
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 5, MAY 2023 2683

Model-Based Policy Iterations for Nonlinear
Systems via Controlled Hamiltonian Dynamics

Mario Sassano , Senior Member, IEEE, Thulasi Mylvaganam , Senior Member, IEEE,
and Alessandro Astolfi , Fellow, IEEE

Abstract—The infinite-horizon optimal control problem
for nonlinear systems is studied. In the context of model-
based, iterative learning strategies we propose an alterna-
tive definition and construction of the temporal difference
error arising in policy iteration strategies. In such archi-
tectures, the error is computed via the evolution of the
Hamiltonian function (or, possibly, of its integral) along the
trajectories of the closed-loop system. Herein the temporal
difference error is instead obtained via two subsequent
steps: first the dynamics of the underlying costate variable
in the Hamiltonian system is steered by means of a (vir-
tual) control input in such a way that the stable invariant
manifold becomes externally attractive. Then, the distance-
from-invariance of the manifold, induced by approximate
solutions, yields a natural candidate measure for the pol-
icy evaluation step. The policy improvement phase is then
performed by means of standard gradient descent methods
that allows us to correctly update the weights of the under-
lying functional approximator. The above-mentioned archi-
tecture then yields an iterative (episodic) learning scheme
based on a scalar, constant reward at each iteration, the
value of which is insensitive to the length of the episode,
as in the original spirit of reinforcement learning strategies
for discrete-time systems. Finally, the theory is validated
by means of a numerical simulation involving an automatic
flight control problem.

Manuscript received 7 May 2021; revised 31 December 2021; ac-
cepted 13 May 2022. Date of publication 17 August 2022; date of current
version 26 April 2023. The work of Mario Sassano was supported by
the University “Tor Vergata,” Rome, 2019 “Beyond the Borders” Program
under Grant E89C20000600005. The work of Alessandro Astolfi was
supported in part by the European Union’s Horizon 2020 Research
and Innovation Programme under Grant 739551 (KIOS CoE), in part
by the Italian Ministry for Research in the framework of the 2017 Pro-
gram for Research Projects of National Interest (PRIN) under Grant
2017YKXYXJ, and in part by the framework of the 2020 Program for Re-
search Projects of National Interest (PRIN) under Grant 2020RTWES4.
Recommended by Senior Editor Tetsuya Iwasaki and Guest Editors
George J. Pappas, Anuradha M. Annaswamy, Manfred Morari, Claire
J. Tomlin, Rene Vidal, and Melanie N. Zeilinger. (Corresponding author:
Mario Sassano.)

Mario Sassano is with the Dipartimento di Ingegneria Civile ed Ingeg-
neria Informatica, Università di Roma Tor Vergata, 00133 Roma, Italy
(e-mail: mario.sassano@uniroma2.it).

Thulasi Mylvaganam is with the Department of Aeronautics,
Imperial College London, SW7 2AZ London, U.K. (e-mail:
t.mylvaganam@imperial.ac.uk).

Alessandro Astolfi is with the Department of Electrical and Electronic
Engineering, Imperial College London, SW7 2AZ London, U.K., and
also with the Dipartimento di Ingegneria Civile ed Ingegneria Infor-
matica, Università di Roma Tor Vergata, 00133 Roma, Italy (e-mail:
a.astolfi@imperial.ac.uk).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TAC.2022.3199211.

Digital Object Identifier 10.1109/TAC.2022.3199211

Index Terms—Iterative learning methods, nonlinear sys-
tems, optimal control.

I. INTRODUCTION

THE optimal control problem consists in designing a con-
trol law that steers the state of the system from an arbi-

trary initial condition to a final equilibrium configuration while
minimizing—along the trajectories of the resulting system—a
prescribed cost functional [1], [2], [3], [4], [5]. Two alternative
strategies to solve optimal control problems have been studied in
the past decades: Dynamic Programming [6], [7] and Pontrya-
gin’s Minimum Principle [8]. In the setting of infinite-horizon
problems, the two approaches share in fact a common bottle-
neck, namely the explicit knowledge of the positive definite solu-
tion of the Hamilton–Jacobi–Bellman (HJB) partial differential
equation (pde) (see, e.g., [1], [9]): in the former method, the
solution to the pde directly yields the optimal feedback, while in
the latter, it provides the correct initial condition for the costate
variable of the underlying Hamiltonian dynamics.

Methods based on a direct solution (or approximation, see,
for instance, [9], [10], [11], [12]) of the HJB pde have been
interpreted hitherto as offline strategies, namely requiring the
knowledge (or an estimate) of the solution prior to the evolution
of the plant or the simulation model. Recent intensive research
efforts have been devoted to the objective of recasting classic
optimal control design techniques into online methods. In partic-
ular, iterative learning control (ILC) and reinforcement learning
(RL) [13], [14] aim at learning the optimal control law online
by conducting a sufficiently large number of experiments on the
actual plant, if feasible, or by relying on a simulation model of
the former. This is achieved, for instance, by borrowing ideas
similar to those employed in the context of adaptive control,
leading to the so-called adaptive dynamic programming [15],
[16], [17]. The methods can be further categorized by dis-
tinguishing model-based techniques [18], [19] and model-free
approaches [20].

Policy iteration (PI) approaches [13]—developed both in the
context of model-based and model-free methods—encompass
several iterative techniques that aim at providing (or approxi-
mating) the solution to the underlying HJB pde by relying on a
sequence of (stabilizing) control laws designed to converge in
some sense to the optimal policy. In the case of linear-quadratic
(LQ) optimal control problems, for instance, the well-known
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Kleinman’s Lyapunov iterations [21] describe essentially a PI
approach to the solution of the optimal control design. In fact,
PI strategies are typically based on two main steps, policy
evaluation and policy improvement, which may be intertwined in
a discrete time [22] or synchronous [18] fashion. The aim of the
former step consists in evaluating the value of the current control
policy, whereas the latter stage should lead to an improvement
of such a value by suitably modifying the control law for the
subsequent iteration.

While the policy improvement phase is carried out by relying
on fairly standard methods (such as, for instance, gradient-
descent approaches), the design choice of the measure devoted
to capturing the quality of the current control policy is crucial
to envision effective approximation mechanisms. In most of the
results in the literature, the above-mentioned measure is pro-
vided essentially by the Hamiltonian function evaluated along
trajectories of the closed-loop system, typically referred to as
temporal difference error in the framework of RL and related to
the so-called “reinforcement” employed for learning. An intrin-
sically similar situation arises also in the integral reinforcement
learning (IRL) framework, see, e.g., [23], where the role of
the temporal difference error, namely the approximate Bellman
error, is inherited by an integrated (over a moving window)
version of the Hamiltonian function along trajectories of the
system, with the aim of circumventing the need for the explicit
knowledge of the drift vector field in the overall architecture.
As a consequence, whenever the candidate value function is
replaced by a linearly parameterized functional approximator,
the computation of the temporal difference error yields a scalar
(linear) equation in a certain number of unknowns. Therefore,
since the latter relation does not contain sufficient information
to characterize the correct values of the underlying coefficients,
it is necessary to collect a certain number of samples of such
reinforcement in a sequential implementation (see, e.g., [22]) or
to monitor—over a receding window of prescribed length—such
an error signal, which must then remain persistently exciting,
within a synchronous learning framework (see, e.g., [18], [23]).
The conflicting requirements of persistence of excitation and
asymptotic stability lead to the need, on one hand, for the
injection of additional (probing) control inputs to the closed-loop
system. On the other hand, the sampling rate or the length of the
moving window must be suitably selected to ensure that the col-
lected data is sufficiently rich for the computation of the correct
value of the approximating parameterization. Note that the above
rewarding policy for the learning algorithm is a common feature
at the core of the majority of the existing methods, regardless
of their nature (i.e., model-based or model-free, synchronous or
with discrete updates).

In the context of model-based, iterative learning strategies for
continuous-time nonlinear systems, the main contribution of this
article consists in suggesting an alternative definition and prac-
tical construction of the temporal difference error with respect
to the one on which the majority of RL and ILC approaches are
intrinsically based. The result is achieved in sequential steps that
are interesting per se, as discussed in the following.

First, it is shown that—provided the solution to the HJB pde is
known—the stable manifold of the Hamiltonian dynamics can

be externally stabilized by suitably steering the costate dynamics
via a virtual control input, while preserving the property of
invariance of the latter manifold as well as the behavior of the
Hamiltonian dynamics restricted therein. This preliminary result
possesses interesting consequences on the implementation of
open-loop optimal control laws, typically employed in practical
applications. In fact, whenever only the initial condition of the
plant is available, open-loop optimal control laws are computed
by considering the forward propagation of the underlying Hamil-
tonian dynamics initialized on the stable invariant manifold.
Since the latter invariant manifold is structurally externally
unstable, the above strategy is known to be particularly fragile,
even with respect to extremely small numerical errors in the com-
putation of the correct initial condition, and almost impractical
in applications. The implementation of such a stabilized costate
dynamics permits the construction of numerically robust open-
loop control laws, which approximate the optimal feedback with
arbitrary degree of accuracy.

