
4586 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 8, AUGUST 2023

Efficient Strategy Synthesis for MDPs With
Resource Constraints

František Blahoudek , Petr Novotný , Melkior Ornik , Pranay Thangeda , and Ufuk Topcu

Abstract—We consider qualitative strategy synthesis for
the formalism called consumption Markov decision pro-
cesses. This formalism can model the dynamics of an agent
that operates under resource constraints in a stochastic
environment. The presented algorithms work in time poly-
nomial with respect to the representation of the model and
they synthesize strategies ensuring that a given set of goal
states will be reached (once or infinitely many times) with
probability 1 without resource exhaustion. In particular,
when the amount of resource becomes too low to safely
continue in the mission, the strategy changes course of
the agent toward one of a designated set of reload states
where the agent replenishes the resource to full capacity;
with a sufficient amount of resource, the agent attempts to
fulfill the mission again. We also present two heuristics that
attempt to reduce the expected time that the agent needs to
fulfill the given mission, a parameter important in practical
planning. The presented algorithms were implemented, and
the numerical examples demonstrate the effectiveness (in
terms of computation time) of the planning approach based
on consumption Markov decision processes and the posi-
tive impact of the two heuristics on planning in a realistic
example.

Index Terms—Consumption Markov decision process
(CMDP), planning, resource constraints, strategy synthe-
sis.

Manuscript received 1 June 2022; accepted 9 September 2022. Date
of publication 26 September 2022; date of current version 28 July 2023.
This work was supported in part by NASA through “Safety-Constrained
and Efficient Learning for Resilient Autonomous Space Systems,” in part
by DARPA under Grant HR001120C0065, in part by ARO under Grant
W911NF-20-1-0140, in part by ONR under Grant N00014-18-1-2829,
and in part by the Czech Ministry of Education, Youth and Sports
through ERC.CZ programme under Project LL1908. The work of Petr
Novotný was supported by the Czech Science Foundation Junior Grant
GA21-24711S. Recommended by Associate Editor A. A. Malikopoulos.
(Corresponding author: Pranay Thangeda.)

František Blahoudek is with the Oden Institute, The University of Texas
at Austin, Austin, TX 78712 USA (e-mail: fandikb@gmail.com).

Petr Novotný is with the Faculty of Informatics, Masaryk University,
60200 Brno, Czech Republic (e-mail: petr.novotny@fi.muni.cz).

Melkior Ornik and Pranay Thangeda are with the Department of
Aerospace Engineering, University of Illinois at Urbana-Champaign
Champaign, IL 61801 USA (e-mail: mornik@illinois.edu; pranayt2@
illinois.edu).

Ufuk Topcu is with the Department of Aerospace Engineering and
Engineering Mechanics, The University of Texas at Austin, Austin, TX
78712 USA (e-mail: utopcu@utexas.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TAC.2022.3209612.

Digital Object Identifier 10.1109/TAC.2022.3209612

I. INTRODUCTION

AUTONOMOUS agents, such as driverless cars, drones,
or planetary rovers, typically operate under resource con-

straints and are often deployed in stochastic environments,
which exhibit uncertain outcomes of the agents’ actions [1].
Markov decision processes (MDPs) are commonly used to
model such environments for planning purposes [2]. Intuitively,
an MDP is described by a set of states and transitions between
these states. In a discrete-time MDP, the evolution happens in
discrete steps and a transition has two phases: first, the agent
chooses some action to play, and second, the resulting state is
chosen randomly based on a probability distribution defined by
the action and the agent’s state.

The interaction of an agent with an MDP is formalized using
strategies. A strategy is simply a recipe that tells the agent,
in every moment, what action to play next. The problem of
finding strategies suitable for given objectives is called strategy
synthesis for MDPs.

Strategy synthesis with resource constraints in real-world
systems is computationally expensive. Introducing a continuous
resource state would convert the system either to a stochastic
hybrid system—a framework in which control synthesis is,
when at all feasible, often computationally intractable [3], [4],
[5], [6]—or necessitate removing the stochastic element of the
problem. On the other hand, adding all possible resource levels
to the state space in an MDP leads to an explosion in the size of
the discrete state space.

As the main results of this article, we solve polynomial-time
strategy synthesis for the following two objectives in resource-
constrained MDPs: 1) almost-sure reachability of a given set of
states T , and 2) almost-sure Büchi objective for T , that is, the
synthesized strategies ensure that, with probability 1 and without
resource exhaustion, some target from T will be reached at least
once or T will be visited infinitely often.

We also present two heuristics that improve the practical
utility of the presented algorithms for planning in resource-
constrained systems. In particular, the goal-leaning and thresh-
old heuristics attempt, as a secondary objective, to reach T in a
short time. Further, we briefly describe our tool implementing
these algorithms, and we demonstrate that our approach special-
ized for the qualitative analysis of resource-constrained systems
can solve this task faster than the state-of-the-art general-purpose
probabilistic model checker STORM [7].

A. Current Approaches to Resource Constraints.

There is a substantial body of work in the area of verification
of resource-constrained systems [8], [9], [10], [11], [12], [13],
[14], [15], [16]. A naive approach is to model such systems as

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-1880-5379
https://orcid.org/0000-0002-5026-4392
https://orcid.org/0000-0002-8510-8787
https://orcid.org/0000-0002-0680-6334
https://orcid.org/0000-0003-0819-9985
mailto:fandikb@gmail.com
mailto:petr.novotny@fi.muni.cz
mailto:mornik@illinois.edu
mailto:pranayt2@illinois.edu
mailto:pranayt2@illinois.edu
mailto:utopcu@utexas.edu
https://doi.org/10.1109/TAC.2022.3209612

BLAHOUDEK et al.: EFFICIENT STRATEGY SYNTHESIS FOR MDPs WITH RESOURCE CONSTRAINTS 4587

finite-state systems with states augmented by an integer variable
representing the current resource level. The resource constraint
requires that the resource level never drops below zero.

The well-known energy model [8], [9] avoids the encoding
of the resource level into state space: instead, the model uses
an integer counter where transitions are labeled by integers, and
taking an �-labeled transition results in � being added to the
counter. Thus, negative numbers stand for resource consumption
while positive ones represent charging. Many variants of both
MDP and game-based energy models have been studied. In par-
ticular, Chatterjee and Doyen [17] considered strategy synthesis
for energy MDPs with qualitative Büchi and parity objectives.
The main limitation of the energy models is that, in general,
they are not known to admit strategy synthesis algorithms that
work in time polynomial with respect to the representation of the
model. Indeed, already the simplest problem, deciding whether
a nonnegative energy can be maintained in a two-player energy
game is at least as hard as solving mean-payoff graph games [9];
the question whether the latter belongs to P is a well-known
open problem [18]. This hardness translates also to MDPs [17],
making polynomial-time strategy synthesis for energy MDPs
impossible without a theoretical breakthrough.

B. Consumption MDPs (CMDPs)

Our work is centered around CMDPs, which is a model mo-
tivated by real-world vehicle energy consumption and inspired
by consumption games [19]. In a CMDP, the agent has a finite
storage capacity, each action consumes a nonnegative amount
of resource, and replenishing of the resource happens only in
designated states, called reload states. Resource replenishment at
reload states occurs as an atomic (instant) event—an assumption
that holds true in many real-world settings.

Reloading as atomic events and bounded capacity are the key
ingredients for the efficient analysis of CMDPs. Our qualitative
strategy synthesis algorithms work provably in time that is
polynomial with respect to the representation of the model.
Moreover, they synthesize strategies with a simple structure and
an efficient representation via binary counters.

The notion of CMDPs and the algorithm for the Büchi objec-
tive were first introduced in [20]. This article builds upon [20],
substantially expanding it by extending the algorithmic core
with the reachability objective (see Section VII) and introduc-
ing goal-leaning and threshold heuristics to improve expected
reachability time (ERT) of targets (see Section VIII). Further, the
notation in this article is completely overhauled to simplify the
understanding of the merits and proofs, uses pictorial examples
to improve readability, and also includes complete proofs omit-
ted in [20]. Finally, the numerical experiments (see Section IX)
section includes examples that uses STORM as a baseline for
comparison.

C. Outline

Section II introduces CMDPs with the necessary notation, and
it is followed by Section III that discusses strategies with binary
counters. Sections IV and V solve two intermediate objectives
for CMDPs, namely safety and positive reachability, that serve
as stepping stones for the main results. The solution for the
Büchi objective is conceptually simpler than the one for almost-
sure reachability and, thus, is presented first in Section VI,

Fig. 1. CMDP with a target set {u}.

followed by Section VII for the latter. Section VIII defines
ERT and proposes the two heuristics for its reduction. Finally,
Section IX describes our implementation and an illustrative
example showing the utility of our algorithms. It also provides
two numerical experiments showing the effectiveness of CMDPs
for the analysis of resource-constrained systems and the impact
of the proposed heuristics on ERT. For better readability, two
rather technical proofs were moved from Section V to Appendix.

II. PRELIMINARIES

We denote by N the set of all nonnegative integers and by N

the set N ∪ {∞}. For a set I and a vector v ∈ N
I

indexed by
I , we use v(i) for the i-component of v. We assume familiarity
with basic notions of probability theory.

A. Consumption MDPs

Definition 1 (CMDP): A CMDP is a tuple C =
(S,A,Δ, γ, R, cap) where S is a finite set of states, A is
a finite set of actions, Δ : S ×A× S → [0, 1] is a transition
function such that for all s ∈ S and a ∈ A, we have that∑

t∈S Δ(s, a, t) = 1, γ : S ×A → N is a consumption
function, R ⊆ S is a set of reload states where the resource can
be reloaded, and cap is a resource capacity.

Visual representation: CMDPs are visualized, as shown in
Fig. 1, for a CMDP ({s, t, u, v, w}, {a, b},Δ, γ, {s, u}, 20).
States are circles, reload states are double circled, and target
states (used later for reachability and Büchi objectives) are high-
lighted with a green background. Capacity is given in the yellow
box. The functions Δ and γ are given by (possibly branching)
edges in the graph. Each edge is labeled by the name of the action
and by its consumption enclosed in brackets. Probabilities of
outcomes are given by gray labels in proximity of the respective
successors. To avoid clutter, we omit 1 for nonbranching edges
and we merge edges that differ only in action names.

For s ∈ S and a ∈ A, we denote by Succ(s, a) the set {t |
Δ(s, a, t) > 0}. A path is a (finite or infinite) state-action se-
quenceα = s1a1s2a2s3 . . . ∈ (S ·A)ω ∪ (S ·A)∗ · S such that
si+1 ∈ Succ(si, ai) for all i. We define αi = si, and we say that
α is s1-initiated. We use α..i for the finite prefix s1a1 . . . si of
α, αi.. for the suffix siai . . . , and αi..j for the infix siai . . . sj .
A finite path is a cycle if it starts and ends in the same state and
is simple if none of its proper infixes forms a cycle. The length
of a path α is the number lenα of actions on α, with lenα = ∞
if α is infinite.

