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Recursive Identification of Time-Varying Hammerstein Systems With
Matrix Forgetting

Jakub Dokoupil and Pavel Václavek , Senior Member, IEEE

Abstract—The real-time estimation of the time-varying Hammer-
stein system by using a noniterative learning schema is consid-
ered and extended to incorporate a matrix forgetting factor. The
estimation is cast in a variational-Bayes framework to best em-
ulate the original posterior distribution of the parameters within
the set of distributions with feasible moments. The recursive con-
cept we propose approximates the exact posterior comprising
undistorted information about the estimated parameters. In many
practical settings, the incomplete model of parameter variations
is compensated by forgetting of obsolete information. As a rule,
the forgetting operation is initiated by the inclusion of an appro-
priate prediction alternative into the time update. It is shown that
the careful formulation of the prediction alternative, which relies
on Bayesian conditioning, results in partial forgetting. This article
inspects two options with respect to the order of the conditioning
in the posterior, which proves vital in the successful localization
of the source of inconsistency in the data-generating process.
The geometric mean of the discussed alternatives then modifies
recursive learning through the matrix forgetting factor. We adopt
the decision-making approach to revisit the posterior uncertainty
by dynamically allocating the probability to each of the prediction
alternatives to be combined.

Index Terms—Hammerstein model, matrix forgetting factor, pa-
rameter estimation, variational Bayes.

I. INTRODUCTION

The Hammerstein model consisting of a static nonlinear curve fol-
lowed by a linear filter provides a capacity to represent a broad class
of input nonlinear systems [1], [2]. The list of existing approaches [3]
indicates that the Hammerstein model estimation is still dominated by
prediction error and maximum likelihood-type methods. The unknown
parameters are then obtained by optimizing a certain criterion to best
fit the model to the data. This traditional concept is predominantly
tied up with point estimation. The available recursive solutions mostly
accumulate approximation errors by replacing lossless estimation with
one step approximation. This replacement is motivated by updating
the latest approximated posterior via a treated parametric model. As
a result, approximation errors may accumulate to an extent degrading
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the estimator performance, making these strategies vulnerable to an
inaccurate initial guess.

This article aims to identify the Hammerstein system by approximat-
ing the exact posterior probability density function (pdf). The error ac-
cumulation is completely avoided by propagating the sufficient statistics
of the overparameterized model, which serve as information-bearing
for the posterior pdf approximation. The search for the approximate
pdf is made optimal by adopting the variational Bayes (VB) method,
factorizing the posterior into the product of independent VB-marginals
(for a detailed overview, see [4]). The resulting method is designed to
account for a hard constraint imposed on the nonlinear curve parameters
to uniquely determine the filter gain. The VB method has proven its
efficiency when, for instance, tailored to solve the identification for the
nonlinear autoregressive with exogenous input (NARX) system [5],
to jointly estimate the state and the measurement noise covariance
parameters [6], and to iteratively identify the multiple-model based
Hammerstein parameter varying systems [7].

In this article, the capability of tracking unmodeled changes in
the system dynamics is conceptually achieved via forgetting. At the
Bayesian level, a sort of forgetting arises through combining the
posterior pdf with its flattened alternative. The combination strategies
prominently involve the nonsymmetric Kullback–Leibler divergence
(KLD) [8] with different properties depending on the order of the
KLD arguments [9]. There is rich literature on the adaptation of a
single forgetting factor causing the information about all of the sys-
tem parameters to be uniformly discounted [10]–[13]. However, the
formulation of a matrix forgetting factor capable of providing different
forgetting rates for diverse parameter partitions has been neglected.
The matrix forgetting algorithms available in [14] and [15] lack any
contextualization within the optimization framework, and the solutions
thus do not offer an optimal interpretation. Moreover, authors in [14]
and [15] numerically search for a symmetric form of the matrix factor
that may result in a generally nonsymmetric covariance matrix. In a
recent paper [16], a sort of vector forgetting by modifying the least
squares criterion is proposed. Importantly, authors in [14]–[16] do not
provide any solution on how to apply forgetting differently to various
parameters. The Bayesian counterpart to partial forgetting is described
in [17], relying on the parallel schema to localize the parameters that
are subject to change. On the basis of the work carried out in [11]–[13],
[17], we develop a data-informed matrix forgetting factor allowing for
tracking a particular parameter subset as well as all the parameters.

Briefly, this article is organized as follows. Section II formally
states the estimation problem of the time-varying Hammerstein system
from the Bayesian perspective. The relationship between the least
squares-like method and the model sufficient statistics is explicated,
leaving the question of the choice of the matrix forgetting entities
and parameter extraction open. The question related to optimizing the
matrix forgetting factor is answered in Section III by adopting the
decision-making approach; two variants of the matrix forgetting factor
are considered. The optimal extraction of the system parameters from
the sufficient statistics in the presence of a hard constraint is discussed
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in Section IV, relying on the VB method. Section V employs simulated
examples to provide empirical evidence of the algorithm performance.
Finally, Section VI concludes the article.

Notation: 1n refers to an n-dimensional vector, all of whose com-
ponents are one; In denotes an n× n identity matrix; tr(·) is the
matrix trace; ‖ · ‖2 defines the Euclidean vector norm; | · | denotes
the determinant; ⊗ symbolizes the Kronecker product; ◦ denotes the
Hadamard product; x∗ symbolizes the range of x; x̊ is used to represent
the number of members in a countable set x∗ or refers to the dimension
of a vector x; x′ is the transpose of x; and f(x) is reserved for the pdf of
a random variable x, optionally distinguished by its subscript. Further,
the mathematical expectation of a function g(x) with respect to the
pdf f(x) is labeled as Ef(x)[g(x)] =

∫
x∗ g(x)f(x) dx; the functional

derivative of the functional L(f(x)) over f(x) is defined as δL(f(x))
δf(x)

;
vec (·) is the vectorization operator;≡ stands for equality by definition;
and ∝ means equality up to a normalizing factor.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a discrete-time SISO Hammerstein system in which a
memoryless nonlinear curve is connected in series with a linear ARX
subsystem

yk = γ ′kθa;k + θ′r;kGkθb;k + ek, (1)

where the current output yk depends on the current input uk and
the set of past data through γk = [−yk−1, . . . ,−yk−na ]

′ ∈ Rna and

Gk =

⎡
⎣ g1(uk) . . . g1(uk−nb

)

.

.

.
. . .

.

.

