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Stochastic Relative Degree and Path-Wise
Control of Nonlinear Stochastic Systems

Alberto Mellone , Student Member, IEEE, and Giordano Scarciotti , Senior Member, IEEE

Abstract—In this article, we address the path-wise con-
trol of systems described by a set of nonlinear stochastic
differential equations. For this class of systems, we intro-
duce a notion of stochastic relative degree and a change of
coordinates, which transforms the dynamics to a stochastic
normal form. The normal form is instrumental for the design
of a state-feedback control, which linearizes and makes
the dynamics deterministic. We observe that this control is
idealistic, i.e., it is not practically implementable because
it employs a feedback of the Brownian motion (which is
never available) to cancel the noise. Using the idealistic
control as a starting point, we introduce a hybrid control
architecture, which achieves practical path-wise control.
This hybrid controller uses measurements of the state to
perform periodic compensations for the noise contribution
to the dynamics. We prove that the hybrid controller re-
trieves the idealistic performances in the limit as the com-
pensating period approaches zero. We address the problem
of asymptotic output tracking, solving it in the idealistic and
in the practical framework. We finally validate the theory by
means of a numerical example.

Index Terms—Feedback linearization, normal form, out-
put tracking, relative degree, stochastic systems.

I. INTRODUCTION

A POINT of departure in the study of nonlinear deterministic
systems is the definition of the relative degree of the system

and, consequently, of a change of coordinates that is able to
transform the differential equations in a so-called normal form
that makes analysis and control easier. These ideas were first
introduced in the seminal work [1], where the authors solved
the problem of static state-feedback noninteracting control. The
theory of normal forms was later addressed in [2] and [3] for
the control and observation of time-varying nonlinear systems,
and a systematic overview of normal forms was given in [4].
The problem of feedback linearization of single-input single-
output and multi-input systems was introduced in [5] and [6],
respectively, and a systematic procedure to find the feedback-
linearizing control was provided in [7] and [8]. In [9], the notion
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of zero dynamics was introduced and later employed in [10]
to tackle the problem of asymptotic stabilization of nonlinear
systems.

In this article, we introduce the notion of stochastic relative
degree to develop a theory of path-wise feedback control for
a general class of systems described by nonlinear stochastic
differential equations. The advantage of using this stochastic
framework lies in the fact that it allows us to address uncertainties
characterized by probabilistic properties that cannot be captured
by the classical deterministic robust designs. Modeling in the
stochastic framework is flexible and lends itself to mechani-
cal systems (e.g., the quarter-car model), electro-mechanical
systems (e.g., the suspended gyro), aerospace systems (e.g.,
the satellite dynamics), and mathematical finance. A survey of
these applications can be found in [11, Sec. 1.9] and references
therein. Stochastic differential equations are also at the basis
of methodological applications, such as stochastic H∞ con-
trol (see [12]–[14]) and filtering and optimal control (see [15]
and [16]).

Some notions of normal forms for stochastic systems have
been introduced in the literature. For example, in [17] and [18],
Stratonovich calculus was used to obtain a normal form for
purely diffusive processes, while [19] employed coordinate
changes to introduce symmetries for stochastic differential equa-
tions. One of the first works suggesting the convenience of a
normal form for control of stochastic systems is [20], where
the change of coordinates makes the dynamics quasi-linear.
In [21] and [22], similar coordinate transformations are proposed
in order to reduce the system dynamics to canonical forms
that are amenable to specific control strategies. Specifically,
strict-feedback noise-prone dynamics are obtained, which allow
achieving optimal globally stabilizing back-stepping controllers
as proposed in [23].

The differences between the normal forms mentioned above
and the one we introduce in this article are both technical and
in scope. From a technical viewpoint, we propose a coordinate
projection and a feedback control that annihilate the noise in
the linearized coordinates. From an objective viewpoint, the
stochastic relative degree and the normal form are mere instru-
mental means for the design of a practical hybrid controller,
which achieves output tracking in a path-wise fashion. In other
words, the controller that we develop compensates for each
specific realization of the stochastic disturbance.

More generally, by defining a new stochastic normal form, the
goal of this article is to address the path-wise control of stochas-
tic systems described by a general class of nonlinear stochastic
differential equations. We show that the implementation of feed-
back laws that perfectly linearize the system dynamics in a new
set of coordinates comes with insurmountable causality issues,
hence, the attribute idealistic with which we refer to these control
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laws. In fact, they employ a feedback of the noise, which is not
practically available. However, with these idealistic controls at
hand, we introduce hybrid nonlinear controllers that incorporate
a causal estimator of the Brownian motion. This controller is
practically realisable and, although achieving only approximate
feedback linearization and tracking, its performance can be ar-
bitrarily improved by tuning an underlying parameter, retrieving
the idealistic case as a limit behavior.

While preliminary work has been published in [24]–[26],
in this article, we present several additional contributions. The
main novelties introduced are as follows.

1) All the results are now proved, which provides a substan-
tial theoretical contribution.

2) By leveraging the Itô-Stratonovich equivalence, we are
able to obtain sharper results in the theory of the stochastic
normal form.

3) We provide a characterization of the solvability of the
feedback linearization problem.

4) The theory of the practical control has been revised and
made sharper.

5) An analysis of the control challenges arising when the
input appears in the diffusion term of the equation has
been added.

6) Practical asymptotic output tracking has been addressed
and solved for the first time.

7) A number of technical results regarding uniform asymp-
totic stability of nonlinear time-varying stochastic sys-
tems have been added and proved. For the sake of read-
ability, they have been gathered in the Appendix.

8) A comprehensive example illustrates the path-wise output
tracking of a nonlinear stochastic system both in the
idealistic and practical scenarios.

The rest of this article is organized as follows. In Section II,
we recall some preliminary notions on stochastic systems. Sec-
tion III introduces the stochastic relative degree and normal
form. In Section IV, we address the problem of feedback lin-
earization in the idealistic framework. In Section V, we pro-
pose a hybrid controller, which practically approximates the
idealistic linearizing control. Section VI addresses the problem
of asymptotic output tracking. In Section VII, we validate the
theory by means of a numerical example. Section VIII concludes
this article. Finally, technical lemmas, which are instrumental to
prove some of the results of this article have been collected and
proved in the Appendix.

Notation: The symbol Z denotes the set of integer numbers,
while R and C denote the fields of real and complex numbers,
respectively; by adding the subscript “<0” (“≥0,” “0”) to any
symbol indicating a set of numbers, we denote that subset of
numbers with negative (nonnegative, zero) real part. Where
convenient, the symbol ∂nx is used as a shorthand for the operator
∂n/∂xn, while α(n) indicates the nth time derivative of α. The
Lie derivative of the smooth scalar function h(x) along the
vector field f(x) is denoted by Lfh(x). We use the recursive
notation Lk

fh(x) = LfLk−1
f h(x), with L0

fh(x) = h(x). Given
two smooth vector fields f(x) and g(x), we define the opera-
tor adfg(x) = (∂xg(x))f(x)− (∂xf(x))g(x), and, recursively,
adk

fg(x) = adfadk−1
f g(x) with ad0

fg(x) = g(x). (∇,A,P) is a
probability space given by the set ∇, the σ-algebra A defined
on ∇ and the probability measure P on the measurable space

(∇,A). A stochastic process with state space Rn is a family
{xt, t ∈ R} of Rn-valued random variables, i.e., for every fixed
t ∈ R,xt(·) is an Rn-valued random variable and, for every fixed
w ∈ ∇, x·(w) is an Rn-valued function of time [27, Sec. 1.8].
For ease of notation, we often indicate a stochastic process
{xt, t ∈ R} simply withxt (this is common in the literature, see,
e.g., [27]). With a slight abuse of notation, any subscript different
from the symbol “t” indicates the corresponding component of
the vector xt, e.g., xi is the i-th component of the vector xt.
All mappings appearing as integrands in stochastic integrals are
assumed to be integrable in the corresponding sense, namely
Itô’s (see, e.g., [16, Def. 3.1.4]) or Stratonovich’s (equivalent to
deterministic integrability).

II. PRELIMINARIES

In this section, we shortly recall the theory of generalized
stochastic processes and define differential operators that will
be used in the remainder of this article.

Let C∞
0 (R) be the space of all infinitely differentiable func-

tions on R with compact support [28, Def. 1.2.1]. The following
definitions characterize the notions of distribution (also known
as generalized function), distributional derivative, and general-
ized stochastic process.

Definition 1 (see [29, Def. 3.1]): Let X be an open subset of
R. A distribution onX is a linear form ψ on C∞

0 (R) that is also
continuous in the sense that

lim
j→∞

ψ(ϕj) = ψ(ϕ) as lim
j→∞

ϕj = ϕ in C∞
0 (R).

Definition 2 (see [28, Def. 3.1.1]): For any distribution ψ,
its distributional derivative ψ̇ is defined as the distribution that
satisfies

ψ̇(ϕ) = −ψ(ϕ̇) ∀ϕ ∈ C∞
0 (R).

Note that generalized functions have derivatives of all order,
which are generalized functions as well.

Definition 3 (see [27, Sec. 3.2]): A generalized stochastic
process is a random generalized function in the sense that a
random variable ψ(ϕ) is assigned to every ϕ ∈ C∞

0 , where ψ is,
with probability 1, a generalized function.

We now look at the Brownian motion as a generalized stochas-
tic process. Therefore, its distributional derivative is always
defined [27, Sec. 3.2]. In particular, the generalized stochastic
process given by such a derivative has zero mean value and
covariance function given by the generalized function δ(t− s),
t, s ∈ R, i.e., the Dirac delta. Consequently, the derivative of
the generalized Brownian motion is the generalized white noise
[27, Sec. 3.2]. In the remainder, with a slight abuse of notation,
we refer to generalized Brownian motion and generalized white
noise omitting the attribute “generalized” and we denote them
by simply Wt and ξt, respectively, with ξt = Ẇt. It should be
emphasized that the just mentioned time derivative is meant in
the sense of distributions, and not as the limit of the difference
quotient as the increment tends to zero, which instead applies to
differentiable functions in the classical sense.

