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Characterization of Input–Output Negative
Imaginary Systems in a Dissipative Framework
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Abstract—In this article, we define the notion of sta-
ble input–output negative imaginary (IONI) systems. This
new class captures and unifies all the existing stable sub-
classes of negative imaginary (NI) systems and is capa-
ble of distinguishing between the strict subclasses (e.g.,
strongly strictly negative imaginary, output strictly neg-
ative imaginary (OSNI), input strictly negative imaginary,
etc.) in the literature. In addition to a frequency-domain
definition, the proposed IONI class has been character-
ized in a time-domain dissipative framework in terms of
a new quadratic supply rate w(u, ū, ˙̄y). This supply rate
consists of the system’s input (u), an auxiliary input (ū)
that is a filtered version of the system’s input, and the
time-derivative of an auxiliary output of the system ( ˙̄y).
This supply rate corrects earlier supply rate attempts in
the literature, which were only expressed in terms of the
input (u) and the time-derivative of the system’s output
(ẏ). In this article, IONI systems are proved to be a class
of dissipative systems with respect to the proposed sup-
ply rate w(u, ū, ˙̄y). Subsequently, an equivalent frequency-
dependent (Q(ω), S(ω), R(ω)) dissipative supply rate is
also proposed for IONI systems. These findings reveal the
connections between the NI property and classical dissi-
pativity in both the time domain and frequency domain.
We also provide linear matrix inequality (LMI) tests on the
state-space matrices to check whether a system belongs to
the IONI class or any of its important subclasses. Finally,
the derived results are specialized for OSNI systems since
such systems exhibit interesting closed-loop stability prop-
erties when connected, in a positive feedback loop, to NI
systems without poles at the origin. Several illustrative nu-
merical examples are provided to make the results intuitive
and useful.

Index Terms—Dissipativity, input–output negative imagi-
nary (IONI) systems, input–output passive systems, output
strictly negative imaginary (OSNI) systems, quadratic sup-
ply rate, storage function.
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I. INTRODUCTION

N EGATIVE imaginary (NI) systems theory was introduced
in [1] and was primarily inspired by the “positive position

feedback control” of highly resonant mechanical systems with
colocated position sensors and force actuators [2]. NI theory has
formalized and unified some well-known vibration control tech-
niques (e.g., graphical techniques and integral resonant control
schemes) developed for lightly damped flexible structures using
positive position feedback [1], [3]. NI theory offers a stand-alone
robust control analysis and synthesis framework, similar to
passivity and small-gain methodologies [4]. The NI system
property is closely related to counterclockwise input–output
dynamics in a nonlinear setting [5] and input–output
Hamiltonian systems in both a linear and a nonlinear setting [6],
[7]. NI control theory can be considered to be an energy-based
control methodology [8], and consequently, it has a strong
connection with dissipative theory [9]. These connections will
be investigated in detail in this article. NI systems theory has
gained popularity owing to its simple robust stability condition
that depends only on the dc loop gain. Hence, the theory
can be easily applied to practical systems without having an
exact mathematical model [10]–[13]. NI theory finds potential
applications in vibration control of lightly damped flexible
structures [1], cantilever beams [14], large space structures [15],
and robotic manipulators [15], in control of nanopositioning
systems [16], in control of large vehicle platoons [17], etc.

In this article, the notion of input–output negative imaginary
(IONI) systems is defined via a new frequency-domain defini-
tion that eliminates the difficulties identified in [18]. This new
definition differs substantially from adjacent concepts in [18]–
[21]. The IONI class proposed here includes stable NI systems
and the existing strict subclasses of the NI class, e.g., strictly
negative imaginary (SNI) [1], strongly strictly negative imag-
inary (SSNI) [22] (denoted by SSNI(α=1,β=1) in this article),
SSNI [23] (denoted by SSNI(α=2,β=1)

1 in this article), and out-
put strictly negative imaginary (OSNI) [8], [18]. It also creates a
valid input strictly negative imaginary (ISNI) system class (with
ε > 0, δ ≥ 0, α ∈ N, β ∈ N). The meaning of the parameters
δ, ε, α, and β will be explained in Definition 6. A set-theoretic
relationship among the subclasses of IONI systems is illustrated
in the Venn diagram shown in Fig. 2.

The connections between NI systems theory and classical
dissipativity have not yet been thoroughly explored. In the case
of passive systems, a complete characterization exists in the lit-
erature, which was built on Willems’s dissipative framework [9]
and Hill–Moylan’s (Q,S,R)-dissipative framework [24]–[26].

1For real, rational and proper transfer functions, SSNI(α=2,β=1) is the bigger
set that contains SSNI(α=1,β=1).
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Fig. 1. Interconnection of NI systems with positive feedback.

Fig. 2. Venn diagram shows the set-theoretic relationship amongst
subclasses of the IONI and NI classes.

All strict and nonstrict passive systems can be shown to be
dissipative in respect of a supply rate w(u, y) that depends
on the input (u) and the output (y) of the system. Different
variants of the passivity theorem are available in the litera-
ture, which are proven using the (Q,S,R)-dissipative frame-
work [25], [26]. In [27], Griggs et al. introduced a class of
systems with “mixed” input–output passive and finite-gain prop-
erties. Griggs et al. [27], also proved finite-gain input–output
stability of the closed-loop system having “mixed” properties
using a frequency-domain dissipative approach. Inspired by the
work presented in [27], Patra and Lanzon introduced in [19] the
notion of “mixed” IONI and finite-gain properties along with a
stand-alone frequency-domain definition for IONI systems on a
finite frequency interval. Patra and Lanzon [19] also provided a
frequency-domain (Q(ω), S(ω), R(ω))-dissipative supply rate
to characterize such systems. Later, Das et al. [20], [21] pur-
sued a similar approach alike [19] to establish internal stability
conditions for interconnected systems with “mixed” NI, passive
and finite-gain properties.

Unlike [19]–[21], in this article, it is shown that the IONI
systems are dissipative with respect to a new time-domain
supply rate w(u, ū, ˙̄y) = 2 ˙̄y�u− δ ˙̄y� ˙̄y − εū�ū by proving the
existence of a positive semidefinite storage function V (x). An
auxiliary output ȳ = y −Du is utilized to capture the full class
of OSNI systems (i.e., including biproper cases), while the
auxiliary input ū, which is a filtered version (as discussed later
in Section V) of the actual input u, is used to capture an ISNI
property. For a strictly proper OSNI system, this supply rate
reduces to 2ẏ�u− δ ẏ�ẏ, which finds an interesting physical in-
terpretation. For example, in the case of a spring–mass–damper
system being OSNI, the term ẏ�u gives the mechanical power
input [velocity (ẏ) × force (u)], while the term ẏ�ẏ represents
the power dissipated in the damper (d ẏ2), and hence, the ex-
pression

∫ T

0 (2ẏ�u− δ ẏ�ẏ)dt gives the stored energy of the

system, which is always nonnegative. However, for more general
systems, the supply rate provides an abstraction of the net power
inflow into the system, and often, it is not possible to find an exact
physical interpretation.

Apart from the time-domain analysis, a frequency-domain
(Q(ω), S(ω), R(ω))-dissipative framework is also proposed in
this article to characterize IONI systems. Thereafter, an equiv-
alence is established between the time-domain and frequency-
domain dissipative frameworks via applying Parseval’s theo-
rem. Furthermore, LMI-based state-space characterizations are
derived for the IONI systems and each of its subclasses. We
also specialize the above results to OSNI systems since such
systems exhibit interesting closed-loop stability properties when
connected (in a positive feedback loop) with NI systems that
may contain complex conjugate poles on the imaginary axis
excluding the origin.

II. NOTATION AND MATHEMATICAL PRELIMINARIES

The notation is standard throughout. The set of all natu-
ral numbers (excluding 0) is denoted by N = {1, 2, 3, . . . }.
R≥0 denotes the set of all nonnegative real numbers. A−∗ and
A−� represent shorthand for (A−1)∗ and (A−1)� respectively.
λmax(A) denotes the maximum eigenvalue of a matrix A that
has only real eigenvalues. Let Rm×n be the set of all real,
rational, and proper transfer function matrices of dimension
m× n, and let RHm×n

∞ denote the set of all asymptotically
stable transfer function matrices in Rm×n. For M(s) ∈ Rm×m,
the real-Hermitian and imaginary-Hermitian frequency response

parts are given by
1

2
[M(jω) +M(jω)∗] and

1

2j
[M(jω)−

M(jω)∗], respectively, where M(jω)∗ = M(−jω)�. The L2-
adjoint of a transfer function matrix M(s), where s ∈ C,
is expressed as M∼(s) = M(−s)�. (A,B,C,D) denotes a
state-space realization of a real, rational, and proper trans-
fer function matrix M(s) = D + C(sI −A)−1B. L2

m(jR)
denotes the frequency-domain Lebesgue space [19], [28] un-

der the inner product 〈f, g〉 = 1

2π

∫∞
−∞ f(jω)∗g(jω) dω < ∞

when f, g ∈ L2
m(jR). For a signal f ∈ L2

m(jR), the norm

is given by ‖f‖ =
√
〈f, f〉 =

√
1

2π

∫∞
−∞ f(jω)∗f(jω) dω <

∞. A dynamical system is said to be initially relaxed if
it has zero initial condition, i.e., x(0) = 0. The term “sta-
ble system” refers to an asymptotically stable system, i.e.,
the associated transfer function matrix belongs to RH∞.
The space of all real-valued, absolutely square integrable,
time-domain functions is defined by Lm

2 = {f : R → Rm :
f(t) = 0 when t < 0,

∫∞
0 f(t)�f(t) dt < ∞}, while the space

of all real-valued, locally square integrable, time-domain
functions is defined by Lm

2e = {f : R → Rm : f(t) = 0 when
t < 0,

∫ �
0 f(t)�f(t) dt < ∞ ∀T ∈ [0,∞)}. An energy supply

rate function w(u, y) is an abstraction of the rate of energy
inflow into a physical system that is expressed by the mapping
w : U × Y → R, where the input space U ∈ Lm

2e and the output
space Y ∈ Lp

2e, and satisfies the property
∫ �
0 w(u, y) dt < ∞

for all admissible (u, y) ∈ U × Y and ∀T ∈ [0,∞). In particu-
lar,

∫ T

0 w(u, y) dt < ∞ ∀T ∈ [0,∞] when (u, y) ∈ Lm
2 × Lp

2.
Note that an energy supply rate can also be defined in the
frequency domain for a stable system, and it remains equivalent
to the corresponding time-domain supply rate via Parseval’s
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theorem [4]. The symbol
∏

denotes the product operator. For
a transfer function M(s) ∈ Rm×m, L −1[M(s)] represents the
impulse response (also called the Kernel function), where L −1

denotes the inverse Laplace operator. The symbol 	 denotes the
time-domain convolution operator and the expression y(t) =
L −1[M(s)] 	 u(t) indicates that the output signal y(t) is be-
ing generated by the time-domain convolution of the impulse
response of the system and an input u(t). The spectral factor-
ization [29], [30] of a transfer function matrix F (s) is given by
F (s) = F∼

s (s)Fs(s), where Fs(s) denotes the stable, minimum
phase spectral factor of F (s) and F∼

s (s) = Fs(−s)� indicates
the antistable, antiminimum phase spectral factor. Let S1 and S2

be two subsets of R, then S1\S2 = S1 ∩ Sc
2 where Sc

2 denotes
the complementary set of S2 in R. A⊗B represents the Kro-
necker product of the matrices A and B. Let sym[A] = A+A�

for A ∈ Rm×m and sqr[B] = B�B for B ∈ Rp×q.

III. TECHNICAL PRELIMINARIES

In this section, essential technical preliminaries, definitions,
and lemmas are presented, which underpin the proofs of the
main results of this article.

The finite-dimensional, causal, LTI systems studied in this
article are described by2

M :

{
ẋ = Ax+Bu, x(0) = x0,
y = Cx+Du.

(1)

The admissible inputs u(t) are considered to be in the space
Lm

2 such that the unique solution of the state trajectory x(t)
exists forward in time t ≥ 0 and x ∈ Ln

2e. Therefore, the output
y(t) also exists forward in time t ≥ 0 and y ∈ Lp

2e. Let us
introduce the state transition function Φ, associated with M ,
being a mapping from R≥0 × R≥0 × Rn × Lm

2 to Rn. Here,
Φ(t1, t0, x(t0), u(t)) denotes the state x(t1) at time t1 when the
system M starts from an initial state x(t0) ∈ Rn at time t = t0,
and an admissible inputu(t) is applied onM for the time interval
t ∈ [t0, t1].