.
gnr (uk) . . . gnr (uk−nb

)

⎤
⎦ ∈ Rnr×(nb+1). The input uk and

output yk are both measured on the system at the discrete time
instants k ∈ k∗ ≡ {k0, k0 + 1, . . . , k̊} ⊂ Z to form the data record
Dk

1−n ≡ {ui, yi}ki=1−n, with n ∈ N referring to the longest time lag
appearing in the system. The components of θr;k = [r1;k, . . . , rnr ;k]

′

combine basis functions gi(·) to modulate the curve shape, and the
components of θa;k = [a1;k, . . . , ana;k]

′ and θb;k = [b0;k, . . . , bnb;k]
′

define the dynamics of the ARX subsystem. The unmeasurable model
noise ek is assumed to be white, normally distributed with a zero mean
and a nonzero precision dk, that is, ek ∼ N (0, 1/dk). The ordered set
Θk ≡ {θa;k, θb;k, θr;k, dk} constitutes the random system parameters
to be learned in view of sequential data retrieval. To prevent any
information reduction during the data update, the functional form of
the dynamic exponential family (DEF) (§6.2.1 in [4]) is adopted as a
template for the model parameterization.

Remark 1: The parametric model governed by (1) belongs to the
DEF

f
(
yk
∣∣θk, dk, uk,Dk−1

1−n

)
= exp

[
q (θk, dk)

′ τ (yk, hk)

−ιyk (θk, dk)
]
, (2)

under the assignments

θk≡
[

1na(
Inr ⊗ 1nb+1

)
θr;k

]
◦
[

θa;k(
1nr ⊗ Inb+1

)
θb;k

]

∈ Rθ̊, θ̊ = na + (nb + 1)nr, (3)

hk≡
[

γk

vec (G′
k)

]
, (4)

q (θk, dk) = −dk
2

vec ([θ′k 1]′[θ′k 1]) , (5)

τ (yk, hk) = vec ([h′k − yk]′[h′k − yk]) , (6)

with the normalizing factor exp[ιyk (θk, dk)] =
∫ ∞
−∞exp[q(θk,

dk)
′τ(yk, hk)] dyk =

√
2π/dk. Composing the sequence of the pdfs

(2) by means of the likelihood function gives rise to the conjugate
posterior pdf for the parametric model, having the form
f
(
θk, dk
∣∣vk, νk) ∝ exp[q (θk, dk)

′ vk − (νk + θ̊ − 2)ιyk (θk, dk)],
(7)

where vk is a vector of a dimension compatible with q(θk, dk), and the
scalar νk > 2 is referred to as the number of degrees of freedom. The
data compression process is then reduced to the recursive updating of
the sufficient statistics Sk ≡ {vk, νk}, which allows for learning about
{θk, dk} in tandem with data acquisition.

The correspondence of the parametric model (2) to the DEF deter-
mines the conjugate pdf (7) as the normal-Wishart (NW) pdf, with the
particular factors defined by

f
(
θk
∣∣Sk, dk

)
= N
(
θk
∣∣θ̂k, Pk/dk

)
(8)

∝ exp

[
−
(
θk − θ̂k

)′
P−1
k

(
θk − θ̂k

)
dk/2

]
,

f
(
dk
∣∣Sk

)
= W
(
dk
∣∣Σk, νk

)
∝ d(νk−2)/2

k exp [−Σkdk/2], (9)

which in turn assigns

vk = vec

([
P−1
k −P−1

k θ̂k
−θ̂′kP−1

k Σk + θ̂′kP
−1
k θ̂k

]
︸ ︷︷ ︸

V̄k

)
, (10)

where Σk > 0 is referred to as the least squares reminder. As noted
earlier, we assume vague knowledge regarding how the parameters ac-
tually evolve, and this prevents us from employing the marginalization
integral [18]

f
(
θk, dk
∣∣Sk−1

)
=

∫
d∗

∫
θ∗
f
(
θk, dk
∣∣θk−1, dk−1,Sk−1

)
× f
(
θk−1, dk−1

∣∣Sk−1

)
dθk−1 ddk−1. (11)

Owing to such deficiency, we seek a forgetting operation that emerges
from rescaling the covariances of θk|Sk, dk and dk|Sk at each iteration
to reinstate the parameter tracking capability. To guarantee a minimal
amount of parameter-related information, the additional source to (2) is
processed in a way that stabilizes the forgetting and thus compensates
for the potential loss of persistency [12]. We have

f(θk, dk|θ̂0, Ξ,Σ0, ν0) = N (θk|θ̂0, Ξ−1/dk)W
(
dk
∣∣Σ0, ν0

)
,
(12)

where Ξ is some symmetric positive definite matrix of an ap-
propriate dimension, λi ∈ (0, 1] is the forgetting factor, Σ0 >
0, and ν0 > 2. Substituting for the ideal transition operation
(11) a forgetting operation, the update of the latest posterior
N (θk−1|θ̂k−1, Pk−1/dk−1)W(dk−1|Σk−1, νk−1) is organized recur-
sively with respect to Bayes’ rule, as follows:

f
(
θk, dk
∣∣Sk

)
∝ N
(
yk
∣∣h′kθk, 1/dk)

×
N
(
θk
∣∣θ̂0, Ξ−1/dk

)
W
(
dk
∣∣Σ0, ν0

)
N
(
θk
∣∣θ̂0, Ω−1

k−1Ξ
−1/dk

)
W
(
dk
∣∣λk−1Σ0,λk−1ν0

)
×N
(
θk
∣∣θ̂k−1, Λ

−1
k−1Pk−1/dk

)
W
(
dk
∣∣λk−1Σk−1,λk−1νk−1

)
, (13)

where Λk−1 ∈ Rθ̊×θ̊ is the matrix forgetting factor, and Ωk−1 ∈ Rθ̊×θ̊

is constructed so that the pdf N (θk|θ̂0, Ω−1
k−1Ξ

−1/dk) embodies the
residual regularization effect of the additional source (12), remaining
in the estimator memory after the forgetting has been performed. The
application of λk−1 must coincide with a reduction of the degrees
of freedom caused by the matrix forgetting to obtain a realistic esti-
mate of dk, compatible with d̂k = EW(dk |Σk,νk)[dk] = νk/Σk. This
coincidence is established in relation to both of the partial forgetting
options and is discussed in Remarks 2 and 3. We expand the concept
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of a uniform rate of forgetting for all of the parameters by designing
the self-tuning factor Λk, which is able to localize forgetting on the
parameters associated with the system measured input (see Section III).