Consider the nonlinear single-input, single-output stochastic
system expressed in the shorthand integral notation by

dxt = (f(xt) + g(xt)u)dt+ (l(xt) +m(xt)u)dWt

yt = h(xt) (1)
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withxt ∈ Rn,u ∈ R, yt ∈ R and f : Rn → Rn, g : Rn → Rn,
l : Rn → Rn, m : Rn → Rn, h : Rn → R smooth functions,
i.e., they admit continuous partial derivatives of any order. We
assume that, for a fixed initial condition xt=0, the solution of (1)
is unique. Note that, in the light of the previous discussion,
system (1) can be rewritten in the following differential notation:

ẋt = f(xt) + g(xt)u+ (l(xt) +m(xt)u)ξt, yt = h(xt).
(2)

Note that when ξt is (generalized) white noise, as in this case,
then the differential equation (2) is equivalent to the integral
equation (1) if the latter is interpreted in Itô’s sense [27,
Sec. 10.3]. Given the equivalence of the two representations
in the framework of generalized stochastic processes, in the
remainder of this article, (1) and (2) are used interchangeably,
as convenient, to refer to the same nonlinear stochastic system.
We refer the reader to [27, Ch. 3] for a detailed discussion on
the relation between Brownian motion and white noise, and the
representations (1) and (2).

III. STOCHASTIC RELATIVE DEGREE AND NORMAL FORM

In this section, we introduce the concept of stochastic relative
degree and show that a suitable coordinate transformation brings
the system into a simpler form, which is convenient for analysis
and control.

We first introduce three new operators, which are fundamental
to systematically define repeated time derivatives of stochastic
processes. The first one, which indicates the second derivative
of h along the vector fields f and g, is defined as

gGfh(x) = g(x)�∂2x[h] f(x) =
n∑

j=1

gj(x)
n∑

i=1

∂2h

∂xj∂xi
fi(x).

Similarly to the Lie derivative, we use the notation
bGa

gGfh(x) = b(x)�∂2x[
gGfh] a(x), and gGk

fh(x) =

g(x)�∂2x[
gGk−1

f h] f(x), to indicate the reiterated operations.
The second operator lSfh, which we call the stochastic Lie
derivative, indicates the derivative of h along the drift vector
field f and diffusion vector field l, namely

lSfh(ξt, x) = Lfh(x) + Llh(x)ξt +
1

2
lGlh(x).

The reiterated application of this operator can be defined
if the white noise does not appear explicitly. That is, if
lSfh(ξt, x) =

lSfh(x) is a deterministic expression, we use

the notation lS2
fh(ξt, x) =

lSf
lSfh(ξt, x) and, iteratively,

if lSk−1
f h(ξt, x) =

lSk−1
f h(x) is deterministic, lSk

fh(ξt, x) =
lSf

lSk−1
f h(ξt, x), with lS0

fh(x) = h(x) by definition. Finally,
we define the third operator

m
g A

l
h(ξt, x) = Lgh(x) + Lmh(x)ξt +

mGlh(x). (3)

Having defined the operators G, S, and A, it is easy to see
that, by using Itô’s formula, the first derivative of the output of
system (2) is given by

y
(1)
t = lSfh(ξt, xt) +

m
g A

l
h(ξt, xt)u+

1

2
mGmh(xt)u

2. (4)

We now define the concept of stochastic relative degree and
then point out the rationale of such a definition.

Definition 4 (Stochastic Relative Degree): System (2) is said
to have stochastic relative degree r at a point x̄ if

(ND) Ll
lSk

fh(x) = 0 and Lm
lSk

fh(x) = 0 for all x in a neigh-
borhood of x̄ and for all k ∈ {0, . . ., r − 2}.

(CD) Lg
lSk

fh(x) +
mGl

lSk
fh(x) = 0, Lm

lSk
fh(x) = 0 and

mGm
lSk

fh(x) = 0 for all x in a neighborhood of x̄ and all
k ∈ {0, . . ., r − 2}.

(RD)Lg
lSr−1

f h(x̄) + mGl
lSr−1

f h(x̄) 	= 0 orLm
lSr−1

f h(x̄) 	= 0

or mGm
lSr−1

f h(x̄) 	= 0.

As it is formally proved in the following proposition, in
Definition 4, condition (ND) (which stands for noise decoupling)
ensures that the noise ξt does not appear in yt and its first r − 1
derivatives. In the remainder, we will omit the dependency of
the operators S and A on the white noise ξt whenever this does
not appear explicitly [for instance, because of condition (ND)].
Condition (CD) (for control decoupling) ensures that the control
input u does not appear in yt and its first r − 1 derivatives.
Finally, condition (RD) (for relative degree) ensures that the
control u appears in the r-th derivative of yt, thus defining the
relative degree of the system. These observations are formally
gathered in the following result, the proof of which can be found
in Appendix A.

Proposition 1: Suppose that system (2) has stochastic relative
degree r > 0 at x̄. Then

y
(k)
t = lSk

fh(xt) ∀k ∈ {0, . . . , r − 1} (5)

i.e., the first r − 1 derivatives of yt do not depend explicitly on
ξt nor u. Moreover, if, at time t̄, xt̄ = x̄, then

y
(r)
t=t̄ =

lSr

fh(ξt̄, x̄) +
m
g A

l
lSr−1

f h(ξt̄, x̄)u(t̄)

+
1

2
mGm

lSr−1

f h(x̄)u(t̄)2 (6)

where either m
g A

ll
Sr−1
f h(ξt̄, x̄) or mGmlSr−1

f h(x̄) are nonzero.
The previous result shows that, analogously to the determin-

istic case, the stochastic relative degree is equal to the order of
the derivative of the output at time t̄ in which the input u(t̄)
explicitly appears. Two observations are in order: first, while
the white noise does not appear in all the derivatives up to order
r − 1 because of condition (ND), it may or may not appear in the
rth derivative; second, differently from the deterministic case,
the control u appears linearly and/or quadratically in (6).

Remark 1: Condition (ND) is a type of disturbance decou-
pling condition, as we suppose that the noise does not appear
in yt and its successive r − 1 derivatives. For a deterministic
analogous, see, e.g., [30, Sec. 4.6]. If Ll

lSk
fh(x) 	= 0 for a

k < r − 1, the differentiation of yt up to the rth time would
require us to introduce successive derivatives of the white noise,
which is theoretically and practically challenging. We exclude
this possibility with (ND).

Remark 2: The equalityLm
lSk

fh(x) = 0 appears in both con-
ditions (ND) and (CD). This repetition is unnecessary. However,
since Lm

lSk
fh(x) multiplies both ξt and u in the expression of

the derivative y(k+1)
t , we believe that for the sake of clarity it is

beneficial to require it to be zero in both the noise and control
decoupling conditions.
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Remark 3: Consider a linear stochastic system, i.e., sys-
tem (2) with f(xt) = Axt, g(xt) ≡ B, l(xt) = Fxt and
m(xt) ≡ G, whereA ∈ Rn×n,B ∈ Rn×1, F ∈ Rn×n andG ∈
Rn×1. By applying Definition 4, system (2) in the linear case
has stochastic relative degree r if

1) CAkB = 0 and CAkG = 0 for all k ∈ {0, . . ., r − 2}.
2) CAr−1B 	= 0 or CAr−1G 	= 0.

Note that the conditions are remarkably simple and reminis-
cent of the deterministic case. In fact, lSk

fh(x) = CAkx, i.e.,

it is linear in x, for all k ∈ {0, . . ., r − 1}, hence lGl
lSk

fh(x) ≡
mGl

lSk
fh(x) ≡ mGm

lSk
fh(x) ≡ 0 because the Hessian of a lin-

ear function with respect to x is identically zero. Assuming that
the relative degree of this system is, for instance, r > 2, it follows
that

y
(k)
t = CAkxt ∀k ∈ {0, . . ., r − 1}
y
(r)
t = CAr−1(A+ Fξt)xt + CAr−1(B +Gξt)u.

Having defined the notion of stochastic relative degree and
having discussed its interpretation, we are now interested in
finding a diffeomorphism Φ : Rn → Rn that locally (i.e., in a
neighborhood Ū of x̄ ∈ U ⊂ Rn) transforms system (2) in such
a way that its dynamics is somewhat “simpler.” The diffeomor-
phism we are looking for is a direct consequence of the definition
of the stochastic relative degree previously given. To simplify the
exposition, we make the following assumption on the stochastic
Lie derivatives of yt = h(xt) along the drift vector f and the
diffusion vector l.

Assumption 1: Let r be the stochastic relative degree of
system (2) at x̄. Then, the row vectors

∂x[h]x=x̄, ∂x
[
lSfh

]
x=x̄

, . . . , ∂x

[
lSr−1

f h
]
x=x̄

are linearly independent.
Observe that if Assumption 1 holds, then necessarily r ≤ n.
Remark 4: For deterministic nonlinear systems, the linear in-

dependence of the gradients of the first r − 1 successive deriva-
tives of the output at x̄ is a consequence of the relative degree
being defined, see, e.g., [30, Lemma 4.1.1]. In Section III-A,
we prove that this property holds in the present setting for the
case in which m ≡ 0 near x̄. However, a proof that a similar
result holds in general (m 	= 0) is missing. For simplicity, we
use Assumption 1 at this stage to develop the theory of normal
form for the most general class of systems, and we note that no
counter-example has been found for which this property is not
satisfied when m 	= 0 near x̄.

Proposition 2: Suppose that system (2) has stochastic relative
degree r at x̄ and let Assumption 1 hold. Set

φ1(x) = h(x), φ2(x) =
lSfh(x), . . . , φr(x) =

lSr−1

f h(x).

If r < n, then there exist smooth functions φr+1(x), . . ., φn(x),
with φj ∈ R for all j ∈ {r + 1, . . . , n}, such that the Jacobian
of the mapping

Φ(x) =
[
φ1(x) φ2(x) · · · φn(x)

]�
(7)

is invertible at x̄ almost surely, thus defining a coordinate
transformation in a neighborhood of x̄. Then, the state-
space representation of system (2) in the transformed state

zt = Φ(xt) is

żi = zi+1, i = 1, . . ., r − 1

żr = c(ξt, zt) + b(ξt, zt)u+ a(zt)u
2

żj = pj(ξt, zt) + qj(ξt, zt)u+ sj(zt)u
2, j = r + 1, . . ., n

yt = z1 (8)

where the mappings1 c, b, pj , and qj are affine in ξt.
Proof: By Assumption 1, the matrix[

∂x[h(x)]
� · · · ∂x

[
lSr−1

f h(x)
]�]�

has rank r at x̄. If r < n, let γr+1(x), . . ., γn(x), with γj ∈ Rn

for all j ∈ {r + 1, . . . , n}, be any set of n− r vectors such that[
∂x[h(x̄)]

� · · · ∂x
[
lSr−1

f h(x̄)
]�

γr+1(x̄) · · · γn(x̄)
]�

has rank n. Note that this is possible because there always
exist n− r linearly independent vectors γr+1(x̄), . . ., γn(x̄)
that complete the first r linearly independent vectors

∂x[h(x̄)]
�, . . ., ∂x

[
lSr−1

f h(x)
]�

to a basis of Rn. Let φj(x)

be any smooth function such that ∂x[φj(x)] = γ�j (x) for j =
r + 1, . . ., n. Then, Φ(x) as defined in (7) is a local diffeomor-
phism in a neighborhood of x̄ and, therefore, it defines a local
change of coordinates zt = Φ(xt) for the stochastic system (2).
Applying Itô’s lemma and since the system has relative degree
r, the following holds

żi =
lSi

fh(xt) = φi+1(xt) = zi+1, i = 1, . . ., r − 1.