An infinite path is called a run. We typically name runs by
variants of the symbol �. A finite path is called history. We
use lastα for the last state of a history α. For a history α with

4588 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 8, AUGUST 2023

lastα = s1 and for β = s1a1s2a2 . . . we define a joint path as
α� β = αa1s2a2

A CMDP is decreasing if for every cycle s1a1s2 . . . ak−1sk
there exists 1 ≤ i < k such that γ(si, ai) > 0. Throughout this
article we consider only decreasing CMDPs. The only place
where this assumption is used are the proofs of Theorems 3 and
7.

B. Resource: Consumption and Levels

The semantics of the consumption γ, reload states R, and
capacity cap naturally capture the evolution of levels of the
resource along paths in C. Intuitively, each computation of C
must start with some initial load of the resource, actions consume
the resource, and reload states replenish the resource level to
cap. The resource is depleted if its level drops below 0, which
we indicate by the symbol ⊥ in the following.

Formally, let α = s1a1s2 . . . sn (where n might be ∞) be a
path in C and let 0 ≤ d ≤ cap be an initial load. We write dα
to denoting the fact that α started with d units of the resource.
We say that α is loaded with d and that dα is a loaded path. The
resource levels of dα is the sequence RLC(dα) = r1, r2, . . . , rn,
where r1 = d, and for 1 ≤ i < n, the next resource level ri+1

is defined inductively, using ci = γ(si, ai) for the consumption
of ai, as

ri+1 =

⎧⎨
⎩
ri − ci if si �∈ R and ci ≤ ri �= ⊥,
cap− ci if si ∈ R and ci ≤ cap and ri �= ⊥
⊥ otherwise.

(1)

If α (and, thus, n) is finite, we use lastRLC(dα) to reference
the last resource level rn of dα.

A loaded path dα is safe if⊥ is not present in RLC(dα), which
we write as ⊥ /∈ RLC(dα). Naturally, if dα is safe, then hα is
safe for all h ≥ d.

Example 1: Consider the CMDP in Fig. 1 with capacity 20
and the run � = (tasa)ω with the initial load 2. We have that
RLC(2�) = 2, 0, 19, 17, 19, 17 . . ., and thus, 2� is safe. On the
other hand, for the run �′ = (tbuawa)ω , we have RLC(20�′) =
20, 15, 14, 12, 7, 6, 4,⊥,⊥, . . ., and, in fact, no initial load can
make �′ safe.

C. Strategies

A strategy σ for C is a function assigning an action to each
loaded history. An evolution of C under the control of σ starting
in some initial state s ∈ S with an initial load d ≤ cap creates
a loaded path dα = ds1a1s2 . . . as follows. The path starts with
s1 = s, and for i ≥ 1, the action ai is selected by the strategy
as ai = σ(ds1a1s2 . . . si), and the next state si+1 is chosen
randomly according to the values of Δ(si, ai, ·). Repeating this
process ad infinitum yields an infinite sample run (loaded by
d). Loaded runs created by this process are σ-compatible. We
denote the set of all σ-compatible s-initiated runs loaded by d
by CompC(σ, s, d).

We denote by d
sPσ

C (A) the probability that a sample run from
CompC(σ, s, d) belongs to a given measurable set of loaded runs
A. For details on the formal construction of measurable sets of
runs, see [21].

D. Objectives and Problems

A resource-aware objective (or simply an objective) is a set
of loaded runs. The objective S (safety) contains exactly all
loaded runs that are safe. Given a target set T ⊆ S and i ∈ N,
the objective Ri

T (bounded reachability) is the set of all safe
loaded runs that reach some state from T within the first i steps,
which isRi

T = {d� ∈ S | �j ∈ T for some 1 ≤ j ≤ i+ 1}. The
union RT =

⋃
i∈N Ri

T forms the reachability objective. Finally,
the objective BT (Büchi) contains all safe loaded runs that visit
T infinitely often. The safety objective—never depleting the
critical resource—is of primary concern for agents in CMDPs.
We reflect this fact in the following definitions. Let us now fix
a target set T ⊆ S, a state s ∈ S, an initial load d, a strategy σ,
and an objective O. We say that σ loaded with d in s

� satisfies O surely, written as σds |=CO, if and only if d� ∈ O
holds for every d� ∈ CompC(σ, s, d);

� safely satisfies O with positive probability, written as
σds |=>0

C O, if and only if σd
s |=CS and d

sPσ
C (O) > 0;

� safely satisfies O almost surely, written as σd
s |==1

C O, if and
only if σd

s |=CS and d
sPσ

C (O) = 1.
We naturally extend the satisfaction relations to strategies

loaded by vectors. Let x ∈ N
S

be a vector of initial loads. The
strategy σ loaded by x satisfiesO, written as σx|=CO, if and only

if σx(s)
s]|=CO holds for all s ∈ S with x(s) �= ∞. We extend the

other two relations analogously to σx]|=>0
C O and σx]|==1

C O.
The vector ml[O]C is the componentwise minimal vector

for which there exists a strategy π such that πml[O]]|=CO. We
call π the witness strategy for ml[O]C . If ml[O]C(s) = ∞, no
strategy satisfies O from s even when loaded with cap. Vectors
ml[O]>0

C and ml[O]=1
C are defined analogously using |=>0 and

|==1, respectively.
We consider the following qualitative problems for CMDPs:

safety, positive reachability almost-sure Büchi, and almost-
sure reachability that is equal to computing ml[S]C , ml[R]>0

C ,
ml[B]=1, and ml[R]=1

C , respectively, and the corresponding
witness strategies. The solutions of the latter two problems build
on top of the first two.

E. Additional Notation and Conventions

For given R′ ⊆ S, we denote by C(R′) the CMDP that
uses R′ as the set of reloads and, otherwise, is defined
as C. Throughout this article, we drop the subscripts C
and T in symbols whenever C or T is known from the
context.

Calligraphic font (e.g., C) is used for names of CMDPs, sans
serifs (e.g., S) is used for objectives (set of loaded runs), and
vectors are written in bold. Action names are letters from the
start of the alphabet, whereas states of CMDPs are usually taken
from the latter parts of the alphabet (starting with s). The symbol
α is used for both finite and infinite paths, and � is only used for
infinite paths (runs). Finally, strategies are always variants of σ
or π.

F. Strategies Revisited

A strategy σ is memoryless if σ(dα) = σ(hβ) whenever
last (α) = last (β).

BLAHOUDEK et al.: EFFICIENT STRATEGY SYNTHESIS FOR MDPs WITH RESOURCE CONSTRAINTS 4589

Example 2: The runs� and�′ from Example 1 are sample runs
created by two different memoryless strategies: σa that always
picks a in t, and σb that always picks b in t. As � is the only
t-initiated run of σa, we have that σa

2
t |=S. However, σa is not

useful if we attempt to eventually reach u, and we clearly have
2
tPσa(R{u}) = 0. On the other hand, �′ is the witness for the fact
that σb does not even satisfy the safety objective for any initial
load. As we have no other choice in t, we can conclude that
memoryless strategies are not sufficient in our setting. Consider,
instead, a strategy π that picks b in t whenever the current
resource level is at least 10 and picks a (and reloads in s),
otherwise. Loaded with 2 in t, π satisfies safety and guarantees
reaching u with a positive probability: in t, we need at least 10
units of resource to return to s in the case we are unlucky and b
leads us to v; if we are lucky, b leads us directly to u, witnessing
that 2

tPπ(R{u}) > 0. Moreover, at every revisit of s, there is a
1
2 chance of hitting u during the next attempt, which shows that
π2
t |==1R{u}.
Remark: While computing the sure satisfaction relation |=

on a CMDP follows similar approaches as used for solving a
consumption two-player game [19], the solutions for |=>0 and
|==1differ substantially.

The strategy π from Example 2 uses finite memory to track
the resource level exactly. The standard results on MDPs with
ω-regular objectives [22] show that for the objectives introduced
in Section II-D, it is sufficient to consider strategies of the form
S × {0, . . . , cap} → A to achieve optimality (i.e., strategies
that decide based on the current state and resource level). A
naive way to represent such a strategy is via a table with
|S| · cap entries. However, this would be inefficient, since (as
we will prove) the optimal strategies are such that in a concrete
state s, they often select the same action when the resource
level falls within some, possibly large interval. To represent
such strategies succinctly, we introduce the notion of counter
strategies.

III. STRATEGIES WITH BINARY COUNTERS

Let us fix a CMDP C = (S,A,Δ, γ, R, cap). In our set-
ting, strategies need to track resource levels of histories. A
nonexhausted resource level is always a number between 0 and
cap, which can be represented with a binary-encoded bounded
counter. A binary-encoded counter needs log2(cap)bits of mem-
ory to represent numbers between 0 and cap (the same as integer
variables in computers).

We call strategies with such binary-encoded counters fi-
nite counter strategies. A finite counter strategy also needs
rules that select actions based on the current resource level,
and a rule selector that picks the right rule for each
state.

Definition 2 (Rule): A rule ϕ for C is a partial function from
the set {0, . . . , cap} to A. An undefined value for some n is
indicated by ϕ(n) = ⊥.

We use dom(ϕ) = {n ∈ {0, . . . , cap} | ϕ(n) �= ⊥} to de-
note the domain ofϕ, and we call the elements ofdom(ϕ) border
levels. We use RulesC for the set of all rules for C.

A rule compactly represents a total function using intervals.
Intuitively, the selected action is the same for all values of the re-
source level in the interval between two border levels. Formally,
let l be the current resource level and let n1 < n2 < · · · < nk

be the border levels of ϕ sorted in the ascending order. Then,
the selection according to rule ϕ for l, written as select(ϕ, l),

picks the action ϕ(ni), where ni is the largest border level such
that ni ≤ l. In other words, select(ϕ, l) = ϕ(ni) if the current
resource level l is in [ni, ni+1) (putting nk+1 = cap+ 1). We
set select(ϕ, l) = a for some globally fixed action a ∈ A (for
completeness) if l < n1. In particular, select(ϕ,⊥) = a.

Definition 3 (Rule selector): A rule selector for C is a function
Φ : S → Rules.

A binary-encoded counter that tracks the resource levels of
paths together with a rule selector Φ encode a strategy σΦ. Let
dα = ds1a1s2 . . . sn be a loaded history. We assume that we can
access the value of lastRL(dα) from the counter and we set

σΦ(
dα) = select(Φ(sn), lastRL(dα)).

A strategyσ is a finite counter strategy if there is a rule selector
Φ such that σ = σΦ. The rule selector can be imagined as a
device that implements σ using a table of size O(|S|), where the
size of each cell corresponds to the number of border levels times
O(log cap) (the latter representing the number of bits required
to encode a level). In particular, if the total number of border
levels Φ is polynomial in the size of the MDP, so is the number
of bits required to represent Φ (and, thus, σΦ). This contrasts
with the traditional representation of finite-memory strategies
via transducers [23], since transducers would require at least
Θ(cap) states to keep track of the current resource level.

Example 3: Consider the CMDP from Fig. 1. Let ϕ be a
rule with dom(ϕ) = {0, 10} such thatϕ(0) = a andϕ(10) = b,
and let ϕ′ be a rule with dom(ϕ′) = {0} such that ϕ(0) =
a. Finally, let Φ be a rule selector such that Φ(s) = ϕ and
Φ(s′) = ϕ′ for all s �= s′ ∈ S. Then, the strategy π informally
described in Example 2 can be formally represented by putting
π = σΦ. Note that for anyxwithx(t) ≥ 2,x(u) ≥ 0,x(v) ≥ 5,
x(w) ≥ 4, and x(s) ≥ 0 we have that πx|==1R{u}.