A. Dissipative Systems Notations and Definitions

Let us recall the notion of dissipativity of finite-dimensional,
causal, LTI systems introduced in [9]. It is important to mention
here that in the following definitions related to time-domain dis-
sipativity, we have chosen to restrict the input space to Lm

2 since,
in this article, we aim to establish the equivalence between the
time-domain dissipativity and frequency-domain dissipativity of
stable NI systems where the frequency-domain dissipativity is
characterized by only finite energy input signalsU ∈ L2

m(jR).
Definition 1 (Dissipative systems) [9]: A dynamical system

M , given in (1), is said to be dissipative with respect to an energy
supply rate w(u, y) if there exists a function V : Rn → R≥0,
called the storage function, such that

V (x(0)) +

∫ T

0

w(u, y) dt ≥ V (x(T )) (2)

for any T ∈ [0,∞), any initial condition x(0) ∈ Rn and any
admissible inputu ∈ Lm

2 wherex(T ) = Φ(T, 0, x(0), u(t)) and
w(u, y) has been evaluated along any trajectory of (1).

2For simplicity of presentation, the dependence ofx,u, andy on time t ∈ R≥0

is omitted.

Inequality (2) is known as the “dissipation inequality” in
the sense of Willems. Note that for asymptotically stable LTI
systems and for all input u ∈ Lm

2 , limt→∞ x(t) is finite and also
x ∈ Lm

2 ; hence, y ∈ Lp
2 implying

∫∞
0 w(u, y) dt < ∞. In such

cases, Willems’s dissipation inequality implies

V (x(0)) +

∫ ∞

0

w(u, y) dt ≥ V (x(∞)) . (3)

Furthermore, if V : Rn → R≥0 is a differentiable storage
function, then the dissipation inequality (2) can be expressed
in the differential form as

w(u, y) ≥ V̇ (x) (4)

where the “dot” represents the time-derivative.
Note that for finite-dimensional LTI systems with minimal

state-space realizations, the storage function V (x) can be char-
acterized with a quadratic formx�Px, without loss of generality,
where P = P� > 0 [9], [31]. Moreover, in an LTI setting, the
storage function V (x) can always be assumed to be a differen-
tiable function of x [24], [32].

For a dissipative system with a completely controllable state
space, the “required supply” is defined as [33]

Vr(x1) = inf
x∗ → x1

u(·), T ≤ 0

∫ 0

T

w(u, y) dt (5)

where x∗ ∈ Rn represents the point of minimum storage. In
general, the origin of a state space is the point of mini-
mum storage, where V (x∗) = V (0) = 0. The “required sup-
ply” is the least amount of energy required to excite a
system to a desired state from the state of minimum en-
ergy level [34]. Vr(x) is a possible storage function for any
dissipative system with a reachable (from the origin) state
space.

Definition 2 ((Q,S,R)-dissipativity in Hill–Moylan’s frame-
work) [24]: A dynamical system M , given by (1) with x0 = 0,
is said to be (Q,S,R)-dissipative if there existQ = QT ∈ Rp×p,
S ∈ Rp×m and R = RT ∈ Rm×m such that∫ T

0

(
y�Qy + 2y�Su+ u�Ru

)
dt ≥ 0 (6)

for any T ∈ [0,∞) and all u ∈ Lm
2 .

If the supply rate function in Willems’s framework is con-
sidered to be w(u, y) = y�Qy + 2y�Su+ u�Ru where Q =
QT ∈ Rp×p, S ∈ Rp×m and R = RT ∈ Rm×m, then (4) takes
the form

y�Qy + 2y�Su+ u�Ru ≥ V̇ (x). (7)

So far we have discussed only time-domain dissipativity.
However, dissipative characterization can also be expressed in
the frequency domain. The following definition articulates the
notion of frequency-domain (Q(ω), S(ω), R(ω))-dissipativity,
which may be regarded as a frequency-domain counterpart of
the Hill–Moylan’s (Q,S,R)-dissipativity.

Definition 3 ((Q(ω), S(ω), R(ω))-dissipativity) [19], [27]:
Let M(s) ∈ RH p×m

∞ be the transfer function matrix of a
causal system M with the input–output relationship Y (s) =
M(s)U(s), where U ∈ L2

m(jR). Then, M is said to be
(Q(ω), S(ω), R(ω))-dissipative with respect to the frequency-
dependent triplet (Q(ω), S(ω), R(ω))whereQ(ω) = Q(ω)� ∈
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Rp×p, S(ω) ∈ Cp×m and R(ω) = R(ω)� ∈ Rm×m ∀ω ∈ R if

1

2π

∫ ∞

−∞
[Y (jω)∗Q(ω)Y (jω) + Y (jω)∗S(ω)U(jω)

+U(jω)∗S(ω)∗Y (jω) + U(jω)∗R(ω)U(jω)] dω ≥ 0 (8)

for all U ∈ L2
m(jR).

The following lemma on the characterization of output strictly
passive (OSP) systems is recalled here, so that it can be used later
in this article to define the OSNI systems property.

Lemma 1 [8], [18]: A system F (s) ∈ RHm×m
∞ with

F (s) + F∼(s) having full normal rank is OSP if and only if
there exists δp > 0 such that

F (jω) + F (jω)∗ ≥ δpF (jω)∗F (jω) ∀ω ∈ R ∪ {∞}.
(9)

B. Definitions of Negative Imaginary Systems

In this section, we recall the definitions of NI and SNI systems.
Definition 4 (NI System) [15], [35]: Let M(s) be the real,

rational and proper transfer function matrix of a square and
causal system without any poles in the open right-half plane.
M(s) is said to be NI if the following three conditions hold:

1) j[M(jω)−M(jω)∗] ≥ 0 for all ω ∈ (0,∞) except the
values of ω where s = jω is a pole of M(s);

2) if s = jω0 withω0 ∈ (0,∞) is a pole ofM(s), then it is at
most a simple pole and the residue matrix lims→jω0

(s−
jω0)jM(s) is Hermitian and positive semidefinite; and

3) if s = 0 is a pole of M(s), then lims→0 s
kM(s) = 0 for

all k ≥ 3 and lims→0 s
2M(s) is Hermitian and positive

semidefinite.
In the literature, there are extensions of the NI definition

to improper nonrational systems [23], [36], [37] and NI the-
ory has also been recently extended to discrete-time LTI sys-
tems [38]. However, in this article, we restrict our attention to
only continuous-time, real, rational, and proper NI systems as
per Definition 4.

Definition 5 (SNI System) [1]: Let M(s) be the real, rational,
and proper transfer function matrix of a square and causal
system. M(s) is said to be SNI if M(s) has no poles in {s ∈ C :
�[s] ≥ 0} and j[M(jω)−M(jω)∗] > 0 for all ω ∈ (0,∞).

We now present a necessary and sufficient condition for in-
ternal stability of an NI-SNI positive feedback interconnection,
as shown in Fig. 1.

Theorem 1 [35]: Let M(s) be an NI system without poles
at the origin and N(s) be an SNI system. Then, the positive
feedback interconnection ofM(s) andN(s), as shown in Fig. 1,
is internally stable if and only if

det[I −M(∞)N(∞)] �= 0, (10a)

λmax

[
(I −M(∞)N(∞))−1(M(∞)N(0)− I)

]
< 0, (10b)

λmax

[
(I −N(0)M(∞))−1(N(0)M(0)− I)

]
< 0. (10c)

C. Relationship Between the Transmission Zeros of a
Transfer Function Matrix and the Rank Deficiency of Its
Imaginary-Hermitian Part

In the following, we establish a relationship between the trans-
mission zeros of an NI transfer function matrix on the imaginary
axis and the rank deficiency of its imaginary-Hermitian part at

that frequency. This result will be used later in Section VI to
prove the closed-loop stability of a positive feedback intercon-
nection of an NI system without poles at the origin and an OSNI
system.

Lemma 2: Let G(s) ∈ Rm×m be an NI system with full nor-
mal rank. Suppose s = jωz with ωz ∈ (0,∞) is a transmission
zero ofG(s) but not a pole. Then, det[G(jωz)−G(jωz)

∗] = 0.
Proof: As s = jωz with ωz ∈ (0,∞) is a transmission

zero of G(s), there exists a nonzero vector x ∈ Cm such
that G(jωz)x = 0. This then implies x∗G(jωz)x = 0 ⇒
x∗ 1

2j [G(jωz)−G(jωz)
∗]x=0⇔x∗j[G(jωz)−G(jωz)

∗]x=

0. For convenience, let Z = j[G(jωz)−G(jωz)
∗]. Now,

Z = Z∗ ≥ 0 as G(s) is NI and s = jωz is not a pole of
G(s). Since Z ≥ 0, there exists a unique matrix square
root Z

1
2 ≥ 0 (see [39, p. 406]). Therefore, we have

x∗Z
1
2Z

1
2x = 0 ⇔ y∗y = 0 denoting y = Z

1
2x, which in

turn implies y = 0. Hence, det[Z] = 0 as x �= 0. �
Lemma 3: Let G(s) ∈ Rm×m be an NI system. Then,

j[G(jωz)−G(jωz)
∗] > 0 with ωz ∈ (0,∞) implies

det[G(jωz)] �= 0.
Proof: Suppose via contradiction that det[G(jωz)] = 0.

Then, there exists a nonzero vector x ∈ Cm such that
G(jωz)x = 0, which ultimately implies x∗[j{G(jωz)−
G(jωz)

∗}]x = 0, as shown in the proof of Lemma 2. But, the re-
sult violates the supposition that j[G(jωz)−G(jωz)

∗] > 0 [39,
Ch. 7]. Hence, there does not exist any nonzero x ∈ Cm such
that G(jωz)x = 0, that is, det[G(jωz)] �= 0. �

IV. IONI SYSTEMS

In this section, we define a unifying class of stable negative
imaginary systems, termed as IONI systems,3 that encompasses
the existing strict forms of NI systems, namely, 1) SSNI systems
introduced in [22] (denoted by SSNI(α=1,β=1) in this article),
2) a different class of SSNI systems defined in [23] (denoted
by SSNI(α=2,β=1) in this article), and 3) OSNI systems defined
in [18] and modified later in [8]. Moreover, the proposed IONI
class also gives birth to two new subclasses of SNI systems,
termed as the ISNI systems and very strictly negative imaginary
(VSNI) systems in this article. The set-theoretic relationship
among the subclasses of IONI systems is illustrated in the Venn
diagram of Fig. 2.

Definition 6 (IONI Systems): Let M(s) ∈ RHm×m
∞ . Then,

M(s) is said to be IONI with a level of output strictness δ ≥
0, a level of input strictness ε ≥ 0, and having an arrival rate
specified by α ∈ N and a departure rate specified by β ∈ N
(IONI(δ,ε,α,β)) if

jω[M(jω)−M(jω)∗]− δ ω2M̄(jω)∗M̄(jω)

− ε

(
ω2β

1 + ω2(α+β−1)

)
Im ≥ 0 ∀ω ∈ R ∪ {∞} (11)

where M̄(jω) = M(jω)−M(∞).
Remark 1: α ∈ N (resp. β ∈ N) is referred to as the arrival

(resp. departure) rate as it determines the behavior of j[M(jω)−
M(jω)∗] as ω → ∞ (resp. ω → 0).

The following lemma shows that if inequality (11) is fulfilled
for some δ0 ≥ 0 and ε0 ≥ 0, it is also automatically fulfilled for
any δ ∈ [0, δ0] and any ε ∈ [0, ε0].

3The IONI property is defined for finite-dimensional, causal, square, and
asymptotically stable systems.
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Lemma 4: Let α ∈ N, β ∈ N, δ0 ≥ 0 and ε0 ≥ 0. Let M(s)
be IONI(δ0,ε0,α,β). Then,M(s) is IONI(δ,ε,α,β) for all δ ∈ [0, δ0]
and all ε ∈ [0, ε0].