Moreover

żr = lSr

fh(xt) +
m
g A

l
lSr−1

f h(xt)u+
1

2
mGm

lSr−1

f h(xt)u
2.

We now set

c(ξt, zt) =
lSr

fh
(
ξt,Φ

−1(zt)
)

b(ξt, zt) =
m
g A

l
lSr−1

f h
(
ξt,Φ

−1(zt)
)

a(zt) =
1

2
mGm

lSr−1

f h
(
Φ−1(zt)

)
thus obtaining

żr = c(ξt, zt) + b(ξt, zt)u+ a(zt)u
2.

As for the remaining n− r components of zt, by applying Itô’s
lemma to the functions φj(xt) and setting

pj(ξt, zt) =
lSfφj

(
ξt,Φ

−1(zt)
)

qj(ξt, zt) =
m
g A

l
φj

(
ξt,Φ

−1(zt)
)

sj(zt) =
1

2
mGmφj

(
Φ−1(zt)

)
yields

żj = pj(ξt, zt) + qj(ξt, zt)u+ sj(zt)u
2, j = r + 1, . . ., n.

1To keep the statement of the proposition concise, the mappings a, b, c, pj ,
qj , sj are defined in the proof.
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The proof is completed by observing that yt = h(xt) = z1 and
that, by the definitions of the operators S and A, the coefficients
c, b, pj , and qj are affine in ξt. �

Note that it might be possible to find smooth functions
φr+1, . . ., φn such that the dynamics of the last n− r trans-
formed coordinates is independent of the inputu, i.e., qj(·, zt) ≡
0, sj(·, zt) ≡ 0, for all j ∈ {r + 1, . . ., n}, in a neighborhood of
Φ(x̄). This observation motivates the following definition.

Definition 5 (Stochastic Normal Form): Let xt be the unique
solution of (2) and zt = Φ(xt) be a local diffeomorphism in a
subset U of Rn such that

żi = zi+1, i = 1, . . ., r − 1

żr = c(ξt, zt) + b(ξt, zt)u+ a(zt)u
2

żj = pj(ξt, zt), j = r + 1, . . ., n

yt = z1. (9)

System (9) is said to be the stochastic normal form of system (2).
Remark 5: The fact that the coefficients c, b, pj , and qj

are affine in ξt guarantees that system (8), which is written in
the differential notation [as in (2)], can always be equivalently
written in the integral notation [as in (1)].

For compactness, in the remainder, we use the defini-

tions p =
[
pr+1 · · · pn

]�
, q =

[
qr+1 · · · qn

]�
, and s =[

sr+1 · · · sn
]�

. Obviously, if the stochastic relative degree
at x̄ is equal to the order of the system, then the system admits
a stochastic normal form in a neighborhood U of x̄ (because p,
q, and s have dimension zero).

Remark 6: For deterministic systems, it can be proved (see,
e.g., [30, Prop. 4.1.3]) that functions φr+1, . . ., φn always exist
such that a normal form exists when r < n. While a proof that
this property holds in general in the present setting is missing,
in Section III-A, we prove that this property holds for the case
in which m ≡ 0 near x̄.

Remark 7: The notion of stochastic relative degree and nor-
mal form presented are consistent with Itô’s interpretation. This
is without loss of generality, as all the results of this section can
be obtained also in other formalisms, e.g., Stratonovich’s for-
malism [31].

A. Sharper Results for m ≡ 0

In the previous section, we introduced the concept of relative
degree and of normal form for a class of nonlinear stochastic
systems in which the control input appears both in the drift and
in the diffusion terms of the stochastic differential equation.
This allowed us to provide as general as possible definitions.
However, for the remainder of this article, it is beneficial to
make the standing assumption that the control u does not enter
the diffusion term of the stochastic differential equation (i.e.,
m ≡ 0) in a neighborhood of x̄. On the one hand, this subclass
of systems is more common in the literature (see, e.g., [21], [22]
and references therein). On the other hand, this assumption
allows us to achieve sharper results in terms of nonlinear control
of stochastic systems, both in the idealistic case, i.e., when
the noise process is assumed available) and, in the practically
implementable controller that we develop in Section V-B. A dis-
cussion of the general case (i.e.,m 	= 0) is given in Section V-C.
Therefore, for the time being, we assumem(xt) ≡ 0 near x̄ and

we consider systems of the form

dxt = (f(xt) + g(xt)u)dt+ l(xt)dWt, yt = h(xt) (10)

or, equivalently

ẋt = f(xt) + g(xt)u+ l(xt)ξt, yt = h(xt). (11)

In order to prove results in this section, it is useful to introduce
the Stratonovich equivalent of system (10), given by

dxt = (fS(xt) + g(xt)u)dt+ l(xt) ◦ dWt, yt = h(xt)
(12)

where fS(x) = f(x)− 1
2
∂l(x)
∂x l(x), and the symbol ◦ denotes

the fact that the stochastic integral is meant in Stratonovich’s
sense. The Itô solution xt of (10) is identical to the Stratonovich
solution of (12) (see, e.g., [32]).

We now discuss what implications follow from restricting
ourselves to the class of systems (11). First, the operator m

g A
l
,

reduces to Lg , the Lie derivative along the only control vector
field g. Second, as the control input does not appear in the
diffusion term, the derivative of any function of the state xt
is never quadratic in the control input u. In fact one can observe
that u2 multiplies the operator mGm, e.g., in (4), and that this
operator is identically zero near x̄ because so is the vector field
m. Having said this, the definition of stochastic relative degree
becomes simpler and for the sake of clarity, it is useful to rewrite
it.

Definition 6 (Stochastic Relative Degree–m ≡ 0): Sys-
tem (11) is said to have stochastic relative degree r at a point x̄
if

(ND) Ll
lSk

fh(x) = 0 for all x in a neighborhood of x̄ and for
all k ∈ {0, . . ., r − 2}.

(CD) Lg
lSk

fh(x) = 0 for all x in a neighborhood of x̄ and all
k ∈ {0, . . ., r − 2}.

(RD) Lg
lSr−1

f h(x̄) 	= 0.

By considering a class of systems of the form (11), we can
achieve sharper results in terms of definition of a stochastic
normal form. Indeed, we can now prove the claim previously
assumed in Assumption 1. To this end, we first prove a technical
result.

Lemma 1: Let r be the stochastic relative degree of sys-
tem (11) at x̄. Then

lSk

fh = Lk
fS
h ∀k ∈ {0, . . ., r − 1} near x̄. (13)

Proof: First observe that by (ND)

∂x

(
Ll

lSk

fh
)
= l�

∂2lSk
fh

∂x2
+
∂lSk

fh

∂x

∂l

∂x
= 0

hence

l�
∂2lSk

fh

∂x2
= −∂

lSk
fh

∂x

∂l

∂x
(14)

for all k in {0, . . ., r − 2} near x̄. Then, the claim follows by
induction. In fact, (13) trivially holds for k = 0. Note that for
some 0 < k < r − 1 we have, in view of (14), that

lSk+1

f h = Lf
lSk

fh+
1

2
l�
∂2lSk

fh

∂x2
l

= Lf
lSk

fh− 1

2

∂lSk
fh

∂x

∂l

∂x
l = Lf− 1

2
∂l
∂x l

lSk

fh.
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Rewriting this equation using in the Lie derivative notation and
assuming by the inductive hypothesis that (13) holds for 0 <
k < r − 1 yields

lSk+1

f h = Lf− 1
2

∂l
∂x lLk

fS
h = LfSLk

fS
h = Lk+1

fS
h.

�
The fact that the stochastic Lie derivatives of h along f

and l are identical to the Lie derivatives of h along fS up to
order r − 1 is crucial to prove the rest of the results in this
and the following section. In fact, this equivalence allows us to
leverage the deterministic techniques, because the Stratonovich
differentiation rule is formally identical to the deterministic one.
We can then use the identities in Lemma 1 to translate the results
to the Itô system (11).

We are now ready to prove the following.
Lemma 2: Let r be the stochastic relative degree of sys-

tem (11) at x̄. Then, the row vectors

∂x[h]x=x̄, ∂x
[
lSfh

]
x=x̄

, . . . , ∂x

[
lSr−1

f h
]
x=x̄

are linearly independent.
Proof: Lemma 1 and the definition of stochastic relative

degree of (11) imply that the set of conditions LgLk
fS
h = 0 near

x̄ for all k in {0, . . ., r − 2} andLgLr−1
fS

h 	= 0 at x̄ hold. By [30,
Lemma 4.1.1], this set of conditions in turn implies the linear
independence of

∂x[h]x=x̄, ∂x[LfSh]x=x̄, . . . , ∂x

[
Lr−1
fS

h
]
x=x̄

.

Using again Lemma 1, the claim follows. �
For systems of the form (11), the result in Proposition 2 can

be specialized to the existence of a coordinate transformation
zt = Φ(xt) such that the transformed dynamics is given by

żi = zi+1, i = 1, . . ., r − 1

żr = c(ξt, zt) + b(zt)u

żj = pj(ξt, zt) + qj(zt)u, j = r + 1, . . ., n

where the coefficients c and pj are as before and

b(zt) = Lg
lSr−1

f h
(
Φ−1(zt)

)
, qj(zt) = Lgφj

(
Φ−1(zt)

)
.

Observe that, unlike the general case in whichm 	= 0, since now
the coefficients qj are simply the Lie derivatives of φj along g
for j = r + 1, . . . , n, it is easy to show that it is always possible
to find φr+1, . . . , φn such that said coefficients are identically
zero for x in a neighborhood of x̄. Exploiting Lemma 1, the
proof is analogous to the one reported in [30, Prop. 4.1.3]. Thus,
we can conclude that it is always possible to find a coordinate
transformation Φ(x) in a subsetU of Rn such that the dynamics
in the transformed state zt = Φ(xt) is

żi = zi+1, i = 1, . . ., r − 1

żr = c(ξt, zt) + b(zt)u (15)

żj = pj(ξt, zt), j = r + 1, . . ., n

yt = z1

which is the normal form of system (11).
Remark 8: The notion of normal form which we propose

introduces elements of significant novelty, compared to works

on analogous topics like [20]–[22]. By condition (ND) in Def-
inition 6, the state is projected onto new coordinates, of which
the first r − 1 have a noise-free dynamics. Not only is this a
fundamental difference with respect to past works, but it also
allows us to introduce, as shown in Sections IV and V, control
laws performing path-wise control of nonlinear stochastic sys-
tems. To the best of the authors’ knowledge, this problem has
not been systematically addressed in the literature.

