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Abstract—This article introduces a closed-loop frequency anal-
ysis tool for reset control systems. To begin with sufficient con-
ditions for the existence of the steady-state response for a closed-
loop system with a reset element and driven by periodic references
are provided. It is then shown that, under specific conditions, such
a steady-state response for periodic inputs is periodic with the
same period as the input. Furthermore, a framework to obtain
the steady-state response and to define a notion of closed-loop
frequency response, including high order harmonics, is presented.
Finally, pseudosensitivities for reset control systems are defined.
These simplify the analysis of this class of systems and allow a
direct software implementation of the analysis tool. This methods
gives deeper insight into the performance of the system than that
achieved with the describing function method.

Index Terms—Convergent, frequency-domain analysis, pseu-
dosensitivities, reset controllers.

I. INTRODUCTION

Proportional Integral Derivative (PID) controllers are used in more
than 90% of industrial control applications [1], [2]. However, cutting-
edge industrial applications have control requirements that cannot be
fulfilled by PID controllers. To overcome this problem, linear con-
trollers may be substituted by nonlinear ones. Reset controllers are
one such type of nonlinear controllers, which have attracted attention
due to their simple structure and their ability to improve closed-loop
performance [3]–[18].

A traditional reset controller consists of a linear element the state of
which is reset to zero when its input equals zero. The simplest reset
element is the Clegg Integrator (CI), which is an integrator with a
reset mechanism [3]. To provide design freedom and applicability, reset
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controllers such as first-order reset elements [19], [20] and second-order
reset elements have been introduced [13]. These reset elements are uti-
lized to construct new compensators to achieve significant performance
enhancement [16], [21]–[24]. In order to further improve the perfor-
mance of reset control systems several techniques, such as the consider-
ations of nonzero reset values [8], [20], reset bands [25], [26], fixed reset
instants, and PI + CI configurations [27], [28] have been introduced.

Frequency-domain analysis is preferred in industry, since it allows
ascertaining closed-loop performance measures in an intuitive way.
In addition, frequency-domain analysis gives valuable information on
the steady-state behaviour of the system. However, the lack of such
methods for nonlinear controllers is one of the reasons why non-linear
controllers are not widely popular in industry. The describing function
(DF) method is one of the few methods for approximately studying
nonlinear controllers in the frequency-domain and this has been widely
used also in the literature of reset controllers [8], [16], [24], [29]. The
DF method relies on an approximation of the steady-state output of
a nonlinear system considering only the first harmonic of the Fourier
series expansion of the input and output signals (assumed periodic). The
general formulation of the DF method for reset controllers is presented
in [29], which however does not provide any information on the closed-
loop steady-state response.

In this article, first, sufficient conditions for the existence of the
steady-state response for a closed-loop system with a reset element and
driven by a periodic input are given. Then, a notion of closed-loop
frequency response for reset control systems, including high-order
harmonics, is introduced. Pseudosensitivities to combine harmonics
and facilitate analyzing reset control systems in closed-loop config-
uration are then defined. All of these ideas are utilized to develop
a toolbox, which is briefly discussed. Note finally that, contrary to
the DF method, which provides only approximations for the periodic
steady-state response of reset control systems, the proposed tools allow
computing exact steady-state responses to periodic excitations.

This article is organized as follows. In Section II, sufficient
conditions to define a notion of frequency response are presented.
Then, a method to obtain closed-loop frequency responses for reset
control systems, including high-order harmonics, is developed, and
pseudosensitivities are defined. In Section III, the steady-state response
of reset controllers to periodic inputs is studied. Finally, Section IV
concludes this article.

II. CLOSED-LOOP FREQUENCY RESPONSE OF

RESET CONTROL SYSTEMS

Consider the single-input single-output control architecture in the
top diagram of Fig. 1. This includes as particular cases all schemes
discussed in Section I. The closed-loop system consists of a linear plant
with transfer functionG(s), two linear controllers with proper transfer
function CL1

(s) and CL2
(s), and a reset controller with base transfer

function CR(s). Let L be the LTI part of the system and assume that
G(s) is strictly proper. The state-space realization of L is described by
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Fig. 1. Closed-loop architecture with reset controller (top). HOSIDF representation of the closed-loop configuration (bottom).

the equations

L :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ζ̇(t) = Aζ(t) +Bw(t) +BuuR(t)

u(t) = Cuζ(t) +Dur(t)

eR(t) = CeRζ(t) +DeRr(t)

y(t) = Cζ(t)

(1)

where ζ(t) ∈ Rnp describes the states of the plant and of the linear
controllers (np is the number of states of the linear part), A, B, C,
Bu, CeR , Cu, Du, and DeR are the corresponding dynamic matrices,
y(t) ∈ R is the output of the plant and w(t) = [r(t) d(t)]T ∈ R2 is an
external input. The state-space representation of the reset controller is
given by the equations⎧⎪⎨

⎪⎩
ẋr(t) = Arxr(t) +BreR(t), eR(t) �= 0

xr(t
+) = Aρxr(t), eR(t) = 0

uR(t) = Crxr(t) +DreR(t).