Then, we propose an alternative definition of the temporal
difference error with respect to the one at the basis of any
reinforcement or iterative learning method, based on the follow-
ing, intuitive, observation. Suppose that an approximate value
function is employed in the construction of the aforementioned
stabilizing control law. It can be easily shown that, on one
hand, the property of asymptotic stability of the zero equilibrium
of the controlled Hamiltonian dynamics is preserved also for
(sufficiently close) estimates of the solution to the HJB pde,
whereas, on the other hand, the (fragile) property of invari-
ance is not retained. Therefore, a candidate measure to capture
the accuracy of the approximation of the current estimate is
naturally provided by the maximal distance from the induced
(approximate) manifold along the trajectories of the closed-loop
(stabilized) Hamiltonian dynamics. This measure provides an
alternative to more “standard” temporal difference errors. To
circumvent the daunting computational task of a direct solution
and in the spirit of iterative and episodic learning strategies,
the above information is exploited by sequentially updating
the approximate value function toward the minimization of the
considered temporal difference error.

The rest of this article is organized as follows. The problem
statement and a few preliminaries are discussed in Section II.
The aim of Section III is to suggest and design a (virtual) control
architecture for the underlying Hamiltonian dynamics, which is
then employed in Section IV to propose an alternative temporal
different error for IL methods. These are then specialized to
the case of LQ optimal control problems, before the theory
related to nonlinear systems is validated by means of a physically
motivated numerical simulation involving an automatic flight
control problem in Section VI. Finally, Section VII concludes
this article.

Notation: R�0 (resp. R>0) denotes the set of nonnegative
(resp. positive) real numbers. Given f : Rn → R, the mappings
∇f and ∂f

∂x denote the column and the row vectors, respectively,
of the corresponding partial derivatives, whereas ∂2f

∂x2 defines the
Hessian matrix of the second-order derivatives provided they ex-
ist. For a vector-valued function g : Rn → Rm, ∂g

∂x denotes the
Jacobian matrix of first-order partial derivatives. The notation
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Cκ, κ � 0, defines the set of functions that admit continuous
derivatives up to order κ. Given r ∈ R>0 and x̄ ∈ Rn, the
notation Br(x̄) defines the open set {x ∈ Rn : ‖x− x̄‖ < r}.

II. PRELIMINARIES AND PROBLEM DEFINITION

Consider continuous-time, time-invariant, nonlinear systems
described by the equation

ẋ = f(x) + g(x)u , x(0) = x0 (1)

with x : R→ Rn and u : R→ Rm denoting the state and the
control input, respectively. It is assumed that the vector field
f : Rn → Rn and the mapping g : Rn → Rn×m are sufficiently
smooth and that, in the absence of control action, the origin of Rn

is an equilibrium point of (1), i.e. f(0) = 0. The trajectories of
the system are evaluated and compared by means of the infinite-
horizon cost functional defined by

J(u) =
1

2

∫ ∞

0

(q(x(t)) + ‖u(t)‖2R)dt

=:

∫ ∞
0

r(x(t), u(t))dt (2)

where q : Rn → R�0, sufficiently smooth, represents a running
cost imposed on the state evolution and the second term, with
R = R� > 0, represents a penalty on the control effort. Let

A :=
∂f

∂x

∣∣∣
x=0

(3)

andB := g(0) describe the linearization around the origin of the
dynamics (1), namely ˙δx = Aδx+Bu, let Q := ∂2q

∂x2 (x)|x=0

and consider the following, standard structural assumption.
Assumption 1: The pairs (A,B) and (A,Q) are reachable and

observable, respectively. ◦
Under the given conditions it is known that (locally) the value

function V associated with the optimal control problem is at
least twice differentiable and there exists a continuous function
u that minimises the cost function (2) subject to the dynamic
constraint (1).

LetV : Rn → R>0,V ∈ Cκ,κ � 2, denote a positive definite
solution of the HJB pde

0=
1

2
q(x)+∇V (x)�f(x)− 1

2
∇V (x)�g(x)R−1g(x)�∇V (x)

(4)

with V (0) = 0, for all x ∈ Rn (or locally in a neighborhood
of the origin). Then, V represents the value function associ-
ated with the problem and the optimal state feedback, which
minimizes the cost functional (2) along the trajectories of the
closed-loop system, is given by

u�
f (x) = −R−1g(x)�∇V (x) . (5)

As such, the control design method based on (4) and (5) con-
stitutes an offline technique, in which the explicit knowledge of
the positive definite solution of (4) is a priori instrumental for
the construction of the optimal feedback (5). To circumvent the
computational burden of a direct solution of the HJB pde, several
alternative strategies have been explored to recast the control

design into an online strategy, regardless of any assumption on
the full or partial knowledge of the underlying plant. In particu-
lar, the PI approach consists of two sequential steps, i.e., policy
evaluation—in which an estimate V̂ of the value (i.e., the cost
in a minimization problem) of the current approximate feedback
is provided and quantified by a temporal difference error in the
context of RL—and policy improvement—in which the estimate
V̂ , and hence, the approximate feedback ûk+1 = u�

f |V=V̂ k , is
updated (in continuous or discrete time) to reduce the approxi-
mation error, where k denotes the index of the iteration. In the
vast majority of these methods, the temporal difference error,
on which learning is based, is envisioned on the basis of the
following consideration. Let Hp : Rn ×Rm ×Rn denote the
pre-minimized Hamiltonian function, defined as Hp(x, u, λ) =
r(x, u) + λ�(f(x) + g(x)u). It has been shown that the solu-
tions of the HJB pde satisfy the condition

Hp(x(t), u�
f (t),∇V (x(t))) = 0

for all t � 0. Therefore, if the value function V is replaced by an
estimate V̂ (e.g., described in terms of a functional approxima-
tor), a measure of the accuracy of such an approximation may
be suggested by monitoring the temporal difference error

e(t) := Hp(x(t), ûk(t),∇V̂ k(x(t))) (6)

(or its integral over a moving window as in IRL [23]) along
the trajectories of the closed-loop system. The objective of this
manuscript is to propose an alternative definition of the temporal
difference error. Toward this end, recall that the optimal feedback
(5) can be equivalently designed and implemented as the output
u�(t) = −R−1g(x(t))�λ(t) of the Hamiltonian dynamics[

ẋ

λ̇

]
=

[
0 I

−I 0

][
∇xH
∇λH

]
:=

[
0 I

−I 0

]
∇H(x, λ) (7)

with (x(0), λ(0)) = (x0,∇V (x0)), where the (minimized)
Hamiltonian functionH : Rn ×Rn → R is defined as

H(x, λ) = 1

2
q(x) + λ�f(x)− 1

2
λ�g(x)R−1g(x)�λ . (8)

The rationale of the proposed alternative definition of the tempo-
ral difference error is that the Hamiltonian functionH, obtained
by replacing the actual value function V with an approximation
thereof, provides sufficient information to completely character-
ize the underlying parameters of V̂ at a single time instant. This
is due to the dependence of the dynamics as well as of the initial
conditions of the Hamiltonian dynamics on the approximating
coefficients and the alternative definition is achieved, essentially,
by determining the maximal error over a certain time window.
Although this strategy has not been pursued hitherto, it is worth
observing that a similar result may be obtained by summarizing
the entire information of the classic temporal difference error
in IRL with its maximal value over time. However, the ability
of exploiting the above-mentioned logic may be hindered by
the following consideration, which concerns the instability of a
certain invariant manifold and which concludes this preliminary
section. This provides in addition a motivation for the technical
results in Section III.
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The Hamiltonian system (7) represents the lifted system
defined on the state/costate space. Assumption 1 implies that
the Hamiltonian dynamics (7) possess a hyperbolic equilibrium
point at (x, λ) = (0, 0) with n-dimensional stable Ns and un-
stable Nu submanifolds through the origin that are invariant
for system (7) (see for instance the detailed discussion in [24]
and [25] in the context of disturbance attenuation problems for
nonlinear systems, in which a similar pde arises). Therefore, a
straightforward consequence of the above discussion is that for
any approximate V̂ such that, necessarily, V̂ (x(·)) is different
from the corresponding time evolution of the optimal value
function V (x(·)) one has that any temporal difference error
based on the evaluation of the Hamiltonian function H(x, λ)
over time would be an exponentially diverging function of time.
This issue is circumvented in the following section, whereas the
definition of the proposed temporal difference error is deferred
to Section IV.

III. EXTERNAL STABILIZATION OF THE STABLE INVARIANT

SUBMANIFOLD

As anticipated above, the main objective of this section is to
discuss preliminary results concerning the Hamiltonian dynam-
ics (7) such that the latter can be employed to define and construct
an alternative temporal difference error, which quantifies the ac-
curacy of an intermediate estimate of the optimal value function.
For clarity of exposition it is convenient to explicitly describe
the Hamiltonian dynamics (7), with respect to the Hamiltonian
functionH defined in (8), as

ẋ = f(x)− g(x)R−1g(x)�λ

:= f1(x, λ)

λ̇ = − ∂f

∂x
(x)�λ− 1

2
∇x

(
q(x)− λ�g(x)R−1g(x)�λ

)
:= f2(x, λ) (9)

with (x(0), λ(0)) = (x0,∇V (x0)). Define the manifoldM :=
{(x, λ) ∈ Rn ×Rn : λ−∇V (x) = 0}. Then, it can be shown
that M is an invariant, externally unstable, manifold for (9),
sinceNs = graph(∇V (x)) =M andNs is tangent at the origin
to the stable subspace of the linearized Hamiltonian dynam-
ics [24], [25].