IV. IDEALISTIC LINEARIZATION VIA STATE FEEDBACK

We now turn our attention to the problem of exact feedback
linearization. Specifically, in this section, we formulate and solve
an idealistic version of the problem, by assuming that the control
input is a function of the noise ξt. Although unrealistic because it
implies that the noise is available for feedback, this assumption
is necessary to develop the theory of exact linearization via
feedback. This theory is instrumental for the introduction of
a practically implementable controller in Section V which, by
approximating the noise contribution to the dynamics via mea-
surements of the state, achieves a practical result. The feedback
linearization problem is formally defined as follows.

Problem 1 (Exact Feedback Linearization): Consider the
nonlinear stochastic system

ẋt = f(xt) + g(xt)u+ l(xt)ξt. (16)

Given a point x̄, the problem of exact feedback linearization
consists in finding a neighborhood U of x̄, a feedback law ut =
k(ξt, xt, v) affine in ξt, withv ∈ R, defined onU and a stochastic
coordinate transformation zt = Φ(xt) defined onU such that the
closed-loop system

ẋt = f(xt) + g(xt)k(ξt, xt, v) + l(xt)ξt

in the coordinates zt = Φ(xt), is linear, deterministic, and con-
trollable.

Remark 9: By requiring that the control ut = k(ξt, xt, v)
is an explicit function of the white noise, as in the statement
of Problem 1, we may be enlarging the class of systems (11)
beyond what could be allowed. In the general case where k is
any nonlinear function of ξt, the resulting closed-loop system
in the derivative notation, i.e., (10), is not anymore equivalent
to the one in the differential notation, i.e., (11). In fact, this
equivalence is preserved only when the resulting closed-loop
dynamics is affine in the white noise. Therefore, we hereby
define an idealistic control law to be admissible if the dynamics
of the closed-loop system is affine in ξt. This is achieved easily
by requiring that k is affine in ξt as done in the statement of
Problem 1. Note that the idealistic controls that we introduce in
this article are all admissible by construction.

Proposition 3: Problem 1 is solvable if and only if there exists
a real valued functionh(xt) such that system (16) with the output
yt = h(xt) has stochastic relative degree n at x̄.

Proof: Sufficiency. Suppose yt = h(xt) is such that the
stochastic relative degree of system (16) is n at x̄. Then, by
Proposition 2, there exists a change of coordinates

zt = Φ(xt) =
[
h(xt)

lSfh(xt) · · · lSn−1
f h(xt)

]�
for all x in a neighborhood U of x̄, such that the normal form of
system (16) is

żi = zi+1, i = 1, . . ., n− 1
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żn = c(ξt, zt) + b(zt)u.

By the definition of stochastic relative degree, there exists a
neighborhood U of x̄ such that b(zt) 	= 0 in Φ(U). Therefore,
the control law

ut = k̃(ξt, zt, v) =
1

b(zt)
(−c(ξt, zt) + v) (17)

is well-defined in Φ(U). Therefore, in the neighborhood U of
x̄ the feedback law ut = k̃(ξt,Φ(xt), v) = k(ξt, xt, v) defined
on U brings the transformed system with state zt = Φ(xt) into
the form

żt =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1

0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦
zt +

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0
...
0

1

⎤
⎥⎥⎥⎥⎥⎥⎦
v = Azt +Bv

where A and B are such that
[
B AB · · · An−1B

]
has

rank n. The transformed system is linear, deterministic and
controllable, hence, Problem 1 is solved.

Necessity: This proof is formally identical to the one of [30,
Lemma 4.2.1]. In fact, it is possible to show that the stochas-
tic relative degree is invariant under coordinate change and
feedback by using the arguments in [30] on the Stratonovich
equivalent system (12) and then use Lemma 1 to show that these
arguments hold for the Itô system (11) as well. �

Remark 10: As the coefficient c is in general a function
of ξt, the feedback linearizing control (17) could require the
knowledge of the exact value of the white noise for all t, because
this is the only way that the noisy dynamics of the open loop sys-
tem (16) can be rendered deterministic via feedback. Of course,
the assumption that the noise can be used in the feedback loop
is unrealistic. However, building on the results of this section,
in Section V, we design a practical hybrid control scheme. This
hybrid scheme implements a deterministic state feedback law
which periodically compensates, in an approximate way, the
noise.

Remark 11: The control ut = k(ξt, xt, v) designed in the
proof of Proposition 3 is affine in the variable ξt, because in (17)
the coefficient b is not an explicit function of ξt, whilst the
coefficient c is affine in ξt. Therefore, the feedback linearizing
control is always admissible because replacing its expression
in (11) leaves the closed-loop dynamics affine in ξt.

To conclude this section, we provide necessary and sufficient
conditions for the existence of an output yt = h(xt) which
makes the stochastic relative degree of system (16) equal to n at
a point x̄.

Theorem 1: Problem 1 is solvable if and only if

1) the matrix
[
g(x̄) adfSg(x̄) · · · adn−1

fS
g(x̄)

]
is in-

vertible and
2) the distribution span{g, adfSg, . . . , adn−2

fS
g} is involutive

near x̄.
Proof: By Proposition 3, Problem 1 is solvable if and only

if it is possible to find an output function h(xt) satisfying the
conditions in Definition 6. By Lemma 1, this amounts to the set
of conditions

1) LgLk
fS
h(x) = 0 for all x in a neighborhood of x̄ and all

k ∈ {0, . . ., r − 2};

2) LgLr−1
fS

h(x̄) 	= 0,
which is a set of partial differential equations and a nontrivi-

ality condition. By [30, Lemma 4.1.2] these are equivalent to
1) LgLk

adfS gh(x) = 0 for all x in a neighborhood of x̄ and
all k ∈ {0, . . ., r − 2}.

2) LgLr−1
adfS gh(x̄) 	= 0.

Following the proof of [30, Lemma 4.2.2], it is possible to
show that the previous set of conditions is equivalent to the set
of conditions in the statement of this theorem. �

If the stochastic relative degree r of system (11) is strictly

less than n at x̄, we indicate by ζt =
[
z1 · · · zr

]�
the first

r components of the transformed state zt = Φ(xt) and by ηt =[
zr+1 · · · zn

]�
the remaining n− r. Note that if r < n the

control law (17) linearizes only the dynamics of ζt, thus, we say
that it partially feedback linearizes system (15).

The zero dynamics of a nonlinear stochastic system is, anal-
ogously to the deterministic case, the dynamics of the inter-
nal variable ηt when the input and the initial conditions are
chosen in such a way that the output is constrained to be
identically zero. This is achieved by setting ζ0 = 0 and uz,t =
−c(ξt, 0, ηt)/b(0, ηt). Note that the control uz,t is affine in ξt,
hence admissible. We now provide a definition that extends the
concept of zero dynamics to nonlinear stochastic systems of the
form (11).

Definition 7 (Zero Dynamics): The stochastic differential
equation

η̇t = p(ξt, 0, ηt)

is called the zero dynamics of system (11).
The properties of the zero dynamics are fundamental in study-

ing the problem of asymptotic output tracking, which is the topic
of Section VI.

V. PRACTICAL LINEARIZATION VIA STATE FEEDBACK

In this section, we introduce a causal method to estimate
the sequence of variations of the Brownian motion between
successive time instants. We then show that the use of these
estimates is beneficial in the design of practical feedback lin-
earizing controls.

A. Estimation of the Brownian Motion

The estimation of the Brownian variations is performed by
periodically sampling the state. This method was first introduced
in [33] in order to practically solve the problem of output
regulation of linear stochastic systems. We now extend it to
the present context of nonlinear stochastic systems.

Let {tk}k∈Z≥0
be a sequence of equally spaced sampling

times, with tk − tk−1 = ε for all k ∈ Z>0. Define the differ-
encesΔWε(k) = Wtk −Wtk−1

andΔx(k) = xtk − xtk−1
. Our

aim is to show that it is possible to compute a causal estimate
ΔŴε(k) of the quantity ΔWε(k) by comparing the samples
of the state of the system at times tk−1 and tk. In particular,
we want this estimate to “converge,” in a sense to be defined,
to the stochastic differential dWt as the sampling period ε
converges to zero. Let LI be the space of functions that are
integrable in Itô’s sense. Then with the notation ΔŴε

ε−→ dWt

we mean that for all α ∈ LI limε→0

∑
k α(tk−1, w)ΔŴε(k) =∫ t

0 α(τ, w)dWτ for almost all w ∈ ∇. For ease of notation,
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define Ftk = f(xtk) + g(xtk)utk and Ltk = l(xtk), which are
the drift and diffusion coefficients, respectively, of system (10)
evaluated at time tk. We make the following assumption.

Assumption 2: There exists δ > 0 such that |Ltk | > δ almost
surely for all k ∈ Z≥0.

The rationale of this assumption is explained later, in Re-
mark 12 at the end of Section V. Under Assumption 2,
the Moore–Penrose left pseudoinverse of Ltk , i.e., L†

tk
=

(L�
tk
Ltk)

−1L�
tk

, is well-defined almost surely. The following
Lemma extends the results in [33] to systems with nonlinear
drift and diffusion terms.

Lemma 3: Consider system (11) and let Assumption 2 hold.

Let
{
ΔŴε(k)

}
k>0

be a sequence of scalars defined as

ΔŴε(k) = L†
tk−1

[Δx(k)− Ftk−1
ε] . (18)

Then, ΔŴε(k)
ε−→ dWt almost surely.

Proof: Let k ∈ Z>0. By [34, Th. 7.1]

Δx(k) = Ftk−1
ε+ Ltk−1

ΔWε(k) + o
(
ε2
)

holds, where o
(
ε2
)
, which is the one-step truncation error of

the forward-Euler scheme, is an infinitesimal of the same order
of ε2. The previous expression can be rewritten as

Ltk−1
ΔWε(k) = Δx(k)− Ftk−1

ε+ o
(
ε2
)
.

Since Ltk−1
has full column rank almost surely, the expression

ΔWε(k) = L†
tk−1

[
Δx(k)− Ftk−1

ε+ o
(
ε2
)]

holds almost surely. Defining ΔŴε(k) as in (18) yields

ΔŴε(k) = ΔWε(k) + L†
tk−1

o
(
ε2
)
.

almost surely. Let αt ∈ LI . Then∑
k

αtk−1
ΔŴε(k) =

∑
k

αtk−1

(
ΔWε(k) + L†

tk−1
o
(
ε2
))
.