(2)

The closed-loop state-space representation of the overall system can,
therefore, be written as⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = Āx(t) + B̄w(t), eR(t) �= 0

x(t+) = Āρx(t), eR(t) = 0

u(t) = C̄ux(t) + D̄ur(t)

eR(t) = C̄eRx(t) +DeRr(t)

y(t) = C̄x(t)

(3)

where x(t) = [xr(t)
T ζ(t)T]T ∈ Rnp+nr , and Ā =[

Ar BrCeR

BuCr A+BuDrCeR

]
, C̄ = [01×nr C], B̄ =

[
0nr×2

B

]
+

[
BrDeR 0nr×1

BuDrDeR 0np×1

]
, Āρ =

[
Aρ 0nr×np

0np×nr Inp×np

]
, C̄u = [CrDL2

CeRDrDL2
+ Cu], C̄eR = [01×nr CeR ], and D̄u = DuDeRDr

with DL2
the feedthrough matrix of CL2

(s).

A. Stability and Convergence

In this section, sufficient conditions for the existence of a steady-state
solution for the closed-loop reset control system (3) driven by periodic

inputs are provided. This is based on the Hβ condition [4], [30]–[32],
which we recall in what follows. Let

C0 =
[
ρ βCeR

]
, B0 =

[
Inr×nr

0np×nr

]

ρ = ρT > 0, ρ ∈ Rnr×nr , β ∈ Rnr×1. (4)

The Hβ condition states that the reset control system (3) with w = 0
is quadratically stable if and only if there exist ρ = ρT > 0 and β such
that the transfer function

H(s) = C0(sI − Ā)−1B0 (5)

is strictly positive real (SPR), (Ā, B0) and (Ā, C0) are controllable and
observable, respectively, and

AT
ρ ρAρ − ρ < 0. (6)

Definition 1: A time T̄ > 0 is called a reset instant for the reset
control system (3) if eR(T̄ ) = 0. For any given initial condition and
input w, the resulting set of all reset instants defines the reset sequence
{tk}, with tk ≤ tk+1, for all k ∈ N. The reset instants tk of the reset
control system (3) have the well-posedness property if for any initial
condition x0 and any input w, all reset instants are distinct, and there
exists a λ > 0 such that for all k ∈ N, λ ≤ tk+1 − tk [8], [33].

Remark 1: If the Hβ condition holds, then the reset control sys-
tem (3) has the uniform bounded-input bounded-state (UBIBS) prop-
erty and the reset instants have the well-posedness property [34]. There-
fore, the reset control system (3) has a unique well-defined solution
for t ≥ t0 for any initial condition x0 and input w which is a Bohl
function [8], [33].

To develop a frequency-domain analysis method for the reset control
system (3), the following assumption is required.

Assumption 1: The initial condition of the reset controller is zero.
In addition, there are infinitely many reset instants and lim

k→∞
tk = ∞.

The second term in Assumption 1 is introduced to rule out a triv-
ial situation. In fact, if lim

k→∞
tk = TK , then for all t ≥ TK the reset

control system (3) is a stable linear system. Two important technical
lemmas, which are used in the proof of the following theorem, are now
formulated and proved.
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Lemma 1: Let {tk} and {t̃k} be the reset sequences of the reset
control system (3) for two different initial conditions ζ0 and ζ̃0 of the
linear part and for the same input. Suppose Assumption 1 and the Hβ

condition hold and w is a Bohl function. Then lim
k→∞

(tk − t̃k) = 0.

Proof: To begin with note that, for any initial condition x0 =[
0T ζT0

]T
, the signal eR in (3) can be obtained through the equation

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋI(t) = ĀxI(t) + B̄w(t) +

[
Br

0np×2

]
wI(t), eR(t) �= 0

xI(t
+) = ĀρxI(t), eR(t) = 0

eR(t) = C̄eRxI(t) +DeRr(t) + [1 0]wI(t)

(7)

with xI(0) = 0 and⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ż(t) = AZ(t), Z(0) = ζ0

wI(t) =

[
CeR

0

]
Z(t).