Proof: This trivially follows from jω[M(jω)−

M(jω)∗] ≥ δ0 ω
2M̄(jω)∗M̄(jω) + ε0

(
ω2β

1 + ω2(α+β−1)

)
Im ≥

δ ω2M̄(jω)∗M̄(jω) + ε

(
ω2β

1 + ω2(α+β−1)

)
Im ∀ω ∈ R∪{∞},

δ∈ [0, δ0] and ε ∈ [0, ε0]. �
We will now classify IONI systems on the basis of the values

of the parameters δ, ε, α, and β.
Definition 7 (Classification of IONI Systems): Let M(s) ∈

RHm×m
∞ . Then, M(s) is said to be:

1) stable NI if it belongs to {M(s) : M(s) is IONI(δ,ε,α,β),
δ ≥ 0, ε ≥ 0, α ∈ N, β ∈ N};

2) ISNI if it belongs to {M(s) : M(s) is IONI(δ,ε,α,β),
δ ≥ 0, ε > 0, α ∈ N, β ∈ N};

3) SSNI(α=1,β=1) if it belongs to {M(s) : M(s) is
IONI(δ,ε,1,1), δ ≥ 0, ε > 0};

4) SSNI(α=2,β=1) if it belongs to {M(s) : M(s) is
IONI(δ,ε,2,1), δ ≥ 0, ε > 0};

5) VSNI if it belongs to {M(s) : M(s) is IONI(δ,ε,α,β),
δ > 0, ε > 0, α ∈ N, β ∈ N}; and

6) OSNI if it belongs to {M(s) : M(s) is IONI(δ,ε,α,β),
δ > 0, ε ≥ 0, α ∈ N, β ∈ N, [M(s)−M∼(s)] has full
normal rank}.

The following lemma states the connections between the
above classifications.

Lemma 5: The following five statements hold.
1) If M(s) is ISNI, then it is also stable NI.
2) If M(s) is OSNI, then it is also stable NI.
3) If M(s) is VSNI, then it is also ISNI and OSNI.
4) If M(s) is SSNI(α=1,β=1), then it is also ISNI.
5) If M(s) is SSNI(α=2,β=1), then it is also ISNI.

Proof: All five cases are trivial consequences of Defini-
tion 7. �

The following lemma gives a simpler, yet equivalent, charac-
terization for each of the classes in Definition 7.

Lemma 6: Let M(s) ∈ RHm×m
∞ . Then, M(s) is:

1) stable NI if and only if M(s) is IONI(0,0,�,�);4

2) ISNI if and only if there exist ε > 0, α ∈ N and β ∈ N
such that M(s) is IONI(0,ε,α,β);

3) SSNI(α=1,β=1) if and only if there exists ε > 0 such that
M(s) is IONI(0,ε,1,1);

4) SSNI(α=2,β=1) if and only if there exists ε > 0 such that
M(s) is IONI(0,ε,2,1);

5) VSNI if and only if there exist δ > 0, ε > 0, α ∈ N and
β ∈ N such that M(s) is IONI(δ,ε,α,β); and

6) OSNI if and only if [M(s)−M∼(s)] has full normal rank
and there exists δ > 0 such that M(s) is IONI(δ,0,�,�).

Proof: We proof each statement separately.
1) Since “M(s) is stable NI” is equivalent to ∃ δ0≥0,

ε0 ≥ 0, α0 ∈ N and β0 ∈ N such that M(s)
is IONI(δ0,ε0,α0,β0) via Definition 7, sufficiency
trivially follows on choosing δ0 = 0, ε0 = 0 and

4The symbol � stands for a “do not care value” because the associated term
disappears from (11) when ε = 0.

any α0 ∈ N and β0 ∈ N whereas necessity follows
from Lemma 4 on choosing δ = 0 and ε = 0 in
Lemma 4.

2) Since “M(s) is ISNI” is equivalent to ∃ δ0 ≥ 0, ε0 > 0,
α0 ∈ N and β0 ∈ N such that M(s) is IONI(δ0,ε0,α0,β0)

via Definition 7, sufficiency trivially follows on choosing
δ0 = 0 whereas necessity follows from Lemma 4 on
choosing δ = 0 in Lemma 4.

3) Since “M(s) is SSNI(α=1,β=1)” is equivalent to ∃ δ0 ≥ 0
and ε0 > 0 such that M(s) is IONI(δ0,ε0,1,1) via Defini-
tion 7, sufficiency trivially follows on choosing δ0 = 0
whereas necessity follows from Lemma 4 on choosing
δ = 0, α = 1 and β = 1 in Lemma 4.

4) Since “M(s) is SSNI(α=2,β=1)” is equivalent to ∃ δ0 ≥ 0
and ε0 > 0 such that M(s) is IONI(δ0,ε0,2,1) via Defini-
tion 7, sufficiency trivially follows on choosing δ0 = 0
whereas necessity follows from Lemma 4 on choosing
δ = 0, α = 2 and β = 1 in Lemma 4.

5) “M(s) is VSNI” is directly equivalent to ∃ δ0 >
0, ε0 > 0, α0 ∈ N and β0 ∈ N such that M(s) is
IONI(δ0,ε0,α0,β0) via Definition 7.

6) Since “M(s) is OSNI” is equivalent to [M(s)−M∼(s)]
has full normal rank and ∃ δ0 > 0, ε0 ≥ 0, α0 ∈ N and
β0 ∈ N such that M(s) is IONI(δ0,ε0,α0,β0) via Defini-
tion 7, sufficiency trivially follows on choosing ε0 = 0
and any α0 ∈ N and β0 ∈ N whereas necessity follows
from Lemma 4 on choosing ε = 0 in Lemma 4. �

Note that the pointwise frequency-domain condition (11)
can equivalently be expressed on the open positive fre-
quency interval, that is, for all ω ∈ (0,∞), as shown in
Lemma 7.

Lemma 7: LetM(s) ∈ RHm×m
∞ , M̄(s) = M(s)−M(∞),

δ ≥ 0, ε ≥ 0, α ∈ N and β ∈ N. Then, (11) is equivalent to

j[M(jω)−M(jω)∗]− δ ωM̄(jω)∗M̄(jω)

− ε

⎛
⎜⎝ 1

ω2α−1 +
1

ω2β−1

⎞
⎟⎠ Im ≥ 0 ∀ω ∈ (0,∞). (12)

Proof (Sufficiency): The inequality (12) implies
j[M(jω)−M(jω)∗] ≥ 0 ∀ω ∈ (0,∞) which, in turn,
implies M(0) = M(0)� and M(∞) = M(∞)� [1]. Also,
(12) implies j[M(jω̂)−M(jω̂)∗]− δω̂M̄(jω̂)∗M̄(jω̂)−

ε

(
1

ω̂2α−1 +
1

ω̂2β−1

)
Im ≤ 0 ∀ω̂ ∈ (−∞, 0) on letting

ω̂ = −ω and taking the transpose throughout. On
multiplying this last inequality by ω̂ and (12) by ω,
we get jω[M(jω)−M(jω)∗]− δ ω2M̄(jω)∗M̄(jω)−

ε

(
ω

ω2α−1 +
1

ω2β−1

)
Im ≥ 0 ∀ω ∈ R since this in-

equality is trivially satisfied at ω = 0. Then (11) holds
because jω[M(jω)−M(jω)∗]− δ ω2M̄(jω)∗M̄(jω)−

ε

(
ω2β

1 + ω2(α+β−1)

)
Im = (jωM̄(jω)) + (jωM̄(jω))∗ −
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δ(jωM̄(jω))∗(jωM̄(jω))− ε

(
ω2β

1 + ω2(α+β−1)

)
Im, which

is clearly finite and positive semidefinite in the limit ω → ∞.
(Necessity). Trivial restriction. �
The following lemma shows that the SNI set contains the same

elements as the ISNI set.
Lemma 8: M(s) is ISNI if and only if M(s) is SNI.
Proof (Necessity): M(s) is ISNI implies that there exist

ε > 0, α ∈ N and β ∈ N such that (11) holds. This im-

plies that jω[M(jω)−M(jω)∗] ≥ ε

(
ω2β

1 + ω2(α+β−1)

)
Im >

0 ∀ω ∈ (0,∞), which in turn implies that M(s) is SNI.
(Sufficiency): M(s) is SNI implies that j[M(jω)−

M(jω)∗] > 0 ∀ω ∈ (0,∞). This then implies that there exist
a sufficiently small ε > 0 and sufficiently large α ∈ N and β ∈

N such that j[M(jω)−M(jω)∗] ≥ ε

(
1

ω2α−1 +
1

ω2β−1

)
Im

∀ω ∈ (0,∞). This hence implies that M(s) is ISNI. �
The following lemma shows that the set of SSNI(α=1,β=1)

systems is contained within the set of SSNI(α=2,β=1) systems
and also within the set of VSNI systems.

Lemma 9: Let M(s) be SSNI(α=1,β=1). Then, M(s) is also
SSNI(α=2,β=1) and VSNI.

Proof: Since M(s) is SSNI(α=1,β=1), there exists

ε > 0 such that jω[M(jω)−M(jω)∗]≥ε
ω2

1 + ω2
Im ∀ω∈

R ∪ {∞}. Now
ω2

1 + ω2
≥
(

2√
2 + 1

)
ω2

1 + ω4
∀ω∈R∪{∞}

since
1 + ω2

1 + ω4
≤ 1

2
(
√
2 + 1) ∀ω ∈ R ∪ {∞}. Let ε1 =(

2√
2 + 1

)
ε. It easily follows that jω[M(jω)−M(jω)∗] ≥

ε1

(
ω2

1 + ω4

)
Im ∀ω ∈ R ∪ {∞}, which implies that M(s) is

SSNI(α=2,β=1). �
Furthermore, let M̄(s) = M(s)−M(∞), ε2 =

1

2
ε, and

δ2 =
ε2

||(s+ 1)M̄(s)||2∞
. Since (1 + ω2)M̄(jω)∗M̄(jω) =

[(1 + jω)M̄(jω)]∗[(1 + jω)M̄(jω)] ≤ ||(s + 1)M̄(s)||2∞Im
∀ω ∈ R ∪ {∞}, it follows that δ2M̄(jω)∗M̄(jω) ≤
ε2

(
1

1 + ω2

)
Im ∀ω∈R ∪ {∞}. Thus, jω[M(jω)−M(jω)∗]

≥ ε2

(
ω2

1 + ω2

)
Im + ε2

(
ω2

1 + ω2

)
Im ≥ ε2

(
ω2

1 + ω2

)
Im

+ δ2ω
2M̄(jω)∗M̄(jω) ∀ω ∈ R ∪ {∞}. �

The following lemma states that SSNI(α=2,β=1) systems that
have a strictly proper sM̄(s) are also VSNI. The interpretation
of a strictly proper sM̄(s) is easy in a scalar setting as it would
correspond to systems M̄(s) with a relative degree of two.

Lemma 10: Let M(s) be SSNI(α=2,β=1) with
lims→∞[sM̄(s)] = 0 where M̄(s) = M(s)−M(∞). Then,
M(s) is VSNI.

Proof: Since M(s) is SSNI(α=2,β=1), there exists ε > 0

such that jω[M(jω)−M(jω)∗] ≥ ε

(
ω2

1 + ω4

)
Im ∀ω ∈

R ∪ {∞}. Since lims→∞[sM̄(s)] = 0, (s2 +
√
2s+ 1)M̄(s) is

proper. Let ε1 = 1
2ε and δ1 =

ε1

||(s2 +
√
2s+ 1)M̄(s)||2∞

. Since

(1 + ω4)M̄(jω)∗M̄(jω) = [((jω)2 +
√
2jω + 1)M̄(jω)]∗

[((jω)2 +
√
2jω + 1)M̄(jω)] ≤ ||(s2 +

√
2s+ 1)M̄(s)||2∞Im

∀ω ∈ R ∪ {∞}, it follows that δ1M̄(jω)∗M̄(jω) ≤
ε1

1 + ω4
Im ∀ω ∈ R ∪ {∞}. Thus, jω[M(jω)−M(jω)∗] ≥

ε1

(
ω2

1 + ω4

)
Im + ε1

(
ω2

1 + ω4

)
Im ≥ ε1

(
ω2

1 + ω4

)
Im +

δ1ω
2M̄(jω)∗M̄(jω) ∀ω ∈ R ∪ {∞}, which implies that M(s)

is VSNI.
The following lemma shows that in the scalar case, the set

of SSNI(α=2,β=1) systems is contained within the set of VSNI
systems.

Lemma 11: Let M(s) be scalar and SSNI(α=2,β=1). Then,
M(s) is also VSNI.

Proof: Since Lemma 9 guarantees that all SSNI(α=1,β=1)

systems are VSNI, we only need to consider scalar
SSNI(α=2,β=1) systems that are not SSNI(α=1,β=1).