To provide a concise statement of the following result, con-
sider the controlled Hamiltonian dynamics

ẋ = f1(x, η)

η̇ = f2(x, η) + v (10)

where v : R→ Rn is a (virtual) control input, to be designed,
in charge of arbitrarily steering the costate variable η. Note that
the change in the notation between the costate of (9) (i.e., λ) and
of (10) (i.e., η) underlines the different evolution of the former
with respect to the latter, since they satisfy distinct dynamics,
with the latter being steered by the choice of v. The main result
of this section, summarized in the statement below, provides a
selection of the control input v such that the trajectories of the
controlled Hamiltonian dynamics (10) approximate, arbitrarily

close, those of the Hamiltonian dynamics (7) [or, equivalently,
(9)]. Namely, the control input is such that η is arbitrarily close
to λ, while ensuring that M is in fact an invariant, externally
stable manifold for (10).

Theorem 1: Consider system (10) in closed loop with

v�(x, η,∇V (x)) = −1

2
∇x(π

�g(x)R−1g(x)�π)|π=η−∇V (x)

+

(
∂

∂x
f1(x,∇V (x))� − σF I

)
(η −∇V (x)) . (11)

Then, for any t� ∈ R>0, ε ∈ R>0 and μ ∈ R>0, there exists
σF ∈ R>0 such that1

(i) M is an invariant and externally (locally) exponentially
stable manifold for (10), (11);

(ii) for all (x(0), η(0)) such that ‖η(0)−∇V (x(0))‖ < μ and
all t > t�, the trajectories of (10), (11) are such that

‖η(t)− λ(t)‖ < ε

where λ denotes the solution to (9) initialized at
(x0,∇V (x0)), namely the optimal costate. ◦
Proof: To begin with, since the HJB equation (4) holds for

all x ∈ Rn, it follows that

0 =
1

2
∇q(x) + ∂2 V

∂x2
(x)f(x) +

∂f

∂x
(x)�∇V (x)

− 1

2
∇x(∇V (x)�g(x)R−1g(x)�∇V (x)) (12)

which is obtained by differentiating the right-hand side of (4)
with respect to x. Consider then the change of coordinates
described by (z1, z2) = Φ(x, η) = (x, η −∇V (x)), which im-
mediately yields the inverse transformationΦ−1(z) = (z1, z2 +
∇z1V (z1)). In the transformed coordinates, the dynamics of the
first component of the state becomes

ż1 = f1(z1, z2 +∇z1V (z1))

= f1(z1,∇z1V (z1))− g(z1)R
−1g(z1)

�z2

where the second equality is obtained by recalling that the func-
tion f1(x, ·) is affine for any x ∈ Rn. Moreover, the dynamics
of z2 is derived as shown in (13) (overleaf),

ż2 = f2(z1, z2 +∇z1V (z1)) + v

− ∂2 V

∂z21
(z1)f1(z1, z2 +∇z1V (z1))

= v − ∂f

∂z1
(z1)

�(z2 +∇z1V (z1))− 1
2∇z1q(z1)

+ 1
2∇z1(π

�g(z1)R
−1g(z1)

�π)|π=z2+∇z1
V (z1)

− ∂2 V

∂z21
(z1)(f(z1)−g(z1)R−1g(z1)�(z2 +∇z1V (z1)))

= v− ∂f

∂z1
(z1)

�z2+∇z1(π
�g(z1)R

−1g(z1)
�)|π=∇z1

V (z1)

1By slightly abusing the notation the manifold M in item (i) must be
interpreted with the costate λ replaced by the variable η as in (10).
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z2+
∂2 V

∂z21
(z1)g(z1)R

−1g(z1)
�z2

+ 1
2∇z1(πg(z1)R

−1g(z1)
�π)|π=z2

= v − ∂

∂z1
f1(z1,∇z1V (z1))

�z2

+ 1
2∇z1(πg(z1)R

−1g(z1)
�π)|π=z2 (13)

where the third equality is obtained by recalling that (12) holds
and the last equality is derived by the definition of the vector
field f1 as in (9) and noting that

∂

∂x
f1(x,∇V (x))� =

∂f

∂x
(x)� +

∂2 V

∂x2
(x)g(x)R−1g(x)�

−∇x(π
�g(x)R−1g(x)�)|π=∇V (x) .

Therefore, by replacing the control law v�, defined in (11), into
the dynamics (13) one has that ż2 = −σF z2, hence

z2(t) = η(t)−∇V (x(t)) = e−σF t(η(0)−∇V (x0)) . (14)

This, in turn, immediately implies item (i) of the statement by
recalling the definition of the submanifoldM for (10).

Let now xλ denote the solution of (7) with ini-
tial condition xλ(0) = x0, namely such that ẋλ = f(xλ)−
g(xλ)R

−1g(xλ)
�λ, where λ(t) = ∇V (xλ(t)) for all t � 0.

Therefore, xλ verifies

ẋλ = f1(xλ,∇V (xλ)) . (15)

Moreover, since by (14) η(t) = ∇V (x(t)) + e−σF tξ0, with
ξ0 := η(0)−∇V (x0), note that

‖η(t)− λ(t)‖ = ‖∇V (x(t))−∇V (xλ(t)) + e−σF tξ0‖

� ‖∇V (x(t))−∇V (xλ(t))‖+ e−σF t‖ξ0‖
(16)

where x satisfies the equation

ẋ(t) = f(x(t))− g(x(t))g(x(t))�η(t)

= f(x(t))− g(x(t))R−1g(x(t))�(∇V (x(t)) + e−σF tξ0)

= f1(x(t),∇V (x(t)))− g(x(t))R−1g(x(t))�ξ0e
−σF t .

(17)

Therefore, item (ii) of the claim follows by considering (15)
and (17) and applying Lemma 5 in the Appendix, with f(x) =
f1(x,∇V (x)) and s(x) = −g(x)R−1g(x)�ξ0. Namely, noting
that ‖xλ(0)− x(0)‖ = 0, by Lemma 5, for any εx > 0, there
exists σF > 0 such that ‖xλ(t)− x(t)‖ � εx for all t � 0.
By continuity of the mapping ∇V this in turn implies that
for any εV > 0 there exists σF > 0 such that ‖∇V (x(t))−
∇V (xλ(t))‖ � εV , for all t � 0. Thus, letting εV = ε/2, there
exists σF such that the first term of the second line of (16)
satisfies ‖∇V (x(t))−∇V (xλ(t))‖ � ε/2 for all t � 0. Im-

posing the additional constraint that σF >
1

t�
ln(ε/2‖ξ0‖) ,

it follows that the second term in (16) satisfies the condi-
tion e−σF t‖ξ0‖ < ε/2, for all t � t�, from which item (ii)
follows. �

Theorem 1 provides a robustified mechanism to compute the
optimal costate. A further consequence of the constructions dis-
cussed in the statement—resulting essentially from the fact that
the behavior on the manifoldM is not modified by the feedback
control input v� and from Assumption 1—is summarized in the
following statement.

Proposition 1: The origin (x, η) = (0, 0) ∈ R2n is a locally
exponentially stable equilibrium point for system (10) in closed
loop with (11). ◦

Proof: In the transformed coordinates the closed-loop system
is described by the equations

ż1 = f1(z1,∇z1V (z1))− g(z1)R
−1g(z1)

�z2 (18a)

ż2 = − σF z2 . (18b)

By the structural requirements of Assumption 1 the manifoldM
is tangent, locally around the origin of the extended state/costate
space, to the stable n-dimensional invariant subspace of the
linearized Hamiltonian dynamics. Therefore, it follows that the
linearization of the vector field f1(z1,∇z1V (z1)) in (18a) has all
eigenvalues with negative real part sinceV solves the underlying
HJB pde. The claim is then shown by noting that the dynamics
in (18b) is linear, with −σF I a Hurwitz matrix. Consequently,
the overall linearized description of (18) is an upper triangular
block matrix, which is Hurwitz. �

Example 1. Consider the nonlinear system ẋ = x2 + u,
with x(t) ∈ R and u(t) ∈ R, and let q(x) = x2 in the cost
functional (2). Then, the HJB pde is solved by the positive
definite function V (x) = 1

3 (x
2 + 1)(3/2) + 1

3x
3 − 1

3 . Hence,
∇V (x) = x(

√
x2 + 1 + x). The graph of the function ∇V ,

x ∈ R—which coincides with the stable invariant submanifold
Ns of the underlying Hamiltonian dynamics—is depicted by
the dotted gray line in Fig. 1. The dashed gray line displays
the phase plot of the solution of the Hamiltonian dynamics (7)
(correctly) initialized at (x0,∇V (x0)). It can be appreciated
that the trajectory, simulated in the time interval [0,30], does not
converge to the origin, even setting the relative and absolute
tolerance to 10−12 in the MATLAB routine ode45. Namely,
due to the manifoldM being externally unstable, (unavoidable)
numerical errors cause the trajectory to diverge. Instead, the solid
black line displays the phase plot of the controlled Hamiltonian
dynamics (10), with a randomly generated initial condition η(0),
in closed loop with (11). It is worth observing that, even for a
random initial condition η(0), the optimal costate is recovered
arbitrarily fast via the selection of σF = 100 and the trajectory
robustly converges to the origin, since the invariant submani-
fold {(x, λ) : λ = ∇V (x)} is rendered externally exponentially
stable. 


IV. PI VIA CONTROLLED HAMILTONIAN DYNAMICS

The objective of this section consists in discussing how the
results of Theorem 1, which in principle relies on the knowledge
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Fig. 1. Phase plot of the Hamiltonian dynamics (7) (dashed gray line)
and of the controlled Hamiltonian dynamics (10), (11) (solid black line),
together with the stable invariant submanifoldNs described by the graph
of Vx (dotted gray line).