(8)

Since the linear part of the system contains the internal model (8) of
wI , and w is a Bohl function, based on [4], [31] eR is asymptotically
independent of wI . This implies that lim

k→∞
(tk − t̃k) = 0. �

Lemma 2: Consider the reset control system (3). Suppose Assump-
tion 1 holds, w is a Bohl function, and the Hβ condition is satisfied.
Then, the reset control system (3) is uniformly exponentially conver-
gent.

Proof: To begin with note that the property of uniformly exponen-
tially convergence is as given in [35]. Since theHβ condition is satisfied,
according to Remark 1, the reset control system (3) has a unique
well-defined solution for any initial condition x0 and any w which
is a Bohl function. Let x and x̃ be two solutions of the reset control
system (3) corresponding to the some input w and to two different
initial conditions. Since theHβ condition is satisfied x(t) and x̃(t) are
bounded for all t. Let Δx := x− x̃, and let {tk} and {t̃k} be the reset
sequences of x(t) and x̃(t). Define M = {t ∈ R+| t �= tk ∧ t �= t̃k}.
By Lemma 1

∀ δ > 0, ∃ Π > 0 such that k > Π ⇒ |tk − t̃k| < δ. (9)

Moreover, by the well-posedness property, there exists a λ > 0 such
that λ ≤ tk+1 − tk and λ ≤ t̃k+1 − t̃k. Thus, selecting δ sufficiently
small yields

x(tk + δ) = eĀδĀρx(tk) +

∫ tk+δ

tk

eĀ(tk+δ−τ)B̄w(τ)dτ (10)

for all tk sufficiently large. By (9), t̃k = tk + δ′,with 0 ≤ δ′ ≤ δ. Thus

x̃(tk + δ) = eĀ(δ−δ′)Āρ

(
eĀδ′ x̃(tk)

+

∫ tk+δ′

tk

eĀ(tk+δ′−τ)B̄w(τ)dτ

)

+

∫ tk+δ

tk+δ′
eĀ(tk+δ−τ)B̄w(τ)dτ.

Now, by (10) and (11)

Δx(tk + δ) = ĀρΔx(tk) + (eĀδĀρ − eĀ(δ−δ′)Āρe
Āδ′)x̃(tk)

− eĀ(δ−δ′)Āρ

∫ tk+δ′

tk

eĀ(tk+δ′−τ)B̄w(τ)dτ

+

∫ tk+δ′

tk

eĀ(tk+δ−τ)B̄w(τ)dτ

+ (eĀδ − I)ĀρΔx(tk)

= ĀρΔx(tk) +O(δ, x̃(tk), x(tk)) (11)

and, using (9)

lim
δ→0

O(δ, x̃(tk), x(tk)) = 0. (12)

The same discussion applies to t̃k. Hence, for t sufficiently large we
have {

Δẋ(t) = ĀΔx(t), t ∈ M
Δx(t+) = ĀρΔx(t), t /∈ M.

(13)

Due to the satisfaction of the Hβ condition [4], [30], [31], there exist
a matrix P ∈ R(np+nr)×(np+nr), P = PT > 0, and a scalar α > 0
such that

PĀ+ ĀTP ≤ −2αP (14)

ĀT
ρ PĀρ − P ≤ 0. (15)

Using the candidate Lyapunov function V (Δx) =
1

2
(Δx)TP (Δx)

yields {
V̇ ≤ −αV, t ∈ M
V (Δx(t+)) = V (Δx(t)) + Ξ(t, δ), t /∈ M.

(16)

Thus, using (13) and (15) for t sufficiently large yields Ξ(t, δ) ≤ 0.
Hence, since Δx is bounded, there exist αm > 0 and K > 0 such that

||x2(t)− x1(t)||2P ≤ Ke−αmt (17)

for all t ≥ 0 (see Lemma 3 in the Appendix). This implies that the reset
control system (3) is uniformly exponentially convergent. �

Theorem 1: Consider the reset control system (3). Suppose Assump-
tion 1 holds, w(t) = w0 sin(ωt)

1, and the Hβ condition is satisfied.
Then, the reset control system (3) has a periodic steady-state solution,
which can be expressed as x̄(t) = S(sin(ωt), cos(ωt), ω) for some
function S : R3 → Rnr+np .