Since M(s) is SSNI(α=2,β=1), ∃ ε > 0 such that jω[M(jω)

−M(jω)∗] ≥ ε

(
ω2

1 + ω4

)
∀ω ∈ R ∪ {∞}. Since M(s) is not

SSNI(α=1,β=1), � ε̂ > 0 such that jω[M(jω)−M(jω)∗] ≥

ε̂

(
ω2

1 + ω2

)
∀ω ∈ R ∪ {∞}. These two conditions together

give limω→∞[jω[M(jω)−M(jω)∗]] = 0, which in turn
implies that limω→∞[jωM̄(jω)] + limω→∞[jωM̄(jω)]∗ = 0,
where M̄(s) = M(s)−M(∞). Since M(s) is scalar and
limω→∞[jωM̄(jω)] is real, we get limω→∞[jωM̄(jω)] = 0,
which is equivalent to lims→∞[sM̄(s)] = 0. The proof is then
complete by invoking Lemma 10. �

The Venn diagram (see Fig. 2) expresses the set-theoretic
relationship amongst different subclasses of IONI systems. The
strict subclasses are determined via appropriate restrictions
on the parameters δ ≥ 0, ε ≥ 0, α ∈ N and β ∈ N used in
(11). Note that only scalar SSNI(α=2,β=1) systems and MIMO
SSNI(α=2,β=1) systems that satisfy lims→∞[sM̄(s)] = 0 are
guaranteed to be also VSNI via Lemma 10 and Lemma 11;
hence, these systems [SSNI(α=2,β=1)] have not been illustrated
through the Venn Diagram.

In the sequel, we will present six numerical examples corre-
sponding to each region of the Venn diagram in Fig. 2 to illustrate
different examples of IONI systems. Note that it is possible to
check the strict conditions separately, one at a time, as explained
in the next lemma.

Lemma 12: Let α∈N, β∈N, δ0 > 0 and ε0 > 0. Let M(s)
be IONI(δ0,0,α,β) and M(s) be IONI(0,ε0,α,β). Then, M(s) is
IONI(δ,ε,α,β) for all δ ∈ [0, 1

2δ0] and all ε ∈ [0, 1
2ε0].

Proof: Since jω[M(jω)−M(jω)∗]≥δ0ω
2M̄(jω)∗M̄(jω)

and jω[M(jω)−M(jω)∗]≥ε0

(
ω2β

1 + ω2(α+β−1)

)
Im for

all ω∈R ∪ {∞}, it easily follows that jω[M(jω)−
M(jω)∗]= 1

2jω[M(jω)−M(jω)∗]+ 1
2jω[M(jω)−M(jω)∗] ≥

1
2 δ0 ω2 M̄ (jω)∗ M̄ (jω) + 1

2ε0

(
ω2β

1 + ω2(α+β−1)

)
Im ≥

δω2M̄(jω)∗M̄(jω)+ ε

(
ω2β

1 + ω2(α+β−1)

)
Im ∀ω ∈ R ∪ {∞},

δ ∈ [0, 1
2δ0] and ε ∈ [0, 1

2ε0]. �



LANZON AND BHOWMICK: CHARACTERIZATION OF IONI SYSTEMS IN A DISSIPATIVE FRAMEWORK 965

Example 1: LetM1(s)=
s+ 4

s2 + 8s+ 17
. Then, jω[M1(jω)−

M1(jω)
∗] =

2ω2(15 + ω2)

ω4 + 30ω2 + 289
and M̄1(jω)

∗M̄1(jω) =

16 + ω2

ω4 + 30ω2 + 289
∀ω ∈ R ∪ {∞}. M1(s) belongs to

area 1 of the Venn diagram (see Fig. 2) because
2ω2(15 + ω2)

ω4 + 30ω2 + 289
≥ δω2(16 + ω2)

ω4 + 30ω2 + 289
∀ω ∈ R ∪ {∞} when

δ ∈ (0,
30

16
];

2ω2(15 + ω2)

ω4 + 30ω2 + 289
≥ε

ω2

1 + ω2
∀ω∈R∪{∞}when

ε ∈ (0, 30
289 ];

2ω2(15 + ω2)

ω4 + 30ω2 + 289
≥ ε

ω2

1 + ω4
∀ω ∈ R ∪ {∞}

when ε ∈ (0, 30
289 ]; and

2ω2(15 + ω2)

ω4 + 30ω2 + 289
> 0 ∀ω ∈ (0,∞).

Example 2: Let M2(s) =
1

s2 + s+ 1
. Then, jω[M2(jω)−

M2(jω)
∗] =

2ω2

ω4 − ω2 + 1
and M̄2(jω)

∗M̄2(jω) =

1

ω4 − ω2 + 1
∀ω ∈ R ∪ {∞}. M2(s) belongs to area 2 of

the Venn diagram (see Fig. 2) because
2ω2

ω4 − ω2 + 1
≥

δω2

ω4 − ω2 + 1
∀ω ∈ R ∪ {∞}when δ ∈ (0, 2];

2ω2

ω4 − ω2 + 1
≥

ε
ω2

1 + ω2
∀ω ∈ R ∪ {∞} only when ε = 0;

2ω2

ω4 − ω2 + 1
≥

ε
ω2

1 + ω4
∀ω ∈ R ∪ {∞} when ε ∈ (0, 2]; and

2ω2

ω4 − ω2 + 1
>

0 ∀ω ∈ (0,∞).
Example 3: Consider the transfer function M3(s) =

s2 + 12.5

s4 + s3 + 42.5s2 + 12.5s+ 150
. Then, long and tedious

algebraic manipulations give jω[M3(jω)−M3(jω)
∗]=

2ω2(12.5− ω2)2

(ω4−42.5ω2+150)2+ω2(12.5− ω2)2
and M̄3(jω)

∗M̄3(jω)

=
(12.5− ω2)2

(ω4 − 42.5ω2 + 150)2 + ω2(12.5− ω2)2
∀ω ∈ R ∪ {∞}.

M3(s) belongs to area 3 of the Venn diagram (see Fig. 2)
since jω[M3(jω)−M3(jω)

∗] ≥ δω2M̄3(jω)
∗M̄3(jω) for all

ω ∈ R ∪ {∞} when δ ∈ (0, 2]; jω[M3(jω)−M3(jω)
∗] ≥

ε
ω2β

1 + ω2(α+β−1)
∀ω ∈ R ∪ {∞} only when ε = 0 as

jω[M3(jω)−M3(jω)
∗] = 0 at ω = ±

√
12.5 rad/s

whereas
ω2β

1 + ω2(α+β−1)
> 0 at ω = ±

√
12.5 rad/s; and at

ω =
√
12.5 rad/s, jω[M3(jω)−M3(jω)

∗] ≯ 0.

Example 4: Let M4(s) =
2s+ 1

(s+ 1)2
. Then, jω[M4(jω)−

M4(jω)
∗] =

4ω4

(1 + ω2)2
and M̄4(jω)

∗M̄4(jω) =

1 + 4ω2

(1 + ω2)2
∀ω ∈ R ∪ {∞}. M4(s) belongs to the

area 4 of the Venn diagram (see Fig. 2) because
4ω4

(1 + ω2)2
≥ δω2 (1 + 4ω2)

(1 + ω2)2
∀ω ∈ R ∪ {∞} only when

δ = 0;
4ω4

(1 + ω2)2
≥ ε

ω2

1 + ω4
∀ω ∈ R ∪ {∞} only when

ε = 0;
4ω4

(1 + ω2)2
≥ ε

ω2β

1 + ω2(α+β−1)
∀ω ∈ R ∪ {∞} when

α = 1, β = 2 and ε ∈ (0, 2]; and
4ω4

(1 + ω2)2
> 0 ∀ω ∈ (0,∞).

Example 5: The transfer function M5(s) =
2s2 + s+ 1

(s+ 1)(2s+ 1)(s2 + 2s+ 5)
belongs to area 5 (i.e., simply

a stable NI system without any form of strictness) of the
Venn diagram because jω[M5(jω)−M5(jω)

∗] = 0 at
ω = 1 rad/s and M̄5(jω)

∗M̄5(jω) = 0.01 at ω = 1 rad/s,
which imply that (11) can only be satisfied with δ = 0 and
ε = 0.

Example 6: The transfer functions M6a(s) =
1

s
, M6b(s) =

1

s2 + 1
and M6c(s) =

1

s2
belong to area 6 of the Venn diagram

(hence do not belong to the IONI class) since they are not
asymptotically stable.

V. CONNECTIONS BETWEEN IONI SYSTEMS AND

DISSIPATIVITY

Section V-A derives a stable spectral factor of a transfer
function associated with the filter term in (11) for usage in the
subsequent sections. Section V-B extends the classical notion
of dissipativity to include supply rates that involve the time
derivative of the system’s output taking inspiration from [5],
[25], [33] and introduces a new time-domain dissipative frame-
work for characterizing the class of stable IONI systems, in-
cluding its strict subclasses. In Section V-C, IONI systems
are characterized in an equivalent frequency-domain frame-
work with respect to a (Q(ω), S(ω), R(ω))-dissipative supply
rate.

A. Analysis of the Filter Term Used in Definition 6

In order to establish the connections between the IONI system
property (11) and dissipative theory, a new supply ratew(u, ū, ˙̄y)
will be proposed in the sequel to characterize IONI systems in
a time-domain dissipative framework. This supply rate involves
the input to a physical system (u), an auxiliary input (ū) which
is a filtered version of u, and the time-derivative of an auxiliary
output ( ˙̄y) where the auxiliary output ȳ = y −M(∞)u. In order
to obtain ū, a bandpass filter has to be constructed as the stable
spectral factor of

f(s) =
(−s)βsβ

1 + (−s)(α+β−1) s(α+β−1)
(13)

where α ∈ N and β ∈ N. Note that when s = jω, f(jω) =
ω2β

1 + ω2(α+β−1)
which is the frequency response function within

the last term of (11) associated with ε.

Lemma 13: Let f(s)=
(−s)βsβ

1 + (−s)(α+β−1) s(α+β−1)
with

α ∈ N and β ∈ N. Then, f(s) can be spectral fac-
torized as f(s) = f∼

s (s)fs(s) where fs(s) ∈ RH∞ is
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Fig. 3. Log–log frequency plot of the filter function f̄(ω) =
1

ω2α−1+ 1

ω2β−1

for four different combinations of α and β.

given by

fs(s) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s

s+ 1
when α = β = 1,

sβ

(α+β−1
2 −1)∏
i=0

(
s2 + 2 sin

[
(2i+ 1)π

2(α+ β − 1)

]
s+ 1

)
when α+ β is odd,

sβ

(s+ 1)
(α+β

2 −2)∏
i=0

(
s2 + 2 sin

[
(2i+ 1)π

2(α+ β − 1)

]
s+ 1

)
when α+ β is even and α+ β > 2.

(14)

Proof: Applying the rules of stable spectral factorization [29],
[30] of single variable frequency-domain functions in s ∈ C,
f(s) can be factorized as f(s) = f∼

s (s)fs(s) where fs(s) rep-
resents the stable spectral factor and f∼

s (s) = fs(−s) denotes
the corresponding antistable spectral factor. �

Fig. 3 shows the frequency plot of the filter function f̄(ω) =
1

ω2α−1 + 1
ω2β−1

=
1

ω
f(jω), on log–log axes, for four different

combinations of α and β. The definition of f̄(ω) guarantees that
f̄(0) = 0 and f̄(∞) = 0 for any α, β ∈ N. The interpretation
of this filter f̄(ω) [and correspondingly of f(jω)] is as follows.
First, the term 1

2π

∫∞
−∞ U(jω)∗[εf(jω)Im]U(jω) dω quantifies

the input energy dissipation, and hence, it signifies the level
of input strictness of an IONI system. Fig. 3 reveals that ISNI
systems must have an imaginary-Hermitian frequency response,
which is strictly less than zero for all ω ∈ (0,∞) and can only
become zero at ω = 0 and ω = ∞. Second, the arrival rate at
ω = ∞ and the departure rate at ω = 0 are governed by the
parameters α and β, respectively. The arrival (resp. departure)
rate at ω = ∞ (resp. ω = 0) is the decay (resp. growth) rate of
the imaginary-Hermitian frequency response toward (resp. away
from) the real axis near ω = ∞ (resp. ω = 0).