Fig. 2. Schematic description of the model-based, iterative learning
architecture. Solid and dashed blocks/lines represent continuous-time
actions and discrete-time updates, respectively. At the end of each
episode the initial condition of the plant is reset to x0.

of V , can be employed to construct an approximate optimal
control policy. Inspired by the rationale behind PI architectures,
the proposed approach consists of a policy evaluation phase,
followed by a policy improvement (discrete time) step. The
overall iterative strategy (illustrated in Fig. 2) relies on a finite-
dimensional parameterization of candidate value functions by
means of value function approximators (VFAs), such as (single-
layer) neural networks with a polynomial basis, see, e.g., [19].
Therefore, the suggested approximator may be equivalently
interpreted as a sum-of-squares (SOS) estimate of the underlying
value function.

To this end, let c(x) := x{m} denote a vector containing a
basis for the monomials of degree less than or equal to m with
respect to the variable x ∈ Rn. Note that c(x) ∈ Rν with

ν =

(
n+m
m

)
(19)

where the notation on the right-hand side describes the binomial
coefficient of n+m over m. In the spirit of (model-based)
online PI schemes, define the function V̄ : Rμ ×Rn → R as

V̄ (ϑ, x) := c�(x)Θc(x) =

μ∑
i=1

ϑic̄i(x) (20)

with Θ ∈ Rν×ν a symmetric and positive definite matrix. In
(20), the parameter ϑ ∈ Rμ, μ = ν(ν + 1)/2, denotes a vector
containing the entries of the matrix Θ by columns, namely ϑ =
vech(Θ), where vech denotes the half-vectorization operator for
symmetric matrices, whereas c̄i(x) describes the ith element of
the vector-valued function (c(x)⊗S c(x)), with ⊗S denoting
the symmetric Kronecker product (see [26] for more detailed
discussions and insights). Note that V̄ in (20) describes a single
layer, linear neural network with polynomial activation functions
c̄i, i = 1, . . ., μ.

Furthermore—to avoid cumbersome notation in the deriva-
tions below that involve (mixed) second-order derivatives of the
function V̄ with respect to ϑ and x—the following compact
notation is introduced. Let h(ϑ, x) = ∇xV̄ (ϑ, x) and define the
approximate (virtual) control input

v̄ = v�|∇V (x)=h(ϑ,x) (21)

namely the feedback control input (11) obtained by replacing
the gradient of the optimal value function with the parame-
terized function h. The following sections provide the defini-
tion and some properties of a finite-dimensional cost function
Rx0

: Rμ → R�0 that is shown to be instrumental for the con-
struction, or the approximation, of optimal control laws. The
rationale behind the formal derivations below can be intuitively
anticipated as follows: the statement of Theorem 1 entails that
the implementation of v� to the controlled Hamiltonian dynam-
ics (10) implies that the manifold M is rendered externally
LES, while preserving its underlying invariance property. The
implementation of a generic v̄ instead—provided the feedback v̄
is sufficiently close to v�—preserves the attractivity property of
the manifoldM (due to the intrinsic robustness of Lyapunov’s
asymptotic stability to uncertainties) while, however, compro-
mising the (fragile) property of invariance. Therefore, the main
idea below is to employ the distance of the ensuing trajectories
from the manifoldM as a reward value at each episode of the
learning process. In particular, given a certain initial condition
x0 ∈ Rn, an episode is defined as a sufficiently long time interval
in which the trajectories of the plant—ensuing from x0 ∈ Rn

and in closed loop with the current estimate of v�—are moni-
tored online. Such a scalar reward is subsequently employed to
measure the difference between v̄ and v� and, consequently, to
adjust the value of the parameter2 ϑ to minimize such a distance.

2It is worth observing at this stage that—while the derivations in this
manuscript have been carried out by considering a SOS approximation of the
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Fig. 3. Graphical illustration of the distance from invariance of the
manifold {(x, η) : η −∇V̄ (x) = 0} induced by the approximate value
function V̄ = (1/2)x2 + (1/3)x3. The solid and dashed gray lines de-
scribes the graph of ∇V̄ and ∇V , respectively. The solid black line
indicates the trajectory of system (10) in closed loop with v̄.

Note that, differently from alternative PI schemes, by the nature
of the episode and of the corresponding reward proposed herein,
the measured signal is not required to be sufficiently rich to
obtain an informative measure, nor is the selection of the length
of the episode crucial for the convergence of the algorithm. The
intuition above is illustrated and motivated at this preliminary
stage by means of the following numerical simulation.

Example 2: Consider again the setting in Example 1 and
the approximate value function provided by the third-order
Taylor’s expansion of V , namely V̄ (x) = (1/2)x2 + (1/3)x3.
Fig. 3 provides a graphical illustration of the distance from
invariance of the manifold M̄ := {(x, η) : η −∇V̄ (x) = 0}
(solid gray line) induced by the approximate value function
V̄ = (1/2)x2 + (1/3)x3. The trajectory (solid black line) of
system (10) in closed loop with v̄ ensuing from an initial
condition (x0, η0) ∈ M̄ shows that the manifold is not invariant,
although externally attractive. 


A. Maximal Distance From Invariance as Policy
Evaluation

In this section, we introduce and characterize the reward signal
of the model-based RL architecture that is employed to measure
the distance between v̄ and v� along trajectories of the closed-
loop state/costate dynamics. To this end, consider the finite-
dimensional cost functionR : Rμ → R defined as

Rx0
(ϑ) := max

t∈R�0

‖η(t)− h(ϑ, x(t))‖2 (22)

parameterized with respect to the initial condition x0 ∈ Rn.
Note that the dependence of the functionRx0

on its argument ϑ

optimal value function—the analysis is general in terms of the manipulation
of the underlying parameters ϑ, hence, a similar strategy could be adapted and
extended to several functional approximators and different activation functions.

is threefold, the first one being the, immediately evident, direct
dependence of the function h on ϑ. Then, since (x(t), η(t))
appearing inRx0

denote the trajectories of the controlled Hamil-
tonian dynamics (10) in closed loop with v̄(x, η, h(ϑ, x)) and
initialized at (x(0), η(0)) = (x0, h(ϑ, x0)), one has that Rx0

depends on ϑ also via the fact that the underlying (closed-loop)
vector field is parameterized with respect to ϑ as well as via the
specific selection of the initial conditions.

The results of this section characterize certain properties of
the function ϑ �→ Rx0

(ϑ), which are derived by relying on the
following standing assumption.

Assumption 2: Fix x0 ∈ Rn. Let the value of ν in (20) be
given and define

ϑ̄ := argmin
ϑ
Rx0

(ϑ) . (23)

The origin is a LES equilibrium point of system (10) in closed
loop with v̄|ϑ=ϑ̄ in (11), (21) and (x0, h(ϑ̄, x0)) ∈ Rn ×Rn

belongs to the basin of attraction of the origin. ◦
Note that Assumption 2 is verified provided μ is selected

sufficiently large, since it is known that the approximation errors
of V̄ with respect to V as well as the corresponding partial
derivatives are uniformly bounded in a compact set and converge
uniformly to zero provided ν tends to infinity, see, e.g., [27].
Moreover, the assumption is trivially satisfied whenever the
positive definite function V , solution of the HJB pde (4) is in
fact a SOS with highest degree smaller than or equal to m in
(20). The latter condition ensures the existence of ϑ� with the
property that V̄ (ϑ�, x) = V (x) for allx ∈ Rn and Assumption 2
is implied by the statement of Proposition 1 in the nominal
case. Under Assumption 2, the reward value (22) represents the
maximal distance between the trajectory of η and the manifold
M. Intuitively, the optimal control law (or an approximation
thereof) can be obtained by minimizing such a distance.

Lemma 1: Consider the function Rx0
in (22) and suppose

that Assumption 2 holds. There exists a constant rϑ ∈ R>0

and an open set U ⊂ Rn, containing the origin, such that
Rx0

is bounded and continuous for all ϑ ∈ Brϑ(ϑ̄) and for all
x0 ∈ U . ◦

Proof: As a straightforward consequence of Assumption 2
and of the definition of the function Rx0

in (22), it follows
that Rx0

(ϑ̄) is finite for any x0 in a neighborhood U ⊂ Rn

containing the origin. By definition, Rx0
(ϑ) is nonnegative for

all ϑ ∈ Rμ. Let now zϑ̄ := (x, η) denote the solution of (10),
(11) ensuing from zϑ̄(0) = (x0, h(ϑ̄, x0)), while zϑ describes,
similarly, the solution of (10) in closed loop with v̄ from zϑ(0) =
(x0, h(ϑ, x0)). Then, by continuity of the solution of (10), (11)
with respect to the parameter ϑ and to the initial condition (see,
e.g., [28]), for any ε > 0 there exist a nonempty open set of initial
conditions x0 with the property that ‖zϑ̄(t)− zϑ(t)‖ < ε for all
ϑ sufficiently close to ϑ̄. Hence, boundedness ofRx0

follows by
continuity, in fact linearity, of the mappingϑ �→ h(ϑ, x) for fixed
x ∈ Rn. Continuity of the function Rx0

, instead, follows im-
mediately by relying on arguments identical to those employed
above—showing that the flow (x, η) is a continuous function of
the parameter ϑ appearing in the vector field and in the initial
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conditions—and by recalling that the maximum of a continuous
function is continuous. �

As discussed in the proof of Lemma 1, the function Rx0
is

such thatRx0
(ϑ̄) yields the minimal distance from invariance of

the resulting attractive manifold, for any x0, provided that As-
sumption 2 holds. Moreover, in the limiting case for μ that tends
to infinity one has that limμ→∞Rx0

(ϑ̄) = Rx0
(limμ→∞ ϑ̄) =

0. The aim of the following remark consists in showing that, in
the case of LQ optimal control problems, the reward function
Rx0

is equal to zero if and only if ϑ is equal to ϑ� = vech(P �),
where P � denotes the unique positive solution of the underlying
ARE, as discussed below. The above argument in turn ensures
that in the LQ case the cost functionRx0

admits a unique global
minimizer with respect to ϑ.