Proof: Since the Hβ condition holds and w(t) = w0 sin(ωt) is a
Bohl function, by Remark 1 the reset control system (3) has a unique
solution for any initial conditionx0. In addition, the reset control system
(3) has the UBIBS property and, according to Lemma 2, it is uniformly
exponentially convergent. Hence, the proof of the existence of the func-
tionS relies on the results in [35]. We only need to show thatS is unique.
To this end, similarly to [36], assume that the reset control system (3)
has two steady-state solutions x̄2(t) = S2(sin(ωt), cos(ωt), ω)(t) and
x̄1(t) = S1(sin(ωt), cos(ωt), ω)(t), forw(t) = w0 sin(ωt). Since the
Hβ condition holds, by Lemma 2 there exist αm > 0 and K > 0 such
that

||x̄2(t)− x̄1(t)||2P ≤ Ke−αmt (18)

hence, the claim. �
Corollary 1: Consider the reset control system (3) with r(t) =

r0 sin(ωt) and d = 0, for all t ≥ 0. Then, the even harmonics and the
subharmonics of the steady-state response have zero amplitude, and the

sequence of reset instants is periodic with period
π

ω
.

1For ease of notation, we consider w(t) = w0 sin(ωt). However, Theorem 1
is also applicable in the case in which w(t) = [r0 sin(ωt + φ1), d0 sin(ωt +
φ2)]

T .
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Proof: The response of (3) for r = r0 sin(ωt) and d = 0, for all
t ≥ 0, is given by

x(t) = r0

(
eĀ(t−tk) (ξk + ψ(tk))− ψ(t)

)
, t ∈ (tk, tk+1] (19)

where

ψ(t) = (ωI cos(ωt) + Ā sin(ωt))F

F = (ω2I + Ā2)−1B̄

[
1

0

]

tk = {tk ∈ R+, k ∈ Z+ | eR(tk) = 0}

ξk =
1

r0
x(t+k ) =

1

r0
Āρx(tk). (20)

Thus

x̄(t) = r0

(
eĀ(t−ts) (ξs + ψ(ts))− ψ(t)

)
, t ∈ (ts, ts+1] (21)

with

ξs = Āρe
Ā(ts−ts−1)

(
Āρe

Ā(ts−1−ts−2) . . . Āρe
Ā(t1−t0)(ξ0 + ψ(t0))

+ Āρe
Ā(ts−1−ts−2) . . . Āρe

Ā(t2−t1)(I − Āρ)ψ(t1)

+ Āρe
Ā(ts−1−ts−2) . . . Āρe

Ā(t2−t1)(I − Āρ)ψ(t2)

+ · · ·+ (I − Āρ)ψ(ts−1)

)
− Āρψ(ts). (22)

According to [37], uniformly convergent systems forget their initial
conditions. By Lemmas 1 and 2, ξs and the reset instants are unique for
any t0 and ζ0. Hence, the transient response of ξs converges to zero,
which implies that

ξs = Āρe
Ā(ts−ts−1)

(
(I − Āρ)ψ(ts−1)

+ Āρe
Ā(ts−1−ts−2)(I − Āρ)ψ(ts−2)

+ Āρe
Ā(ts−1−ts−2)Āρe

Ā(ts−2−ts−3)(I − Āρ)ψ(ts−3)

+ · · ·+ Āρe
Ā(ts−1−ts−2) . . . Āρe

Ā(ts−m+1−ts−m)

× (I − Āρ)ψ(ts−m)

)
− Āρψ(ts). (23)

Therefore, since reset occurs when

C̄eR x̄(t) +DeRr0 sin(ωt) = 0 (24)

if {ts, ts−1, . . ., ts−m} are reset instants and satisfy (24), then

{ts, ts−1, . . ., ts−m}+ π

ω
also satisfy (24), which implies that the

sequence of reset instants is periodic with period
π

ω
. Using this prop-

erty in (21) shows that x̄(t) = −x̄(t+ π

ω
) and ts+q − ts =

π

ω
, hence

ξs = −ξs+q . This means that the even harmonics of the steady-state
response of the reset control system (3) have zero amplitude. In addition,

x̄(t) = x̄(t+
2π

ω
), which implies that the steady-state response of the

reset control system (3) does not contain any subharmonic. �
Remark 2: The reset sequence {tk} and the reset values ζk are

independent of the input amplitude for r(t) = r0 sin(ωt).