B. IONI Systems in a Time-Domain Dissipative
Framework

In this section, we will establish that for an initially relaxed
IONI system with a controllable state-space, there always exists
a positive semidefinite storage function V (x) such that the
system satisfies the dissipation inequality (2) with a particular
time-domain supply rate w(u, ū, ˙̄y) = 2 ˙̄y�u− δ ˙̄y� ˙̄y − εū�ū
for some δ ≥ 0 and ε ≥ 0, where ȳ = y −M(∞)u is defined
as an auxiliary output of M and ū is a filtered auxiliary input
chosen as the inverse Laplace of Ū(s) = [fs(s)Im]U(s) where
U(s) = L [u(t)] and fs(s) ∈ RH∞ is defined in (14). Note that
in this section, the admissible inputs u are considered to be in the
space Lm

2 along with sufficient smoothness properties such that
a unique solution of the state trajectory x(t) exists forward in
time t ≥ 0 and also (since A will be assumed Hurwitz) x ∈ Ln

2 .
Hence, ˙̄y(t) = Cẋ(t) = CAx(t) + CBu(t) also exists for all
t ≥ 0 and ˙̄y ∈ Lm

2 . Furthermore, ū ∈ Lm
2 since fs(s) ∈ RH∞

and since u ∈ Lm
2 by assumption.

Theorem 2: Let M be a finite-dimensional, causal and square
system given by the minimal state-space equations ẋ = Ax+
Bu and y = Cx+Du with zero initial condition. Let the as-
sociated transfer function matrix be M(s) ∈ RHm×m

∞ . Define
ȳ = y −Du and ū = L −1[fs(s)Im] 	 u where fs(s) ∈ RH∞
is defined in (14). Let δ ≥ 0, ε ≥ 0, α ∈ N and β ∈ N. Then,
D = D� and M is dissipative with respect to the supply
rate w(u, ū, ˙̄y) = 2 ˙̄y�u− δ ˙̄y� ˙̄y − εū�ū if and only if M(s) is
IONI(δ,ε,α,β).

Proof: The proof has been divided into the sufficiency and
necessary parts as follows.

(Sufficiency) First note thatM(s) is IONI(δ,ε,α,β) implies that
M(s) is stable NI, which in turn implies D = D� [1]. To show
that an IONI(δ,ε,α,β) system M is dissipative with respect to
the supply rate w(u, ū, ˙̄y) = 2 ˙̄y�u− δ ˙̄y� ˙̄y − εū�ū, we have to
establish that there exists a storage functionV : Rn → R≥0 such
that M satisfies the dissipation inequality (2). Since the state
space is assumed to be completely controllable, there exists an
admissible input u(t) defined as

u(t) =

{
0 when t < t−1,
ũ(t) when t−1 ≤ t ≤ 0,
0 when t > 0,

which steers the system from x(t−1) = 0 to any x(0) ∈
Rn. Let y(t) be the corresponding output and Y (jω),
Ȳ (jω), U(jω) and Ū(jω) denote, respectively, the Fourier
transform of the real-valued time-domain signals y(t),
ȳ(t), u(t) and ū(t). Also, Ȳ (jω) = Y (jω)−DU(jω) =
M̄(jω)U(jω), where M̄(jω) = M(jω)−D and Ū(jω) =
[fs(jω)Im]U(jω). Now,

∫ 0

t−1

w(u, ū, ˙̄y) dt =

∫ 0

t−1

(2 ˙̄y�u− δ ˙̄y� ˙̄y − εū�ū) dt

=

∫ ∞

−∞
(2 ˙̄y�u− δ ˙̄y� ˙̄y − εū�ū) dt+ δ

∫ ∞

0

˙̄y� ˙̄y dt

+ ε

∫ ∞

0

ū�ū dt [since M is causal and time-invariant]

≥
∫ ∞

−∞
(2 ˙̄y�u− δ ˙̄y� ˙̄y − εū�ū) dt [since δ ≥ 0 and ε ≥ 0]
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=
1

2π

∫ ∞

−∞

[(
jωȲ (jω)

)∗
U(jω) + U(jω)∗

(
jωȲ (jω)

)

− δ ω2 Ȳ (jω)∗Ȳ (jω)− ε Ū(jω)∗Ū(jω)

]
dω

[since A is Hurwitz and applying Parseval’s theorem [4]]

=
1

2π

∫ ∞

−∞
U(jω)∗

[
jω{M(jω)−M(jω)∗} − δ ω2M̄(jω)∗

× M̄(jω)− ε

(
ω2β

1 + ω2(α+β−1)

)
Im

]
U(jω) dω

[since M(∞) = M(∞)� is implied by (11)]

≥ 0 [using Definition 6].

Hence, for arbitrary t−1 ≤ 0 and x(t−1) = 0, we have∫ 0

t−1
w(u, ū, ˙̄y) dt ≥ 0. We now construct the required supply

function as Vr(x) = inf 0=x∗ →x
u(·), t−1≤0

∫ 0

t−1
w(u, ū, ˙̄y) dt ≥ 0, where

the origin is the point of minimum storage (i.e., x∗ = 0). Thus,
Vr(x) can be considered as a storage function candidate associ-
ated with the IONI(δ,ε,α,β) system M [33].

It remains to be shown that Vr(x) satisfies the dissipation
inequality (2). Note that in taking the system from x = 0 at
t = 0 to x1 ∈ Rn at t = t1, we could first take it to x0 ∈ Rn at
time t0 while minimizing the energy and then take it to x1 at
time t1 along the path for which the dissipation inequality is to be
evaluated. This is possible sinceM is a causal and time-invariant
system. As Vr(x1) represents the infimum amount of energy
required to reach x1 at t = t1 from x = 0 at t = 0, the energy
required to reach the same destination x1 from the same starting
point x = 0 via any other path will be greater than or equal
to Vr(x1). Therefore, Vr(x0) +

∫ t1
t0

w(u, ū, ˙̄y) dt ≥ Vr(x1) fol-
lows. It can, hence, be concluded that the IONI(δ,ε,α,β) system
M is dissipative with respect to the supply rate w(u, ū, ˙̄y) =
2 ˙̄y�u− δ ˙̄y� ˙̄y − εū�ū for the same δ, ε, α and β.

(Necessity) This part proceeds through a sequence of implica-
tions, where frequency-domain integrals with limits from −∞
to ∞ are considered taking inspiration from similar arguments
used in [19] and [27]. For the same choice of δ ≥ 0, ε ≥ 0, and
α, β ∈ N, and since M(s) ∈ RHm×m

∞ ,

M is dissipative with respect to

w(u, ū, ˙̄y) = 2 ˙̄y�u− δ ˙̄y� ˙̄y − εū�ū

⇔ ∃V : Rn → R≥0 such that∫ �

0

(
2 ˙̄y�u− δ ˙̄y� ˙̄y − ε ū�ū

)
dt ≥ V (x(T ))− V (x(0))

∀T ∈ [0,∞) and ∀u ∈ Lm
2

⇒
∫ ∞

0

(
2 ˙̄y�u− δ ˙̄y� ˙̄y − ε ū�ū

)
dt ≥ 0 ∀u ∈ Lm

2

[since M is stable and V (x(∞)) = V (0) = V (x(0))]

⇔ 1

2π

∫ ∞

−∞

[(
jωȲ (jω)

)∗
U(jω) + U(jω)∗

(
jωȲ (jω)

)

− δ ω2 Ȳ (jω)∗Ȳ (jω)− ε Ū(jω)∗Ū(jω)

]
dω ≥ 0

∀U ∈ L2
m(jR) [via Parseval’s theorem [4]]

⇔ 1

2π

∫ ∞

−∞
U(jω)∗

[
jω[M(jω)−M(jω)∗]− δ ω2M̄(jω)∗

× M̄(jω)− ε

(
ω2β

1 + ω2(α+β−1)

)
Im

]
U(jω) dω ≥ 0

∀U ∈ L2
m(jR) (15)

⇔
[
jω[M(jω)−M(jω)∗]− δ ω2M̄(jω)∗M̄(jω)

− ε

(
ω2β

1 + ω2(α+β−1)

)]
Im ≥ 0 ∀ω ∈ R ∪ {∞}. (16)

The equivalence between (15) and (16) is outlined here: (16) ⇒
(15) is straightforward and (15) ⇒ (16) follows, for example,
from the necessity proof of [4, Th. 2.6]. �

The following corollary is an immediate consequence of
Theorem 2 and establishes the time-domain dissipativity of all
stable NI systems and also the strict subclasses (e.g., ISNI,
SSNI(α=1,β=1), SSNI(α=2,β=1), VSNI, OSNI) under the NI
systems class.

Corollary 1: LetM be a finite-dimensional, causal and square
system given by the minimal state-space equations ẋ = Ax+
Bu and y = Cx+Du with x(0) = 0. Let the associated trans-
fer function matrix be M(s) ∈ RHm×m

∞ . Define ȳ = y −Du
and ū = L −1[fs(s)Im] 	 u where fs(s) ∈ RH∞ is defined in
(14). Then,

1) M is stable NI if and only if M(∞) = M(∞)� and M
is dissipative with respect to w(u, ˙̄y) = 2 ˙̄y�u;

2) M is ISNI if and only if M(∞) = M(∞)� and there
exist ε > 0, α ∈ N and β ∈ N such that M is dissipative
with respect to w(u, ū, ˙̄y) = 2 ˙̄y�u− εū�ū;

3) M is SSNI(α=1,β=1) if and only ifM(∞) = M(∞)� and
there exists ε > 0 such that M is dissipative with respect
to w(u, ū, ˙̄y) = 2 ˙̄y�u− εū�ū with α = 1 and β = 1;

4) M is SSNI(α=2,β=1) if and only ifM(∞) = M(∞)� and
there exists ε > 0 such that M is dissipative with respect
to w(u, ū, ˙̄y) = 2 ˙̄y�u− εū�ū with α = 2 and β = 1;

5) M is VSNI if and only if M(∞) = M(∞)� and there
exist δ > 0, ε > 0, α ∈ N and β ∈ N such that M is
dissipative with respect to w(u, ū, ˙̄y) = 2 ˙̄y�u− δ ˙̄y� ˙̄y −
εū�ū; and

6) M is OSNI if and only if [M(s)−M∼(s)]has full normal
rank, M(∞) = M(∞)� and there exists δ > 0 such that
M is dissipative with respect tow(u, ˙̄y) = 2 ˙̄y�u− δ ˙̄y� ˙̄y.

Proof: Trivial restriction of Theorem 2 by setting appropriate
choices of the parameters δ ≥ 0, ε ≥ 0, α ∈ N and β ∈ N. �

The following lemma gives a necessary and sufficient condi-
tion for checking time-domain dissipativity of an IONI(δ,ε,α,β)
system without involving a storage function.

Lemma 14: Let M(s) ∈ RHm×m
∞ be the transfer function

matrix of a finite-dimensional, causal and initially relaxed sys-
tem M . Let y = L −1[M(s)] 	 u with u ∈ Lm

2 . Define ȳ =
y −M(∞)u and ū = L −1[fs(s)Im] 	 uwhere fs(s) ∈ RH∞
is defined in (14). Let δ ≥ 0, ε ≥ 0, α ∈ N and β ∈ N. Then,
M(s) is IONI(δ,ε,α,β) if and only if M(∞) = M(∞)� and∫ ∞

0

(
2 ˙̄y�u− δ ˙̄y� ˙̄y − ε ū�ū

)
dt ≥ 0 ∀u ∈ Lm

2 .
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Proof: The proof readily follows from the necessity part of
the proof of Theorem 2 and Definition 6. �

C. IONI Systems in a Frequency-Domain Dissipative
Framework

In this section, IONI(δ,ε,α,β) systems are characterized in
a frequency-domain dissipative framework with respect to a
(Q(ω), S(ω), R(ω))-dissipative supply rate that has a strong
connection with the time-domain supply rate w(u, ū, ˙̄y) =
2 ˙̄y�u− δ ˙̄y� ˙̄y − εū�ū introduced in Section V-B. Here, the
matrices Q(ω) ∈ Rm×m, S(ω) ∈ Cm×m and R(ω) ∈ Rm×m

∀ω ∈ R can be viewed as frequency-domain operators.
Theorem 3: Let M(s) ∈ RHm×m

∞ be the transfer func-
tion matrix of a finite-dimensional, causal and initially re-
laxed system M . Define D = M(∞). Let δ ≥ 0, ε ≥ 0, α ∈ N
and β ∈ N. Then, M(s) is IONI(δ,ε,α,β) if and only if D =

D� and M is (Q(ω), S(ω), R(ω))-dissipative with Q(ω) =
−δω2Im,S(ω) = −jωIm + δω2D andR(ω) = −δω2D�D −

ε

(
ω2β

1 + ω2(α+β−1)

)
Im ∀ω ∈ R.