By setting Λ0 ≡ Ω0 ≡ Iθ̊ , λ0 ≡ 1, and P0 ≡ Ξ−1 in (13) the pdf
(12) formally initiates the estimation procedure at the time k = 1. The
conjugacy inherent between members of the DEF allows us to reduce the
functional recursion (13) to the least squares-like algebraic recursion,
namely

Vc;k−1 ≡ Vk−1Λk−1 +Ξ (Iθ̊ −Ωk−1) , (14)

Pc;k−1 ≡ V −1
c;k−1, (15)

εk−1 ≡ θ̂0 − θ̂k−1, (16)

θ̂c;k−1 ≡ θ̂k−1 + Pc;k−1Ξ (Iθ̊ −Ωk−1) εk−1, (17)

Σc;k−1 ≡ λk−1Σk−1 + ε
′
k−1 [Iθ̊ −Ξ (Iθ̊ −Ωk−1)Pc;k−1]

×Ξ (Iθ̊ −Ωk−1) εk−1 + (1− λk−1)Σ0, (18)

Kk ≡ Pc;k−1hk/ (1 + h
′
kPc;k−1hk) , (19)

êc;k ≡ yk − h′kθ̂c;k−1, (20)

θ̂k = θ̂c;k−1 +Kkêc;k, (21)

Pk = (Iθ̊ −Kkh
′
k)Pc;k−1 (Iθ̊ −Kkh

′
k)

′
+KkK

′
k, (22)

Vk = P−1
k = Vc;k−1 + hkh

′
k, (23)

Σk = Σc;k−1 + ê
2
c;k/ (1 + h

′
kPc;k−1hk) , (24)

νk = λk−1νk−1 + (1− λk−1) ν0 + 1. (25)

Since θk (3) contains product terms coupling the components of θb;k
and θr;k, there is no solution to distinguish between {θb;k, θr;k} and
{θb;k/β, βθr;k} scaled with some nonzero and finite constant β. To
remove this scaling ambiguity, we fix r1;k ≡ 1 by imposing the hard
equality constraint on θr;k (see Section IV).

III. DATA-INFORMED MATRIX FORGETTING

Let us now be concerned with the design of the factorΛk enabling us
to provide different exponential forgetting rates for two partitions of θk.
In conformity with the announced objective, four distinct alternatives,
{fi(θk+1, dk+1)}i∈{0,2} and {f1,κ(θk+1, dk+1)}κ∈{σ,ρ}, concerning
the result of the time update are to be introduced. These alternatives
delimit the boundaries on the increase in the parameter uncertainties to
allow for a revision of the posterior pdf, reflecting unknown uncertainty
about the parameters caused by their variations. The zero alternative
f0(θk+1, dk+1) corresponds to the latest posterior available, extrapo-
lating all information to describe {θk+1, dk+1} accumulated so far, that
is

f0 (θk+1, dk+1)

≡
∫
d∗

∫
θ∗
δ (θk+1 − θk) δ (dk+1 − dk) f

(
θk, dk
∣∣Sk

)
dθk ddk,

(26)

where δ(·) is the Dirac delta function. The second reference alternative
f2(θk+1, dk+1) expects that all the parameters {θk+1, dk+1} have
changed within the interval (k, k + 1), and increases the uncertainty of
the posterior accordingly, through α ∈ (0, 1) to yield

f2 (θk+1, dk+1)

≡ N
(
θk+1

∣∣θ̂k, α−1Pk/dk+1

)
W
(
dk+1

∣∣αΣk, ανk
)
. (27)

The first reference alternative localizes the increase in the uncertainty to
a lower dimensional posterior factor. To factorize the normal posterior
part into low-dimensional pdfs, let Pk be split in accordance with the

splitting of θk = [θ′a;k, θ
′
u;k]

′, as follows:

Pk =

[
Paa;k P

′
ua;k

Pua;k Puu;k

]
∈ Rθ̊×θ̊ (28)

with Paa;k ∈ Rna×na . Now, we can proceed to constructing the alter-
natives f1,κ(θk+1, dk+1) corresponding to the expectation that only the
subset of θk+1 (θu;k+1) associated with the input signal is subject to
change. In this respect, two variants of partial forgetting are proposed,
and their implications for the least squares routine are discussed. While
the first option (κ ≡ σ) relies on the factorization of the normal posterior
part according to

N
(
θk
∣∣θ̂k, Pk/dk

)
= N
(
θa;k
∣∣θ̂a|u;k, Pa|u;k/dk

)
N
(
θu;k
∣∣θ̂u;k, Puu;k/dk

)
(29)

with θ̂a|u;k = θ̂a;k − P ′
ua;kP

−1
uu;k(θu;k − θ̂u;k) and Pa|u;k = Paa;k −

P ′
ua;kP

−1
uu;kPua;k, the other (κ ≡ ρ) builds upon the factorization vari-

ant

N
(
θk
∣∣θ̂k, Pk/dk

)
= N
(
θa;k
∣∣θ̂a;k, Paa;k/dk

)
N
(
θu;k
∣∣θ̂u|a;k, Pu|a;k/dk

)
, (30)

where θ̂u|a;k = θ̂u;k − Pua;kP
−1
aa;k(θa;k − θ̂a;k) and Pu|a;k = Puu;k

− Pua;kP
−1
aa;kP

′
ua;k. Considering f(θa|θu)f(θu) = f(θa)f(θu|θa),

the results (29) and (30) can be directly obtained by application of
Claim 1 from [19] to the normal posterior part.