Fig. 2. Steady-state reset instants of the reset control system (3).

We now show that the function S is derived explicitly for
r(t) = r0 sin(ωt) and d = 0. Suppose that there are q − 1 reset in-

stants between ts and ts +
π

ω
(see Fig. 2). Assume sin(ωts) = κ,

then cos(ωts) = ±
√
1− κ2 (without loss of generality, we con-

sider the positive value here). Using trigonometry relations, one
has that

ψ(ts) = f0(κ)

ψ(ts + τ1) = f1(κ, τ1)

...

ψ(ts + τ1 + · · ·+ τq) = fq(κ, τ1, τ2, . . ., τq). (25)

Moreover

ξs+i = Āρ

(
eĀτi(gi−1(κ, ξs, τ1, .., τi−1) + fi−1(κ, τ1, .., τi−1))

− fi(κ, τ1, τ2, . . ., τi)

)
= gi(κ, ξs, τ1, τ2, . . ., τi) (26)

with i = 1, 2, . . ., q and g0(κ, ξs) = ξs. Now, since eR(t) is zero at
reset instants, one has that

C̄eR

(
eĀτi(gi−1(κ, ξs, τ1, .., τi−1) + fi−1(κ, τ1, .., τi−1))

− fi(κ, τ1, τ2, . . ., τi)

)
+DeR sin(ω(ts + τ1 + · · ·+ τi))

= Ei(κ, ξs, τ1, . . ., τi) = 0 (27)

with i = 1, 2, . . ., q. In addition

τ1 + τ2 + · · ·+ τq =
π

ω
ξs = −ξs+q ⇒ gq(κ, ξs, τ1, τ2, . . ., τq) + ξs = 0.

(28)

Moreover, by the well-posedness property of reset instants (see Defini-
tion 1), reset instants are distinct. Hence, there are q + 2 independent
equations and q + 2 parameters (κ, ξs, q, τ1, τ2, . . ., τq), q ∈ N. In
addition, the well-posedness property implies that the reset intervals
are lower bounded [8]. Hence

∃ λ ≤ τi ⇒ q ≤ π

λω
− 1. (29)

Furthermore, for q = 1, the equations have always a unique solution.
Thus, there exists a bounded nonempty setQ = {Qi ∈ N|Qi ≤ qmax}
such that for q ∈ Q, the equations have a solution. Hence, x̄, the steady-
state response of the reset control system (3) to r(t) = r0 sin(ωt), is
the solution of (27)–(28) for q = qmax. Since x̄ is periodic with period
2π

ω
, one has

x̄(t) =

∞∑
n=1

an cos((2n+ 1)ωt) + bn sin((2n+ 1)ωt). (30)
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According to Theorem 1, x̄ is unique and equal to the function S . Thus

x̄(t) =

∞∑
n=1

an cos((2n+ 1)ωt) + bn sin((2n+ 1)ωt)

= S(sin(ωt), cos(ωt), ω). (31)

Finally, one could also use De Moivre’s formula to find a formal
polynomial expansion for S in terms of sin(ωt) and cos(ωt).

B. HOSIDF of the Closed-Loop Reset Control Systems

In Section II-A, sufficient conditions for the existence of the steady-
state solution for the reset control system (3) driven by periodic inputs
have been presented. Moreover, the steady-state solution has been
explicitly calculated. In this section, the HOSIDF technique [38] is
applied to the steady-state response of the system to derive a notion
of frequency response for the reset control system (3), which allows
analyzing tracking and disturbance rejection performance (see the
bottom diagram of Fig. 1).

1) Tracking Performance: Consider the reset control sys-
tem (3) with r(t) = r0 sin(ωt) and d(t) = 0, for all t ≥ 0. We now
derive relations between the input r and the steady-state response of the
output y, of the error e, and of the control input u. To this end, consider
the steady-state reset instants ts, ts+1, . . ., ts+q and their associated
reset values ξs, ξs+1, . . ., ξs+q , which are calculated through (27) and
(28).