Proof: First note that M(s) ∈ IONI(δ,ε,α,β) implies that
M(s) is stable NI which, in turn, implies D = D� [1]. Let
fs(s) be defined as in (14), y = L −1[M(s)] 	 u, ȳ = y −Du
and ū = L −1[fs(s)Im] 	 u with u ∈ Lm

2 . Then,

M(s) is IONI(δ,ε,α,β)

⇔
∫ ∞

0

(
2 ˙̄y�u− δ ˙̄y� ˙̄y − ε ū�ū

)
dt ≥ 0 ∀u ∈ Lm

2

[via Lemma 14]

⇔ 1

2π

∫ ∞

−∞

[
(jωȲ (jω))∗U(jω) + U(jω)∗(jωȲ (jω))

− δ (jωȲ (jω))∗(jωȲ (jω))− ε Ū(jω)∗Ū(jω)

]
dω ≥ 0

∀U ∈ L2
m(jR) [by applying Parseval’s theorem [4]]

⇔ 1

2π

∫ ∞

−∞

[
Y (jω)∗(−δω2Im)Y (jω) + Y (jω)∗(−jωIm

+ δω2D)U(jω) + U(jω)∗(jωIm + δω2D�)Y (jω)

+ U(jω)∗
{
−δω2D�D−ε

(
ω2β

1+ω2(α+β−1)

)
Im

}
U(jω)

]
dω

≥ 0 ∀U ∈ L2
m(jR)

[substituting Ȳ(jω) = Y (jω)−DU(jω) and Ū(jω)

= (fs(jω)Im)U(jω)]

⇔ 1

2π

∫ ∞

−∞

[
Y (jω)∗Q(ω)Y (jω) + Y (jω)∗S(ω)U(jω)

+ U(jω)∗S(ω)∗Y (jω) + U(jω)∗R(ω)U(jω)

]
dω ≥ 0

∀U ∈ L2
m(jR)

⇔ M is (Q(ω), S(ω), R(ω))-dissipative. �

The following corollary is an immediate consequence of
Theorem 3 and shows that all stable NI systems and also the
strict subclasses (i.e., ISNI, SSNI(α=1,β=1), SSNI(α=2,β=1),
VSNI, OSNI) exhibit frequency-domain (Q(ω), S(ω), R(ω))-
dissipativity.

Corollary 2: Let M(s) ∈ RHm×m
∞ be the transfer function

matrix of a finite-dimensional, causal and initially relaxed sys-
tem M . Define D = M(∞). Then,

1) M is stable NI if and only if D = D� and M is
(0,−jωIm, 0)-dissipative;

2) M is ISNI if and only if D = D� and there
exist ε > 0, α ∈ N and β ∈ N such that M is

(0,−jωIm,−ε
ω2β

1 + ω2(α+β−1)
Im)-dissipative;

3) M is SSNI(α=1,β=1) if and only if D = D� and there

exists ε > 0 such that M is (0,−jωIm, −ε
ω2

1 + ω2
Im)-

dissipative;
4) M is SSNI(α=2,β=1) if and only if D = D� and there

exists ε > 0 such that M is (0,−jωIm, −ε
ω2

1 + ω4
Im)-

dissipative;
5) M is VSNI if and only if D = D� and there

exist δ > 0, ε > 0, α ∈ N and β ∈ N such that
M is (−δω2Im,−jωIm + δω2D, −δω2D�D −

ε
ω2β

1 + ω2(α+β−1)
Im)-dissipative; and

6) M is OSNI if and only if [M(s)−M∼(s)]has full normal
rank, D = D� and there exists δ > 0 such that M is
(−δω2Im,−jωIm + δω2D, −δω2D�D)-dissipative.

Proof: Trivial restriction of Theorem 3 for appropriate
choices of δ ≥ 0, ε ≥ 0, α ∈ N and β ∈ N. �

Remark 2: In [19]–[21], a frequency-domain dissipation

inequality
1

2π

∫∞
−∞[Y (jω)∗(−jωIm)U(jω) + U(jω)∗(jωIm)

× Y (jω)− U(jω)∗(εIm)U(jω)]dω ≥ 0 with ε ≥ 0 was used
which is equivalent to satisfying the time-domain dissipation
inequality

∫ �
0 (2ẏ�u− εu�u) dt ≥ 0. However, Bhowmick and

Patra [18] showed that there are no asymptotically stable sys-
tems satisfying the above dissipation inequality with ε > 0. In
order to resolve this issue, in this article, a filtered version of
the input has been chosen as Ū(jω) = [fs(jω)Im]U(jω) to
construct the ISNI supply rate where fs(s) is a stable spec-

tral factor of the transfer function
(−s)βsβ

1 + (−s)(α+β−1) s(α+β−1)

as defined in (14). This leads to a new time-domain dissipa-
tion inequality

∫ �
0 (2 ˙̄y�u− εū�ū) dt ≥ 0 different from [19]–

[21] to characterize ISNI systems [see Example 4 for
an example system that satisfies the new dissipation
inequality].

The following corollary provides the connection between the
time-domain and frequency-domain dissipativity.

Corollary 3: Let the suppositions of Theorem 2 hold
and D = D�. Then, M is dissipative with respect to
the supply rate w(u, ū, ˙̄y) = 2 ˙̄y�u− δ ˙̄y� ˙̄y − ε ū�ū if and
only if M is (Q(ω), S(ω), R(ω))-dissipative with Q(ω) =
−δω2Im,S(ω) = −jωIm + δω2D andR(ω) = −δω2D�D −

ε

(
ω2β

1 + ω2(α+β−1)

)
Im ∀ω ∈ R.
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Proof: Trivial from Theorems 2 and 3. �

VI. STATE-SPACE CHARACTERIZATION OF IONI SYSTEMS

In this section, we provide a state-space characterization of
the full class of IONI systems. The state-space realizations in
the results of this section are not required to be minimal.

Theorem 4 (IONI Lemma): Let M(s) ∈ RHm×m
∞ have

an arbitrary state-space representation (A,B,C,D) with
det[jωI −A] �= 0 ∀ω ∈ R. Let δ ≥ 0, ε ≥ 0, α ∈ N and β ∈
N. Let (Af , Bf , Cf , Df ) be an arbitrary state-space representa-
tion of fs(s) ∈ RH∞, as defined in (14), withdet[jωI −Af ] �=

0 ∀ω ∈ R. Let

[
A B
C1 D1

C2 D2

]
=

⎡
⎢⎢⎣

A 0 B
0 Im ⊗Af Im ⊗Bf

CA 0 CB

0 Im ⊗ Cf Im ⊗Df

⎤
⎥⎥⎦ and

(A, B) be controllable. Then, M(s) is IONI(δ,ε,α,β) if and only
if D = D� and there exists X = X� such that

sym

[
XA XB
C1 D1

]
≥ δ sqr [C1 D1 ] + ε sqr [C2 D2 ] . (17)

Proof: Let M̄(s) = M(s)−D. Then,

M(s) is IONI(δ,ε,α,β)

⇔
[
jω[M(jω)−M(jω)∗]− δω2M̄(jω)∗M̄(jω)

− εfs(jω)
∗fs(jω)Im

]
≥ 0 ∀ω ∈ R ∪ {∞}

⇔ D = D� and[(
jωM̄(jω)

)
+
(
jωM̄(jω)

)∗ − δ(jωM̄(jω))∗(jωM̄(jω))

− εfs(jω)
∗fs(jω)Im

]
≥ 0 ∀ω ∈ R ∪ {∞}

⇔ D = D� and⎡
⎣ jωM̄(jω)
fs(jω)Im

Im

⎤
⎦
∗ [−δIm 0 Im

0 −εIm 0
Im 0 0

]

×

⎡
⎣ jωM̄(jω)
fs(jω)Im

Im

⎤
⎦ ≥ 0 ∀ω ∈ R ∪ {∞}

⇔ D = D� and[
(jωI − A)−1B

Im

]∗ [
C�
1 C�

2 0
D�

1 D�
2 Im

]

×
[−δIm 0 Im

0 −εIm 0
Im 0 0

][
C1 D1

C2 D2

0 Im

]

×
[
(jωI − A)−1B

Im

]
≥ 0 ∀ω ∈ R ∪ {∞}

⇔ D = D� and ∃ X = X� such that

[
XA + A�X XB

B�X 0

]
+

[
0 C�

1

C1 D1 + D�
1

]

+

[
−δ C�

1 C1 − εC�
2 C2 −δ C�

1 D1 − εC�
2 D2

−δD�
1 C1 − εD�

2 C2 −δD�
1 D1 − εD�

2 D2

]
≥ 0

⇔ D = D� and ∃ X = X� such that[
XA + A�X C�

1 +XB
C1 + B�X D1 + D�

1

]

≥ δ

[
C�
1

D�
1

]
[C1 D1 ] + ε

[
C�
2

D�
2

]
[C2 D2 ] . �

Next, we will specialize the IONI lemma into the important
subclasses, viz., ISNI, SSNI(α=1,β=1), SSNI(α=2,β=1), VSNI,
and OSNI.

Corollary 4 (ISNI Lemma): Let M(s) ∈ RHm×m
∞ have

an arbitrary state-space representation (A,B,C,D) with
det[jωI −A] �= 0 ∀ω ∈ R. Then, M(s) is ISNI if and only if
D = D� and there exist ε > 0, α ∈ N, β ∈ N and X = X�

such that

sym

⎡
⎣XA XB 0

C1 D1 0
C2 D2

1
2εIm

⎤
⎦ ≥ 0 (18)

where (Af , Bf , Cf , Df ) is an arbitrary state-space representa-
tion of fs(s) ∈ RH∞, as defined in (14), withdet[jωI −Af ] �=

0 ∀ω ∈ R and

[
A B
C1 D1

C2 D2

]
=

⎡
⎢⎢⎣

A 0 B
0 Im ⊗Af Im ⊗Bf

CA 0 CB

0 Im ⊗ Cf Im ⊗Df

⎤
⎥⎥⎦

with (A, B) controllable.
Proof: Trivial application of Theorem 4 with δ = 0 and

taking a Schur complement. Note that ISNI systems require
arbitrary ε > 0, α ∈ N, and β ∈ N. �

Corollary 5 (SSNI(α=1,β=1) Lemma): Let M(s) ∈
RHm×m

∞ have a controllable state-space representa-
tion (A,B,C,D) with det[jωI −A] �= 0 ∀ω ∈ R and

det[I +A] �= 0. Let

[
A B
C1 D1

C2 D2

]
=

⎡
⎢⎢⎣

A 0 B
0 −Im Im

CA 0 CB

0 −Im Im

⎤
⎥⎥⎦. Then,

M(s) is SSNI(α=1,β=1) if and only if D = D� and there exist
ε > 0 and X = X� such that

sym

[
XA XB
C1 D1

]
≥ ε sqr [C2 D2 ] . (19)

Proof: Trivial application of Theorem 4 with δ = 0, α =
1 and β = 1 on noting that in this case fs(s) =

s
s+1 and,

hence, Af = −1, Bf = 1, Cf = −1, Df = 1. Also, note that
(A,B) is controllable and det[I +A] �= 0 are equivalent to([

A 0
0 −Im

]
,

[
B
Im

])
is controllable. �

Corollary 6 (SSNI(α=2,β=1) Lemma): Let M(s) ∈
RHm×m

∞ have an arbitrary state-space representa-
tion (A,B,C,D) with det[jωI −A] �= 0 ∀ω ∈ R. Let
(Af , Bf , Cf , Df ) be an arbitrary state-space representation
of fs(s) =

s
s2+

√
2s+1

with det[jωI −Af ] �= 0 ∀ω ∈ R. Let
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[
A B
C1 D1

C2 D2

]
=

⎡
⎢⎢⎣

A 0 B
0 Im ⊗Af Im ⊗Bf

CA 0 CB

0 Im ⊗ Cf Im ⊗Df

⎤
⎥⎥⎦ and (A, B) be

controllable. Then, M(s) is SSNI(α=2,β=1) if and only if
D = D� and there exist ε > 0 and X = X� such that

sym

⎡
⎣XA XB 0

C1 D1 0
C2 D2

1
2εIm

⎤
⎦ ≥ 0. (20)