IV. SAFETY

In this section, we present Algorithm 2 that computes ml[S]
and the corresponding witness strategy. Such a strategy guaran-
tees that, given a sufficient initial load, the resource will never be
depleted regardless the resolution of actions’ outcomes. In the
rest of this section, we fix an MDP C = (S,A,Δ, γ, R, cap).

A safe run loaded with d has the following two properties: (i)
it never consumes more than cap units of the resource between
two consecutive visits of reload states, and (ii) it consumes at
most d units of the resource (energy) before it reaches the first
reload state. To ensure (i), we need to identify a maximal subset
R′ ⊆ R of reload states for which there is a strategy σ that,
starting in some r ∈ R′, can always reach R′ again using at
most cap resource units. To ensure (ii), we need a strategy that
suitably navigates towardR′ while not reloading and while using
at most d units of the resource.

In summary, for both properties (i) and (ii), we need to find
a strategy that can surely reach a set of states (R′) without
reloading and within a certain limit on consumption (cap and d,
respectively). We capture the desired behavior of the strategies
by a new objective N (nonreloading reachability).

A. Nonreloading Reachability

The problem of nonreloading reachability in CMDPs is sim-
ilar to the problem of minimum cost reachability on regular
MDPs with nonnegative costs, which was studied before [24].
In this section, we present a new iterative algorithm for this

4590 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 8, AUGUST 2023

problem, which fits better into our framework and is imple-
mented in our tool. The reachability objective R is defined as
a subset of S, and thus relies on resource levels. The following
definition of N follows similar ideas as we used for R, but 1) it
ignores what happens after the first visit of the target set, and 2)
it uses the cumulative consumption instead of resource levels to
ignore the effect of the reload states.

Given T ⊆ S and i ∈ N, the objective Ni
T (bounded non-

reloading reachability) is the set of all (not necessary safe) loaded
runs ds1a1s2a2 . . . such that for some 1 ≤ f ≤ i+ 1 it holds
sf ∈ T and

∑f−1
j=1 γ(sj , aj) ≤ d. The union NT =

⋃
i∈N Ni

T
forms the nonreloading reachability objective.

Let us now fix some T ⊆ S. In the next few paragraphs,
we discuss the solution of sure nonreloading reachability of T :
computing the vector ml[NT] and the corresponding witness
strategy. The solution is based on backward induction (with
respect to number of steps needed to reach T). The key concept,
here, is the value of action a in a state s based on a vector
v ∈ N

S
, denoted as AV (v, s, a) and defined as follows:

AV (v, s, a) = γ(s, a) + max
t∈Succ(s,a)

v(t). (2)

Intuitively, AV (v, s, a) is the consumption of a in s plus the
worst value of v among the relevant successors. Now imagine
that v is equal to ml[Ni]; that is, for each state s, it contains
the minimal amount of resource needed (without reloading) to
reach T in at most i steps. Then, AV for a in s is the minimal
amount of resource needed to reach T in i+ 1 steps.

The following functional F : N
S → N

S
is a simple gener-

alization of the standard Bellman functional. We use F i(v) for
the result of i applications of F on v

F(v)(s) =

{
0 s ∈ T

mina∈A AV (v, s, a) s �∈ T.
(3)

To complete our induction-based computation, we need to
find the right initialization vector xT for F . As the intuition
for action value hints, xT should be precisely ml[N0] and,
thus, is defined as xT (s) = 0 for s ∈ T and as xT (s) = ∞,
otherwise.

Lemma 1: It holds that ml[Ni
T] = F i(xT) for every i ≥ 0.

Proof: We proceed by induction on i. The base case for i = 0
is trivial. Now assume that the lemma holds for some i ≥ 0.

From the definition of Ni, we have that a loaded run
d� = ds1a1s2 . . . satisfies surely Ni+1 if and only if s1 ∈
T or h�2.. ∈ Ni for h = d− γ(s1, a1). Therefore, given a
state s /∈ T and the load d = ml[Ni+1](s), each witness strat-
egy σ for ml[Ni+1] must guarantee that if σ(ds) = a, then
d ≥ ml[Ni](s′) + γ(s, a) for all s′ ∈ Succ(s, a). That is, d ≥
AV (ml[Ni], s, a) = AV (F i(xT), s, a).

On the other hand, let am be the action with minimal AV
for s based on ml[Ni]. The strategy that plays am in the first
step and then mimics some witness strategy for ml[Ni] surely
satisfies Ni+1 from s loaded by AV (ml[Ni], s, am). Therefore,
d ≤ AV (ml[Ni], s, am) = AV (F i(xT), s, am).

Together, d = ml[Ni+1](s) = mina∈A AV (ml[Ni], s, a) =
F(ml[Ni])(s) and that is by induction hypothesis equal to
F(F i(xT))(s) = F i+1(xT)(s).

Theorem 1: Denoting by n the length of the longest simple
path in C. Iterating F on xT yields a fixed point in at most n
steps and this fixed point equals ml[NT].

Proof: For the sake of contradiction, suppose that F does not
yield a fixed point after n steps. Then, there exists a state s such
that d = Fn+1(xT)(s) < Fn(xT)(s). Let σ be a witness strat-
egy forFn+1(xT) = ml[Nn+1]. Now, let d� = ds1a1s2 . . . be a
loaded run fromComp(σ, s, d) such that si /∈ T for all i ≤ n+ 1
and sn+2 ∈ T , and such that for all 1 ≤ k ≤ n+ 1 it holds d−
ck = ml[Nn+1−k](sk+1) where ck =

∑k
j=1 γ(sj , aj). Such a

run must exist, otherwise some ml[Ni] can be improved.
As n is the length of the longest simple path in C, we can

conclude that there are two indicesf < l ≤ n+ 1 such that sf =
sl = t. But since C is decreasing, we have that cf < cl, and
thus ml[Nn+1−f](t) = d− cf > d− cl = ml[Nn+1−l](t). As
n+ 1− f > n+ 1− l, we reached a contradiction with the fact
that Nn+1−f ⊇ Nn+1−l.

By Lemma 1, we have that Fn(xT) = ml[N]. �
Witness strategy for ml[N]: Any memoryless strategy σ that

picks for each history ending with a state s and some action
as such that AV (ml[N], s, as) = ml[N](s) is clearly a witness
strategy for ml[N], which is σml[N]]|=N.

B. Safely Reaching Reloads From Reloads

The objectiveN is sufficient for the property (ii) with T = R′.
But we cannot use it off-the-shelf to guarantee property (i) as
most cap units of resource are consumed between two consec-
utive visits of R′. For that, we need to solve the problem of
reachability within at least one step (starting in T alone does not
count as reaching T here). We define Ni

+T in the same way as
NT , but we enforce that f > 1 and we set N+T =

⋃
i∈N Ni

+T .
To compute ml[N+T], we slightly alter F using the following
truncation operator:

��v��T (s) =
{
v(s) if s �∈ T

0 if s ∈ T.
(4)

The new functional G applied to v computes the new value in
the same way for all states (including states from T), but treats
v(t) as 0 for t ∈ T

G(v)(s) = mina∈A AV (��v��T s, a) . (5)

Let∞S ∈ N
S

denote the vector with all components equal to
∞. Clearly, ��∞S��T = xT , and thus, it is easy to see that for
all s /∈ T and i ∈ N, we have that Gi(∞S)(s) = F i(xT)(s).
Moreover, ��Gi(∞S)��T = F i(xT). A slight modification of
arguments used to prove Lemma 1 and Theorem 1 shows that G,
indeed, computesml[N+T] and we need at mostn+ 1 iterations
for the desired fixed point. Algorithm 1 iteratively applies G on
∞S until a fixed point is reached.

Theorem 2: Given a CMDP C and a set of target states T ,
Algorithm 1 computes the vector ml[N+T]C . Moreover, the
repeat loop terminates after at most |S| iterations.

Proof: Each iteration of the repeat loop computes an appli-
cation of G on the value of v from line 3 (stored in vold) and
stores the resulting values in v on line 7. Iterating G on ∞S

yields a fixed point in at most n+ 1 iterations, where n is the
length of the longest simple path in C. As n+ 1 ≤ |S|, the test
on line 8 becomes true after at most |S| iterations, and v on line
8 contains the result of Gi(∞S) where i is the actual number of
iterations. Thus, the value of v on line 9 is equal to ml[N+T]C
and is computed in at most |S| iterations. �

BLAHOUDEK et al.: EFFICIENT STRATEGY SYNTHESIS FOR MDPs WITH RESOURCE CONSTRAINTS 4591

Fig. 2. CMDP D with values of ml[N+R]. For a state s, the value
ml[N+R](s) is pictured in the orange box below s.

Fig. 3. CMDP D({u, v, x}) with values of ml[N+{u,v,x}] in orange
boxes. Note the difference in the set of reload states in comparison to
Fig. 2.

Now with Algorithm 1 we can compute ml[N+R]C and see
which reload states should be avoided by safe runs: the reloads
that need more than cap units of resource to surely reach R
again. We call such reload states unusable in C.

C. Detecting Useful Reloads and Solving the Safety
Problem

Using Algorithm 1, we can identify reload states that are
unusable in C. However, it does not automatically mean that
the rest of the reload states form the desired set R′ for property
(i). Consider the CMDP D in Fig. 2. The only reload state
that is unusable is w (ml[N+R](w) = ∞). But clearly, all runs
that avoid w must avoid v and x as well Fig. 3. The property
(i), indeed, translates to ml[N+R′](r) ≤ cap for all r ∈ R′;
naturally, we want to identify the maximalR′ ⊆ R for which this
holds. Algorithm 2 finds the desired R′ by iteratively removing
unusable reloads from the current candidate set R′ until there is
no unusable reload in R′ (lines 3–7).

With the right set R′ in hand, we can move on to the property
(ii) of safe runs: navigating safely toward reloads in R′, which
equals the objective NR′ from Section IV-A. We can reuse
Algorithm 1 for it as ml[N] = ��ml[N+]�� regardless the target
set. Based on properties (i) and (ii), we claim that ml[S] =
��ml[N+R′]��R′ . Indeed, we need at most cap units of resource
to move between reloads of R′, and at most ��ml[N+R′]��R′(s)
units of resource to reach R′ from s.

Whenever ml[S](s) > cap for some state s, the exact value is
not important for us; the meaning is still that there is no strategy
σ and no initial load d ≤ cap such that σd

s |=S. Hence, we can
set ml[S](s) = ∞ in all such cases. To achieve this, we extend
the operator ��·��T into [[·]]capT as follows:

[[x]]capT (s) =

⎧⎨
⎩
∞ if x(s) > cap,

x(s) if x(s) ≤ cap and s �∈ T

0 if x(s) ≤ cap and s ∈ T.

(6)

Theorem 3: Algorithm 2 computes the vector ml[S]C in time
polynomial with respect to the representation of C.