Taking the limit of both sides as ε tends to zero yields ΔŴε
ε−→

dWt, since for all α ∈ LI

lim
ε→0

∑
k

αtk−1
L†
tk−1

o
(
ε2
)
= 0 almost surely. �

B. Hybrid Control Law

In this section, we discuss how the sequence of estimates
{ΔŴε(k)}k can be used to design a practically implementable
hybrid feedback control law that approximates the idealistic in-
put (17), namelyulin

t = (−c(ξt, zt) + v)/b(zt), which linearizes
the dynamics of the first r components of system (15). We show
that the accuracy can be improved by reducing the sampling time
ε. We formally state the problem as follows.

Problem 2 (Practical Feedback Linearization): Consider sys-
tem (15) and let z lin

t be its solution when ut = u lin
t . The problem

of practical feedback linearization consists in finding a control
law û lin

t (ε), depending on the sampling rate ε, such that, if zt is
the solution of (15) when ut = ûlin

t , then for every σ > 0

lim
ε→0

P
(∣∣zt − zlint

∣∣ ≥ σ
)
= 0. (19)

The meaning of Problem 2 is to find a causal controller for
which the closed-loop system dynamics converges in probability

to the idealistic closed-loop dynamics as the sampling time is
made smaller. To begin with, since the coefficient c is affine in
ξt, we can express it as c(ξt, zt) = cd(zt) + cs(zt)ξt for some
mappings cd and cs. Note that since in practice ξt is not known,
a naive approximation of ξt boils down to replacing it with its
expectation, i.e., zero. Therefore, a first causal approximation of
the coefficient c is given by only the term cd(zt), in turn implying
that the control ulin

t can be practically approximated by the naive
law

uzn,lint =
−cd(zt) + v

b(zt)
.

We call this basic feedback law the zero-noise control. By
replacing cs(zt)ξt with zero in the expression of c(ξt, zt), the
zero-noise control does not perform any form of stochastic
compensation when performing feedback linearization. Con-
sequently, there is no guarantee that the closed-loop behavior
of system (15) with ut = uzn,lint is any close to its idealistic
behavior, i.e., when ut = ulin

t .
The goal of this section is to improve the performance of the

zero-noise control uzn,lint by leveraging the estimated sequence{
ΔŴε(k)

}
k

and show that we can recover the idealistic be-

havior in probability. Therefore, we define ûlin
t = uzn,lint + ust ,

with ust to be specified in such a way that ûlin
t is a “better”

approximation of ulin
t than uzn,lint . By replacing the control ûlin

t
in (15), the dynamics of the transformed system becomes

żi = zi+1, i = 1, . . . , r − 1

żr = v + cs(zt)ξt + b(zt)u
s
t

η̇t = p(ξt, ζt, ηt)

yt = z1 (20)

where the term cs(zt)ξt in the dynamics of the r-th component
is due to the fact that the approximating control uzn,lint cannot
cancel the noisy dynamics as the idealistic control ulin

t does.
We now want to design the controlust employing the estimates{
ΔŴε(k)

}
k

introduced in Section V-A, to reduce the contri-

bution of the term cs(zt)ξt onto the dynamics of the system.
Since the quantity ΔŴε(k) carries information on the evolution
of the noise between tk−1 and tk, we look at the evolution of zr
between these two consecutive sampling times. The value of zr
at time tk is given by

zr,tk = zr,tk−1
+

∫ tk

tk−1

vdτ + βd(k) +

∫ tk

tk−1

b(zτ )u
s
τdτ

where

βd(k) =

∫ tk

tk−1

cs(zτ )dWτ

is the contribution of the noise on the dynamics of zr between the
two sampling times. Our goal is to minimise this contribution
using ust and the estimate ΔŴε(k) obtained at time tk. The
fact that ΔŴε(k) is only available a posteriori, at the end of
the sampling period, suggests that ust should induce a jump
variation at time tk in the state zr in order to compensate for the
quantity βd(k). In other words, the dynamics of the closed-loop
system should be hybrid. It is then necessary to introduce a
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simplified jump notation. At time tk, we denote by ztk the state
before the jump, and by zt+k the state after the jump. The flow
dynamics of the closed-loop hybrid system we seek is, therefore,
given by

żi = zi+1, i = 1, . . . , r − 1

żr = v + cs(zt)ξt

η̇t = p(ξt, ζt, ηt) (21)

for all t ∈ R≥0, while the jump dynamics is given by

zi,t+k
= zi,tk , i = 1, . . . , r − 1

zr,t+k
= zr,tk + b(ztk)u

∗(k)

ηt+k
= ηtk (22)

for all k ∈ Z>0, where {u∗(k)}k is a yet to be defined sequence

of scalars depending on
{
ΔŴε(k)

}
k
. Alternatively, the afore-

mentioned hybrid dynamics (21) and (22) can be equivalently
produced by using in (20) an impulsive control ust given by

ust =

k∑
i=1

u∗(i)δ(t− ti), t ≤ tk

where δ(t) is a Dirac delta. As a result of the hybrid dynamics
induced by the control ust , the expression of zr before the jump
at time tk is given by

zr,tk = zr,t+k−1
+

∫ tk

tk−1

vdτ + βd(k)

while after the jump by

zr,t+k
= zr,tk + b(ztk)u

∗(k)

= zr,t+k−1
+

∫ tk

tk−1

vdτ + βd(k) + b(ztk)u
∗(k).

Thus, we have reduced the problem of approximate partial
feedback linearization to the problem of finding the sequence
{u∗(k)}k such that the contribution of the term βd(k) +
b(ztk)u

∗(k) is minimized. In particular, we look for a sequence
{u∗(k)}k, which retrieves the exact linearization of the dynam-
ics of ζt as ε tends to zero. We are now ready to solve Problem 2.

Theorem 2: Consider system (15) and let Assumption 2 hold.
Let the control ûlin

t be given by

û lin
t =

−cd(zt) + v

b(zt)
−

k∑
i=1

cs(zt+i−1
)ΔŴε(i)

b (zti)
δ(t−ti), t ≤ tk

with ΔŴε(k) given by (18). Then û lin
t solves Problem 2.

Proof: It is trivial to observe that, since system (15) is in
normal form, (19) holds if and only if it holds for the r-th
component of the state zt. Thus, we now focus on the r-th
component. Under the control ûlin

t , the jump of zr at tk is given
by

zr,t+k
= zr,tk − cs(zt+k−1

)ΔŴε(k)

thus, in light of the previous discussion

zr,t+k
= zr,t+k−1

+

∫ tk

tk−1

vdτ +

∫ tk

tk−1

cs(zτ )dWτ

− cs(zt+k−1
)ΔŴε(k).

This can be rewritten as

zr,t+k
= zr,t0 +

∫ tk

t0

vdτ +

∫ tk

t0

cs(zτ )dWτ

−
k∑

i=1

cs(zt+i−1
)ΔŴε(i).

By Lemma 3

lim
ε→0

k∑
i=1

cs(zt+i−1
)ΔŴε(i) =

∫ tk

t0

cs(zτ )dWτ almost surely

hence

lim
ε→0

zr,t+k
= zr,t0 +

∫ tk

t0

vdτ = zlin
r,tk

almost surely. (23)

Now, consider any t ∈ (tk−1, tk), for some k, and let 0 < ε̄ < ε
be given by ε̄ = t− tk−1. Then

zr,t = zr,t+k−1
+

∫ t

tk−1

vdτ +

∫ t

tk−1

cs(zτ )dWτ

which can be discretized with the Euler–Maruyama method as

zr,t = zr,t+k−1
+ v(zt+k−1

)ε̄+ cs(zt+k−1
)ΔWε̄(k) + o

(
ε̄2
)

with ΔWε̄(k) = Wt −Wtk−1
, and where o

(
ε̄2
)

is the one-step
truncation error, which is of order ε̄2. Similarly, the discretized
dynamics of zlin

r,t is

zlin
r,t = zlin

r,tk−1
+ v

(
zlin
tk−1

)
ε̄+ o

(
ε̄2
)
.

The difference zr,t − zlin
r,t is, therefore,

zr,t − zlin
r,t = zr,t+k−1

− zlin
r,tk−1

+
(
v(zt+k−1

)− v
(
zlin
tk−1

))
ε̄

+cs(zt+k−1
)ΔWε̄(k) + o

(
ε̄2
)
(24)

Observe that, by the properties of the Brownian motion,ΔWε̄(k)
is a normally distributed random variable with zero expectation
and variance ε̄. Moreover, cs is bounded near zero, because it
is the Lie derivative of a smooth function. By taking the limit
of (24) as ε (hence ε̄) goes to zero and using (23), we have that
for every σ

lim
ε→0

P(
∣∣zr,t − zlin

r,t

∣∣ ≥ σ) = 0

hence, the claim follows. �
The previous proposition states that, when ust is selected as

ust = −
k∑

i=1

cs(zt+i−1
)ΔŴε(i)

b (zti)
δ(t− ti), t ≤ tk (25)

the control ûlin
t approximates the idealistic control ulin

t as ε tends
to zero, in the sense that the dynamics of the variable ζt can
be made approximately linear with an accuracy increasing as ε
decreases.

Remark 12: The rationale of Assumption 2 is that the noise
is persistently exciting, so it can be estimated by measuring the
state of the system. From a technical viewpoint, this assumption
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is necessary for the development of the theory because it ensures
the boundedness of L†

tk
. However, Assumption 2 should not be

considered practically restrictive. In fact, if |Ltk | < δ̄, for an
arbitrarily small δ̄, this would imply that the noise contribution
to the dynamics of the system is sufficiently small at time tk
to be considered negligible. In that case, it is simply possible
to avoid performing the stochastic compensation at time tk and
still obtain good control performance.

C. Remarks on the Control Input in the Diffusion: m 	= 0

At the beginning of Section IV, we made the standing as-
sumption that m(x) ≡ 0 near x̄, thus restricting the class of
systems considered to those with the control input appearing
only in the drift term of the stochastic differential equations.
This assumption allowed us to obtain sharper analytical results.
In this section, we discuss the rationale of such assumption from
a control viewpoint, which has implications both in the idealistic
and the practical frameworks.