Proof: Trivial application of Theorem 4 with δ = 0,
α = 2 and β = 1. The LMI is just a Schur complement
rearrangement. �

Corollary 7 (VSNI Lemma): Let M(s) ∈ RHm×m
∞ have

an arbitrary state-space representation (A,B,C,D) with
det[jωI −A] �= 0 ∀ω ∈ R. Then, M(s) is VSNI if and only
if D = D� and there exist δ > 0, ε > 0, α ∈ N, β ∈ N and
X = X� such that

sym

⎡
⎢⎣
XA XB 0 0
C1 D1 0 0
C1 D1

1
2δ Im 0

C2 D2 0 1
2εIm

⎤
⎥⎦ ≥ 0 (21)

where (Af , Bf , Cf , Df ) is an arbitrary state-space representa-
tion of fs(s) ∈ RH∞, as defined in (14), withdet[jωI −Af ] �=

0 ∀ω ∈ R and

[
A B
C1 D1

C2 D2

]
=

⎡
⎢⎢⎣

A 0 B
0 Im ⊗Af Im ⊗Bf

CA 0 CB
0 Im ⊗ Cf Im ⊗Df

⎤
⎥⎥⎦

with (A, B) controllable.
Proof: Trivial application of Theorem 4 and using a Schur

complement. �
Corollary 8 (OSNI Lemma): Let M(s) ∈ RHm×m

∞ have
a controllable state-space representation (A,B,C,D) with
det[jωI −A] �= 0 ∀ω ∈ R. Then, M(s) is OSNI if and only
if [M(s)−M∼(s)] has full normal rank, D = D� and there
exist δ > 0 and X = X� such that⎡

⎣XA+A�X XB +A�C� A�C�

B�X + CA CB +B�C� B�C�

CA CB 1
δ Im

⎤
⎦ ≥ 0. (22)

Proof: Trivial application of Theorem 4 with ε = 0 and by
removing the states associated with fs(s). The LMI is just a
Schur complement rearrangement. �

VII. OSNI SYSTEMS IN A DISSIPATIVE FRAMEWORK

As with other strict subclasses (e.g., ISNI, SSNI(α=1,β=1),
SSNI(α=2,β=1), VSNI) under the IONI class, the pointwise
frequency-domain condition (11) defines the OSNI subclass
when δ > 0. The OSNI class was originally proposed in [18] and
generalized later in [8]. OSNI systems exhibit several interesting
properties and also obey a simple internal stability condition
when interconnected with a (not necessarily stable) NI system
in a positive feedback loop. This section is dedicated solely to
the OSNI class of systems to 1) develop a minimal state-space
characterization for OSNI systems, 2) describe OSNI systems
both in the time-domain and the frequency-domain dissipative
frameworks, and 3) establish the equivalence between the OSNI
lemma conditions and the time-domain dissipative characteri-
zation of OSNI systems.

A. Specialized OSNI Lemma for Minimal Systems

We first show the connection between OSNI and OSP systems.
Lemma 15: Let M(s) ∈ RHm×m

∞ and M̄(s) = M(s)−
M(∞). Then, the following statements hold:

1) M(s) is OSNI if and only if F (s) = sM̄(s) is OSP and
M(∞) = M(∞)�;

2) M(s) is stable NI if and only if F (s) = sM̄(s) is passive
and M(∞) = M(∞)�.

Proof: Since the identity F (jω)+F (jω)∗−δF (jω)∗F (jω)
= (jωM̄(jω))+(jωM̄(jω))∗−δ(jωM̄(jω))∗(jωM̄(jω)) =
jω[M(jω)−M(jω)∗]− δω2M̄(jω)∗M̄(jω) holds for all
ω ∈ R ∪ {∞} when M(∞) = M(∞)�, the equivalence in
Part 1) [resp. Part 2)] simply follows on choosing δ > 0
[resp. δ = 0]. �

The following lemma provides a necessary and sufficient
condition for a system given by a minimal state-space realization
to be OSNI and is a generalization of [18, Lemma 6].

Lemma 16 (OSNI Lemma: Specialized): Let M(s) ∈
RHm×m

∞ have a minimal state-space realization (A,B,C,D).
Then, M(s) is OSNI if and only if [M(s)−M∼(s)] has full
normal rank, D = D� and there exist δ > 0 and Y = Y � > 0
such that

AY + Y AT + δ(CAY )�CAY ≤ 0 and B +AY CT = 0.
(23)

Proof: Since the realization is minimal, A is Hurwitz and
hence nonsingular. Then, LMI (22) in Corollary 8 is equivalent
to [

XA+A�X XB +A�C�

B�X + CA CB +B�C�

]

− δ

[
A�C�

B�C�

]
[CA CB ] ≥ 0 (24)

by taking a Schur complement with respect to 1
δ Im. This con-

dition then implies that X < 0 via XA+A�X ≥ δA�C�CA.
Let Y = −X−1. Then (24) is equivalent to⎡
⎢⎢⎢⎣
(−AY − Y AT

−δ (CAY )T (CAY ))
(B − Y ATCT

+δ Y ATCTCB)

(B − Y ATCT

+δ Y ATCTCB)�
(CB +BTCT

−δ BTCTCB)

⎤
⎥⎥⎥⎦ ≥ 0

which is, in turn, equivalent to

AY + Y AT + δ(CAY )�(CAY ) ≤ 0 and B +AY C� = 0

via a simple congruence transformation, that is, premultiplying

with

(
I 0

−C I

)
and postmultiplying with

(
I 0

−C I

)�
. �

Note that the matrix inequality in (23) is not in LMI form
but can be readily converted into an LMI by applying the Schur
complement lemma [4, Appendix A.61].

B. Equivalence Between Time-Domain Dissipativity and
State-Space Characterization of OSNI Systems

We have already established that OSNI systems are dissipative
with respect to the time-domain supply rate w(u, ˙̄y) = 2 ˙̄y�u−
δ ˙̄y� ˙̄y with δ > 0 where ȳ = y −Du is selected as an auxiliary
output of the system. In this subsection, we will show that for
a stable LTI system with a minimal state-space realization, the
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conditions in OSNI Lemma 16 are equivalent to time-domain
dissipativity with respect to the proposed supply rate w(u, ˙̄y)
and a specific storage function given by V (x) = x�Y −1x with
Y = Y � > 0.

Lemma 17: Let M be a causal, square, finite-dimensional,
LTI system given by the minimal state-space equations ẋ =
Ax+Bu and y = Cx+Du with x(0) = 0, A being Hur-
witz and D = D�. Let the associated transfer function ma-
trix be M(s) and define ȳ = y −Du. Let [M(s)−M∼(s)]
have full normal rank. Then, the following statements are
equivalent:

1) M(s) is OSNI;
2) there exist δ > 0 and Y = Y � > 0 such that

AY +Y A�+δ(CAY )�(CAY )≤0 and B=−AY C�;

3) there exists δ > 0 such that M is dissipative with respect
to the supply rate w(u, ˙̄y) = 2 ˙̄y�u− δ ˙̄y� ˙̄y.

The storage function in part 3) can be chosen as V (x) =
x�Y −1x with Y > 0 from part 2).

Proof: 1) ⇔ 2) This equivalence is due to OSNI Lemma 16.
1) ⇔ 3) This equivalence is due to Corollary 1, Part 6).

V (x) = x�Y −1x is an appropriate storage function because the
proof of Lemma 16 shows that (23) is equivalent to (24) with
X = −Y −1, and the conclusion trivially follows by multiplying

(24) with

[
x
u

]
. �

C. Frequency-Domain Dissipativity of OSNI Systems

Part 6) of Corollary 2 establishes the connection between
OSNI systems property and (Q(ω), S(ω), R(ω))-dissipativity.
In [19], systems with “mixed” negative imaginary and finite-gain
properties were defined using a frequency-domain dissipative
framework which can be specialized to purely OSNI systems sat-

isfying the inequality
1

2π

∫∞
−∞[U(jω)∗{jω(M(jω)−M(jω)∗)

− δ ω2M(jω)∗M(jω)}U(jω)] dω ≥ 0 ∀U ∈ L2
m(jR) and

for some δ > 0. This frequency-domain criterion is equivalent
to
∫ �
0 (2ẏ�u− δẏ�ẏ) dt ≥ 0 ∀u ∈ Lm

2 and ∀T ∈ [0,∞) via
Parseval’s theorem [4]. Note, however, that when attempting
to apply the characterization of [19] to biproper systems
(i.e., D �= 0), the term ω2M(jω)∗M(jω) becomes infinite as
ω → ∞ and, hence, the integral does not converge. Thus, the
framework of [19] has to be restricted to strictly proper systems.
Similar issues are also detected in the results of [20] and [21],
which are built on [19]. To resolve this matter, in this article,
the new dissipation inequality

∫ �
0 (2 ˙̄y�u− δ ˙̄y� ˙̄y) dt ≥ 0

was proposed for characterizing OSNI systems by defining
an auxiliary output ȳ = y −Du of the system. This is

equivalent to
1

2π

∫∞
−∞[U(jω)∗{jω(M(jω)−M(jω)∗)−

δ ω2M̄(jω)∗M̄(jω)}U(jω)] dω ≥ 0 via Parseval’s theorem
where M̄(jω) = M(jω)−M(∞). Since M̄(s) is always
strictly proper, the term ω2 M̄(jω)∗M̄(jω) does not become
improper even when M(s) is biproper and, hence, resolves the
aforementioned issue. An illustrative Example 7 is given next
to highlight this fact.

Example 7: Consider M(s) =
s+ 4

s+ 2
. In this case,

jω[M(jω)−M(jω)∗]− δ ω2M̄(jω)∗M̄(jω) gives upon

simplification
4ω2

4 + ω2
− δ

4ω2

4 + ω2
=

4ω2

4 + ω2
(1− δ) ≥ 0 for

all ω ∈ R ∪ {∞} and all δ ∈ (0, 1]. Thus, M(s) is a biproper
OSNI system. Note that if this frequency-domain condition
was instead jω[M(jω)−M(jω)∗]− δ ω2M(jω)∗M(jω) in
accordance with [19, Def. 1], then in the present example,

the term ω2M(jω)∗M(jω) would become
ω2(16 + ω2)

(4 + ω2)
which tends to infinity as ω → ∞. Hence, [19, Def. 1]
and the corresponding frequency-domain supply rate
(Q(ω) = −δω2Im, S(ω) = −jωIm, R(ω) = 0) cannot capture
biproper OSNI systems.

D. Internal Stability Condition of an NI-OSNI
Interconnection

This section deals with internal stability of a positive feedback
interconnection of NI and OSNI systems, as shown in Fig. 1.
In order to prove the internal stability theorem of the NI-
OSNI interconnection, we need the following technical lemma
first.

Lemma 18: Let M(s) be a (not necessarily stable) NI system
without poles at the origin and N(s) be an OSNI system. Let
[I −M(s)N(s)] have full normal rank. Let Ω = {ω ∈ (0,∞) :
s = jω is not a pole of M(s)} and let

j [N(jω0)−N(jω0)
∗] > 0 ∀ω0 ∈ (0,∞)\Ω. (25)

Finally, let there exist no ω ∈ Ω such that det[M(jω)−
M(jω)∗] = 0 and det[N(jω)−N(jω)∗] = 0. Then, [I −
M(s)N(s)] does not have any transmission zero on the jω-axis
for any ω ∈ (0,∞).

Proof (Case I): Suppose M(s) has K ∈ N nonrepeated pole
pairs on the jω-axis. The rest of the proof in this case has been
divided into two parts: Part A proves the result for the set of
frequencies ω ∈ (0,∞)\Ω, while Part B establishes the desired
result for all ω ∈ Ω.