Proof. Complexity: The algorithm clearly terminates. Com-
puting ml[N+R′] on line 5 takes a polynomial number of steps
per call (Theorem 2). Since the repeat loop performs at most |R|
iterations, the complexity follows.

Correctness: We first prove that upon termination,
[[n]]capR′ (s) ≤ ml[S]C(s) for each s ∈ S whenever the latter value
is finite. This is implied by the fact that ml[N+R′] ≤ ml[S] is
the invariant of the algorithm. To see that, it suffices to show that
at every point of execution, ml[S](t) = ∞ for each t ∈ R \R′:
if this holds, each strategy that satisfies S must avoid states in
R \R′ [due to property (i) of safe runs], and thus, the first reload
on runs compatible with such a strategy must be from R′.

Let R′
i denote the contents of R′ after the ith iteration. We

prove, by induction on i, that ml[S](t) = ∞ for all t ∈ R \R′.
For i = 0, we have R = R′

0, so the statement holds. For i > 0,
let t ∈ R \R′

i; then, it must exist some j < i such that n(t) =
ml[N+R′

j
](t) > cap, hence no strategy can safely reachR′

j from
t, and by induction hypothesis, the reload states from R \R′

j
must be avoided by strategies that satisfy S. Together, as C is
decreasing, there is no strategy σ such that σcap

t |=S, and hence,
ml[S](t) = ∞.

Finally, we need to prove that upon termination, [[n]]capR′ ≥
ml[S]. Asn = ml[N+R′] andn(r) ≤ cap for each r ∈ R′, then,
for each s with d = [[n]]capR′ (s) ≤ cap, there exists a strategy that
can reach R′ ⊆ R consuming at most d units of resource, and
once inR′,σ can always return toR′ within capunits of resource.

4592 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 8, AUGUST 2023

Fig. 4. The CMDP from Fig. 1 with vectors for Examples 4 and 5. The
values of ml[NR] and ml[S] (referenced in Example 4) are indicated
by the orange (left-hand side) and blue (right-hand side) boxes above
states, respectively. Values of p1 (left-hand side) and ml[R]>0 (right-
hand side) that are referenced in Example 5 are indicated by the green
boxes below states.

Thus, all runs in Comp(σ, s, d) are safe and d is enough for S
in s. �

D. Safe Strategies

Definition 4: Let s ∈ S be a state and let 0 ≤ d ≤ cap be
a resource level. An action a is safe in s with d if (1) v =
AV (ml[S], s, a) ≤ d, or if (2) v ≤ cap and s ∈ R, or if (3)
ml[S](s) > cap. a is min-safe in s if it is safe in s with
d = ml[S](s). A strategy σ is safe if it picks safe action in the
current state with the current resource level when possible.

Remarks: By definition, on the one hand, no action is safe
in s for all r < ml[S](s) < ∞ (otherwise, ml[S](s) is at most
r). On the other hand, there is always at least one action that is
min-safe for each state s, and in particular, all actions are safe
and min-safe in s with ml[S](s) = ∞.

Lemma 2: Let σ be a safe strategy. Then, σml[S] |=S.
Proof: We need to prove that, given a state swithml[S](s) ≤

cap and an initial load d such that ml[S](s) ≤ d ≤ cap, all
runs in Comp(σ, s, d) are safe. To do this, we show that all
s-initiated d-loaded paths dα created by σ are safe. By simple
induction with respect to the length of the path, we prove that
lastRL(dα) ≥ ml[S](t) �= ⊥, where t = lastα. For ds, this
clearly holds. Now assume that lastRL(dα) ≥ ml[S](t) �= ⊥
for some s-initiated α with t = lastα and all d ≥ ml[S](s).
Now consider a d′-loaded path d′

s′as� α created by σ; we
have lastRL(d

′
s′as) = d′ − γ(s,′ a) ≥ ml[S](s) by definition

of action value and safe actions, and thus, by the induction
hypothesis, we have that lastRL(d

′
s′as� α) ≥ ml[S](t). �

Theorem 4: In each CMDP C, there is a memoryless strategy
σ such that σml[S]C |=CS. Moreover, σ can be computed in time
polynomial w.r.t. the representation of C.

Proof: Using Lemma 2, the existence of a memoryless strat-
egy follows from the fact that a strategy that fixes one min-safe
action in each state is safe. The complexity follows from Theo-
rem 3.

Example 4: Fig. 4 shows again the CMDP from Fig. 1 and
includes also the values computed by Algorithms 1 and 2.
Algorithm 2 stores the values of ml[N] into n and, because
no value is ∞, returns just [[n]]capR . The strategy σa from Example
2 is a witness strategy for ml[S]. As ml[S](t) = 2, no strategy
would be safe from t with initial load 1.

V. POSITIVE REACHABILITY

In this section, we present the solution of the problem called
positive reachability. We focus on strategies that, given a set
T ⊆ S of target states, safely satisfy RT ⊆ S, i.e., the reachabil-
ity objective, with a positive probability. The main contribution
of this section is Algorithm 3 that computes ml[R]>0 and the
corresponding witness strategy. As before, for the rest of this
section, we fix a CMDP C = (S,A,Δ, γ, R, cap) and also a set
T ⊆ S.

Let s ∈ S \ T be a state, let d be an initial load, and let
σ be a strategy such that σd

s |=>0RT . Intuitively, as σd
s |=>0R

implies σd
s |=S, the strategy is limited to safe actions. For the

reachability part, σ must start with an action a = σ(ds) such
that for at least successor s′ of a in s it holds that σd′

s′ |=>0R with
d′ = d− γ(s, a). It must, then, continue in a similar fashion
from s′ until either T is reached (and σ produces the desired run
from RT) or until there is no such action.

To formalize the intuition, we define two auxiliary functions.
Let us fix a state s, action a, a successor s′ ∈ Succ(s, a), and a

vectorx ∈ N
S

. We define the hope value of s′ for a in s based on
x, denoted by HV (x, s, a, s′), and the safe value of a in s based
on x, denoted by SV (x, s, a), as follows: HV (x, s, a, s′) =
maxt∈Succ(s,a)t �=s′ {x(s′),ml[S](t)}, SV (x, s, a) = γ(s, a) +
mins′∈Succ(s,a) HV (x, s, a, s′).

The hope value of s′ for a in s represents the lowest level of
resource that the agent needs to have after playing a in order to
1) have at least x(s′) units of resource if the outcome of a is s′,
and 2) to survive, otherwise. On the other hand, the safe value
represents the consumption of a in s plus the least hope value
among the relevant successors.

We again use functionals to iteratively compute ml[Ri]>0,
with a fixed point equal to ml[R]>0. The main operator B just
applies [[·]]capR on the result of the auxiliary functional A. The
application of [[·]]capR ensures that whenever the result is higher
than cap, it set to ∞, and that in reload states, the value is either
0 or ∞—in line what is expected from ml[R]>0.

A(x)(s) =

{
ml[S](s) if s ∈ T

mina∈A SV (x, s, a) otherwise
(7)

B(x) = [[A(x)]]capR . (8)

By yT , we denote a vector such that

yT (s) =

{
ml[S](s) if s ∈ T

∞ if s �∈ T.
(9)

The following two lemmata relate B to ml[R]>0 and show
that B applied iteratively on yT reaches fixed point in a number
of iterations that is polynomial with respect to the representation
of C. Their proofs are provided in the Appendix.

Lemma 3: Consider the iteration ofB on the initial vectoryT .
Then, for each i ≥ 0, it holds that Bi(yT) = ml[Ri]>0.

Lemma 4: LetK = |R|+ (|R|+ 1) · (|S| − |R|+ 1). Then,
BK(yT) = ml[R]>0.

Algorithm 3 computes ml[R]>0 and a corresponding witness
rule selectorΦ. On lines 4 and 5,p is initialized toyT . The repeat
loop on 6 to 15 iterates B on p (and pold) and builds the witness
selector gradually. In particular, the line 10 stores the application
of A on pold in p, the line 11 performs B, and the condition on
line 15 checks for the fixed point. Finally, lines 9 and 12–14

BLAHOUDEK et al.: EFFICIENT STRATEGY SYNTHESIS FOR MDPs WITH RESOURCE CONSTRAINTS 4593

update Φ accordingly. The correctness and complexity of the
algorithm are stated formally in Theorems 5 and 6.

Example 5: Consider again Fig. 4, which shows the values
of p1: the vector p after one iteration of the repeat loop of
Algorithm 3. In this iteration, the algorithm set Φ to play b in t
with resource level 10 or more. The final values ofp = ml[R]>0

computed by Algorithm 3 are equal toml[S] for this example (as
we can safely reach u from all reloads). In the iteration, where
p(t) = 2 for the first time, the selector is updated to play a in t
with resource level between 2 and 10 (excluded).

Theorem 5: Algorithm 3 always terminates after a number of
steps that is polynomial with respect to the representation of C,
and upon termination, p = ml[R]>0.

Proof: The complexity part follows from Lemma 4 and the
fact that each iteration takes only linear number of steps. The
correctness part is an immediate corollary of Lemma 4 and the
fact that Algorithm 3 iterates B on yT until a fixed point. �

Theorem 6: Upon termination of Algorithm 3, the computed
rule selector Φ encodes a strategy σΦ, σΦ

v |=>0 R for v =
ml[R]>0. As a consequence, a polynomial-size finite counter
strategy for the positive reachability problem can be computed
in time polynomial with respect to representation of C.

Proof: The complexity follows from Theorem 5. Indeed,
since the algorithm has polynomial complexity, also the size ofΦ
is polynomial. The correctness proof is based on the following
invariant of the main repeat loop. The vector p and the finite
counter strategy π = σΦ have the following properties:

1) It holds that p ≥ ml[S].
2) Strategy π is safe.
3) For each s ∈ S withd such thatp(s) ≤ d ≤ cap, there is a

finite π-compatible path dα = ds1a1s2 . . . sn with s1 =
s and sn ∈ T such that RL(dα) = r1, r2, . . . , rn never
drops below p, which is ri ≥ p(si) for all 1 ≤ i ≤ n.

The theorem then follows from (2) and (3) of this invariant
and from Theorem 5.

Clearly, all parts of the invariants hold after the initialization
on lines 2–5. The first item of the invariant follows from the
definition of SV and HV . In particular, if pold ≥ ml[S], then
SV (pold, s, a) ≥ AV (ml[S], s, a) ≥ ml[S](s) for all s and a.
The part (2) follows from (1), as the action assigned to Φ
on line 14 is safe for s with p(s) units of resource (again,
due to p(s) = SV (pold, s, a) ≥ AV (ml[S], s, a)); hence, only
actions that are safe for the corresponding state and resource
level are assigned to Φ. By Lemma 2, π is safe.

The proof of (3) is more involved. Assume that an iteration of
the main repeat loop was performed. Denote by πold the strategy
encoded by p and Φ from the previous iteration. Let s be any
state such that p(s) ≤ cap. If p(s) = pold(s), then (3) follows
directly from the induction hypothesis: for each state q, Φ(q)
was only redefined for values smaller then pold(q), and thus,
the history witnessing (3) for πold is also π-compatible.