Remark 1: In the setting of LQ optimal control problems, the
controlled Hamiltonian dynamics (10) is described by[

ẋ
η̇

]
=

[
A −S
−Q −A�

] [
x
η

]
+

[
0
I

]
v

:= Hz +Gv (24)

with S := BR−1B� ∈ Rn×n, initialized at (x(0), η(0)) =
(x0, Px0), in closed loop with

v̄ =
[
−A�P + PSP − FP A� − PS + F

]
z

:= K(P )z (25)

where P = P� > 0 denotes a generic positive definite matrix,
which replaces the role of the matrix Θ in the parametriza-
tion (20), and F := −σF I . Therefore, the closed-loop system
becomes [

ẋ
η̇

]
=

[
A −S
Ξ F − PS

] [
x
η

]

with Ξ = −Q−A�P − FP + PSP . Provided that Assump-
tion 1 holds, it can be shown that the reward function Rx0

is positive definite around ϑ� = vech(P �), with P � denoting
the unique positive definite (maximal) solution of the algebraic
Riccati equation (ARE)

0 = Q+A�P � + P �A− P �BR−1B�P � . (26)

In fact, the functionRx0
can be zero for a certain ϑ if and only

if ϑ = vech(P ) is such that the control law v̄ in (25) is stabi-
lizing for (24) and, simultaneously, the identity η(t) = Px(t)
holds for all t � 0 along the trajectory of the closed-loop sys-
tem (24), (25) ensuing from the initial condition (x(0), η(0)) =
(x0, Px0). More precisely, ϑ = vech(P ) must be such that
σ(H +GK(P )) ⊂ C− and such that the subspace

im

[
I
P

]

is invariant for (H +GK(P )). The latter requirement yields[
A −S
Ξ F − PS

][
I

P

]
=

[
I

P

]
Λ

for some Λ ∈ Rn×n. The first row-block equation leads to
Λ = A− SP , while the second, recalling the definition of the

matrix Ξ, becomes −Q−A�P = PΛ = P (A− SP ), hence
recovering the ARE. Therefore, the only solution to the latter
equation that additionally ensures that the matrix H +GK(P )
is Hurwitz is P = P �. �

The properties of the functionRx0
characterized in Lemma 1

ensure that the value ϑ̄ is (locally) attractive for a class of gradient
descent methods (as discussed below in more detail). Therefore,
the first objective of the following section is to provide the
gradient of the reward functionRx0

.

B. Gradient of the Reward Function

The objective of this section is to characterize and compute
the gradient of the cost functionRx0

with respect to ϑ.
Remark 2: Since the definition of Rx0

involves the maxi-
mization of a function of time, it is expected that it possesses
points of nondifferentiability. Moreover, the cost function (22)
is in general a nonconvex function of ϑ, appearing in the initial
conditions of the controlled Hamiltonian dynamics (10) and as
a parameter that determines the underlying vector field. While
nonsmooth, nonconvex optimization problems are known to
be NP-hard, there are a range of methods available (including
learning-based techniques) that render the (finite dimensional)
problem of minimizing the cost (22) more readily solvable
in practice (as demonstrated in Section VI in the context of
optimal design for an automatic flight control system) than the
original (infinite dimensional) optimal control problem. One
such method, based on gradient information obtained on several
points, is selected and discussed in the following section �

The solution of (22) is obtained via the controlled Hamiltonian
dynamics3 (10), with the crucial difference that while λ in (10)
represents the optimal costate variable, η defines the approx-
imate costate induced by the selection of the stabilizing con-
trol law v̄ in (10), initialized at (x(0), η(0)) = (x0, h(ϑ, x0)).
Therefore, as mentioned in Section IV-A, the function Rx0

depends on the vector of parameters ϑ explicitly, as shown
in (22), as well as via the initial condition and the dynamics
itself. The computation of the gradient ofRx0

is detailed in the
following formal statement. To provide a concise statement, let
χ = (x, η) ∈ R2n and define

F (ϑ, χ) :=

[
∇ηH(x, η)

−∇xH(x, η) + v̄(x, η, h(ϑ, x))

]
. (27)

Lemma 2: Let (ζ1, ζ2, Sx, Sη) : R→ Rμ ×R2n ×Rn×μ ×
Rn×μ denote the trajectory of the dynamics

ζ̇ = F (ϑ, ζ) (28a)

[
Ṡx

Ṡη

]
= ∇ζF (ϑ, ζ)

[
Sx

Sη

]
+

⎡
⎣ 0

∂v̄

∂h

∂h

∂ϑ

⎤
⎦ (28b)

3By a slight abuse of notation, the Hamiltonian function defined in (8) should
be interpreted with the costate λ replaced by the variable η.
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ζ = (ζ1, ζ2) ∈ Rn ×Rn, initialized at

ζ(0) =

[
x0

h(ϑ, x0)

]
(29a)

[
Sx(0)

Sη(0)

]
=

⎡
⎣ 0

∂

∂ϑ
h(ϑ, x0)

⎤
⎦ . (29b)

Suppose that the set argmaxt∈R�0
‖η(t)− h(ϑ, x(t))‖2 =:

T (ϑ) is a singleton and let T (ϑ) =: t̂. Then

∂

∂ϑ
Rx0

= 2(ζ2(t̂)− h(ϑ, ζ1(t̂)))
�
(
Sη(t̂)−

∂

∂ϑ
h(ϑ, ζ1(t̂))

− ∂

∂x
h(ϑ, ζ1(t̂))Sx(t̂)

)
. (30)

◦
Proof: To begin with, by considering the definition of the

cost function Rx0
in (22) and the discussion in the following

paragraph, it immediately follows that

∂

∂ϑ
Rx0

= 2(η(t)− h(ϑ, x(t)))�
(
∂η(t)

∂ϑ

− ∂

∂ϑ
h(ϑ, x(t))− ∂

∂x
h(ϑ, x(t))

∂x(t)

∂ϑ

) ∣∣∣
t=t̂

.

(31)

Therefore, only the sensitivity of the flowχ = (x, η)with respect
to ϑ remains to be computed. Toward this end, by the standard
fixed-point representation of the solution of an ordinary differ-
ential equation, one has that

χ(t, ϑ) = χ(0, ϑ) +

∫ t

0

F (ϑ, χ(τ, ϑ))dτ . (32)

Thus, by considering the partial derivative with respect to ϑ

∂

∂ϑ
χ(t, ϑ) =

∫ t

0

[
∂F

∂χ

∂

∂ϑ
χ(τ, ϑ) +

∂F

∂ϑ

]
dτ

+

⎡
⎣ 0

∂

∂ϑ
h(ϑ, x0)

⎤
⎦ (33)

which is obtained by recalling thatχ(0, ϑ) = (x0, h(ϑ, x0)). By
the fundamental theorem of integral calculus, the time derivative
of (33) then satisfies

d

dt

∂

∂ϑ
χ(t, ϑ) =

∂F

∂χ

∂

∂ϑ
χ(t, ϑ) +

∂F

∂ϑ
. (34)

Therefore, by letting Sx(t) := ∂x(t)/∂ϑ and Sη(t) :=
∂η(t)/∂ϑ, for all t ∈ R�0 the gradient of the cost function
Rx0

with respect to ϑ is provided by (30). In fact, the matri-
ces Sx : R→ Rn×μ and Sη : R→ Rn×μ obtained as solutions
of (28b), together with the initial conditions Sx(0) = 0 and
Sη(0) = hϑ(ϑ, x0), satisfy the dynamics (34), while ζ satisfying
(28a) replicates the time evolution of χ in (34). �

Remark 3: In the statement of Lemma 2, it has been assumed,
for simplicity of exposition that the set T is a singleton. When-
ever the set T is multivalued for some ϑ, the gradient of the

function Rx0
is in turn multivalued and it can be obtained by

considering (31) evaluated at any t ∈ T (ϑ). The constructions
in the following section—yielding a gradient-descent algorithm
that extends the gradient-sampling strategy to the setting of
matrix manifolds—are applicable without changes also in the
multivalued case. Furthermore, in practice, it may be possible to
entirely circumvent the issue of non-differentiability by consid-
ering a modified, truncated, definition of the set T for which the
gradient is computed, namely T T (ϑ) := argmaxt∈[0,t̄] ‖η(t)−
h(ϑ, x(t))‖2, for any t̄ ∈ R>0. In fact, since the measure induced
by Rx0

is based on a forward invariance property, Rx0
(ϑ) is

equal to zero if and only if its restriction to any finite interval
[0, t̄] is equal to zero. The numerical values selected for t̄ and
σF (which is related to the rate of external convergence) are,
however, relevant in practice (see Section V-B for an illustrative
example). �

C. Manifold Gradient Descent Algorithms for PI

The objective of this section consists in combining the intu-
itions and constructions of Sections III, IV-A, and IV-B to pro-
vide a hybrid dynamical system that yields an adaptive optimal
control law via PI. To provide a concise statement of the main
result of this section—which provides the construction of such a
hybrid adaptive control law—a few preliminary definitions and
tools are briefly recalled.