For the steps that follow, we need to partition Vk and Ξ into blocks,
identically to the partitioning performed in (28), namely,

Vk =

[
Vaa;k V

′
ua;k

Vua;k Vuu;k

]
∈ Rθ̊×θ̊, Ξ =

[
Ξaa Ξ

′
ua

Ξua Ξuu

]
∈ Rθ̊×θ̊, (31)

where Vaa;k ∈ Rna×na and Ξaa ∈ Rna×na .
Remark 2: The partial forgetting based on modification of the in-

formation submatrix Vuu;k [17] employs (29), with the marginal part
flattened through α, yielding

f1,σ
(
θk+1

∣∣dk+1

)
≡ N
(
θa;k+1

∣∣θ̂a|u;k, Pa|u;k/dk+1

)
×N
(
θu;k+1

∣∣θ̂u;k, α−1Puu;k/dk+1

)
. (32)

The above time update (32) corresponds to the matrix forgetting with

Λk =

[
Ina (1− α)V −1

aa;kV
′
ua;k

0 αI(nb+1)nr

]
andΩk =

[
Ina (1− α)Ξ−1

aaΞ
′
ua

0 αI(nb+1)nr

]
. The

Wishart part of the prediction alternative f1,σ(dk+1) is suggested to
reduce the degrees of freedom consistently with (32), which is fulfilled
by solving

f
(
dk+1

∣∣Dk
1−n,Π, dk+1

)
∝ f
(
yk
∣∣uk,Dk−1

1−n,Π, dk+1

)
× f
(
dk+1

∣∣uk,Dk−1
1−n,Π

)
, (33)

whereΠ ≡ {θ̂0, Ξ,Σ0, ν0}. To solve (33), we consolidate the update
(32) within Bayes’ rule

f
(
θu;k+1

∣∣Dk
1−n,Π, dk+1

)
∝ f
(
θu;k+1

∣∣Dk−1
1−n,Π, dk+1

)
×fα
(
yk
∣∣uk,Dk−1

1−n,Π, θu;k+1, dk+1

)
. (34)

Since the pdf f(yk|uk,Dk−1
1−n,Π, dk+1) from (33) is actually the nor-

malizing factor for (34), it is obtained by integrating out θu;k+1 from
(34), which shows as

f
(
yk
∣∣uk,Dk−1

1−n,Π, dk+1

)
= ōNα

(
yk
∣∣h′kθ̂c;k−1, (1 + h

′
kPc;k−1hk) /dk+1

)
, (35)

where ō is some positive constant. From the above improper pdf (35),
we can directly find the factor λk = α to write

f1,σ (dk+1) = W
(
dk+1

∣∣αΣk, ανk
)
. (36)
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Remark 3: The partial forgetting based on modification of the co-
variance submatrix Puu;k follows from (30), with the conditional part
flattened through α, resulting in

f1,ρ
(
θk+1

∣∣dk+1

)
≡ N
(
θa;k+1

∣∣θ̂a;k, Paa;k/dk+1

)
×N
(
θu;k+1

∣∣θ̂u|a;k, α−1Pu|a;k/dk+1

)
. (37)

The above operation (37) determines the entities of the ma-

trix forgetting as Λk =
[

Ina 0
(1− α)Pua;kP

−1
aa;k αI(nb+1)nr

]
and Ωk =[

Ina 0
(α− 1)Ξ−1

uuΞua αI(nb+1)nr

]
. All that remains now is to choose the

Wishart part f1,ρ(dk+1), which complements the description of the
parameters with regard to the impact of Λk on λk. The inclusion of the
forgetting operation (37) into the Bayes update yields

f
(
θa;k+1

∣∣Dk
1−n,Π, dk+1

)
∝ f
(
θa;k+1

∣∣Dk−1
1−n,Π, dk+1

)
×f
(
yk
∣∣uk,Dk−1

1−n,Π, θa;k+1, dk+1

)
. (38)

The normalizing factor for (38) updating the Wishart two steps ahead
prediction pdf f(dk+1|uk,Dk−1

1−n,Π) is found to be

f
(
yk
∣∣uk,Dk−1

1−n,Π, dk+1

)
= N
(
yk
∣∣h′kθ̂c;k−1, (1 + h

′
kPc;k−1hk) /dk+1

)
. (39)

From (39), it can be deduced that the Wishart part must be treated as

f1,ρ (dk+1) = W
(
dk+1

∣∣Σk, νk
)
, (40)

indicating at the same time that no external flattening of the Wishart
posterior occurs; therefore, λk = 1.

The optimal design f̂(θk+1, dk+1|Sk) seeks the best approxima-
tion of the time-updated posterior f(θk+1, dk+1|Sk) by combining
the prediction alternatives f ∗H,κ ≡ {f0, f1,κ, f2} of the arguments
{θk+1, dk+1} into a single pdf. To execute this, a dissimilarity measure
between the target pdf f(θk+1, dk+1|Sk) and the particular alternatives
is quantified by the KLD. The KLD between any two pdfs fT and f ,

D (fT‖f) ≡
∫
θ∗

∫
d∗
fT (θ, d) ln

(
fT (θ, d)

f (θ, d)

)
dθdd, (41)

attains its absolute minimum value, which equals zero, at fT ≡ f . To
establish a meaningful combination strategy modulating the posterior
with regard to the degree of the system nonstationarity, the decision step
must respect information about the performances of the prediction alter-
natives. The required feedback is incorporated into the decision process
by considering the nonnegative loss estimates �∗H,κ ≡ {�0, �1,κ, �2}.
These are chosen to embody losses incurred at the previous step when
selecting each of the prediction alternatives as the best projection of the
current posterior

�i ≡ D
(
Nζ (θk)W

(
dk
∣∣Σk, νk

)
‖fi,ζ (θk) fi (dk)

)
, (42)

Nζ (θk) ≡ N
(
θk
∣∣θ̂k, (dkζ)−1Pk

)
, i ∈ {0, 2},

�1,κ ≡ D
(
Nζ (θk)W

(
dk
∣∣Σk, νk

)
‖f1,κ,ζ (θk) f1,κ (dk)

)
.

(43)

Here, the pdfs indexed by ζ refer to the particular normal pdfs
{f0, f1,κ, f2} of the argument θk, where the precisiondk is additionally
multiplied by ζ. The user-defined factor ζ ∈ (0, 1] serves to increase
the expected level of noise inherent in the normal parts to reduce false
detections of parameter changes as a consequence. In particular, the
smaller the value of ζ, the more conservative the forgetting.

The randomness about the alternative selection is modeled by as-
signing a probability ϕi to each of the related pairs from {fH,κ, �H,κ},
defining the weights by which the alternatives are combined. The
probabilities are arranged into the vector ϕ ≡ [ϕ0, ϕ1, ϕ2]

′, satisfy-
ing
∑2

i=0 ϕi = 1. Let us now temporarily omit the time index in
{θk+1, dk+1,Sk} and the indexκ in {f1,κ, �1,κ} for the sake of brevity.