The case where p(s) < pold(s) is treated similarly. We de-
note by a the action a(s) selected on line 9 and assigned
to Φ(s) for p(s) on line 14. By definition of SV , there
must be t ∈ Succ(s, a) such thatHV (pold, s, a, t) + γ(s, a) =
SV (pold, s, a) (which is equal to p(s) before the truncation
on line 11). In particular, it holds that l = lastRL(p(s)sat) ≥
pold(t) (even after the truncation). Then, by the induction hy-
pothesis, there is a t-initiated finite pathβ witnessing (3) forπold.
Then, the loaded history p(s)αwithα = sat � β is 1) compatible
with π, and moreover, 2) we have that RL(pold(s)α) never drops
below p. Indeed, 1) Φ(s)(p(s)) = a (see line 14), and 2) Φ was
only redefined for values lower than pold, and thus, π mimics
πold from t onward. For the initial load p(s) < d′ ≤ cap, the
same arguments apply. This finishes the proof of the invariant
and also the proof of Theorem 6. �

VI. BÜCHI: VISITING TARGETS REPEATEDLY

This section solves the almost-sure Büchi problem. As
before, for the rest of this section, we fix a CMDP C =
(S,A,Δ, γ, R, cap) and a set T ⊆ S.

The solution builds on the positive reachability problem sim-
ilarly to how the safety problem builds on the nonreloading
reachability problem. In particular, we identify a largest set
R′ ⊆ R such that from each r ∈ R′ we can safely reach R′
again (in at least one step) while restricting ourselves only to
safe strategies that 1) avoid R \R′ and 2) guarantee positive
reachability of T in C(R′) from all r ∈ R′.

Intuitively, at each visit of R′, such a strategy can attempt
to reach T . With an infinite number of attempts, we reach T
infinitely often with probability 1 (almost surely). Formally,
we show that for a suitable R′, we have that ml[BT]

=1
C =

ml[RT]
>0
C(R′) (where C(R′) denotes the CMDP defined as C with

the exception that R′ is the set of reload states).
Algorithm 4 identifies the suitable setR′ using Algorithm 3 in

a similar fashion as Algorithm 2 handled safety using Algorithm
1. In each iteration, we declare as nonreload states all states of
R from which positive reachability of T within C(R′) cannot be
guaranteed. This is repeated until we reach a fixed point. The
number of iterations is bounded by |R|.

Theorem 7: Upon termination of Algorithm 4, for the strategy
σΦ encoded by Φ it holds σΦ

b|==1
C B. Moreover, b = ml[B]=1

C .
As a consequence, a polynomial-size finite counter strategy

4594 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 8, AUGUST 2023

for the almost-sure Büchi problem can be computed in time
polynomial with respect to the representation of C.

Proof: The complexity part follows from the fact that the
number of iterations of the repeat loop is bounded by |R| and
from theorems 5 and 6.

For the correctness part, we first prove that σΦ
b|==1

C(R′) B.
Then, we argue that the same holds also for C. Finally, we show
that b ≤ ml[B]=1

C ; the converse follows from σΦ
b|==1

C B.
Strategy σΦ has finite memory, also σΦ

b|=>0
C(R′) R, and upon

termination, b(r) = 0 for all r ∈ R′. Therefore, there is θ > 0
such that upon every visit of some state r ∈ R′ we have that
0
rP

σΦ

C(R′)(R) ≥ θ.
As C(R′) is decreasing, every safe infinite run created by

σΦ in C(R′) must visit R′ infinitely many times. Hence, with
probability 1, we reach T at least once. The argument can
then be repeated from the first point of visit of T to show
that with probability 1 we visit T at least twice, three times,
etc., ad infinitum. By the monotonicity of probability, we get
d
sP

σΦ

C(R′)(B) = 1 for all s : d = b(s) ≤ cap and σΦ
b|==1

C(R)′B.
Let s be a state such that b(s) ≤ cap. Clearly, all s-

initiated runs loaded by d ≥ b(s) that are compatible with
σΦ in C(R′) avoid R \R′. Therefore, CompC(σΦ, s, d) =

CompC(R′)(σΦ, s, d), and we also get σΦ
d
s|==1

C B.
It remains to show that b ≤ ml[B]=1

C . Assume for the sake
of contradiction that there is a state s ∈ S and a strategy σ such
that σ d

s|==1
C B for some d < b(s) = ml[R]>0

C(R′)(s). Then, there

must be at least one dα created by σ such that dα visits r ∈
R \R′ before reachingT (otherwise, d ≥ b(s)). Then, either (a)
ml[R]>0

C (r) = ∞, in which case any σ-compatible extension of
dα avoids T ; or (b) since ml[R]>0

C(R′)(r) > cap, there must be an
extension of α that visits, between the visit of r and T , another
r′ ∈ R \R′ such that r′ �= r. We can then repeat the argument,
eventually reaching the case (a) or running out of the resource,
a contradiction with σ d

s|=CS. �

VII. ALMOST-SURE REACHABILITY

In this section, we solve the almost-sure reachability
problem by computing the vectorml[RT]

=1 and the correspond-
ing witness strategy for a given set of target states T ⊆ S.

A. Reduction to Büchi

In the absence of the resource constraints, reachability can
be viewed as a special case of Büchi: we can simply mod-
ify the MDP so that playing any action in some target state
t ∈ T results into looping in t, thus replacing reachability with
an equivalent Büchi condition. In CMDPs, the transformation
is slightly more involved, due to the need to “survive” after
reaching T . Hence, for every CMDP C and a target set T , we
define a new CMDP B(C, T) so that solving B(C, T) w.r.t. the
Büchi objective entails solving C w.r.t. the reachability objec-
tive. Formally, for C = (S,A,Δ, γ, R, cap), we haveB(C, T) =
(S,′ A,Δ,′ γ,′ R,′ cap), where the differing components are de-
fined as follows:

� S ′ = S ∪ {sink}, where sink �∈ S is a new sink state, i.e.,
Δ′(sink, a, sink) = 1 for each a ∈ A;

� we have R′ = R ∪ {sink};
� for each t ∈ T and a ∈ A, we have Δ′(t, a, sink) = 1 and
Δ′(t, a, s) = 0 for all s ∈ S;

� for each t ∈ T and a ∈ A, we have γ′(t, a) = ml[S]C(t);
� we have γ′(sink, a) = 1 for each a ∈ A; and
� we have Δ′(s, a, t) = Δ(s, a, t) and γ′(s, a) = γ(s, a)

for every s ∈ S \ T , every a ∈ A, and every
t ∈ S.

We can easily prove the following.
Lemma 5: For every s ∈ S, it holds that ml[RT]

=1
C (s) =

ml[B{sink}]=1
B(C,T)(s). Moreover, from a witness strategy for

ml[RT]
=1
C , we can extract, in time polynomial with respect to the

representation of C, the witness strategy for ml[B{sink}]=1
B(C,T)

and vice versa.
Proof: Let σ be a witness strategy for ml[B{sink}]=1

B(C,T) in
B(C, T). Consider a strategy π in C which, starting in some
state s, mimics σ until some t ∈ T is reached, and then switches
to mimicking an arbitrary safe strategy. Since σ reaches sink
and, thus, also T almost-surely, so does π. Moreover, since σ is
safe, upon reaching a t ∈ T , the current resource level is at least
ml[S]C(t), since consuming this amount is enforced in the next
step. This is sufficient for π to prevent resource exhaustion after
switching to a safe strategy.

It follows that ml[B{sink}]=1
B(C,T)(s) ≥ ml[RT]

=1
C (s) for all

s ∈ S. The converse inequality can be proved similarly, by
defining a straightforward conversion of a witness strategy for
ml[RT]

=1
C into a witness strategy for ml[B{sink}]=1

B(C,T)(s). The
conversion can be clearly performed in polynomial time, with
the help of Algorithm 2.

Hence, we can solve almost-sure reachability for C by con-
structing B(C, T) and solving the latter for almost-sure Büchi
via Algorithm 4. The construction of B(C, T) can be clearly
performed in time polynomial in the representation of C (using
Algorithm 2 to compute ml[S]C), hence also almost-sure reach-
ability can be solved in polynomial time.

B. Almost-Sure Reachability Without Model Modification

In practice, building B(C, T) and translating the synthesized
strategy back to C is inconvenient. Hence, we also present
an algorithm to solve almost-sure reachability directly on C.
The algorithm consists of a minor modification of the already
presented algorithms.

BLAHOUDEK et al.: EFFICIENT STRATEGY SYNTHESIS FOR MDPs WITH RESOURCE CONSTRAINTS 4595

To argue the correctness of the algorithm, we need a slight
generalization of the MDP modification. We call a vector v ∈
N

S
, a sink vector for C, if and only if 0 ≤ v(s) ≤ ml[S]=1

C (s)
or v(s) = ∞ for all s ∈ S. By F (v), we denote the set {s ∈
S | v(s) < ∞} of states with finite value of v, and we call each
member of this set a sink entry. We say that v is a sink vector
for T if F (v) = T . Given a CMDP C, target set T , and sink
vector v for T , we define a new CMDP B(C, T,v) in exactly
the same way as B(C, T), except for the fourth point: for every
t ∈ T , we put γ′(t, a) = v(t) for all a ∈ A. Note thatB(C, T) =
B(C, T,ml[S]C).

Given a CMDP C, subsets of states T and X of C, and a sink
vector v for T , Algorithm 5 computes the S-components of the
vector ml[N+x′]B(C,T,v), where X ′ = X ∪ {sink}. To see this,
denote by xi the contents of the variable x in the ith iteration
of Algorithm 5 on the inputs C, T , X , and v, and denote by vi

the contents of variable v in the ith iteration of an execution of
Algorithm 1 on CMDP B(C, T,v) with target set X ∪ {sink}.
Induction shows that vi(s) = xi(s) for all s ∈ S and all i.

Then, the vector ml[S]B(C,T,v) can be computed us-
ing a slight modification of Algorithm 2: on line 5, use
ml[N+R′∪{sink}]B(C,T,v) (projected to S) computed by Algo-
rithm 5 instead of ml[N+R′] computed by Algorithm 1. Then,
run the modified algorithm on C. The correctness can be argued
similarly as for Algorithm 5: letR′

i be the contents ofR′ in the ith
iteration of Algorithm 2 onB(C, T,v), and let R̃′

i be the contents
of R′ in the ith iteration of the modified algorithm executed on
C. Clearly, sink ∈ R̃′

i for all i. An induction on i shows that for
all i, we have R′ = R̃′ \ {sink}, so both algorithms terminate in
the same iteration. The correctness follows from Algorithm 2.

Now we can proceed to solve almost-sure reachability. Al-
gorithm 6 combines (slightly modified) Algorithms 3 and 4 to
mimic the solving of Büchi objective in B(C, T) with a single
Büchi accepting state {sink}.