Definition 1: Given a vector w = [w1, . . ., wp] ∈ Rp, with
p = n(n+ 1)/2, the inverse half vectorization operator, denoted
vech−1(w) maps w into the symmetric matrix 1

2 (W +W�) ∈
Rn×n with

W =
1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1 2w2 2w3 . . . 2wn−1 2wn

0 wn+1 2wn+2 . . . 2w2n−2 2w2n−1

0 0 w2n . . . 2w3n−3 2w3n−2
...

. . .
. . .

...

0 0 wp−2 2wp−1

0 0 0 . . . 0 wp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (35)

◦
It is worth observing that, by combining the constructions

of Section IV-B with Definition 1, the matrix vech−1(ζ1(t̂)) is
a symmetric matrix that describes the gradient of the (scalar)
cost function Rx0

with respect to the matrix Θ. Therefore,
before presenting and discussing in detail the hybrid control
architecture mentioned above, the gradient-descent algorithm
is first revisited with respect to the manifold of symmetric and
positive definite matrices, denoted by S+(n) = {X ∈ Rn×n :
X = X�, X > 0}. This, in fact, is instrumental in updating
the vector ϑ while ensuring that the matrix Θ does not leave
S+(n). The tangent space at a point X ∈ S+(n) is defined as
TXS+(n) = {W ∈ Rn×n : W = W�}, namely by the space of
symmetric matrices. The manifold S+(n) becomes a Rieman-
nian manifold by introducing the Riemannian metric as

〈W1,W2〉X � tr(X−1W1X
−1W2) (36)

for W1 ∈ TXS+(n) and W2 ∈ TXS+(n), where tr(·) denotes
the trace of a matrix. The geodesic curve at the pointX ∈ S+(n)



2692 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 5, MAY 2023

in the direction W ∈ TXS+(n) is defined as

γX,W (α) = X1/2 exp(αX−1/2WX−1/2)X1/2 (37)

and it is entirely contained in S+(n) for any α ∈ [0, 1]. Finally,
consider a few preliminary definitions, which are borrowed
from [29].

Definition 2 (see [29, Def. 3.1)]: Given a vector ϑ such that
Θ = vech−1(ϑ) and a positive real number ε, ∂εRx0

(ϑ) denotes
the ε-subdifferential ofRx0

. ◦
While the interested reader is referred to [29], note that the

above subdifferential is in fact computed by considering the
convex hull of the gradients determined in (30) at several points
close (according to the underlying Riemannian distance and
the underlying exponential map) to Θ = vech−1(ϑ). By relying
on [29], Thm. 3.12], it can then be concluded that a descent
direction can be determined by selecting the element of minimal
norm in ∂εYx0

(ϑ), for some ε > 0, denoted as D(ϑ). More
precisely, consider∂εRx0

(ϑ) and letw◦ := argmin{‖w‖ : w ∈
∂εRx0

(ϑ)} define the element of minimal norm in the set. Then,
D(ϑ) := −w◦/‖w◦‖ yields a descent direction with uniform
decrease.

The above constructions essentially represent an extension
of the sampling gradient method to the case of (matrix) mani-
folds. The following formal statement describes the convergence
properties of the proposed episodic learning strategy, a practical
implementation of which is then provided by Algorithm 1. In
particular, in the following statement, the time histories induced
by the episodic learning of Fig. 2 are interpreted in terms of
trajectories of a hybrid system.

Theorem 2: Consider the hybrid system defined by the flow
dynamics defined by (28) together with

˙̂
ϑ = 0

τ̇ = 1 (38)

the jump dynamics defined by the reset condition

ζ+ =

[
x0

h(ϑ, x0)

]

[
S+
x

S+
η

]
=

⎡
⎣ 0

∂

∂ϑ
h(ϑ, x0)

⎤
⎦

together with

ϑ̂+ = vech
(
γvech−1(ϑ̂),vech−1(D(ϑ̂))(α)

)
τ+ = 0 (39)

with α ∈ (0, 1), flow set C := {(ζ, Sx, Sη, ϑ̂, τ) ∈ R2n ×
Rn×μ ×Rn×μ ×Rμ ×R : τ � T (ϑ̂)} and jump set D :=

{(ζ, Sx, Sη, ϑ̂, τ) ∈ R2n ×Rn×μ ×Rn×μ ×Rμ ×R : τ �
T (ϑ̂)}. Then, all trajectories of the hybrid system (28), (38),
(29), (39) ensuing from the initial conditions ϑ̂(0, 0) with the
property that v̄|ϑ̂(0,0) is stabilizing for (10) are such that ϑ̂(t, k)
converges to a stationary point ofRx0

(ϑ). ◦

Algorithm 1:
(0) Initialization. Fix τM ∈ R>0, sufficiently large, and fix

α ∈ (0, 1) and ε ∈ R>0, sufficiently small. Fix x0 ∈ Rn

and select ϑ̂ ∈ Rμ such that û = v̄(x, η, h(ϑ̂, x))
asymptotically stabilizes the zero equilibrium of (10).

(1) Define a collection of points {ϑ1, . . ., ϑκ} according
to [29], Sec. 3.3] such that
dist(vech−1(ϑ̂), vech−1(ϑi)) < ε, i = 1, . . ., κ.
For i = 1 to κ

(1.a) Integrate the closed-loop system (10), (21) in the
interval [0, τM ] from (x(0), η(0)) = (x0, h(ϑi, x0)) and
compute t̂ = argmaxt∈[0,τM ] ‖η(t)− h(ϑi, x(t))‖2.

(1.b) Integrate system (28) in the interval [0, t̂] from the
initial condition (29). Define the gradient
(∂Rx0

(ϑi)/∂ϑ) as in (30).
end

(2) Use the gradients (∂Rx0
(ϑi)/∂ϑ) to construct

∂εRx0
(ϑ̂) and define D(ϑ̂)

(3) Update ϑ̂ according to

ϑ̂← vech
(
γvech−1(ϑ̂),vech−1(D(ϑ̂))(α)

)
(4) Repeat from Step (1).

Proof: The claim is shown by noting that the sublevel sets of
the function Rx0

are bounded and relying on the convergence
properties of the algorithm discussed in [29], Th. 3.18]. �

A systematic description of the practical implementation of
the results expressed in Theorem 2 is provided in Algorithm 1,
which yields a strategy based on episodic learning to construct
approximate optimal control laws.

Note that Step (1) of Algorithm 1 aims at approximating the
computation of the ε-subdifferential D(ϑ), via the evaluation
of the gradient at a finite collection of nearby points, in such a
way that the gradient descent method can be practically imple-
mented. Furthermore, by relying on the properties established
in Section IV-B, (local) convergence of Algorithm 1 follows by
somewhat standard arguments on gradient-descent strategies,
see, e.g., [29]. The principles of the control design methodology
are presented in the algorithm above by focusing on its essential
features for clarity of exposition. However, a few, classical
refinements of the implementation of the gradient descent ap-
proach may be straight-forwardly included. In addition to the
use of a sampling gradient method mentioned above, one could,
for instance, consider a line search subroutine that permits the
computation of an optimized step α, in place of the constant one
introduced in Algorithm 1.

V. ROBUST OPEN-LOOP LQ OPTIMAL CONTROL

The main objective of this section consists in specializing the
previous results to the case of linear systems and with quadratic
cost functionals. As discussed in Remark 1, in such a setting
the Hamiltonian dynamics is described by a system of linear
equations, the costate of which is controlled by means of the
additional, virtual control input v, as shown in (24).
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A. Comparison Between Optimal and Controlled Costate

Before discussing the main results of this section, the classic
characterization of the optimal costate in this scenario is briefly
revisited. Toward this end, consider a linear, time-invariant,
system described by the equation

ẋ = Ax+Bu (40)

with x : R→ Rn and u : R→ Rm denoting the state and the
control input, respectively, together with the quadratic cost
functional

J(u) =
1

2

∫ ∞

0

(‖x(τ)‖2Q + ‖u(τ)‖2R)d τ . (41)

It is well known that the optimal control policy is given by

u�(t) = −R−1B�P �x(t) (42)

where P � denotes the symmetric, positive definite solution of
the ARE (26). The optimal solution is equivalently obtained as

u�(t) = −R−1B�λ�(t) (43)

where λ� denotes the solution of the Hamiltonian system[
ẋ

λ̇

]
=

[
A −S
−Q −A�

] [
x
λ

]
:= H

[
x
λ

]
(44)

initialized at (x(0), λ(0)) = (x0, P
�x0).

Lemma 3: Consider the LQ optimal control problem de-
scribed by the dynamics (40) and the cost functional (41).
Suppose that Assumption 1 holds. Then, the optimal costate
is

λ�(t) = P �e(A−SP�)tx0 (45)

with S = BR−1B�. ◦
Proof: Let z = (x, λ) and define the change of coordinates

ẑ = T−1z with

T−1 =

[
I 0
−P � I

]
(46)

which depends on the solution of the ARE (26), and hence

T =

[
I 0
P � I

]
. (47)

It is then straightforward to show that

T−1HT =

[
Acl −S
0 −A�cl

]
(48)

with Acl := A− SP �. Therefore, in the transformed coordi-
nates

ẑ1(t) = eAclt

(
ẑ1(0)−

∫ t

0

e−AclτSe−A
�
clτdτ ẑ2(0)

)
(49a)

:= eAclt (ẑ1(0)−M(t)ẑ2(0))

ẑ2(t) = e−Acltẑ2(0) . (49b)

By noting that, since z = T ẑ with T defined in (47), λ(t) =
ẑ2(t) + P �ẑ1(t) it follows that

λ(t) = P �eAcltx0 +
(
e−Aclt − P �eAcltM(t)

)
(λ0 − P �x0) .