As shown in (9), for general m, the dynamics of the r-th
component of the transformed state zt = Φ(xt) is a quadratic
function of the control input. This implies that, in the case that
a(zt) = (1/2)mGm

lSr−1
f h

(
Φ−1(zt)

)
is not zero for x near x̄,

the idealistic feedback linearizing control would have the form

ulin
t =

−b(ξt, zt)±
√
b(ξt, zt)2 − 4a(zt)(c(ξt, zt)− v)

2a(zt)

which has real values if and only if the input v is such that
b(ξt, zt)

2 − 4a(zt)(c(ξt, zt)− v) ≥ 0. The corresponding zero-
noise control would have the form

uzn,lint =
−bd(zt)±

√
bd(zt)2 − 4a(zt)(cd(zt)− v)

2a(zt)

where the input v should enforce bd(zt)
2 − 4a(zt)(cd(zt)−

v) ≥ 0. It is evident that, although in both cases the control input
can be forced to be real by an appropriate choice of v, from
a practical viewpoint such a choice may not leave any space
for a control law achieving objectives, such as, for instance,
output tracking. Moreover, even though we may be able to define
a zero-noise control, the construction of a hybrid controller
presents even more challenges, as the quadratic ulin

t is not affine
in ξt. Of course, one might make the standing assumption that
a(zt) ≡ 0 for x near x̄. This class of systems would include the
systems for which m ≡ 0, which we address in detail in this
article, but also those systems with m 	= 0 with the additional
assumption that mGm

lSr−1
f h

(
Φ−1(zt)

)
= 0. However, the de-

sign of controllers poses substantial technical challenges even
in this case. For the sake of completeness, we briefly give an
overview of these issues. Suppose m 	= 0 and a(zt) ≡ 0 for
x near x̄. The coefficient b in (9) is, therefore, affine in ξt,
i.e., b(ξt, zt) = bd(zt) + bs(zt)ξt. In the idealistic framework,
a feedback linearizing control would require a division by
b(ξt, zt). Unless further, possibly restrictive, assumptions are
made, such a division may result in a nonadmissible control.
Additionally, the fact that the coefficient b depends on the noise
affects impulsive compensations as well. In fact, the dynamics
of zr when the control ûlin

t is applied is

żr = v + cs(zt)ξt + bd(zt)u
s
t + bs(zt)u

s
tξt.

Thus, any compensating control ust inevitably introduces noise
at time t+k , which cannot be compensated for because ξtk is a

random variable that is independent of the process ξt, t < tk.
This makes it impossible to conclude on the convergence in
probability of zr,t+k to zlin

r,tk
as ε approaches zero, because the

random variable ξtk can take arbitrarily large values in R with
nonzero probability.

VI. ASYMPTOTIC OUTPUT TRACKING

In this section, we first design an idealistic controller, i.e.,
using the white noise in the feedback loop, to make the output
asymptotically track a reference signal. Then, we show that a
practical feedback control law leveraging the causal stochastic
compensations introduced in Section V is able to retrieve the
idealistic result, in the limit of the sampling time ε going to
zero.

We start by introducing the idealistic control and we show
that, under suitable stability hypotheses on the zero dynamics, it
is possible to control the system so that its output tracks reference
trajectories while its internal variables remain bounded almost
surely. First observe that, as long as zt = Φ(xt) is chosen such
that q ≡ 0 near zero (which is always possible, see Section III-
A), the zero dynamics of system (15) is affine in ξt. Let it be
expressed as

η̇t = p(ξt, 0, ηt) = pd(0, ηt) + ps(0, ηt)ξt.

Consider a reference signal yR, which is continuously differ-
entiable r times with values in a neighborhood of zero. We
assume that the initial state of the transformed system (15) is
arbitrary while in a neighborhood of zero and we seek a feedback
control ut that makes the output yt of the system asymptotically
converge to yR. Let

v(ζt, yR(t)) = y
(r)
R −

r∑
i=1

di−1

(
ζi − y

(i−1)
R

)
with di ∈ R for i = 0, . . . , r − 1 to be determined, and the
admissible idealistic feedback control law be given by

utrack
t = −c(ξt, ζt, ηt)− v(ζt, y

R(t))

b(ζt, ηt)
.

Define the tracking error et := yt − yR(t). Then, the control
utrack
t forces the dynamics of the tracking error to be e(r)t +

dr−1e
(r−1)
t + · · ·+ d1e

(1)
t + d0et, which can be made exponen-

tially stable by selecting the coefficients di such that

Λ(s) = sr + dr−1s
r−1 + · · ·+ d1s+ d0, (26)

which is the characteristic polynomial of the matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1

−d0 −d1 −d2 · · · −dr−1

⎤
⎥⎥⎥⎥⎥⎥⎦
, (27)

has roots with negative real parts. We also study the bound-
edness of ζt and of the internal variable ηt under the
control utrack

t , when yR and its first r − 1 derivatives are

bounded. Define ζR(t) =
[
yR(t) · · · y

(r−1)
R (t)

]�
and θt =[

et · · · e
(r−1)
t

]�
. Then, the following result, the proof of
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which relies on the definition of strict Lyapunov function and
some technical lemmas presented in Appendix B, holds.

Theorem 3: Consider system (15). Suppose yR(t),
y
(1)
R (t), . . . , y

(r−1)
R (t) are bounded. Let ηR,t be the solution of

η̇R,t = p(ξt, ζR(t), ηR,t), ηR,0 = 0 (28)

and let pd and ps be Lipschitz continuous. Moreover, assume
that there exists a strict Lyapunov function V (ηR, t) for (28)
such that ∂V

∂ηR,i
(x, t) and ∂2V

∂ηR,i∂ηR,j
(x, t) are bounded for all x

in a neighborhood of the origin and t ≥ 0. Suppose that the roots
of the polynomial Λ(s) in (26) have negative real part. Then, for
sufficiently small εR > 0, if∣∣∣zi(t̄)− y

(i−1)
R (t̄)

∣∣∣ < εR, 1 ≤ i ≤ r, ‖ηt̄ − ηR,t̄‖ < εR,

then for all ε > 0 there exists δ > 0 such that∣∣∣zi(t̄)− y
(i−1)
R (t̄)

∣∣∣ < δ →
∣∣∣zi(t)− y

(i−1)
R (t)

∣∣∣ < ε

1 ≤ i ≤ r, for all t ≥ t̄ ≥ 0

‖ηt̄ − ηR,t̄‖ < δ → ‖ηt − ηR,t‖ < ε for allt ≥ t̄ ≥ 0

almost surely, i.e., the response zi and ηt, t ≥ t̄ ≥ 0, of sys-
tem (15) under the control law utrack

t is bounded almost surely.
Proof: System (15) under the control law utrack

t can be rewrit-
ten in the form

θ̇t = Aθt, η̇t = p(ξt, ζR(t) + θt, ηt) (29)

withA given by (27), which has characteristic polynomial Λ(s).
Therefore, θt has asymptotically stable dynamics. Let νt =
ηt − ηR,t and P (ξt, νt, θt, t) = p(ξt, ζR(t) + θt, ηR,t + νt)−
p(ξt, ζR(t), ηR,t). Note that the system

ν̇t = P (ξt, νt, θt, t), θ̇t = Aθt (30)

is in the form (36) (see Appendix B). Moreover, system (30)
additionally satisfies the hypotheses of Lemma 8 in Appendix B
because of the assumption of Lipschitz continuity of pd and ps
and of the existence of V as in the statement. Then, by Lemma 8,
(0, ηR,t) is an almost surely uniformly stable solution of (29) and
the claimed estimates follow.

The previous theorem solves the idealistic local asymptotic
output tracking problem, i.e., the output yt = z1 asymptotically
converges to yR whilst the state zt remains bounded almost
surely.

We now focus on practical output tracking. While it can be
proved (see Proposition 4 in Appendix C) that under some tech-
nical assumptions a zero-noise control is sufficient to asymp-
totically stabilize the equilibrium at the origin, a controller not
performing any sort of compensation for the stochastic distur-
bances does not guarantee asymptotic tracking. This is because
if the system tracks a nonzero reference, then the states will not
converge to zero and so the noise will enter the dynamics in a
persistent fashion. Hence, the noise might drive the states away
from the desired trajectory, possibly inducing instability. On the
contrary, the control law ûtrack

t = uzn,track
t + ust , with

uzn,track
t = −cd(ζt, ηt)− v(ζt, y

R(t))

b(ζt, ηt)

and ust given by (25) is able to prevent this when ε tends to
zero by approximately compensating for the Brownian-induced
disturbances, as shown in the following result.

Corollary 1: Consider system (15) and suppose that Assump-
tion 2 and the assumptions in Theorem 3 hold. Then, the control
law û track

t is such that yt converges to yR in probability and the
state zt, t ≥ t̄ ≥ 0, of system (15) is bounded in probability in
the limit as ε approaches zero.

Proof: By Theorem 3 the control utrack
t makes the output yt

of (15) asymptotically converge to yR while keeping the internal
states bounded. Let ztrack

t and zt be the state of system (15) when
ut = utrack

t and ut = ûtrack
t are applied, respectively. Then, by

Theorem 2, for every σ > 0

lim
ε→0

P
(∣∣zt − ztrack

t

∣∣ ≥ σ
)
= 0

and the claim follows. �

VII. ILLUSTRATIVE EXAMPLE

In this section, we illustrate the validity of the theory by
means of a numerical example. Consider the following nonlinear
stochastic system in the form (11) with

f(xt) =

⎡
⎣s2(1 + x1)

−2 tanx2
f3(xt)

⎤
⎦ , g(xt) =

⎡
⎣ex3

0

ex3

⎤
⎦ , l(xt) =

⎡
⎢⎣ x1

−2x1

c2

x21

⎤
⎥⎦

with f3(xt) = 2x3 + x1s2 − 2s2x
2
1

c22
and si and ci denoting sinxi

and cosxi, respectively. Let the output of the system be yt =
x1 + s2 − x3. We are interested in analyzing the system around
the origin, i.e., we set x̄ = 0. The goal is to bring the system
to its normal form and to perform asymptotic output tracking.
The first step is determining the stochastic relative degree of the
system at zero. We set z1 = yt = x1 + s2 − x3 and we compute
its derivative applying Itô’s formula (we omit the procedure for
brevity), thus obtaining dz1 = (−2x3 − s2)dt. As neither the
input u nor the noise appear in this expression, the stochastic
relative degree, if defined, is higher than one at the origin. We
set z2 = −2x3 − s2 and, by computing its derivative, we obtain

dz2 =

(
2s2−4x3−2x1s2+

6x21s2
c22

− 2ex3u

)
dt+ 4x1dWt.

The system has, therefore, stochastic relative degree r = 2 at the
origin. Moreover

c̃d(xt) = cd(Φ(xt)) = 2s2 − 4x3 − 2x1s2 +
6x21s2
c22

c̃s(xt) = cs(Φ(xt)) = −2ex3

b̃(xt) = b(Φ(xt)) = 4x1.

Setting z3 = x1 − x3 makes the coordinate change z = Φ(x) a
diffeomorphism in a neighborhood of the origin, with

Φ(x) =

⎡
⎣x1 + s2 − x3

−s2 − 2x3
x1 − x3

⎤
⎦ .