Theorem 2: Consider the reset control system (3) with r(t) =
r0 sin(ωt) and d(t) = 0, for all t ≥ 0. Let Tn(jω) be the ratio of the
nth harmonic component of the output signal y to the first harmonic
component of r. Then

Tn(jω) =

⎧⎪⎨
⎪⎩
T(1, ω)− C̄(jωI + Ā)F , n = 1

T(n, ω), n > 1 odd

0, n even

(32)

in which

T(n, ω) =
2jωC̄

π
(Ā− jnωI)−1

⎛
⎝ q∑

i=1

R(i, n, ω)

⎞
⎠ (33)

R(i, n, ω) =

(
eĀ(ts+i−ts+i−1)

ejnωts+i
− I

ejnωts+i−1

)

×
(
ξs+i−1 + ψ(ts+i−1)

)
. (34)

Proof: The proof requires a straightforward calculation, hence, it is
omitted (see also [39]). Note that ψ(t) is defined in (20). �

Definition 2: The family of complex valued functions Tn(jω), n =
1, 2, . . . is the complementary sensitivity of the reset control system
(3).

Corollary 2: Consider the reset control system (3) with r(t) =
r0 sin(ωt) and d(t) = 0, for all t ≥ 0. Let Sn(jω) be the ratio of the
nth harmonic component of the error signal e to the first harmonic
component of r. Then

Sn(jω) + Tn(jω) =

{
1, n = 1

0, n > 1.
(35)

Corollary 3: Consider the reset control system (3) with r(t) =
r0 sin(ωt) and d(t) = 0, for all t ≥ 0. Let CSn(jω) be the ratio of
the nth harmonic component of the control input signal u to the first

harmonic component of r. If the plant is stable, then

CSn(jω) =
Tn(jω)

G(njω)
. (36)

Definition 3: The families of complex valued functions Sn(jω) and
CSn(jω), n = 1, 2, . . ., are the sensitivity and the control sensitivity
of the reset control system (3), respectively.

2) Disturbance Rejection: In this section, relations between
d(t) = sin(ωt) and the error e and the control input u are found in the
case in which r(t) = 0 for the reset control system (3) using the same
procedure provided in Section II-B1. To this end, the matrix ψ(t) has
to be replaced by

ψD(t) = (ωI cos(ωt) + Ā sin(ωt))FD

FD = (ω2I + Ā2)−1B̄

[
0

1

]
. (37)

Let t′s, t
′
s+1, . . ., t

′
s+q′ and ξ′s, ξ

′
s+1, . . ., ξ

′
s+q′ be the steady-state reset

instants and their associated reset values for the reset control system (3)
with d(t) = d0 sin(ωt) and r(t) = 0, respectively. In addition, since
r(t) = 0, (27) is changed to

C̄eR

(
eĀτ ′

i(gi−1(κ
′, ξ′s, τ

′
1, .., τ

′
i−1) + fi−1(κ

′, τ ′1, .., τ
′
i−1))

− fi(κ
′, τ ′1, τ

′
2, . . ., τ

′
i)

)
= Ei(κ

′, ξ′s, τ
′
1, . . ., τ

′
i) = 0 (38)

with i = 1, 2, . . ., q′. Now, substitutingψ(t)withψD(t) in the relations
(25) and (26), and considering (38) instead of (27), the steady-state
response of the reset control system (3) for d(t) = d0 sin(ωt) and
r(t) = 0 is found using the same procedure provided in Section II-A.

Corollary 4: Consider the reset control system (3) with d(t) =
d0 sin(ωt) and r(t) = 0, for all t ≥ 0. Let PSn(jω) be the ratio of
the nth harmonic component of the error signal e to the first harmonic
component of d. Then

PSn(jω) =

⎧⎪⎨
⎪⎩
P(1, ω) + C̄(jωI + Ā)FD, n = 1

P(n, ω), n > 1 odd

0, n even

(39)

in which

P(n, ω) =
2jωC̄

π
(jnωI − Ā)−1

⎛
⎝ q′∑

i=1

RD(i, n, ω)

⎞
⎠ (40)

RD(i, n, ω) =

(
e
Ā(t′

s+i
−t′

s+i−1
)

e
jnωt′

s+i

− I

e
jnωt′

s+i−1

)

×
(
ξ′s+i−1 + ψD(t

′
s+i−1)

)
.

Corollary 5: Consider the reset control system (3) with d(t) =
d0 sin(ωt) and r(t) = 0, for all t ≥ 0. Let CSdn(jω) be the ratio of
the nth harmonic component of the control input signal u to the first
harmonic component of d. If the plant is stable, then

CSdn(jω) =

⎧⎪⎪⎨
⎪⎪⎩

−PS1(jω)

G(jω)
− 1, n = 1

−PSn(jω)

G(njω)
, n > 1.