The specification of a loss functional coherent with the Bayes princi-
ple involves evaluation of the expectation E [D(f(θ, d)‖fH,κ(θ, d))−
�H,κ] over {fH,κ, �H,κ}. In this connection, we obtain

LF
(
f
(
θ, d
∣∣S) , ϕ) = 2∑

i=0

ϕi

[
D
(
f
(
θ, d
∣∣S) ∥∥fi (θ, d))− �i]

+ η

(∫
d∗

∫
θ∗
f
(
θ, d
∣∣S)dθdd− 1

)
, (44)

where the constraint scaled by the Lagrange multiplier η guarantees that
the minimizer f̂(θ, d|S) integrates to one. The form of the minimizer
for an arbitrary ϕ is inspected by the lemma below:

Lemma 1: The unique constrained minimizer of the functional (44)
over f(θ, d|S) turns out to be given by the geometric mean

f̂ (θ, d|S) ∝
2∏

i=0

fϕi
i (θ, d) . (45)

Proof: The summation
∑2

i=0 ϕi[D(f‖fi)− �i] entering (44) can
be rearranged into a sum of two parts:

D
(
f (θ, d|S)

∥∥f̂ (θ, d|S))+
K(ϕ)︷ ︸︸ ︷

min
f(θ,d|S)

LF
(
f
(
θ, d
∣∣S) , ϕ), (46)

where the part independent of the inspected pdf f(θ, d|S),

K (ϕ) = −
2∑

i=0

ϕi�i − ln

(∫
d∗

∫
θ∗

2∏
i=0

fϕi
i (θ, d) dθdd

)
, (47)

absorbs the achieved minimum value. Consequently, the evaluation of
the necessary conditions for an extremum δLF

δf
= [ln(f/f̂) + η + 1]

and ∂LF
∂η

= 0 determines the form of the minimizer (45). The unique-
ness of the minimizer is given by the strict convexity of the KLD, which
is reflected by δ2LF

δf2 = 1/f > 0. �
By substituting (46) into (44), one can prove that K(ϕ) delimits the

lower bound on the functional approximation accuracy. To be more
explicit,

D
(
f (θ, d|S)

∥∥f̂ (θ, d|S)) = LF
(
f
(
θ, d
∣∣S) , ϕ)−K (ϕ) ≥ 0.

(48)

Hence, taking into account the nonnegativity of the KLD, the best
representative of ϕ is found as the maximizer of K(ϕ).

Lemma 2: Let the members from f ∗H,κ constitute the set of nonneg-
ative, distinguishable pdfs. Then, the search for the maximizer ϕ̂ has a
unique solution provided by the necessary and sufficient conditions⎧⎨
⎩D
(
f̂ (θ, d|S)

∥∥fi (θ, d))− �i = μ, all i such that ϕi > 0,

D
(
f̂ (θ, d|S)

∥∥fi (θ, d))− �i ≤ μ, all i such that ϕi = 0,

(49)

where i ∈ {0, 1, 2}, and μ is a real-valued scalar.
Proof: Hölder’s inequality ( [20, §3.1.9 ]) implies that∫
x∗
ψϑ

1 (x)ψ
(1−ϑ)
2 (x)dx

<

(∫
x∗
ψ1(x)dx

)ϑ(∫
x∗
ψ2(x)dx

)(1−ϑ)

(50)

holds for any nonnegative, distinguishable functionsψ1(x),ψ2(x), and
ϑ ∈ (0, 1). By invoking (50), the function −K(ϕ) is recognized as a
strictly convex function of ϕ since it meets Jensen’s inequality

−K (ωϑ+� (1− ϑ)) < ln

[(∫
d∗

∫
θ∗

2∏
i=0

fωi
i (θ, d) dθdd

)ϑ

×
(∫

d∗

∫
θ∗

2∏
i=0

f�i
i (θ, d) dθdd

)(1−ϑ)]
+

2∑
i=0

ϕi�i, (51)
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TABLE I
EVALUATION OF THE KKT CONDITIONS FOR ϕ̂

where the components of ω ∈ ϕ∗ and � ∈ ϕ∗ satisfy ϕi ≡ ωiϑ+
�i(1− ϑ). Then, the conditions (49) follow from the Karush-Kuhn-
Tucker optimality conditions applied to −K(ϕ) (Theorem 4.4.1
in [21]),

ϕi
∂K (ϕ)

∂ϕi

= ϕiμ̄,
∂K (ϕ)

∂ϕi

≤ μ̄, (52)

where i ∈ {0, 1, 2}, and μ̄ is a Lagrange multiplier. �
Recall that the search for the optimal value ofϕ according to Lemma

2 requires us to express the KLD between two normal-Wishart pdfs.
The required analytical form for the KLD is explicated in Theorem 1
in [12]. The formulation of the time update on the basis of the elaborated
Bayes principle affects the least squares routine only through the factors
{Λk, Ωk,λk} as a consequence of mixing the prediction alternatives.
Upon using Lemma 1 and assuming that ϕ̂ is known in advance, for
κ ≡ σ, the factors {Λk, Ωk,λk} become⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λk = ϕ̂0(1− α) + α,

Λk =

[
(λk + ϕ̂1(1− α))Iθ̊a ϕ̂1(1− α)V −1

aa;kV
′
ua;k

0 λkIθ̊u

]
,

Ωk =

[
(λk + ϕ̂1(1− α))Iθ̊a ϕ̂1(1− α)Ξ−1

aaΞ
′
ua

0 λkIθ̊u

]
,

(53)

and, for κ ≡ ρ, the factors are formulated as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λk = (ϕ̂0 + ϕ̂1)(1− α) + α,

Λk =

[
λkIθ̊a 0

ϕ̂1(1− α)Pua;kP
−1
aa;k (ϕ̂0(1− α) + α)Iθ̊u

]
,

Ωk =

[
λkIθ̊a 0

ϕ̂1 (α− 1)Ξ−1
uuΞua (ϕ̂0(1− α) + α)Iθ̊u

]
.