Lines 7–21 correspond to the computation of Algo-
rithm 3 on B(C, T)(R′ ∪ {sink}). To see this, note that
B(C, T)(R′ ∪ {sink}) = B(C(R′),T,v) for v = ml[S]C .
Hence, line 1 in Algorithm 3 is replaced by line 11 in

Algorithm 6. Also, on lines 15 and 16, we use versions of HV
and SV that use survival values s: HV [s](x, s, a, s′) =
maxt∈Succ(s,a)t �=s′ {x(s′), s(t)} and SV [s](x, s, a) =
γ(s, a) + mins′∈Succ(s,a) HV [s](x, s, a, s′). Note that
HV = HV [ml[S]] and SV = SV [ml[S]]. These generalized
operators are used because Algorithm 6 works on C, but
lines 15 and 16 should emulate the computation of lines 9
and 10 on B(C, T)(R′ ∪ {sink}), so the vector ml[S]C in the
definition of the hope value HV has to be substituted for
ml[S]B(C,T)(R′∪{sink}) = ml[S]B(C(R′),T,v), where v = ml[S]C .

Hence, the respective lines, indeed, emulate the computation
of Algorithm 3 onB(C, T)(R′ ∪ {sink}). It remains to show that
the whole repeat loop emulates the computation of Algorithm 4
on B(C, T). But this follows immediately from the fact that in
the latter computation, sink always stays in R′.

VIII. IMPROVING ERT

The number of steps that a strategy needs on average to reach
the target set T (ERT) is a property of practical importance. For
example, we expect that a patrolling unmanned vehicle visits all
the checkpoints in a reasonable amount of time. The proposed
algorithms are purely qualitative without any consideration for
the number of steps. To address this shortcoming, this section
proposes two heuristics that can improve ERT: the goal-leaning
heuristic and the threshold heuristic. These heuristics modify
the proposed algorithms to ensure that the strategies can often
hit T sooner than the strategies produced by the unmodified
algorithms.

4596 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 8, AUGUST 2023

Fig. 5. Example CMDP for the goal-leaning heuristic. The green boxes
above states indicate ml[R{w}]=1.

A. Expected Reachability Time

To formally define ERT, we introduce a new objective:
Fi
T (reachability first in i steps) as Fi

T = {d� ∈ Ri
T | d� /∈

Rj
T for all 0 ≤ j < i} (the set of all safe loaded runs d� such

that the minimum j such that �j ∈ T is equal to i). Finally,
the ERT for a strategy σ, an initial state s ∈ S, an initial load
d ≤ cap, and a target set T ⊆ S is defined as follows:

ERTC(σ, s, d,T) =
∑
i∈N

i · d
sP

σ
C
(
Fi
T

)
. (10)

The running example for this section is the CMDP in Fig. 5
with capacity ≥ 3 and the almost-sure satisfaction of the reach-
ability objective for T = {w}. Consider the following two
memoryless strategies that differ only in the action played in
t: σa always plays a in t and σb always plays b. Loaded with
2 units of resource in t, we have ERT(σa, t, 2, {w}) = 2 and
ERT(σb, t, 2, {w}) = 20. Indeed, σa surely reaches w in two
steps, whereas σb needs 10 trials on average before reaching w
via v, each trial needing two steps before coming back to t.

B. Goal-Leaning Heuristic

Actions to play in certain states with a particular amount of
resource are selected on line 9 of Algorithm 3 (and on line 15
of Algorithm 6) based on the actions’ save values SV . This
value in t based on ml[R]=1 is equal to 2 for both actions a
and b. Thus, Algorithm 3 (and also Algorithm 6) returns σa or
σb randomly based on the resolution of the argmin operator on
line 9 (line 15 in Algorithm 6) for t. The goal-leaning heuristic
fixes the resolution of the argmin operator to always pick a in
this example.

The ordinary argmin operator selects randomly an action
from the pool of actions with the minimal value vmin of the
function SV for t (and the current values of pold). Loosely
speaking, the goal-leaning argmin operator chooses, instead,
the action whose chance to reach the desired successor used to
obtain vmin is maximal among actions in this pool.

The value SV is computed using successors’ hope val-
ues (HV), see Section V. The goal-leaning argmin operator
records, when computing the HV values, also the transition
probabilities of the desired successors. Let s be a state, let a
be an action, and let s′ ∈ Succ(s, a) be the successor of a in
s that minimizes HV (pold, s, a, s

′) and maximizes Δ(s, a, s′)
(in this order). We denote by ps,a the value Δ(s, a, s′). The
goal-leaning argmin operator chooses the action a in s that
minimizes SV (pold, s, a) and maximizes ps,a.

Fig. 6. Example CMDP for the threshold heuristic. In comparison to
Fig. 5, the consumption of b is 1 instead of 2.

In the example from Fig. 5, we have that pt,a = 1 and pt,b =
1/10 (as v is the desired successor) in the second iteration of
the repeat loop on lines 6–15. In the last iteration, pt,a remains 1
and pt,b changes to 9/10 as the desired successor changes to s.
In both cases, a is chosen by the goal-leaning argmin operator
as pt,a > pt,b.

Correctness: We have only changed the behavior of the
argmin operator when multiple candidates could be used. The
correctness of our algorithms does not depend on this choice, and
thus, the proofs apply also to the variant with the goal-leaning
operator.

While the goal-leaning heuristic is simple, it has a great
effect in practical benchmarks, see Section IX. However, there
are scenarios where it still fails. Consider now the CMDP in
Fig. 6 with capacity at least 3. Note that now γ(t, b) equal
to 1 instead of 2. In this case, even the goal-leaning heuristic
prefers b to a in t whenever the current resource level is at least
1 as SV (pold, t, b) = 1 < 2 = SV (pold, t, a) from the second
iteration of the repeat loop onward.

Note also that the strategy σa that always plays a in t is
not a witness strategy for ml[R]=1 as σa needs at least 2
units of resource in t. The desired strategy π should behave
in t as follows: play a if the current resource is at least 2,
and otherwise play b. We have that ERT(π, t, 2, {w}) = 2 and
ERT(π, t, 1, {w}) = 3.8. In the next section, we extend the
goal-leaning heuristic to produce π for the running example.

C. Threshold Heuristic

The threshold heuristic is parameterized by a probability
threshold 0 ≤ θ ≤ 1. Intuitively, when we compute the value
of SV for b in t, we ignore the hope values of successors t′ ∈
Succ(t, b) such that Δ(t, b, t′) < θ. With θ = 0.2, v in our ex-
ample is no longer considered as a valid outcome for b in t in the
second iteration andSV (pold, t, b) = ∞. Therefore, a is picked
with SV (pold, t, a) = 2. It happens only in the fourth iteration
that action b is considered from t. In this iteration, pold(s)
is 0 (it is a reload state), and with Δ(t, b, s) = 0.9, s passes
the threshold, and we finally have that SV (pold, t, b) = 1.
The resulting finite counter strategy is exactly the desired strat-
egy π from above.

Formally, we parameterize the function SV by θ as follows
where we assume min of the empty set is equal to ∞ (changes
to definition of SV are highlighted in red):

SVθ(x, s, a) = γ(s, a) + min
s′∈Succ(s,a)
Δ(s,a,s′)≥θ

HV (x, s, a, s′) . (11)

BLAHOUDEK et al.: EFFICIENT STRATEGY SYNTHESIS FOR MDPs WITH RESOURCE CONSTRAINTS 4597

Fig. 7. CMDP illustrating limitations of the goal-leaning heuristics. All
actions consume 1 unit of resource.

The new function SVθ is a generalization of SV = SV0. To
implement this heuristic, we need, in addition to the goal-leaning
argmin operator, to use SVθ instead of SV in Algorithms 3 and
6.

There is, however, still one caveat introduced by the threshold.
By ignoring some outcomes, the threshold heuristic might com-
pute only overapproximations of ml[R]>0. As a consequence,
the strategy σ computed by the heuristic might be incomplete; it
might be undefined for a resource level from which the objective
is still satisfiable.

In order to make σ complete and to compute ml[R]>0 pre-
cisely, we continue with the iterations, but now using SV0

instead of SVθ. To be more precise, we include lines 6–15 in
Algorithm 3 twice (and analogously for Algorithm 6), once with
SVθ and once with SV0 (in this order).

This extra fixed-point iteration can complete σ and improve
p to match ml[R]>0 using the rare outcomes ignored by the
threshold. As a result, σ behaves according to the threshold
heuristic for sufficiently high resource levels, and at the same
time, it achieves the objective from every state-level pair where
this is possible.

Correctness: The functionSVθ clearly overapproximatesSV
as we restrict the domain of the min operator only. The invariant
of the repeat loop from the proof of Theorem 6 still holds
even when using SVθ instead of SV (it also obviously holds
in the second loop with SV0). The extra repeat loop with SV0

converges to the correct fixed point due to the monotonicity of
p over iterations. Thus, Theorems 5 and 6 hold even when using
the threshold heuristics.

D. Limitations

The suggested heuristics naturally do not always produce
strategies with the least ERT possible for given CMDP, state,
and initial load. Consider the CMDP in Fig. 7 with capacity
at least 2. Both heuristics prefer (regardless θ) b in s since
Δ(s, b, v) > Δ(s, a, v) = Δ(s, a, u). Such strategy yields ERT
from s equal to 2 2

3 , whereas the strategy that plays a in s comes
with ERT equal to 2.

This nonoptimality must be expected as the presented algo-
rithm is purely qualitative. However, there is no known polyno-
mial (with respect to the CMDP representation) algorithm for the
quantitative analysis of CMDPs that we could use here instead
of our approach.

While other, perhaps more involved heuristics might be in-
vented to solve some particular cases, qualitative algorithms
which do not track precise values of ERT, naturally cannot guar-
antee optimality with respect to ERT. The presented heuristics
are designed to be simple (both in principle and computation

overhead) and to work well on systems with rare undesired
events.

The threshold heuristic relies on a well-chosen threshold θ that
needs to be provided by the user. Typically, θ should be chosen to
be higher than the probability of the most common rare events in
the model, to work well. As the presented algorithms rely on the
fact that the whole model is known, a suitable threshold might
be automatically inferred from the model.

Despite these limitations, we show the utility of the presented
heuristics on a case study in the next section.

IX. IMPLEMENTATION AND EVALUATION

We implemented Algorithms 1–6, including the proposed
heuristics in a tool called FIMDP (Fuel in MDP). The rest of this
section provides an overview of all the tools used, an illustrative
example, scalability studies, and numerical experiments that
demonstrate the utility of the CMDP framework.

A. Tools and Environments

We utilize FIMDP [25], STORM [7], and FIMDPENV [26]
for implementation and evaluation of our algorithms. FIMDP
is an open-source Python library for CMDPs, which supports
integration with interactive Jupyter notebooks. STORM is an
open-source, state-of-the-art probabilistic model checker de-
signed to be efficient in both time and memory. FIMDPENV
is an open-source library for simulating real-world stochastic
resource-constrained problems and supports high-level planning
tasks in the unmanned underwater vehicle (UUV) and the au-
tonomous electric vehicle (AEV) environments.

The standard UUV environment in FIMDPENV models the
high-level dynamics of UUVs operating in stochastic ocean
currents. Each cell in the discretized state space forms one state
in the corresponding CMDP, some of which are reload states, and
some others form the set of targets T . The set of actions consists
of two classes of actions: 1) weak actions that consume less
energy but have stochastic outcomes, and 2) strong actions that
have deterministic outcomes with the downside of significantly
higher resource consumption. For each class, the environment
offers up to eight directions (east, north-east, north, north-west,
west, south-west, south, and south-east). The stochastic dy-
namics are generated using the ocean current information, as
described in [27].