(41)

Definition 4: The families of complex valued functions PSn(jω)
andCSdn(jω),n = 1, 2, . . ., are the process-sensitivity and the control
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Fig. 3. Error signal e(t) with its 1st, 3rd, and 5th harmonics. em(t) is
fitted to e(t) and it is an indicator of the maximum error of the system.

sensitivity due to the presence of the disturbance of the reset control
system (3), respectively.

C. Pseudosensitivities for Reset Control Systems

The analysis of the error signal e and of the control input u is one
of the main factors while designing a controller. In linear systems this
analysis is performed using the closed-loop transfer functions [40]. As
discussed in Section I, although reset control systems may be analyzed
using the DF of the reset controller in the closed-loop sensitivity
equations, this yields an approximation, which is not precise due to the
existence of high order harmonics. On the other hand, it is not trivial to
analyze reset controllers considering all harmonics. In order to perform
the analysis of reset control systems straightforwardly, we combine all
harmonics into one frequency function for each closed-loop frequency
response. In the literature, there are several definitions of Bode plot for
nonlinear systems [41], [42]. However, all of these focus only on the
gain of the system. In the following, pseudosensitivities, which have
both gain and phase components, are defined.

It has been proven that the error and the control input signals of the
reset control system (3) are periodic with period 2π

ω
(see Fig. 3). We

define the pseudosensitivity as the ratio of the maximum error of the
reset control system (3), for r(t) = r0 sin(ωt) and d(t) = 0, for all
t ≥ 0, to the amplitude of the reference at each frequency.

Definition 5: The Pseudosensitivity S∞ is, for all ω ∈ R+

S∞(jω) = emax(ω)e
jϕmax(ω), ϕmax =

π

2
− ωtmax

emax(ω) =

max
ts≤t≤ts+2q

(r(t)− y(t))

r0
= sin(ωtmax)−

1

r0
C̄x̄(tmax)

with

tmax ∈ {text | ė(text) = 0, ts ≤ text ≤ ts+2q}

∪{ts+i | i ∈ Z, 0 ≤ i ≤ 2q}.

Using (3) and (21), text is obtained from

ė(text) = 0 ⇒ ω cos(ωtext)− C̄B̄

[
1

0

]
sin(ωtext)

= C̄Ā
(
eĀ(text−ts+i)(ξs+i

+ ψ(ts+i))− ψ(text)
)

text ∈ (ts+i, ts+i+1], i = {i ∈ Z+ | i < 2q}. (42)

Similarly, the pseudoprocess sensitivity, the pseudocomplementary
sensitivity, the pseudocontrol sensitivity, and the pseudocontrol sen-
sitivity of the disturbance can be defined (for more detail see [39]). We
conclude this section, with the following statement.

Corollary 6: Consider the reset control system (3). The pseudosensi-
tivities and the closed-loop HOSIDFs are independent of the amplitude
of the harmonic excitation input.

Remark 3: The presented results have been integrated into an open
source toolbox, which has been developed using MATLAB, see [43].
This toolbox facilitates the analysis and design for reset control systems.

III. PERIODIC INPUTS

In Section II, a notion of frequency response and pseudosensitivities
for reset control systems have been defined. These serve as graphical
tools for performance analysis of reset controllers. The pseudosen-
sitivities determine how a system amplifies harmonic inputs at vari-
ous frequencies, information which is essential for control designers.
However, this information is obtained for a single harmonic excitation
and since the superposition principle does not hold, it provides only
an approximation in the case of multiharmonics excitation. In this
section the steady-state performance in the presence of multiharmon-
ics excitation and periodic inputs is investigated. This is reasonable
since most references and disturbances are periodic [11]. For ease of

notation let lcm(
a1
b1
,
a2
b2
, . . .,

ai
bi
) denote the least common multiple

of
a1
b1
,
a2
b2
, . . ., and

ai
bi

and gcd(
a1
b1
,
a2
b2
, . . .,

ai
bi
) denote the greatest

common divisor of
a1
b1
,
a2
b2
, . . ., and

ai
bi

in which ai ∈ N and bi ∈ N.

Theorem 3: Consider the reset control system (3). Suppose the Hβ

condition and Assumption 1 hold. Then for any periodic excitation of
the form

w(t) = w0 sin

(
2π

T0

t

)
+ w1 sin

(
2π

T1

t

)
+ · · ·+ wN sin

(
2π

TN

t

)
(43)

withwi = [ri, di]
T, the reset control system (3) has a periodic steady-

state solution of the form

x̄(t) = a0 +

∞∑
n=1

an cos(nωM t) + bn sin(nωM t)

ωM = 2π × gcd(
1

T0

,
1

T1

, . . .,
1

TN

).