(54)

The next step is to find the optimal value of ϕ provided by the KKT
conditions (49). This task requires us to examine whether the solu-
tion lies inside the feasible region S = {ϕ ∈ ϕ∗ ⊆ R3

≥0 : ϕi ≥ 0, i =

0, 1, 2,
∑2

i=0 ϕi = 1} or on the constraint boundaries.
In order to perform an exhaustive description of ϕ̂, captured in

Table I, we introduce the auxiliary variables ε02, ε12, and ε01. By denot-
ing r̄k ≡ θ̂k − θ̂k−1 and letting zk ≡ νk−1 ln(d̂k−1/d̂k) + d̂kΣk−1 +
νk−1/νk − νk−1 with d̂k = νk/Σk, we are ready to specify

ε02 ≡
[
tr (Vk−1Pk) + d̂kζr̄

′
kVk−1r̄k + zk

]
/
(
1 + θ̊
)
. (55)

If f1,σ(θk+1, dk+1) (the case κ ≡ σ) is instated into K(ϕ) (47), the
other variables are represented in Table I by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ε12 ≡

⎡
⎢⎣tr
⎛
⎜⎝(Vk−1 − Uk−1)︸ ︷︷ ︸

Xk−1

Pk

⎞
⎟⎠+ d̂kζr̄

′
kXk−1r̄k

⎤
⎥⎦ /θ̊a,

ε01 ≡
[
tr (Uk−1Pk) + d̂kζr̄

′
kUk−1r̄k + zk

]
/(1 + θ̊u),

(56)

whereUk−1 ≡ [
0 0
0 P−1

uu;k−1
] ∈ Rθ̊×θ̊ . Otherwise, ifκ ≡ ρ is the selected

option, we operate with the pair⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ε12 ≡
[
tr (Ak−1Pk) + d̂kζr̄

′
kAk−1r̄k + zk

]
/(1 + θ̊a),

ε01 ≡

⎡
⎢⎣tr
⎛
⎜⎝

Yk−1︷ ︸︸ ︷
(Vk−1 −Ak−1)Pk

⎞
⎟⎠+ d̂kζr̄

′
kYk−1r̄k

⎤
⎥⎦ /θ̊u, (57)

where Ak−1 ≡
[
P−1
aa;k−1 0

0 0

]
∈ Rθ̊×θ̊ . This completes the derivation

for the data-informed tuning of the matrix factors of the claimed forms.

IV. ESTIMATING THE HAMMERSTEIN MODEL BASED ON THE

VB METHOD

The VB method is employed to restore the tractability of the in-
ference problem via approximating the posterior pdf f(Θk|Sk) by
the product of conditionally independent posteriors. In this article, the
target pdf f̆(Θk|Sk) is restricted to the product of the marginal pdfs for
θL;k ≡ [θ′a;k, θ

′
b;k]

′ ∈ Rna+nb+1 and {θr;k, dk}:

f̆
(
Θk

∣∣Sk

)
≡ f
(
θL;k

∣∣Sk

)
f̆
(
θr;k, dk

∣∣Sk

)
. (58)

Under the constraint assumption, r1;k ≡ 1, the first factor on the right-
hand side of (58) is recognized to be the exact marginal

f
(
θL;k

∣∣Sk

)
= T
(
θL;k

∣∣θ̂L;k, χθL , νk

)
(59)

∝
[
1 +
(
θL;k − θ̂L;k

)′
χ−1
θL

(
θL;k − θ̂L;k

)]−(νk+θ̊L)/2

with χθL ≡ ΣkPL;k, designated by the Student’s t (T ) pdf. Let us note
that the estimate θ̂L;k represents the first θ̊L rows of θ̂k (21), and PL;k

is nested in the first θ̊L rows and columns of Pk (22). Since the exact
marginals describing θL;k|Sk and dk|Sk are accessible, it only remains
to infer θr;k given {Sk, dk} by eliminating the redundancies in θ̂u;k. To
formalize the concept covered above, a loss functional quantifying the
information loss incurred when moving from f(Θk|Sk) to f̆(Θk|Sk)
is constructed and optimized within the calculus of variations approach
to yield f̂(θr;k|Sk, dk). The loss functional takes the form

LV

(
f̆
(
Θk

∣∣Sk

))
≡ D
(
f̆
(
Θk

∣∣Sk

) ∥∥f (Θk

∣∣Sk

))
+ ηι

(∫
d∗

∫
θ∗r

f̆
(
θr;k, dk

∣∣Sk

)
dθr;k ddk − 1

)

+ ηl

(∫
d∗

∫
θ∗r

(l′θr;k − 1) f̆
(
θr;k, dk

∣∣Sk

)
dθr;k ddk

)
. (60)

The expressions in (60) scaled by the Lagrange multipliers ηι and ηl
activate the normalization and mean value hard equality constraints,
respectively. The normalization constraint forces the VB-marginal
f̂(θr;k, dk|Sk) to be a proper pdf. By introducing an θ̊r−dimensional
vector of the form l ≡ [1, 0, . . . , 0]′, the mean value constraint rigor-
ously sets the estimate of r1;k to equal one. The conditions for the global
optimality of f̂(θr;k, dk|Sk) are the statements reported by the lemma
below:

Lemma 3: Let f̆(Θk|Sk) be established as an approximation of
f(Θk|Sk), with the restriction that the factorization f̆(Θk|Sk) =
f(θL;k|Sk)f̆(θr;k, dk|Sk) is the product of the independent marginals.
Then, having a fixed functional form for the factor f(θL;k|Sk) =

T (θL;k|θ̂L;k, χθL , νk), the unique minimum of (60) is reached for

f̂
(
θr;k, dk

∣∣Sk

)
= f̂ξ
(
θr;k, dk

∣∣Sk

)
× exp [− (1 + ηι + ηl (l

′θr;k − 1))] , (61)
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where f̂ξ(θr;k, dk|Sk) denotes the VB-marginal that is unconstrained
in the mean value of the estimand θr;k

f̂ξ
(
θr;k, dk

∣∣Sk

)
∝ exp

[
ET (θL;k |θ̂L;k,χθL

,νk)
[ln (f (Θk,Sk))]

]
.

(62)

The multiplier ηl is obtained by solving the integral equation∫
d∗

∫
θ∗r

l′θr;kf̂ξ
(
θr;k, dk

∣∣Sk

)
exp [−ηll′θr;k] dθr;k ddk

=

∫
d∗

∫
θ∗r

f̂ξ
(
θr;k, dk

∣∣Sk

)
exp [−ηll′θr;k] dθr;k ddk (63)

and the constant exp[1 + ηι] independent of Θk substitutes

exp [1 + ηι]

=

∫
d∗

∫
θ∗r

f̂ξ
(
θr;k, dk

∣∣Sk

)
exp [−ηl (l′θr;k − 1)] dθr;k ddk. (64)

Proof: It proves convenient to rewrite the KLD entering (60) into a
sum of two parts

D
(
f̆
(
Θk

∣∣Sk

) ∥∥f (Θk

∣∣Sk

))
= min

f̆(θr;k,dk |Sk)
LV

(
f̆
(
Θk

∣∣Sk

))

