Ψ1(d)) and
O2 ∈ N (Ψ2(d)) such that O1 ×O2 ⊆ Y . If Σ1 and Σ2 are
stable at d, we can find open sets U1, U2 ∈ N (d) such that
Ψ1(U1) ⊆ O1 andΨ2(U2) ⊆ O2. Then,U := U1 ∩ U2 ∈ N (d)
and Ψp(U) = ∪d∈U (Ψ1(d)×Ψ2(d)) ⊆ Ψ1(U1)×Ψ2(U2) ⊆
O1 ×O2 ⊆ Y .

For the second claim, pick Y ∈ N (Ψs(D)). As Ψs(D) =
Ψ2(Ψ1(D)), and Σ2 is stable at Ψ1(D), there exists U2 ∈
N (Ψ1(D)) such that Ψ2(U2) ⊆ Y . As Σ1 is stable at D, there
existsU1 ∈ N (D) such thatΨ1(U1) ⊆ U2. Thus,Ψs(U1) ⊆ Y .
The claim then follows from the arbitrariness of Y . �

APPENDIX C

Proof of Lemma 3: PickA ⊆ A andB ⊆ B. IfA = ∅ orB =
∅, the first claim is vacuously true, since A×B = ∅. Thus, we
assume A �= ∅ and B �= ∅. As sets of the form U × V , where
U and V are open in A and B, respectively, form a base for
the product topology of A× B, for every point (a, b) ∈ A×
B, every Y ∈ N ((a, b)) contains a set of the form Ua × Vb,
with Ua ∈ N (a) and Vb ∈ N (b). Then, every Y ∈ N (A×B)
contains a set of the form

O :=
⋃

(a,b)∈A×B
(Ua × Vb) , Ua ∈ N (a), Vb ∈ N (b),

which belongs itself toN (A×B). Hence, the first claim follows
by noticing that O = OA ×OB , where OA :=

⋃
a∈A Ua and

OB =
⋃

b∈B Vb. Indeed, (x, y) ∈ O only if there exists (a, b) ∈
A×B such that (x, y) ∈ Ua × Vb, which implies x ∈ ∪a∈AUa

and y ∈ ∪b∈BVb. Hence, (x, y) ∈ OA ×OB . The converse is
shown by a similar argument.

The “if” part of the second claim is obvious, sinceU ∈ N (A)
and V ∈ N (B) imply U × V ∈ N (A×B). The “only if” part,
instead, directly follows from the first claim of the lemma proved
above. Indeed, if Y ∈ N (Ψ(A×B)) and O ∈ N (A×B) is
such thatΨ(O) ⊆ Y , we can findOA ∈ N (A) andOB ∈ N (B)
such that OA ×OB ∈ N (A×B) and OA ×OB ⊆ O, so that
Ψ(OA ×OB) ⊆ Ψ(O) ⊆ Y . �

APPENDIX D

Proof of Proposition 2: Conditions (16a) and (17)
imply Ψ(OD) ⊆ OY1 ×OY2 . Hence, for every Y ∈
N (Ψ(OD)), there exists ε > 0, sufficiently small so that
ε ∈ ranαi ∩ ranκi ∩ ran �i ◦ αj ∩ ran �i ◦ κj for all
(i, j) = (1, 2), (2, 1), such that |(y1, y2)| < ε implies (y1, y2) ∈
Y . With δ(·) := min(i,j)=(1,2),(2,1){α−1i (·), κ−1i (·), (�i ◦
αj)

−1(·), (�i ◦ κj)
−1(·)}, let

D = {(x1, u1, x2, u2) ∈ D : |(x1, u1, x2, u2)| < δ(ε/2)} .
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Then D ∈ N (OD). Next, pick (y1, y2) ∈ Y arbitrarily, and
notice that (16a) implies that every y′i ∈ Γij(yi, D) satisfies
|y′i| ≤ max{�ij(|yi|), ε/2}, with �ij defined in (17). Since (17)
implies �ij(ε/2) < ε/2, by induction one obtains

∀n ≥ 1, ∀y′i ∈ Γn
ij(y1, D), |y′i| ≤ max{�nij(|yi|), ε/2}.