(50)

The proof is then concluded by recalling that λ0 = P �x0 and
λ(t)|λ0=P�x0

= λ�(t) = P �e(A−SP�)tx0. �
By specializing the constructions discussed in the nonlinear

setting to the case of linear systems, consider the controlled
Hamiltonian system

[
ẋ
η̇

]
= H

[
x
η

]
+Gv (51)

with G defined as in (24), where v : R→ Rn in (11) reduces to
the (linear) feedback

v� = (A� − P �S − σF I)(η − P �x) (52)

since f1(x, Vx(x)) = (A− SP �)x and g(x) = B do not de-
pend on the state variable x.

Lemma 4: Consider the controlled Hamiltonian system (51)
in closed loop with (52). Then, the resulting controlled costate
is given by

η(t) = e−σF tξ + P �eAclt(x0 −Ms(t)ξ) (53)

where ξ = η0 − P �x0 and Ms(t) =
∫ t

0 e−AclτSe−σF τdτ . ◦
Proof: The claim is shown by relying on arguments identical

to those of the proof of Lemma 3 and by noting that TG = G
and that v = (A�cl − σF I)ẑ2 in the transformed coordinates. �

It is now possible to compare the optimal costate λ� and that
computed by considering the stabilized Hamiltonian dynamics
(51). To provide a concise statement, let c1 ∈ R>0 and c2 ∈ R>0

be such that ‖e−Aclt‖ < c1e
c2t.

Proposition 2: Consider the Hamiltonian dynamics (44) and
the closed-loop Hamiltonian dynamics (51), (52). Fix any t� ∈
R>0, ε ∈ R>0 and μ ∈ R>0 and let

σF > max

{
2c1‖S‖

ε
+ c2,

1

t�
log

(
ε

2μ

)}
.

Define e(t) = λ�(t)− η(t). Then

‖e(t)‖ � ε (54)

for all t > t� and for all (x0, η0) ∈ Rn ×Rn such that
‖(x0, η0 − P �x0)‖ < μ. ◦

Proof: By the definitions of the functions λ� and η given
in (45) and (53), respectively, it follows that e(t) = Ms(t)ξ −
e−σF tξ. Consider first the norm of the matrix-valued function
Ms, namely t �→

∫ t

0 e−AclτSe−σF τdτ . In particular

‖Ms(t)‖=
∥∥∥∥
∫ t

0

e−AclτSe−σF τdτ

∥∥∥∥ �
∫ t

0

‖e−AclτSe−σF τ‖dτ

� ‖S‖
∫ t

0

‖e−Aclτ‖ ‖e−σF τ‖dτ

� c1‖S‖
∫ t

0

e(c2−σF )τdτ =
c1‖S‖
c2 − σF

[
e(c2−σF )τ

]t
0

� c1‖S‖
σF − c2

.
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Fig. 4. Logarithm of the cost function Rx0(ϑ) during gradient descent
iterations for different values of t̄ in Remark 3 and with fixed step size
α = 0.001.

Fig. 5. Logarithm of the cost function Rx0(ϑ) during gradient descent
iterations for different values of σF and with fixed step size α = 0.001.

Therefore

‖e(t)‖ � ‖Ms(t)‖‖ξ‖+ ‖e−σF t‖‖ξ‖ � c1‖S‖
σF − c2

μ+ e−σF tμ

� ε

2
+

ε

2
� ε

for all t > t�, where the third inequality follows from the selec-
tion of σF . �

B. Stabilized Computation of the Optimal Costate

By building on ideas inspired by the constructions of Sec-
tion IV, the main objective of this section consists in specializing
the cost function (22) and the subsequent gradient descent algo-
rithm to the case of LQ optimal control problems. Toward this
end, note first that in the latter case, the candidate approximate
value function V̄ in (20) can be a priori effectively limited to the
class of quadratic functions, namely by letting c(x) = x ∈ Rn.
As a consequence, the matrix Θ ∈ Rn×n, with n describing the
dimension of the state of system (40), represents a generic matrix

P ∈ Rn×n in the quadratic form

V̄(ϑ, x) =
1

2
x�Px (55)

with ϑ = vech(P ), where P = P� > 0, therefore, describes a
candidate solution of the ARE (26). It is worth observing that
this selection is such that Assumption 2 holds with P = P �.
Such a matrix P must be then determined by specializing the
gradient-descent algorithm on matrix manifold discussed above
to the cost function

Lx0
(ϑ) := ‖η(t̂)− Px(t̂)‖2 (56)

where (x, η) are obtained from (24), (25), and with t̂ :=
argmaxt∈R�0

‖η(t)− Px(t)‖2. As commented upon in the
paragraph following the definition of Rx0

in (22), the depen-
dence of Lx0

on P is threefold: direct as immediately suggested
by (56) as well as via the parameterization of the vector-field
of the underlying Hamiltonian dynamics, as shown in (24) and
(25), and via the initial conditions (x(0), η(0)) = (x0, Px0).
Interestingly, since in the LQ setting the flow of the Hamiltonian
dynamics can be easily obtained in closed-form as a matrix
exponential, such a threefold dependence can be explicitly
expressed as

Lx0
(ϑ) =

∥∥∥∥[−P I
]
e(H+GK(P ))t̂

[
I
P

]
x0

∥∥∥∥
2

(57)

with K(P ) defined in (25).
Remark 4: The construction in Algorithm 1, together with

the discussion in Remark 1 for the LQ setting, ensures that
the gradient-descent method introduced herein is such that the
estimate P converges to P �. Therefore, the strategy can be
interpreted as an alternative to the solution of the underlying
ARE (26), which does not involve the solution of any algebraic
equation, the computation of eigenvalues of any square matrix
or the inversion of any non-singular matrix. �

Remark 5: Consider the first-order approximation of the ma-
trix exponential function t �→ e(H+GK(P ))t around the origin,
evaluated at t = t̂, namely

e(H+GK(P ))t̂ = I + t̂(H +GK(P )) + o(t̂2) . (58)

By replacing the above-mentioned approximation into the cost
function (57), straightforward computations show that the cost
function Lx0

can be approximated by

Lx0
(ϑ) = t̂2‖Y x0‖2 + o(t̂3) (59)

where Y := Q+ PA+A�P − PSP coincides with the right-
hand side of the ARE (26). �

To illustrate the properties mentioned in Remark 3, consider
(linear) double integrator dynamics together with a cost func-
tional as in (41) with Q = I and R = 1. The initial condition is
x0 = [5, 3]� and let Algorithm 1 be initialized with a random P
and fixed step sizeα = 0.001. Figs. 4 and 5 show the dependence
of the convergence rate on the selection of t̄ andσF , respectively:
from the computational perspective, it is desirable to employ
a longer time interval and a smaller value for σF , such that
the trajectories are driven sufficiently away from the original
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Fig. 6. Costs of the linearized control law u� (dash-dotted line) and of
the nonlinear control law ups (dashed line), together with the evolution,
over the iteration number k, of the cost attained by the control law v̄ in
(21) defined by considering V̄ (ϑk, x).

subspace. The latter feature, in fact, yields a gradient matrix that
is more reliable from the numerical point of view.

VI. AUTOMATIC FLIGHT CONTROL OF THE LONGITUDINAL

MOTION OF AN AIRCRAFT

The results of the previous sections are validated and cor-
roborated by means of numerical simulations, concerning the
optimal design of an automatic flight control system for the
longitudinal motion of an aircraft. The model description is
borrowed from [30], in which a detailed derivation of the
dynamics is provided. The longitudinal motion of an aircraft
is therefore captured by dynamics as in (1), described by the
vector fields f and g defined in (60) (at the bottom of the page),
where x1(t) ∈ R denotes the angle of attack, in radians, while
x2(t) ∈ R and x3(t) are the angular displacement with respect
to the horizon and its rate of change, respectively. The control
action u(t) ∈ R describes the prescribed tail deflection angle.
In [30], two control strategies are suggested: a linear static
feedback—optimally designed on the basis of the linearized
model—is subsequently compared with a nonlinear feedback
obtained by a power series approximate solution of the under-
lying HJB pde. The latter policy is computed at the price of
computationally intensive derivations that require the solutions
of nonlinear algebraic equations. The effectiveness of the two
strategies above is therein measured by means of a quadratic
cost functional similar to (2) with q(x) = (1/2)x�Qx, where
Q = (1/2)I and R = 2. More precisely, the control law solving
the linearized problem is

u(x) = −0.053x1 + 0.5x2 + 0.521x3 (61)

Fig. 7. Phase-plot in R3 of the costate variable induced by the con-
trolled Hamiltonian dynamics (10) with v̄(x, η, h(ϑk, x)). The solid black
line describes the phase-plot associated to the last iteration of the
gradient descent algorithm.

whereas the nonlinear feedback computed by approximating
the HJB pde by including the cubic terms of its power series
expansion is

ups(x) = u(x) + 0.04x2
1 − 0.048x1x2

+ 0.374x3
1 − 0.312x2

1x2 . (62)

Note that the coefficients of the control law (61) are related to
the entries of the symmetric and positive definite matrix P � that
solves the corresponding ARE (26), i.e.,

P � =

⎡
⎢⎣

0.3218 −0.1777 −0.0083
−0.1777 0.7183 0.0495

−0.0083 0.0495 0.0498

⎤
⎥⎦ . (63)

The constructions discussed in the previous sections are then
carried out in the setting of the automatic flight control problem
described by (60) by selecting m = 2 in the definition of c(x),
yielding

c(x) =
[
x1 x2 x3 x1x2 x1x3 x2x3 x2

1 x2
2 x2

3

]�
. (64)

The gradient-descent method on the manifold of symmetric and
positive definite matrix illustrated in Theorem 2 is then applied
by initially letting the matrix Θ ∈ R9×9 be defined as

Θ0 :=

[
P � 03×6

06×3 �I6

]
(65)

f(x) :=

⎡
⎢⎣
−0.877x1 + x3 + 0.47x2

1 − 0.088x1x3 − 0.019x2
2 + 3.846x3

1 − x2
1x3

x3

−4.208x1 − 0.396x3 − 0.47x2
1 − 3.564x3

1

⎤
⎥⎦ , g(x) :=

⎡
⎢⎣
−0.215

0

−20.967

⎤
⎥⎦ (60)
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Fig. 8. Time histories of the state x induced by the value function
V̄ (ϑ60, x) (solid black lines) compared with those induced by the control
law u� (dash-dotted lines) and ups (dashed line).

where � is a positive parameter such that Θ0 ∈ S+(9). In the
following numerical simulations, the coefficient � has been se-
lected as � = 0.001, while the parameter σF in the construction
of the adaptive control law (21) is equal to 1. It is assumed that the
initial configuration of the aircraft is such that the angle of attack
corresponds to 25 degrees, hence, x0 = [ (25/180)π 0 0 ]�.