In this new set of coordinates the dynamics of the system is given
by

ż1 = z2
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Fig. 1. Time history of the state zt under the control utrack
t , achieving

idealistic output tracking.

ż2 = cd(zt) + cs(zt)ξt + b(zt)u

ż3 = s2 − 2x3 +
2x21s2
c22

+ 2x1ξt = p̃(ξt,Φ(xt)) (31)

which is in the stochastic normal form. The zero dynamics of
the system is obtained by equating z1 = 0 and z2 = 0, z3 = ηt,
which yields x1 = (3/2)ηt, s2 = −ηt. Replacing these in the
third equation in (31) we get the zero dynamics as follows:

η̇t = p(ξt, 0, ηt) = −2ηt +
9η3t

2(η2t − 1)
+ 3ηtξt.

Its first approximation around the origin is η̇t = −2ηt + 3ηtξt =
Aηt + Fηtξt, which is asymptotically stable almost surely be-
cause A− F 2/2 < 0. Therefore, the zero dynamics of the sys-
tem is almost surely asymptotically stable. We now choose a
reference signal of the form yR(t) = β + α cos (ωt) and illus-
trate that utrack

t achieves asymptotic output tracking. To this end,
we first performed a simulation in the idealistic scenario in which
the noise is used in the feedback law. We selected the coefficients
d0 = 12 and d1 = 7 in the input v so the characteristic polyno-
mial Λ(s) in (26) has roots in −3 and −4, thus guaranteeing
asymptotic stability of the linearized subsystem in the coordi-
nates ζt. The reference signal yR is characterised by β = 0.1,
α = 0.01 and ω = 5. The nonlinear stochastic differential equa-
tions were integrated using the Euler–Maruyama scheme with
periodΔt = 10−6. In Fig. 1, we show the time history of the state
in the coordinates zt when utrack

t is applied. Observe that the first
two components (blue and red lines) display, as expected, linear
and deterministic behaviors, while the internal variable z3 has
noisy dynamics. Because of the properties of the zero dynamics,
z3 stays bounded under utrack

t . Moreover, the component z1 (blue
line), which by the definition of normal form is the output yt of
the system, asymptotically converges to the reference signal yR
(purple/dashed line).

We now turn our attention to practically realisable controllers.
To this end, we first discuss the numerical implementation of
the simulations in the cases where stochastic compensations
are performed with a period ε. The continuous-time dynamics
was integrated, as usual, using the Euler–Maruyama numerical

Fig. 2. Time history of the component z2 under the controls uzn,track
t

(blue line), ûtrack
t with ε = 10−3 (red line), ε = 10−4 (yellow line),

ε = 10−5 (purple line), and utrack
t .

Fig. 3. Time history of the tracking error yt − yR under the controls
uzn,track
t (blue line) and ûtrack

t with ε = 10−3 (red line), ε = 10−4 (yellow
line), and ε = 10−5 (purple line).

scheme with fixed period Δt = 10−6. The stochastic compen-
sations were performed with a period ε, which must neces-
sarily satisfy ε > Δt. We performed simulations with values
of ε of 10−3, 10−4, and 10−5, in order to illustrate the limit
behavior of the solutions as ε decreases. Note that it could
be possible to select smaller ε as long as Δt is decreased
accordingly.

We illustrate in Fig. 2 that when the control law with compen-
sations is employed and ε is decreased, the trajectory of the state
under the idealistic control is retrieved. In Fig. 2, we consider
again the output tracking setting and display the time history of
the component zr = z2 under the controls uzn,track

t (blue line),
ûtrack
t , with varying ε (10−3 (red line), 10−4 (yellow line), 10−5

(purple line)), and utrack
t (green line). Observe that, since the
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control ûtrack
t improves the noise compensations as ε decreases,

the trajectories of z2 under the compensated control tend to the
idealistic trajectory.

To conclude, Fig. 3 shows a comparison between the time
histories of the tracking error z1 − yR = yt − yR when the
controls applied are, respectively, uzn,track

t (blue line) or ûtrack
t

with decreasing values of ε, namely10−3 (red line),10−4 (yellow
line), 10−5 (purple line). While the hybrid controller produces,
for any of the values of ε, strikingly better asymptotic perfor-
mances than the zero-noise control, observe that the tracking
error is made smaller and smaller as ε is decreased. This is in
line with the fact that the component z1 = yt under ûtrack

t tends,
as ε approaches zero, to z1 under the control utrack

t , which in turn
asymptotically approaches yR.

VIII. CONCLUSION

In this article, we have addressed the path-wise control of
nonlinear stochastic systems. First, we have introduced a notion
of stochastic relative degree and normal form. Then, leveraging
these, we have presented a feedback linearizing controller. We
have observed that this controller is not causal, hence, referred
to as idealistic, because it requires a feedback of the noise. To
overcome this limitation, we have introduced a hybrid control
architecture that estimates the Brownian motion from mea-
surements of the state and uses these estimates to periodically
compensate, in approximate way, for the noise. We have proved
that the performances of the idealistic control law are retrieved
when compensations at a frequency tending to infinity are
performed. Finally, we have solved the problem of asymptotic
output tracking, both in the idealistic and practical framework,
and we have provided an illustrative example.

APPENDIX

A. Technical Lemmas and Proof of Proposition 1

Lemma 4: Let x ∈ U ⊂ Rn and k ∈ {0, . . ., r − 2}. Then,
m
g A

l
lSk

fh(ξt, x) = 0 for all ξt ∈ R if and only if Lg
lSk

fh(x) +
mGl

lSk
fh(x) = 0 and Lm

lSk
fh(x) = 0.

Proof: Without loss of generality assume k = 0. Then, the
expression ofmg A

l
lSk

fh(ξt, x) fork = 0 is given in (3). The suffi-
ciency is trivial. As for the necessity, observe that ifLmh(x) 	= 0
then the randomness induced by the white noise implies that
m
g A

l
h(ξt, x) 	= 0 almost surely. Therefore, Lmh(x) = 0 is a

necessary condition for m
g A

l
h(ξt, x) to be zero for all ξt ∈ R.

As a consequence, also Lgh(x) +
mGlh(x) = 0 is a necessary

condition for m
g A

l
h(ξt, x) to be zero for all ξt ∈ R. �

Lemma 5: Let x̄ ∈ Rn. Then, mg A
l
lSr−1

f h(ξt, x̄) 	= 0 almost

surely if and only if Lg
lSr−1

f h(ξt, x̄) +
mGl

lSr−1
f h(ξt, x̄) 	= 0

or Lm
lSr−1

f h(ξt, x̄) 	= 0.

Proof: Observe that m
g A

l
lSr−1

f h(ξt, x̄) = Lg
lSr−1

f h(x̄) +

Lm
lSr−1

f h(x̄)ξt +
mGl

lSr−1
f h(x̄). Then, the necessity is triv-

ial. As for the sufficiency, observe that if Lg
lSr−1

f h(x̄) +
mGl

lSr−1
f h(x̄) 	= 0 or Lm

lSr−1
f h(x̄) 	= 0 then the random-

ness induced by the white noise implies that Lg
lSr−1

f h(x̄) +

mGl
lSr−1

f h(x̄) 	= −Lm
lSr−1

f h(x̄)ξt almost surely, hence the
claim follows. �

Proof of Proposition 1: We prove the first part of the proposi-
tion by induction. Equation (5) trivially holds for k = 0. Now,
suppose that it holds for any k ∈ {1, . . . , r − 2}. Then

y
(k+1)
t = lSk+1

f h(ξt, xt) +
m
g A

l
lSk

fh(ξt, xt)u

+
1

2
mGm

lSk

fh(ξt, xt)u
2. (32)

The first term on the right-hand side expands to

lSk+1

f h(ξt, xt) = Lf
lSk

fh(xt) + Ll
lSk

fh(xt)ξt

+
1

2
lGl

lSk

fh(xt)

which, by the first equality in condition (ND), reduces to

lSk+1

f h(xt) = Lf
lSk

fh(xt) +
1

2
lGl

lSk

fh(xt)

i.e., lSk+1
f h(xt) is independent of ξt for all k ∈ {0, . . . , r − 2}.

Going back to (32), by Lemma 4, the first two equalities in con-
dition (CD) are equivalent to m

g A
l
lSk

fh(ξt, xt) = 0. Moreover,

by the last equality in condition (CD), mGm
lSk

fh(ξt, xt) = 0.

In conclusion, y(k+1)
t = lSk+1

f h(xt) for all k ∈ {0, . . . , r − 2},
which proves that conditions (ND) and (RD) imply (5).

To prove (6), observe that by Lemma 5, the first
two inequalities in condition (RD) are equivalent to
m
g A

l
lSr−1

f h(ξt, x̄) 	= 0. Therefore, condition (RD) implies that

either mg A
l
lSr−1

f h(ξt, x̄) 	= 0 or mGm
lSr−1

f h(x̄) 	= 0, thus mak-
ing the controlu(t̄) appear in the expression of the r-th derivative
of yt. �

B. Almost Sure Stability of Perturbed Stochastic
Systems

Consider the stochastic time-varying system

ẋt = fd(xt, t) + fs(xt, t)ξt = f̃(ξt, xt, t) (33)

for which we introduce the following Lipschitz assumption [35].
Assumption 3: fd and fs are locally Lipschitz continuous for

all t ≥ 0.
We now introduce a concept of almost sure total stability

for nonlinear time-varying stochastic system. Consider the fol-
lowing extension of the definition of strict Lyapunov function
for stationary stochastic systems given in [36] to the case of
time-varying stochastic systems.

Definition 8: Consider the autonomous system (33). A
smooth function V : U × R≥0 → R, where U is a bounded
domain, is said to be a strict Lyapunov function for system (33)
if

1) W1(x) ≤ V (x, t) ≤W2(x) for all x ∈ U , t ≥ 0,
V (0, ·) = 0 and W1 and W2 are continuous positive
definite functions on U ;

2) there exists a positive definite function W3(x)
such that ∂V

∂t (x, t) + LfdV (x, t) + 1
2
fsGfsV (x, t) <

−W3(x) and LfsV (x, t) = 0 for all x ∈ U , t ≥ 0.
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It is possible to show that the existence of a strict Lyapunov
function for system (2) is sufficient to conclude the almost
sure (uniform) asymptotic stability of its equilibrium point (as
defined, e.g., in [37] and [38]). Namely, the following result is
an extension of [36, Th. 2.5].

Lemma 6: Under Assumption 3, if there exists a strict Lya-
punov function for system (33), then the equilibrium point at the
origin of system (33) is almost surely uniformly asymptotically
stable.