The AEV environment in FIMDPENV models the routing
problem of an AEV operating in the streets of Manhattan, New
York, using real-world energy consumption data. Intersections
in the street network and directions of feasible movement form
the state and action spaces of the MDP. We use intersections in
the proximity of real-world fast-charging stations as the set of
reload states.

B. Strategy Synthesis for CMDPs in FIMDP and STORM

We demonstrate the efficiency of the CMDP formulation us-
ing 15 strategy synthesis tasks with a Büchi objective generated
on the UUV environment. The complexity of a task in this
environment is determined by the grid size and the capacity.
We use grid sizes 10, 20, and 50. For each grid size n, we create
five tasks with capacities equal to 1, 2, 3, 5, and 10 times n. We
solve each task modeled as a CMDP using FIMDP and modeled
as a regular MDP with resource constraints encoded in states
and actions using STORM. We express the qualitative Büchi

4598 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 8, AUGUST 2023

Fig. 8. Mean computation times for solving the CMDP model of the
UUV environment with capacities proportional to the grid size in each
task. Each subplot in the figure corresponds to a different size of the
grid world.

Fig. 9. Illustration showing the trajectory of a UUV patrolling the points
of interest at different time instances (t) and energy levels (e). The grid
world shown is of size 40 with an initial state, a reload state, and two
target states. (a) t, e = 0, 50. (b) t, e = 24, 26. (c) t, e = 50, 39.

property in PCTL [28] for STORM. Fig. 8 shows the running
times (averaged over ten independent runs) needed for each task
by FIMDP (•) and by STORM (×).

We can observe that FIMDP outperforms STORM in terms
of computation time in all test cases with the exception of
small problems. For the small tasks, STORM benefits from its
efficient implementation in C++. The advantage of FIMDP
lies in the fact that the state space of CMDPs (and also the
time needed for their analysis) does not grow with rising
capacity.

C. Patrolling Problem in the UUV Environment

While the standard UUV environment presented in Sec-
tion IX-A includes deterministic strong actions, we note that
this is not essential and one can model real-world problems with
only stochastic weak actions. This is possible by 1) restricting the
stochastic outcome of the weak action to the intended outcome
and the neighboring cells, and 2) defining reload states spanning
three primitive cells in the grid world.

We provide an illustrative example by considering the sce-
nario of a UUV patrolling two targets in an area with one
reload base. We model the problem using the UUV environment
without strong actions and synthesize our strategy using almost-
sure Buc̈hi objective with the threshold heuristic described in
Section VIII. Fig. 9 shows a trajectory obtained by following
the synthesized strategy where the agent patrols both the points
of interest constantly while also reloading at the base to prevent
running out of energy. Table I summarizes the ERT for different
strategies and grid sizes. The ERT values are calculated by
running 10 000 simulations with each strategy for 500 steps
and taking the average over the reachability time from the
simulations.

TABLE I
ERT FOR STRATEGIES ON THE PATROLLING PROBLEM

Fig. 10. Comparison of different strategy synthesis algorithms—DS
denotes the standard default solver, TH0 denotes the goal-leaning
heuristic, TH0.3 denotes threshold heuristic with a threshold of 0.3, and
TH0.5 denotes threshold heuristic with a threshold of 0.5.

We now proceed to detailed analysis of different heuristic
algorithms using both UUV and AEV environments.

D. Heuristics for Improving ERT

This section investigates the proposed heuristics from a prac-
tical, optimal decision-making perspective. We consider two
testing scenarios with UUV and AEV environments.

1) UUV Environment: We consider the standard UUV en-
vironment with a grid size of 20, a single reload state and one
target state. The objective of the agent is to reach the target
almost-surely. We consider four strategies generated for almost-
sure reachability by the following algorithms: the standard strat-
egy (using default randomized argmin operator), goal-learning
strategies (goal-leaning argmin operator), and threshold strate-
gies with thresholds θ equal to 0, 0.3, and 0.5. Fig. 10 illustrates
the UUV behavior while following different strategies starting
with an energy level of 30.

We calculate the approximate ERT for each of the four strate-
gies by averaging over 10 000 independent runs. The strategy
built using the standard argmin operator, as apparent from 10,
does not reach the target within the first 200 steps in any of the

BLAHOUDEK et al.: EFFICIENT STRATEGY SYNTHESIS FOR MDPs WITH RESOURCE CONSTRAINTS 4599

Fig. 11. Illustration showing the AEV environment and the obtained
trajectories. (a) Street network in the AEV environment with an initial
state, multiple reload states, and a target state. (b) Trajectory and ERT
for the standard solver. (c) Trajectory and ERT for the threshold heuristic
with θ = 0.2. (a) Map. (b) ERT = 60. (c) ERT= 74.

10 000 trials. The goal-leaning argmin operator itself helps a lot
to navigate the agent toward the goal and only takes about 26.45
steps to reach the target. However, it still relies on rare events
in some places. Setting θ = 0.3 helps to avoid these situations
as the unlikely outcomes are not considered anymore thereby
reducing the ERT to about 18.34 steps, and finally, θ = 0.5 forces
the agent to use strong actions almost exclusively leading to an
ERT of about 15 steps—the same as the reachability time of
the shortest path assuming deterministic dynamics [see (10)].
While using thresholds led to a better ERT in this particular
environment, the result might not hold in general.

2) AEV Environment: This example considers an AEV
tasked with reaching a destination in the shortest amount of
time without resource exhaustion. Assigning the destination as
the target state and the recharge stations as the reload states, we
synthesize strategies using the standard solver and the threshold
heuristic and terminate our simulations once we reach the target
state.

Fig. 11 illustrates the area considered in the AEV environment
and shows the trajectories of the AEV from simulation instances
while following the synthesized strategies. The agent following
the standard solver strategy, with an ERT of 74, relies on rare
events at some states and has to visit a reload state before
reaching the target. On the other hand, the threshold heuristic
strategy with an ERT of 60 results in the agent directly heading
to the target state.

X. CONCLUSION

We presented CMDP models for stochastic environments with
resource constraints, and we showed that strategy synthesis for
qualitative objectives is efficient. In particular, our algorithms
that solve synthesis for almost-sure reachability and almost-
sure Büchi objective in CMDPs work in time polynomial with
respect to the representation of the input CMDP. In addition,
we presented two heuristics that can significantly improve the
expected time needed to reach a target in realistic examples. The
experimental evaluation of the suggested methods confirmed
that direct analysis of CMDPs in our tool is faster than analysis of
an equivalent MDP even when performed by the state-of-the-art
tool STORM (with the exception of very small models).

Possible directions for future work include extensions to
quantitative analysis (e.g., minimizing the expected resource
consumption or reachability time), stochastic games, or partially
observable setting.

APPENDIX

A. Proof of Lemma 3

We proceed by induction on i. The base case is clear. Now
assume that the statement holds for some i ≥ 0. Fix any s.
Denote by b = Bi+1(yT)(s) and d = ml[Ri+1]>0(s). We show
that b = d. The equality trivially holds whenever s ∈ T , so in
the rest of the proof, we assume that s �∈ T .

We first prove that b ≥ d. If b = ∞, this is clearly true; other-
wise, let amin be the action minimizing SV (Bi(yT), s, amin)
(which equals b if s �∈ R) and let tmin ∈ Succ(s, amin) be
the successor with the lowest hope value. We denote by p
the value ml[Ri]>0(tmin) ≥ ml[S](tmin) in the following two
paragraphs. By induction hypothesis, there exists a strategy
σ1 such that σ1

p
tmin

|=>0Ri, and there also exists a strategy σ2

such that σ2
l
t|=S for all other successors t ∈ Succ(s, amin), t �=

tmin, with l = ml[S](t). We now fix a run pρ as a run from
Comp(σ1, tmin, p) that reaches T in at most i steps (which must
exists).

Consider now a strategy π that, starting in s, plays amin. If
the outcome of amin is tmin, the strategy π starts to mimic σ1,
otherwise it starts to mimicσ2. By definition ofSV , we have that
b ≥ γ(s, amin) + l for l = ml[S](t) for all t ∈ Succ(s, amin)
(including tmin), and thus, π b

s|=S. The loaded run bsamintmin �
ρ ∈ Comp(π, s, b) is safe (as b ≥ γ(s, amin) + p), and thus, it
is the witness that π b

s|=>0Ri+1.
Now we prove that b ≤ d. This clearly holds if d = ∞, so in

the rest of the proof, we assume d ≤ cap. By the definition of
d, there exists a strategy σ such that σ d

s|=>0Ri+1. Let a = σ(ds)
be the action selected by σ in the first step when starting in
s loaded by d. For each t ∈ Succ(s, a), we assign a number
dt defined as dt = 0 if t ∈ R and dt = lastRL(dsat) = d−
γ(s, a), otherwise.

We finish the proof by proving these two claims.
1) It holds SV (Bi(yT), s, a) ≤ γ(s, a) + maxt∈Succ(s,a)

dt.
2) If s �∈ R, then γ(s, a) + maxt∈Succ(s,a) dt ≤ d.

Let us first see why these claims are, indeed, sufficient. From
(1), we get A(Bi(yT))(s) ≤ γ(s, a) + maxt∈Succ(s,a) dt ≤
cap (from the definition of RL(dsat)). If s ∈ R, then
it follows that b = [[A(Bi(yT))]]

cap
R (s) = 0 ≤ d. If s �∈

R, then b = [[A(Bi(yT))]]
cap
R (s) = A(Bi(yT))(s) ≤ γ(s, a) +

maxt∈Succ(s,a) dt ≤ d, the first inequality shown previously and
the second coming from (1).

Let us first prove (1). We denote by τ the strategy such
that for all histories α, we have τ(α) = σ(saα). For each
t ∈ Succ(s, a), we have τ dt

t |=S. Moreover, there exists q ∈
Succ(s, a) such that τ dq

q |=>0Ri (since s /∈ T); hence, by induc-
tion hypothesis, it holds Bi(yT)(q) ≤ dq . From this and from
the definition of SV , we get

SV (Bi(yT), s, a) ≤ γ(s, a) +HV
(Bi(yT), s, a, q

)

≤ γ(s, a) + max
t∈Succ(s,a)

t �=q

{Bi(yT)(q),ml[S](s)}

≤ γ(s, a) + max
t∈Succ(s,a)

dt.

4600 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 8, AUGUST 2023

To finish, (1) follows immediately from the definition of dt
and the fact that lastRL(dsat) is always bounded from above-
mentioned by d− γ(s, a) for s /∈ R. �

B. Proof of Lemma 4

By Lemma 3, it suffices to show that ml[R]>0 = ml[RK]>0.
To show this, fix any state s such that ml[R]>0(s) < ∞. For
the sake of succinctness, we denote ml[R]>0(s) by d. To each
strategy π such that π d

s|=>0R, we assign a reachability indexthat
is the infimum of all i such that π d

s|=>0Ri. Let σ be a strategy
such that σ d

s|=>0R with the minimal reachability index k. We
show that the k ≤ K.