+D
(
f̆
(
θr;k, dk

∣∣Sk

) ∥∥f̂ξ (θr;k, dk∣∣Sk

))
, (65)

where the part independent of the optimized f̆(θr;k, dk|Sk),∫
θ∗
L

f
(
θL;k

∣∣Sk

)
ln
(
f
(
θL;k

∣∣Sk

))
dθL;k + ln

(∫
Θ∗
fΘSdΘk

)

− ln

(∫
d∗

∫
θ∗r

exp

[
ET (θL;k |θ̂L;k,χθL

,νk)
[ln (fΘS)]

]
dθr;kddk

)
with fΘS ≡ f(Θk,Sk), is the minimum attained by the functional
optimization. Bearing in mind the arrangement (65), the results (61),
(63), and (64) are directly obtained by applying the optimality con-
ditions designated by δLV

δf̆(θr;k,dk |Sk)
= ln(f̆(θr;k, dk|Sk)/(Cf̂ξ)), C ≡

exp[−(1 + ηι + ηl(l
′θr;k − 1))], ∂LV

∂ηι
= 0, and ∂LV

∂ηl
= 0. The unique-

ness of the solution (61) confirms δ2LV
δf̆2(θr;k,dk |Sk)

> 0. �
Now, with Lemma 3, we are in the position to specify the pdf

f̂(θr;k, dk|Sk). To this end, let us introduce the auxiliary variables

Z ≡ Iθ̊r ⊗ 1θ̊b
, U ≡ 1θ̊r

⊗ Iθ̊b (66)

and assume that PL;k is partitioned in compliance with the partitioning
of θL;k ≡ [θ′a;k, θ

′
b;k]

′ ∈ Rθ̊L , as follows:

PL;k ≡
[
Paa;k P

′
ba;k

Pba;k Pbb;k

]
∈ Rθ̊L×θ̊L , (67)

where Paa;k ∈ Rθ̊a×θ̊a . After some algebra (see Appendix A), the
optimal approximation is found to be

f̂
(
θr;k
∣∣Sk, dk

)
= N
(
θr;k
∣∣θ̂r;k, Pr;k/dk

)
, (68)

θ̂r;k = ξ̂k − Pr;kl
(
l′ξ̂k − 1

)
/(l′Pr;kl) , (69)

where ξ̂k is the mean value of θr;k, on which the equality constraint is
not imposed. The normalized (by dk) covariance matrix Pr;k and the
mean ξ̂k are calculated as

Pr;k =

(
Z′
(
Vuu;k ◦

[
U
(
θ̂b;kθ̂

′
b;k + Pbb;k

Σk

νk − 2

)
U′
])

Z
)−1

,

(70)

ξ̂k = Pr;kZ′
[(

[Vua;k, Vuu;k]θ̂k

)
◦
(
U θ̂b;k
)

−
(
Vua;k ◦

(
U
(
θ̂b;kθ̂

′
a;k + Pba;k

Σk

νk − 2

)))
1θ̊a

]
. (71)

To round out the implementation issues, the computation procedures
for the proposed estimator are summarized by Algorithm 1.

V. SIMULATION STUDIES

This section presents several numerical examples to illustrate the be-
havior of the developed methods. To show its advantages, the suggested
VB strategy to identify the Hammerstein system is compared with the
simple averaging (AV) approach [7]. To demonstrate the main feature
of the matrix forgetting, the change localization capabilities are tested.

The Hammerstein system with a polynomial input nonlinearity is
estimated

yk +
2∑

i=1

aiyk−i =
2∑

i=0

3∑
j=1

birju
j
k−i + ek, ek ∼ N (0, 1/d).

The parameters of the linear filter {ai, bi} are chosen to corre-
spond to the discretized transfer function G(s) = 1.5(−0.5s+ 1)(s+
1)/(T 2 s2 + 2ξgTs+ 1) sampled with the period of 1 s, where ξg =
0.6, and T is set as T = 5 s. The polynomial coefficients, if not
stated otherwise, are specified as r1 = 1, r2 = −0.4, and r3 = 1

20
.

The input sequence {uk} is produced by the autoregressive modeluk =
0.9uk−1 + wk driven by a discrete white noise,wk ∼ N (0, 1). All the
experiments are monitored within the time span of 0− 500 s. The fit
between the model and its estimate is evaluated through the measure

Δk ≡
√
Δ̄k/
(
‖θa;k‖22 + ‖θb;k/β‖22 + ‖βθr;k‖22

)
, (72)

where Δ̄k ≡
∥∥θa;k − θ̂a;k

∥∥2
2
+
∥∥ 1

β
θb;k − θ̂b;k

∥∥2
2
+
∥∥βθr;k − θ̂r;k

∥∥2
2

andβ ≡ 1
r1;k

. In view of the user-defined input arguments to Algorithm

1, the estimation starts from Ξ = 10−1I11, Σ0 = 1, ν0 = 10, and θ̂0
is chosen to be an 11−D vector, all of whose components are zero.
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Fig. 1. Comparison of the coefficient product decoupling strategies.

A. Estimation Quality Achieved With the Recursive Strategies

The following example compares the proposed solution (VB) with
the averaging strategy (AV) to decouple the coefficient products be-
tween the linear and the nonlinear subsystems paired via the least
squares estimate θ̂k. Similarly to our solution, the AV strategy builds on
the assumption that the first polynomial coefficient is set as one (r1 = 1)
but it eliminates the redundancies by computing their average value

θ̂r;k [j] =
1

θ̊b

θ̊b∑
i=1

θ̂k

[
θ̊a + (j − 1)θ̊b + i

]
/θ̂b;k [i], (73)

where j = 2, . . . , θ̊r and θ[i] denotes the ith entry of the vector.
Note that the forgetting operation is not contemplated in this example
(Λk ≡ Ωk ≡ I11, λk ≡ 1). The results attained for the decoupling
strategies are shown in Fig. 1. The impact of the model noise precision

d ∈ {104, 10} on the identification quality, judged by
‖βθr−θ̂r;k‖22

‖βθr‖22
, is

tested. From Fig. 1(a), we can derive that both of the strategies exhibit
similar steady-state responses at the low noise level (d = 104). If we
increase the noise intensity to d = 10 [see Fig. 1(b)], the proposed VB
strategy provides more robust, uncertainty-aware averaging than that
given in (73).