The proof follows by replacing in the proof of [36, Th. 2.6] the
time-invariant infinitesimal generator of V with its time-varying
version.

Remark 13: By dropping the condition that LfsV (x, t) = 0
in Definition 8, the results can be reformulated in the context of
the weaker stability in probability. See [27, Th. 11.2.8] for an
equivalent of Lemma 6 in this context.

Consider now a persistently perturbed version of system (33),
namely

dxt = (fd(xt, t) + pd(xt, t))dt+ (fs(xt, t) + ps(xt, t))dWt

(34)
where pd and ps are Lipschitz. In the following, we formalize
the idea that if pd and ps are small enough perturbations, then
the stability properties of (33) are analogous to those of (34). In
other words, we provide an extension to stochastic systems of
the concept of total stability presented, e.g., in [39, Def. 56.1].
To this end, let p̃(ξt, xt, t) = pd(xt, t) + ps(xt, t)ξt.

Definition 9: Consider the stochastic systems (33) and the
perturbed system

ẋt = f̃(ξt, xt, t) + p̃(ξt, xt, t)

= fd(xt, t) + pd(xt, t) + (fs(xt, t) + ps(xt, t))ξt. (35)

Suppose that there exists a solution xp,t(t̄, x̄) of (35). The
equilibrium x = 0 of (33) is said to be totally stable almost
surely if for each ε > 0 there exist positive δ1(ε), δ2(ε) and δ3(ε)
such that ‖xp,t(t̄, x̄)‖ < ε for all t ≥ t̄ almost surely provided
that ‖x̄‖ < δ1, ‖pd(x, t)‖ < δ2 and ‖ps(x, t)‖ < δ3 for all (x, t)
satisfying t ≥ t̄ and ‖x‖ ≤ ε.

The following lemma provides some properties that a strict
Lyapunov function must satisfy in order for system (33) to have
an almost surely totally stable equilibrium at zero.

Lemma 7: Consider systems (33) and (35). Suppose that
Assumption 3 holds. If there exists a strict Lyapunov function
V for system (33) such that

1) ∂V
∂xi

(x, t) and ∂2V
∂xi∂xj

(x, t) are bounded for all x ∈ U and
t ≥ 0,

2) Lps
V (x, t) = 0 for all x ∈ U and t ≥ 0,

then system (33) has an almost surely totally stable equilib-
rium at x = 0.

Proof: The proof follows from [39, Th. 56.3] by noticing that
the time derivatives of V for (33) and (35) differ by the term

∂V

∂x
pd + (fs + ps)

� ∂
2V

∂x2
(fs + ps)

which, by Assumption 3 and by the hypotheses of this lemma,
can be made so small that the time derivative of V for (35) is

negative. The rest of the proof is analogous to that of [39, Th.
56.3]. �

Finally, the following lemma gives important stability prop-
erties of nonlinear time-varying stochastic systems driven by
almost surely stable systems.

Lemma 8: Consider the stochastic system

ẏt = ã(ξt, yt, zt, t) = ãd(yt, zt, t) + ãs(yt, zt, t)ξt

żt = b̃(ξt, zt) = b̃d(zt) + b̃s(zt)ξt (36)

and assume the following.
A1) (y, z) = (0, 0) is an equilibrium of (36) and ãd and ãs

are Lipschitz continuous for all t ≥ 0 in a neighborhood
of zero.

A2) There exists a strict Lyapunov function V (x, t) for the
first equation of system (36) such that ∂V

∂xi
(x, t) and

∂2V
∂xi∂xj

(x, t) are bounded for all x ∈ U and t ≥ 0.

A3) The equilibrium z = 0 of żt = b̃(ξt, zt) is stable almost
surely.

Then the equilibrium (y, z) = (0, 0) of (36) is (uniformly)
stable almost surely.

Proof: Set f̃(ξt, yt, t) = ã(ξt, yt, 0, t) and p̃(ξt, yt, t) =
ã(ξt, yt, zt(t̄, z̄), t)− ã(ξt, yt, 0, t), with zt(t̄, z̄) solution of
żt = b̃(ξt, zt) satisfying zt̄ = z̄. Then, the first equation in (36)
has the form (35). If ‖zt‖ < εz almost surely for all t > t̄, then,
by Assumption A1 there exist μ1 > 0 and μ2 > 0 such that

‖pd(y, t)‖ = ‖ad(y, zt(t̄, z̄), t)− ad(y, 0, t)‖ < μ1εz
‖ps(y, t)‖ = ‖as(y, zt(t̄, z̄), t)− as(y, 0, t)‖ < μ2εz

almost surely for all y in a neighborhood of zero and all t ≥ t̄.
Observe that by Assumption A2, the first and second condi-
tions of Lemma 7 are satisfied for the first equation in (36).
Therefore, the first equation in (36) is totally stable at y = 0. By
Definition 9, for all εy , there exist δ1 > 0, δ2 > 0, and δ3 > 0
such that ‖ȳ‖ < δ1, ‖pd(y, t)‖ < δ2, and ‖ps(y, t)‖ < δ3, for
all (y, t) such that ‖y‖ < εy and t ≥ t̄ ≥ 0, imply

‖yt(t̄, ȳ)‖ < εy almost surely for all t ≥ t̄.

Finally, by Assumption A3, it is possible to find a δz such that
‖z̄‖ < δz yields ‖zt‖ < δ̄ = min {δ2, δ3}/max {μ1, μ2} for all
t ≥ t̄, which, for what stated earlier, makes ‖pd(y, t)‖ < μ1δ̄ ≤
δ2 and ‖ps(y, t)‖ < μ2δ̄ ≤ δ3 be satisfied almost surely. There-
fore, for a bounded initial condition (ȳ, z̄) in a neighborhood of
the equilibrium (0, 0), the trajectory (yt, zt) is bounded almost
surely in a neighborhood of (0, 0), which concludes the proof.�

C. Almost Sure Stability Under Zero-Noise Control

Lemma 9: Consider the system

ẏt = Âyt + γ(ξt, yt, zt) żt = f̂(ξt, yt, zt) (37)

with γ and f̂ affine in ξt and suppose that γ(ξt, 0, z) = 0
for z in a neighborhood of zero and that ∂γ

∂y (ξt, 0, 0) = 0.

If żt = f(ξt, 0, zt) has an almost surely asymptotically stable
equilibrium at z = 0 and the eigenvalues of A all have negative
real part, then system (37) has an almost surely asymptotically
stable equilibrium at (y, z) = (0, 0).
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Proof: Consider the stochastic subsystem żt = f(ξt, 0, zt).
Since this has an almost surely asymptotically stable equilibrium
at 0 by assumption, by [40], it is possible to decompose the
system in the Oseledec subspacesEc andEs relative to the zero
and negative Lyapunov exponents of the linearized dynamics,
respectively. Let zct ∈ Ec be the projection of zt onto Ec and
zst ∈ Es the projection of zt onto Es; then for some Fc, Fs, gc,
and gs

żct = Fc(ξt)z
c
t + gc(ξt, 0, z

c
t , z

s
t )

żst = Fs(ξt)z
s
t + gs(ξt, 0, z

c
t , z

s
t ) (38)

where the Lyapunov exponents associated to Fc are zero and
those associated to Fs are negative. Let zst = π1(ξt, z

c
t ) be a

stochastic center manifold (see [40]) at zero for (38). Then, by
the reduction principle (see [40, Th. 7.3]), since the subsys-
tem żt = f(ξt, 0, zt) has an almost surely asymptotically stable
equilibrium at z = 0 by assumption, then the equilibrium at the
origin of

żct = Fc(ξt)z
c
t + gc(ξt, 0, z

c
t , π1(ξt, z

c
t )) (39)

is asymptotically stable almost surely as well. Consider now the
full system (37), for which a center manifold at zero is described
by the pair

zst = χ1(ξt, z
c
t ), yt = χ2(ξt, z

c
t ).

By the reduction principle, the dynamics (37) has an almost
surely asymptotically stable equilibrium at (0,0) if the reduced
system

żct = Fc(ξt)z
c
t + gc(ξt, χ2(ξt, z

c
t ), z

c
t , χ1(ξt, z

c
t )) (40)

has an almost surely asymptotically stable equilibrium at 0. It
is easy to see that χ2(ξt, z

c
t ) = 0, because, by the properties

of γ, the first approximation of the dynamics of yt reduces to
ẏt = Ayt, which is asymptotically stable by assumption. Then,
since χ1(ξt, z

c
t ) = π1(ξt, z

c
t ), (40) reduces to (39), which has

been proved to have an almost surely asymptotically stable
equilibrium at zero. Hence, system (37) has an almost surely
asymptotically stable equilibrium at (y, z) = (0, 0). �

Consider system (15) and the control

uzn,stab
t = −cd(ζt, ηt)− v(ζt)

b(ζt, ηt)

with cd (and cs) as defined in Section V-B and
v(ζt) = −dr−1ζr − dr−2ζr−1 − · · · − d0ζ1, with di ∈ R
for i = 1, . . . , r − 1 such that the polynomial (26) has roots
with negative real part. Then, the following holds.

Proposition 4: Consider system (15) and suppose that the
equilibrium at η = 0 of the zero dynamics of system (15) is
locally asymptotically stable almost surely. Additionally, sup-
pose that cs(0, η) ≡ 0 for η in a neighborhood of zero and
that ∂cs

∂ζ (0, 0) = 0. Then, the control law uzn,stab
t renders the

equilibrium (ζ, η) = (0, 0) asymptotically stable almost surely.
Proof: Observe that, if ut = uzn,stab

t in (15) then, the closed-
loop dynamics is given by

ζ̇t = Aζt +Bcs(ζt, ηt)ξt, η̇t = p(ξt, ζt, ηt)

where A is given by (27), which has characteristic polyno-
mial (26). This system is in the form (37) with γ(ξt, ζt, ηt) =
Bcs(ζt, ηt)ξt and, by the assumptions on cs, γ satisfies the
hypotheses of Lemma 9. Therefore, the equilibrium at the origin
is asymptotically stable almost surely. �

Remark 14: When studying asymptotic stabilization, the con-
vergence of the states to the equilibrium at the origin contradicts
the persistence of excitation condition of Assumption 2. How-
ever, following from the discussion in Remark 12, if the hypothe-
ses of Proposition 4 are satisfied, one might perform practical
asymptotic stabilization using a control ûstab

t = uzn,stab
t + ust

until the states are in an arbitrarily small neighborhood of zero,
and then switch to just the zero-noise control uzn,stab

t . Doing this
has the advantage of obtaining state trajectories that are closer,
as ε goes to zero, to the idealistic ones when the system is away
from the equilibrium, thus ensuring a more predictable behavior
of the system.
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