Proof: Let tsM+i
be the steady-state reset instants of the reset

control system (3) forw is given in (43). By (3), the steady-state solution
for w as in (43) is given by

x̄(t) = eĀ(t−tsM ) (ξsM + ψM (tsM ))− ψM (t), t ∈ (tsM , tsM+1]
(44)

where

ψM (t) = ψ0(t) + ψ1(t) + · · ·+ ψN (t)

ψi(t) = (ωiI cos(ωit) + Ā sin(ωit))Fi

Fi = (ω2
i I + Ā2)−1B̄wi.

By Lemma 2, the reset control system (3) forgets the initial condition;
thus, using a procedure similar to the one in Section II-A, yields

x̄(t) = eĀ(t−tsM )
(
(I − Āρ)ψM (tsM ) + eĀ(tsM −tsM−1)

(
(I − Āρ)ψM (tsM−1) + · · ·+ Āρe

Ā(tsM−1−tsM−2) . . .
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Āρe
Ā(tsM−m+1−tsM−m)(I − Āρ)ψM (tsM−m)

))
− ψM (t), t ∈ (tsM , tsM+1].

Since the reseting condition is

C̄eR x̄(t) +DeR [1 0]wM (t) = 0 (45)

if {tsM , tsM−1, . . ., tsM−m} are reset instants and satisfy (45), then
t ∈ {tsM , tsM−1, . . ., tsM−m}+ 2π

ωM
are such that (45) holds, which

implies that the sequence of reset instants is periodic with period 2π
ωM

;

hence, x̄(t) = x̄(t+ 2π
ωM

), and using the Fourier series representation
yields

x̄(t) = a0 +

∞∑
n=1

an cos(nωM t) + bn sin(nωM t). (46)

�
We conclude this section with the following statement the proof of

which can be found in [39].
Corollary 7: Consider the reset control system (3). Suppose theHβ

condition and Assumption 1 hold. Then for any periodic inputwP (t) =
wP (t+ TP ) the reset control system (3) has a steady-state periodic
solution with the same period TP

2.

IV. CONCLUSION

This article has proposed an analytical approach to obtain closed-
loop frequency responses for reset control systems, including high-
order harmonics. To this end, sufficient conditions for the existence of
the steady-state solution of the closed-loop reset control systems driven
by periodic inputs have been presented. Moreover, pseudosensitivities,
which serve as a graphical tool for performance analysis of reset
controllers, have been defined: these relate the error and control input
of the system to the reference and the disturbance. All calculations are
performed in a user-friendly toolbox to make this approach easy of use.
The proposed method predicts the closed-loop performance of reset
control systems more accurately than the DF method.

APPENDIX A

Lemma 3: Consider a positive and bounded function V (t). Suppose
that there exists α > 0 such that{

V̇ ≤ −αV t ∈ M
V (Δx(t+)) = V (Δx(t)) + Ξ(t, δ), t /∈ M.

(47)

If for t sufficiently large
Ξ(t, δ) ≤ 0 (48)

then there exist αm > 0 and K > 0 such that

V (t) ≤ Ke−αmt, for all t ≥ 0. (49)

Proof: Since V is bounded, by (47) and (48), V achieves its maxi-
mum value at some time tvm <∞. In other words, there exists a time
0 ≤ tvm <∞ such that{

V (tvm) ≥ V (t), t ≤ tvm
V (tvm) > V (t). t > tvm

(50)

2Due to lack of space, it is not possible to have illustrative examples in this
article. In [39], there are several practical example which show the effectiveness
of the proposed approach.

Therefore, by (48) and well-posedness property, there exists a
bounded set T = {ti > tvm | ti /∈ M∧ Ξ(ti, δ) > 0, i ∈ N}. Thus,
using (50) there exists a bounded set A = {αi > 0| V (ti) =
e−αi(ti−tvm )V (tvm), ti ∈ T }. Since the setA is bounded, there exists
aα′ > 0 such that for allαi ∈ A one has thatα′ ≤ αi. Now considering
αm = min(α,α′), based on (47) and (48), yields

V (t) ≤ e−αm(t−tvm )V (tvm) = Ke−αmt, for all t ≥ 0. (51)

Finally, if T and A are empty sets, then selecting αm = α the claim
yields.
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