B. Tracking Quality Achieved With the Forgetting Strategies

The simulation runs are performed with either the least squares
with stabilized matrix forgetting proposed herein or the standard
exponential least squares endowed with the adaptation rule by Ydstie
and Sargent [10],

λk−1 =

(
η̄k +
√
η̄2k + 4h′kPk−1hk

)
/2, (74)

where η̄k ≡ 1− h′kPk−1hk − νk−1(yk−h′
k
θ̂k−1)

2

Σk−1Q
with the tuning knob

Q representing the effective number of degrees of freedom.
The experiment that follows is undertaken to show the advantages of

matrix forgetting when only the polynomial curve coefficients are sub-
ject to change. The initial coefficient values satisfyθr;0 = [1,−0.2, 0.1]
and there is a sudden change at the time t = 250 s, which results
in θr;250 = [0.4,−0.4, 1

8
]. The matrix forgetting strategies employing

f1,σ and f1,ρ will be labeled as MFσ and MFρ, respectively. The

Fig. 2. (a) Estimation quality obtained with the three algorithms;
(b) the time courses of {ϕ̂1, ϕ̂2} optimized for MFρ; and the correspond-
ing trajectories of the estimates of θa;k (c) and θr;k (d).

scalar forgetting driven by the rule (74) is referred to as SF. For
this scenario, the settings {α = 0.5, ζ = 0.5} are assigned to both
the matrix forgetting strategies, and SF is in operation with Q = 20.
The information matrix is initiated from Ξ = 10−2I11, and the noise
precision d is assigned as 103.

The result of the experiment is captured in Fig. 2. The MFρ technique
attains the smallerΔk [see Fig. 2(a)] than the other forgetting strategies,
as it effectively exploits the probability ϕ̂1 [see Fig. 2(b)] indicating
the source of inconsistency. Note that ϕ̂2 also receives some support
[see Fig. 2(b)] since the changing parameters are a subset of all the
parameters. Importantly, the MFρ algorithm has exhibited its ability to
selectively track the changing parameters [see Fig. 2(d)], leaving the
estimate of the filter parameters θa;k unaffected [see Fig. 2(c)].

VI. CONCLUSION

The main aim of this article have been to resolve the problems of se-
lective forgetting along with the recovering of the Hammerstein model
parameters (lost in the overparameterization step) within a rigorous
probabilistic framework.
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The novelty of the research rests in theoretical results leading to
modifications of the recursive least squares method. Remarks 2 and
3 present two partial forgetting strategies: While the former Remark
introduces the matrix factor that discounts the information subma-
trix [17], the latter one proposes a concept modifying the covariance
submatrix. This modification is essentially justified by the Kalman
filtering-based estimation view, where only a subset of the parameters is
time-varying, driven by a random walk with a known covariance matrix
of parameter increments. Lemmas 1 and 2 (elaborate on the results
stated in [12]) allow us to derive a novel and formal approach for dealing
with automated selective forgetting based on the geometric mean of
the pdfs. Remark 1 classifies the Hammerstein model as a member
of the DEF, enabling a closed-form expression for the propagation
of the sufficient statistics of the overparameterized model. Lemma
3 converts the problem of eliminating the redundancies in the least
squares estimate of the overparameterized model into an optimization
problem, tailoring the VB method to identify the Hammerstein systems.
Consequently, the exact posterior is approximated at each step ex post,
after the data update has been completed, avoiding any transmission of
the VB-moments through iterative cycles.

APPENDIX A

To present the systematic procedure for deriving the final form of
the part of the VB-marginal (68), let us express the natural parameters
of the DEF (5) as

q (θk, dk) = qL (θL;k) ◦ qr (θr;k, dk) , (A.1)

where the particular vector functions possess the form

qL (θL;k)≡ vec (φLφ
′
L), (A.2)

φL≡[θ′a;k θ′b;kU′ 1]′, (A.3)

qr (θr;k, dk)≡− dk
2

vec (φrφ
′
r), (A.4)

φr≡[1′
θ̊a

θ′r;kZ′ 1]′. (A.5)

The result (A.1) can be verified from (5) by virtue of the iden-
tities vec(xx′) = x⊗ x and (E ◦ C)⊗ (B ◦D) = (E ⊗B) ◦ (C ⊗
D), which are proven in [22]. With the augmented information matrix
V̄k given in (10) and the relations

φL =

⎡
⎢⎣Iθ̊a 0 0

0 U 0

0 0 1

⎤
⎥⎦

︸ ︷︷ ︸
ΥL

⎡
⎢⎣θa;kθb;k

1

⎤
⎥⎦, φr =

⎡
⎢⎣0 1θ̊a

Z 0

0 1

⎤
⎥⎦

︸ ︷︷ ︸
Υr

[
θr;k

1

]
,

the term in the exponent of the joint pdf f(Θk,Sk) in (62) becomes

[θ′k 1]V̄k[θ
′
k 1]′ = vec (φrφ

′
r)

′
vec
(
V̄k ◦ (φLφ′L)

)
=

[
θr;k

1

]′
Υ ′
r

(
V̄k ◦
(
ΥL

[
θL;kθ

′
L;k θL;k

θ′L;k 1

]
Υ ′
L

))
Υr

[
θr;k

1

]
. (A.6)

By employing (A.6), evaluating the expectation, and subsequently
completing the square in (62), the VB-marginal unconstrained in the
mean value shows as

f̂ξ
(
θr;k, dk

∣∣Sk

)
∝ exp [−Σξ;kdk/2] d

(νk+θ̊r−2)/2
k

× exp

[
−
(
θr;k − ξ̂k

)′
P−1
r;k

(
θr;k − ξ̂k

)
dk/2

]
, (A.7)

where Σξ;k is the least squares reminder associated with the quadratic
form (A.6). For the solution to respect the equality constraint imposed
on θr;k, it is necessary to acquire the analytical definitions for ηl and
exp[1 + ηι]. We found ηl by solving (63), as follows:

ηl = dk

(
l′ξ̂k − 1

)
/ (l′Pr;kl) . (A.8)

Calculating the integral (64) with f̂ξ(θr;k, dk|Sk) =

N (θr;k|ξ̂k, Pr;k/dk)W(dk|Σξ;k, νk) (A.7) identifies exp[1 + ηι], as

exp [1 + ηι] =

⎛
⎜⎝ Σξ;k

Σξ;k +
(
l′ξ̂k − 1

)2
/ (l′Pr;kl)

⎞
⎟⎠

νk/2

. (A.9)

Combining (A.7), (A.8), and (A.9) into (61) generates the form of the
constrained VB-marginal in congruence with (68), which concludes
our derivation.
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