Fig. 6 depicts the costs yielded by the linearized solution u

in (61), i.e., J(u) = 0.1152, and by the nonlinear control law
ups proposed in [30] and reported in (62), i.e., J(ups) = 0.091,
dash-dotted and dashed lines, respectively, together with the
evolution over the iteration number k of the cost yielded by
the iterative control law (21), defined by the approximate value
function V̄ (ϑk, x) = c(x)�Θkc(x). It can be observed that even
a relatively small number of iterations of the algorithm allows,
essentially without solving any partial differential or even alge-
braic equations, to achieve a cost lower than that obtained in [30]
with ups. Note in addition that the latter control law, i.e.,ups, has
been constructed at the price of significant computational com-
plexity and effort in solving algebraic equations, as commented
upon in [30]. The graphs in Fig. 7 instead report the evolution
over the iteration number (i.e., one curve for each value of k)
of the phase-plot in R3 of the corresponding costate variable

Fig. 9. Time histories of the control law u induced by the value function
V̄ (ϑ60, x) (solid black lines) compared with those induced by the control
law u� (dash-dotted lines) and ups (dashed line).

induced by the controlled Hamiltonian dynamics (10) with
v̄(x, η, h(ϑk, x)). The solid black line describes the phase-plot
associated to the last iteration of the gradient descent algorithm.

Finally, the value of the matrix Θ60, reported in (66) (at the
bottom of the page), is then employed to compute the time
histories of the state x and of the control action v̄ induced by
the value function V̄ (ϑ60, x). These are indicated by the solid
black lines in Figs. 8 and 9, respectively. The time histories are
also compared with those resulting from the use of the control
law u (dash-dotted lines) and of ups (dashed line).

VII. CONCLUSION

An iterative learning strategy to construct optimal control
laws in infinite-horizon dynamic optimization problems has
been proposed and discussed. The strategy relies on a modified
(controlled) version of the classic Hamiltonian dynamics arising
in this context, in which the stable invariant submanifold—
instrumental for the construction of the optimal policy—is ren-
dered externally asymptotically stable. This is then exploited,
in the presence of a VFA for the candidate solution, to yield
an alternative temporal difference error in the episodic learning
architecture that measures the distance from invariance induced
by the current approximating value function. The estimate is
then updated by means of a gradient descent algorithm in the
manifold of symmetric positive definite matrices. The theory has

Θ60 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3340 −0.1691 −0.0032 0.0077 −0.0011 −0.0041 −0.0068 −0.0026 0.0020
−0.1691 0.7389 0.0212 −0.0041 −0.0046 0.0045 −0.0012 −0.0019 0.0037
−0.0032 0.0212 0.0538 −0.0007 −0.0014 0.0007 0.0001 −0.0011 0.0013
0.0077 −0.0041 −0.0007 0.0200 0.0020 −0.0145 −0.0117 −0.0011 0.0009
−0.0011 −0.0046 −0.0014 0.0020 0.0021 −0.0020 −0.0004 0.0009 −0.0016
−0.0041 0.0045 0.0007 −0.0145 −0.0020 0.0108 0.0081 0.0007 −0.0005
−0.0068 −0.0012 0.0001 −0.0117 −0.0004 0.0081 0.0074 0.0008 −0.0008
−0.0026 −0.0019 −0.0011 −0.0011 0.0009 0.0007 0.0008 0.0009 −0.0016
0.0020 0.0037 0.0013 0.0009 −0.0016 −0.0005 −0.0008 −0.0016 0.0027

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (66)
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been illustrated by means of a practical application involving an
automatic flight control problem.

APPENDIX

Lemma 5: Consider the systems described by the equations

ẋ = f(x) (67a)

ż = f(z) + s(z)e−σt (67b)

with x(0) = z(0) = x0, s(0) = S ∈ Rn. Suppose that f :
Rn → Rn and s : Rn → Rn are smooth mappings and that the
origin is an LES equilibrium point for (67a). Then, for any
ε ∈ R>0, there exist a neighborhood U ⊂ Rn containing the
origin and σ ∈ R>0 such that ‖z(t)− x(t)‖ � ε for all t � 0
and all x0 ∈ U . ◦

Proof: To begin with, let χ := z − x, hence

χ̇ = f(z)− f(x) + s(z)e−σt

= f(χ+ x)− f(x) + s(χ+ x)e−σt

:= g1(χ, x) + s(χ+ x)e−σt

:= g1(χ, 0) + g2(χ, x) + s(χ+ x)e−σt (68)

with g1(χ, x) := f(χ+ x)− f(x) and g2(χ, x) = g1(χ, x)−
g1(χ, 0). Therefore, it is straightforward to observe that the
claim can be concluded by equivalently assessing the stability
properties of the origin for the (extended) error dynamics

ẋ = f(x)

χ̇ = g1(χ, 0) + g2(χ, x) + s(χ+ x)ξ

ξ̇ = − σξ . (69)

By LES of the origin of (67a), there exist ro ∈ R>0, d ∈ R>0,
and λ ∈ R>0 such that ‖x(t)‖ � de−λt‖x0‖ for any t � 0 and
for all x0 ∈ D0 := {x ∈ Rn : ‖x‖ < r0}. On the other hand,
the inequality ‖ξ(t)‖ � e−σt‖ξ0‖ for any t � 0 immediately
follows by the definition of the dynamics for ξ(t) ∈ R. Fur-
thermore, again by LES of the origin of (67a) and by observ-
ing that g1(χ, 0) = f(χ)− f(0) = f(χ), one has that χ = 0
is a locally asymptotically stable equilibrium point for the
dynamics χ̇ = g1(χ, 0). Hence, by [28], Th. 4.14], there exist
r1 ∈ R>0, ci ∈ R>0, i = 1, . . ., 4, a neighborhood D1 := {χ ∈
Rn : ‖χ‖ < r1} of the origin and a function W : D1 → R>0

with the property that

c1‖χ‖2 � W (χ) � c2‖χ‖2

∇W (χ)�g1(χ, 0) � −c3‖χ‖2

‖∇W (χ)‖ � c4‖χ‖

(70)

for all χ ∈ D1. Moreover, by smoothness of the involved
functions, there exist constants ki ∈ R>0, i = 1, 2, such that
‖g2(χ, x)‖ � k1‖x‖ and ‖s(χ+ x)‖ � k2 for all (x, χ) ∈
D0 ×D1. The time derivative of the function W along the
trajectories of system (68) then yields

Ẇ = ∇W (χ)�(g1(χ, 0) + g2(χ, x) + s(χ+ x)ξ)

� − c3‖χ‖2 + c4k1‖χ‖‖x‖+ c4k2‖χ‖‖ξ‖

� − c3‖χ‖2 +
(c4k1)

2m
‖χ‖2 + m

2
‖x‖2 + (c4k2)

2m
‖χ‖2

+
m

2
‖ξ‖2 (71)

for any m ∈ R>0, where the second inequality is obtained by
relying on Young’s inequality. Therefore, by selecting m with
the property that c3 − c4(k1 + k2)/2m > 0, it follows that

Ẇ (t) � m

2
d2e−2λt‖x0‖2 +

m

2
‖ξ0‖2e−2σt

:= δ1e
−2λt‖x0‖2 + δ2e

−2σt. (72)

Since the claim is obtained provided ‖χ(t)‖ < ε for all t � 0
and by recalling that, by (70), ‖χ‖2 � W (χ)/c1, it remains to
show that W (t) < μ := min{ε2, r21}c1 for all t � 0, where the
definition of μ ensures that χ(t) ∈ D1 for all time. To this end,
by integration and by recalling thatW (0) = W (χ(0)) = 0 since
by assumption x(0) = z(0), one has that

W (t) � δ1‖x0‖2
∫ t

0

e−2λτdτ + δ2

∫ t

0

e−2στdτ

� δ1
2λ
‖x0‖2(1− e−2λt) +

δ2
2σ

(1− e−2σt)

� δ1
2λ
‖x0‖2 +

δ2
2σ

(73)

Therefore, the claim is obtained by selecting ‖x0‖2 <
min{r20, μλ/δ1} and σ > δ2/μ, which imply that each term of
the second inequality of (73) is smaller than μ/2.
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