We proceed by a suitable “strategy surgery” on σ. Let α be
a history produced by σ from s of length k whose last state
belongs to T . Assume, for the sake of contradiction, that k >
K. This can only be if at least one of the following conditions
hold:

a) some reload state is visited twice on α, i.e., there are
0 ≤ j < l ≤ k + 1 such that αl = αj ∈ R, or

b) some state is visited twice with no intermediate visits to
a reload state, i.e., there are 0 ≤ j < l ≤ k + 1 such that
αj = αl and αh �∈ R for all j < h < l.

Indeed, if none of the conditions hold, then the reload states
partition α into at most |R|+ 1 segments, each segment con-
taining nonreload states without repetition. This would imply
k = len(α) ≤ K.

In both cases (a) and (b), we can arrive at a contradiction using
essentially the same argument. Let us illustrate the details on case
(a): Consider a strategy π such that for every history of the form
α..j � β for a suitable β, we have π(α..j � β) = σ(α..l � β);
on all other histories, π mimics σ. Clearly, π d

s|=S: the behavior
changed only for histories with α..j as a prefix, and for each
suitable β, we have lastRL(dα..j � β) = lastRL(dα..l � β)
due to the fact that αj = αl is a reload state. Moreover, we
have that dα..j � αl..k created by π reaches T in k′ = k − (l −
j) < k steps, which is the reachability index of π. We reached
a contradiction with the choice of σ.

For case (b), the only difference is that now the resource level
after α..j � β can be higher than the one of α..l � β due to the
removal of the intermediate nonreloading cycle. Since we need
to show that the energy level never drops below 0, the same
argument works. �

C. Computation Complexity of Algorithms

We present the explicit complexities of the six algorithms
(1–6) in terms of the parameters describing C. Let δ de-
note the branching factor defined as the maximal number
of successors of some state under some action, i.e., δ =
max(s,a)∈S×A |Succ(s, a)|. Also recall thatn denotes the length
of the longest simple path in C. Then, the complexities of
our algorithms are as follows: Algorithm 1—O(|S||A|δn), Al-
gorithm 2—O(|R||S||A|δn), Algorithm 3—O(|R||S||A|δ(n+
δ|S|), Algorithm 4—O(|R|2|S||A|δ(n+ δ|S|)), Algorithm 5—
O(|S||A|δn), and Algorithm 6—O(|R|2|S||A|δ(n+ δ|S|)).

ACKNOWLEDGMENT

The authors would like to thank Tomáš Brázdil, Vojtěch
Forejt, David Klaška, and Martin Kučera in the discussions
leading to this article.

REFERENCES

[1] M. Pavone, E. Frazzoli, and F. Bullo, “Adaptive and distributed algorithms
for vehicle routing in a stochastic and dynamic environment,” IEEE Trans.
Autom. Control, vol. 56, no. 6, pp. 1259–1274, Jun. 2011.

[2] M. Cai, H. Peng, Z. Li, and Z. Kan, “Learning-based probabilistic LTL
motion planning with environment and motion uncertainties,” IEEE Trans.
Autom. Control, vol. 66, no. 5, pp. 2386–2392, May 2021.

[3] V. D. Blondel and J. N. Tsitsiklis, “Complexity of stability and controllabil-
ity of elementary hybrid systems,” Automatica, vol. 35, no. 3, pp. 479–489,
1999.

[4] P. C. Bell, S. Chen, and L. Jackson, “On the decidability and complexity
of problems for restricted hierarchical hybrid systems,” Theor. Comput.
Sci., vol. 652, pp. 47–63, 2016.

[5] H. A. Blom, G. Bakker, and J. Krystul, “Probabilistic reachability analysis
for large scale stochastic hybrid systems,” in Proc. 46th Conf. Decis.
Control, 2007, pp. 3182–3189.

[6] M. Prandini and J. Hu, “A stochastic approximation method for reach-
ability computations,” in Stochastic Hybrid Systems. Berlin, Germany:
Springer, 2006, pp. 107–139.

[7] C. Hensel, S. Junges, J.-P. Katoen, T. Quatmann, and M. Volk, “The
probabilistic model checker storm,” vol. 24, pp. 589–610, 2022.

[8] A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and M. Stoelinga, “Re-
source interfaces,” in Proc. 3rd Int. Workshop Embedded Softw., 2003,
pp. 117–133.

[9] P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, and J. Srba, “Infinite
runs in weighted timed automata with energy constraints,” in Proc. 6th Int.
Conf. Formal Model. Anal. Timed Syst., 2008, pp. 33–47.

[10] U. Boker, T. A. Henzinger, and A. Radhakrishna, “Battery transition
systems,” in Proc. 41st ACM SIGPLAN-SIGACT Symp. Princ. Program.
Lang., 2014, pp. 595–606.

[11] G. Bacci, P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, and P.-A.
Reynier, “Optimal and robust controller synthesis,” in Proc. 22nd Int.
Symp. Formal Methods, 2018, pp. 203–221.

[12] E. R. Wognsen, R. R. Hansen, K. G. Larsen, and P. Koch, “Energy-aware
scheduling of FIR filter structures using a timed automata model,” in Proc.
19th Int. Symp. Des. Diagnostics Electron. Circuits Syst., 2016, pp. 1–6.

[13] G. Sugumar, R. Selvamuthukumaran, T. Dragicevic, U. Nyman, K. G.
Larsen, and F. Blaabjerg, “Formal validation of supervisory energy man-
agement systems for microgrids,” in Proc. IEEE 43rd Annu. Conf. Ind.
Electron. Soc., 2017, pp. 1154–1159.

[14] N. Fijalkow and M. Zimmermann, “Cost-parity and cost-Streett games,”
in Proc. 32nd Annu. Conf. Found. Softw. Technol. Theor. Comput. Sci.,
2012, pp. 124–135.

[15] C. Baier, C. Dubslaff, S. Klüppelholz, and L. Leuschner, “Energy-utility
analysis for resilient systems using probabilistic model checking,” in Proc.
35th Int. Conf. Appl. Theory Petri Nets Concurrency, 2014, pp. 20–39.

[16] C. Baier, M. Daum, C. Dubslaff, J. Klein, and S. Klüppelholz, “Energy-
utility quantiles,” in Proc. 6th Int. Symp. NASA Formal Methods, 2014,
pp. 285–299.

[17] K. Chatterjee and L. Doyen, “Energy and mean-payoff parity Markov
decision processes,” in Proc. Int. Symp. Math. Found. Comput. Sci., 2011,
vol. 6907, pp. 206–218.

[18] M. Jurdziński, “Deciding the winner in parity games is in UP capp co-UP,”
Inf. Process. Lett., vol. 68, no. 3, pp. 119–124, 1998.

[19] T. Brázdil, K. Chatterjee, A. Kučera, and P. Novotný, “Efficient controller
synthesis for consumption games with multiple resource types,” in Proc.
Int. Conf. Comput.-Aided Verification, 2012, vol. 7358, pp. 23–38.

[20] F. Blahoudek, T. Brázdil, P. Novotný, M. Ornik, P. Thangeda, and U.
Topcu, “Qualitative controller synthesis for consumption Markov decision
processes,” in Proc. 32nd Int. Conf. Comput.-Aided Verification, 2020,
vol. II, pp. 421–447.

[21] R. Ash and C. Doléans-Dade, Probability and Measure Theory. San Diego,
CA, USA: Acad. Press, 2000.

[22] C. Courcoubetis and M. Yannakakis, “The complexity of probabilistic
verification,” J. ACM, vol. 42, no. 4, pp. 857–907, 1995.

[23] K. R. Apt and E. Grädel, Lectures in Game Theory for Computer Scientists,
1st ed. Cambridge, U.K.: Cambridge Univ. Press, 2011.

BLAHOUDEK et al.: EFFICIENT STRATEGY SYNTHESIS FOR MDPs WITH RESOURCE CONSTRAINTS 4601

[24] L. Khachiyan et al., “On short paths interdiction problems: Total and
node-wise limited interdiction,” Theory Comput. Syst., vol. 43, no. 2,
pp. 204–233, 2008.

[25] FiMDP—Fuel in Markov decision processes, 2021. Accessed: Jun. 1,
2022. [Online]. Available: https://github.com/FiMDP/FiMDP

[26] FiMDPEnv—Environments for FiMDP, 2021. Accessed: Jun. 1, 2022.
[Online]. Available: https://github.com/FiMDP/FiMDPEnv

[27] W. H. Al-Sabban, L. F. Gonzalez, and R. N. Smith, “Extending persistent
monitoring by combining ocean models and Markov decision processes,”
in Proc. Oceans, 2012, pp. 1–10.

[28] C. Baier and J.-P. Katoen, Principles of Model Checking. Cambridge, MA,
USA: MIT Press, 2008.

František Blahoudek received the Ph.D. de-
gree in computer science from the Masaryk Uni-
versity, Brno, Czech Republic, in 2018.

He is currently with Pure Storage, Prague,
Czech Republic. He was a Postdoctoral Re-
searcher with the Faculty of Information Tech-
nology, Brno University of Technology, Czech
Republic, and a Postdoctoral Researcher with
the Group of Ufuk Topcu, University of Texas at
Austin, Austin, TX, USA. His research focuses
on automata in formal methods and on planning

under resource constraints.

Petr Novotný received the Ph.D. degree in
computer science from Masaryk University,
Brno, Czech Republic, in 2015.

He is currently an Assistant Professor with
the Faculty of Informatics, Masaryk University.
His research interests include the automated
analysis of probabilistic program, application of
formal methods in the domains of planning and
reinforcement learning, and theoretical founda-
tions of probabilistic verification.

Melkior Ornik received the Ph.D. degree in
electrical and computer engineering from the
University of Toronto, Toronto, ON, Canada, in
2017.

He is currently an Assistant Professor with
the Department of Aerospace Engineering and
the Coordinated Science Laboratory, University
of Illinois at Urbana-Champaign, Champaign,
IL, USA. His research focuses on developing
theory and algorithms for learning and planning
of autonomous systems operating in uncertain,

complex, and changing environments, as well as in scenarios where
only limited knowledge of the system is available.

Pranay Thangeda received the M.S. degree in
aerospace engineering in 2020 from the Uni-
versity of Illinois at Urbana-Champaign, Cham-
paign, IL, USA, where he is currently working
toward the Ph.D. degree in aerospace engineer-
ing with the Department of Aerospace Engineer-
ing and the Coordinated Science Laboratory.

His research focuses on developing algo-
rithms that exploit side information for effi-
cient planning and learning in unknown environ-
ments.

Ufuk Topcu received the Ph.D. degree in me-
chanical engineering from the University of Cal-
ifornia at Berkeley, Berkeley, CA, USA, in 2008.

He is currently an Associate Professor with
the Department of Aerospace Engineering and
Engineering Mechanics and the Oden Insti-
tute, The University of Texas at Austin, Austin,
TX, USA. His research focuses on the theo-
retical, algorithmic, and computational aspects
of design and verification of autonomous sys-
tems through novel connections between formal

methods, learning theory, and controls.

https://github.com/FiMDP/FiMDP
https://github.com/FiMDP/FiMDPEnv

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