In view of (17), there exists ny such that �ny

ij (|yi|) < ε/2 for
both i = 1, 2. Hence, we conclude that, for all y′1 ∈ Γ

ny

12 (y1, D)
and all y′2 ∈ Γ

ny

21 (y2, D), |(y′1, y′2)| ≤ ε/2 < ε, i.e., (y′1, y
′
2) ∈

Y . By arbitrariness of Y , we then conclude that the small-gain
condition of Definition 3 holds at OD with respect to (τD, τY).�

APPENDIX E

Proof of Proposition 3: The proof follows the same argu-
ments used to prove Proposition 2. In particular, (16b) and
(17) imply that Ψ(LD) ⊆ LY1 × LY2 . Hence, by definition
of the limsup topology, every neighborhood Y ∈ N (Ψ(LD))
contains a set of the form {(y1, y2) ∈ Y : lim sup |yi| <
ε, ∀i = 1, 2} for ε > 0 sufficiently small so that ε ∈ ranκi ∩
ran �i ◦ κj for all (i, j) = (1, 2), (2, 1). Then, with δ(·) :=
min(i,j)=(1,2),(2,1){κ−1i (·), (�i ◦ κj)

−1(·)}, the set

D :=
{
(x1, u1, x2, u2) ∈ D : lim sup |ui| < δ(ε/2), i = 1, 2

}
is in N (LD), and, in view of (16b) and (17), for every i = 1, 2
and every y′i ∈ Γij(yi, D), with yi ∈ Yi arbitrary, we have

lim sup |y′i| < max{�ij(|yi|), ε/2}.
Thus, in view of (17), proceeding as in the proof of Proposition 2,
we can findny ∈ N≥1 such thatΓny

12 (y1, D)× Γ
ny

21 (y2, D) ⊆ Y ,
which implies (13). �

APPENDIX F

Proof of Lemma 7: Recall that U = L∞[0, t]. Then, ui → u∗

weakly if (see [52, Def. 10.1.1])∫ t

0

φ(s)ui(s)ds→
∫ t

0

φ(s)u�ds = u�

∫ t

0

φ(s)ds (36)

for every integrable φ : [0, t]→ R. Let φ be the indicator func-
tion on a given interval [a, b] ⊆ [0, t]. Then, with ωi(τ) :=
max{m ∈ N : mTi ≤ τ}, we can write∫ t

0

φ(s)ui(s)ds =

ωi(b−a)−1∑
k=0

∫ a+(k+1)Ti

a+kTi

ui(s)ds

+

∫ b

a+ωi(b−a)Ti

ui(s)ds. (37)

As Ti → 0, we have ωi(b− a)Ti → b− a. Hence, the second
term of the right-hand side of (37) vanishes as i→∞. Sinceui is
Ti-periodic, then

∫ a+(k+1)Ti

a+kTi
ui(s)ds =

∫ a+Ti

a ui(s)ds. Hence,
in view of (23), the first term of (37) satisfies
ωi(b−a)−1∑

k=0

∫ a+(k+1)Ti

a+kTi

ui(s)ds =
ωi(b− a)Ti

Ti

∫ a+Ti

a

ui(s)ds

→ (b− a)u� = u�

∫ t

0

φ(s)ds.

Thus, (36) holds for the indicator functionφ. In turn, this implies
that (36) holds for all finite linear combinations of indicator
functions (i.e., all simple functions).

Now, let φ be a generic integrable function. Then, there
exists a sequence ϕk of simple functions such that

∫ t

0 |φ(s)−
ϕk(s)|ds→k 0. With q := supu∈coQ |u|, we have∣∣∣∣
∫ t

0

φ(s)ui(s)ds−u�

∫ t

0

φ(s)ds

∣∣∣∣=
∣∣∣∣
∫ t

0

φ(s)(ui(s)− u�)ds

∣∣∣∣
≤ 2q

∫ t

0

|φ(s)−ϕk(s)|ds+
∣∣∣∣
∫ t

0

ϕk(s)(ui(s)− u�)ds

∣∣∣∣
for all k ∈ N, where we have used the fact that u� ∈ coQ and
ranui ⊆ Q for all i. Then, given any ε > 0, we can find k̄
such that

∫ t

0 |φ(s)− ϕk̄(s)|ds < ε/(4q) and then ι(ε, k̄) such

that |
∫ t

0 ϕk̄(s)(ui(s)− u�)ds| < ε/2 for all i ≥ ι(ε, k̄) (which
is possible sinceϕk̄ is a simple function). In turn, this implies that
|
∫ t

0 φ(s)ui(s)ds− u�
∫ t

0 φ(s)ds| < ε for all i ≥ ι(ε, k̄). For ar-
bitrariness of ε > 0, (36) follows. �
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