Part A: Let s = jω0 with ω0 ∈ (0,∞)\Ω be a simple pole

of M(s). Then, M(s) can be factorized as M0(s) +
A0

s− jω0

with M0(s) being analytic in the neighbourhood of s = jω0

and A0 = lims→jω0
(s− jω0)M(s). Now, the residue property

of NI systems (see Definition 4) gives Z0 = lims→jω0
j(s−

jω0)M(s) = Z∗
0 ≥ 0 which implies Z0 = jA0 with

A0 = −A∗
0. (26)

Now, choose a sufficiently small γ > 0. Since M(s) is NI,

j[M(jω)−M(jω)∗] ≥ 0 ∀ω ∈ {ω : 0 < |ω − ω0| < γ}

⇔ j

[(
M0(jω) +

A0

j(ω − ω0)

)
−
(
M0(jω) +

A0

j(ω − ω0)

)∗]

≥ 0 ∀ω ∈ {ω : 0 < |ω − ω0| < γ}

⇔ j[M0(jω)−M0(jω)
∗] +

A0 +A∗
0

(ω − ω0)
≥ 0

∀ω ∈ {ω : 0 < |ω − ω0| < γ}
⇒ j[M0(jω0)−M0(jω0)

∗] ≥ 0 (27)

because A0 +A∗
0 = 0 from (26). Now the assumption

j[N(jω0)−N(jω0)
∗] > 0 for all ω0 ∈ (0,∞)\Ω implies

det[N(jω0)] �= 0 via Lemma 3 and ensures

(jN(jω0))
−1 + (jN(jω0))

−∗ > 0. (28)
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Inequalities (27) and (28) together yield

[(jN(jω0))
−1 + (jM0(jω0))]

+ [(jN(jω0))
−1 + (jM0(jω0))]

∗ > 0. (29)

However, we need to show that [I −M(s)N(s)] has no trans-
mission zero at s = jω0, which is equivalent to [jN(s)]−1 +
[jM(s)] having no transmission zero at s = jω0. We show
this via contradiction. Suppose s = jω0 is a transmission zero
of [jN(s)]−1 + [jM(s)]. Then there exists a nonzero vector
y0 ∈ Cm such that [(jN(s))−1 + (jM(s))]y0 = 0 at s = jω0.

Now, for all ω ∈ {ω : 0 < |ω − ω0| < γ}, (jM(jω)) +
(jM(jω))∗ = (jM0(jω)) + (jM0(jω))

∗ because M(jω) =

M0(jω) +
A0

j(ω − ω0)
and [A0 +A∗

0] = 0. Thus

y∗0
[
(jN(jω0))

−1 + (jM0(jω0))
]
y0

+ y∗0
[
(jN(jω0))

−1 + (jM0(jω0))
]∗
y0

= lim
ω→ω0

y∗0
[
(jN(jω))−1 + (jM(jω))

]
y0

+ lim
ω→ω0

y∗0
[
(jN(jω))−1 + (jM(jω))

]∗
y0

= 0.

However, this contradicts (29), which implies that there does
not exist any nonzero vector y0 ∈ Cm such that [(jN(s))−1 +
(jM(s))]y0 = 0. Therefore, [I −M(s)N(s)] does not have any
transmission zero at s = jω0 for any ω0 ∈ (0,∞)\Ω.

Part B: For convenience, define the following three auxiliary
sets of frequencies:

Ωm = {ω ∈ Ω : det [M(jω)−M(jω)∗] �= 0},
Ωn = {ω ∈ Ω : det [N(jω)−N(jω)∗] �= 0},
Ωmn = {ω ∈ Ω : det [M(jω)−M(jω)∗] = 0 and

det [N(jω)−N(jω)∗] = 0}.
It is clear that Ω = Ωm ∪ Ωn ∪ Ωmn. The assumption that there
does not exist any ω ∈ Ω such that det[M(jω)−M(jω)∗] = 0
and det[N(jω)−N(jω)∗] = 0 signifies that Ωmn = ∅. Since
det[M(jω)−M(jω)∗] �= 0 ∀ω ∈ Ωm, it implies j[M(jω)−
M(jω)∗] > 0 ∀ω ∈ Ωm (due to M(s) being NI) which in turn
impliesdet[M(jω)] �= 0 ∀ω ∈ Ωm via Lemma 3. Therefore, for
all ω ∈ Ωm, we have

det[(jM(jω))] det[(jM(jω))−1 + jN(jω)] �= 0, (30)

which implies

det[I −M(jω)N(jω)] �= 0 ∀ω ∈ Ωm. (31)

Similarly, it can be established that j[N(jω)−N(jω)∗] >
0 ∀ω ∈ Ωn, which implies that det[N(jω)] �= 0 ∀ω ∈ Ωn

via Lemma 3. Therefore, for all ω ∈ Ωn, we have

det[(jN(jω))] det[(jN(jω))−1 + jM(jω)] �= 0, (32)

which implies

det[I −M(jω)N(jω)] �= 0 ∀ω ∈ Ωn. (33)

Combining the results (31) and (33), it can be concluded
that det[I −M(jω)N(jω)] �= 0 ∀ω ∈ Ω which is equivalent to
[I −M(jω)N(jω)] having no transmission zero on the jω-axis
for any ω ∈ Ω using [40, Corollary 3.30].

Hence, Parts A and B jointly prove that [I −M(s)N(s)] does
not have any transmission zero at s = jω for any ω ∈ (0,∞).

(Case II) Suppose now that M(s) ∈ RHm×m
∞ . It can readily

be established that [I −M(s)N(s)] does not have any trans-
mission zero on the jω-axis for any ω ∈ (0,∞) via an argument
similar to Part B of the proof of Case I upon noticing that in this
case Ω = (0,∞).

Cases I and II complement each other to establish the lemma
by addressing all possible combinations of the systems M(s)
and N(s). �

We are now ready to state the feedback stability result for the
positive feedback interconnection (see Fig. 1) of an NI system
without poles at the origin and an OSNI system.

Theorem 5: Let M(s) be a (not necessarily stable) NI sys-
tem without poles at the origin and N(s) be an OSNI sys-
tem. LetΩ = {ω ∈ (0,∞) : s = jω is not a pole of M(s)} and
let j[N(jω0)−N(jω0)

∗] > 0 ∀ω0 ∈ (0,∞)\Ω. Suppose there
exists no ω ∈ Ω such that det[M(jω)−M(jω)∗] = 0 and
det[N(jω)−N(jω)∗] = 0. Then, the positive feedback inter-
connection of M(s) and N(s), as shown in Fig. 1, is internally
stable if and only if

det[I −M(∞)N(∞)] �= 0, (34a)

λmax

[
(I −M(∞)N(∞))−1(M(∞)N(0)− I)

]
< 0, (34b)

λmax

[
(I −N(0)M(∞))−1(N(0)M(0)− I)

]
< 0. (34c)

Proof: Let M(s) and N(s) have minimal state-space real-
izations (A1, B1, C1, D1) and (A2, B2, C2, D2), respectively,
given by

M :

{
ẋ1 = A1x1 +B1u1

y1 = C1x1 +D1u1
and N :

{
ẋ2 = A2x2 +B2u2

y2 = C2x2 +D2u2

where D1 = D�
1 , D2 = D�

2 , det[A1] �= 0 and A2 is Hurwitz.
(Case I) Suppose M(s) has K ∈ N nonrepeated pole pairs

on the jω-axis. The assumption j[N(jω0)−N(jω0)
∗] > 0

∀ω0 ∈ (0,∞)\Ω implies det[N(jω0)] �= 0 via Lemma 3 which
in turn implies that for all ω0 ∈ (0,∞)\Ω, s = jω0 is not a
transmission zero of N(s). This, hence, prevents any pole-zero
cancelation of M(s)N(s) at s = jω0 for all ω0 ∈ (0,∞)\Ω
since N(s) has no poles nor transmission zeros at s = jω0 for
all ω0 ∈ (0,∞)\Ω. For the rest of the frequencies ω ∈ Ω, no
pole-zero cancelation occurs sinceN(s) ∈ RHm×m

∞ andM(s)
does not have any pole at s = jω for all ω ∈ Ω. Furthermore,
for all {s ∈ C : �[s] > 0} ∪ {0}, no pole-zero cancelation can
occur in M(s)N(s) as N(s) ∈ RH∞ and M(s) has no poles in
{s ∈ C : �[s] > 0} ∪ {0}. Hence, M(s)N(s) has no pole-zero
cancelation in the entire closed right-half plane (RHP).

Since M(s) is NI without poles at the origin and N(s)
is OSNI, there exist real symmetric matrices Y1 > 0 and
Y2 > 0 such that M(s) satisfies A1Y1 + Y1A

�
1 ≤ 0 and

B1 +A1Y1C
�
1 = 0 [1], [41], while N(s) satisfies A2Y2 +

Y2A
�
2 + δ2(C2A2Y2)

�(C2A2Y2) ≤ 0 with some δ2 > 0 and
B2 +A2Y2C

�
2 = 0 via Lemma 16. The second inequal-

ity implies A2Y2 + Y2A
�
2 ≤ 0 since δ2 > 0. Define U =

I −D1D2, V = I −D2D1, Φ =

[
A1Y1 0
0 A2Y2

]
and T =[

Y −1
1 − C�

1 D2U
−1C1 −C�

1 V
−1C2

−C�
2 U

−1C1 Y −1
2 − C�

2 U
−1D1C2

]
. The positive

feedback interconnection of M(s) and N(s) is internally
stable if and only if det[I −M(∞)N(∞)] �= 0 and [I −
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M(s)N(s)]−1 ∈ RH∞ since M(s)N(s) has no pole-zero can-
celation in the entire closed RHP [40, Th. 5.7]. It is easy to
construct a stabilizable and detectable state-space realization for
[I −M(s)N(s)]−1 and, hence, [I −M(s)N(s)]−1 ∈ RH∞ if
and only if the corresponding system matrix Acl is Hurwitz. As
in [35], it can be shown that Acl = ΦT . Then, following the
proof of [35, Th. 9], except that Lemma 18 must be used instead
of [35, Lemma 6] to take into account the fact that N(s) is an
OSNI system here instead of an SNI system, internal stability
is equivalent to det[I −M(∞)N(∞)] �= 0 and T > 0 which is
equivalent to conditions (34a)–(34c).

(Case II) Suppose M(s) ∈ RHm×m
∞ . Since both M(s) and

N(s) belong to RH∞, no pole-zero cancelation of the loop
transfer function M(s)N(s) can occur in the entire closed RHP.
The rest of the proof follows Case I.

Cases I and II together complete the proof. �
The following corollary specializes Theorem 5 when the

systems satisfy additional constraints at infinite frequency.
Corollary 9: LetM(s) be a (not necessarily stable) NI system

without poles at the origin and N(s) be an OSNI system.
Let Ω = {ω ∈ (0,∞) : s = jω is not a pole of M(s)} and let
j[N(jω0)−N(jω0)

∗] > 0 ∀ω0 ∈ (0,∞)\Ω. Let either M(s)
be strictly proper, or else, M(∞)N(∞) = 0 and N(∞) ≥
0. Suppose there exists no ω ∈ Ω such that det[M(jω)−
M(jω)∗] = 0 and det[N(jω)−N(jω)∗] = 0. Then, the pos-
itive feedback interconnection of M(s) and N(s), as shown in
Fig. 1, is internally stable if and only if λmax[M(0)N(0)] < 1.

Proof: The proof readily follows from Theorem 5 by impos-
ing the additional constraints that either M(s) is strictly proper,
or else, M(∞)N(∞) = 0 and N(∞) ≥ 0. �

The following numerical example illustrates the applicability
of Lemma 18, Theorem 5 and Corollary 9.

Example 8: Both Theorem 5 and Corollary 9 can
capture the internal stability of the NI system M(s) =⎡
⎢⎢⎣

(s2 + s+ 6)

2(s+ 2)(s2 + 4)
0

0
s2 + 12.5

s4 + s3 + 42.5s2 + 12.5s+ 150

⎤
⎥⎥⎦

in positive feedback with the OSNI system N(s) =
(s2 + 1)

(s+ 1)4

[
2 1
1 1

]
because the only pole of M(s) on the jω-axis

restricted to ω ∈ (0,∞) is s = j2 but j[N(j2)−N(j2)∗]

=

[
0.46 0.23
0.23 0.23

]
> 0, and the only frequency ω ∈ (0,∞)\{2}

where det[M(jω)−M(jω)∗] = 0 is ω =
√
12.5 rad/s

whereas the only frequency ω ∈ (0,∞)\{2} where
det[N(jω)−N(jω)∗] = 0 is ω = 1 rad/s. It is easy to
verify that [I −M(s)N(s)] does not have any transmission
zeros on the jω-axis for ω ∈ (0,∞), as stated by Lemma 18,
and it is also easy to verify that M(s)[I −N(s)M(s)]−1 has
only stable poles, as stated by Theorem 5 or Corollary 9 (since
in these results λmax[M(0)N(0)] = 0.79 < 1).

VIII. CONCLUSION

In this article, we define the class of stable IONI systems.
This new IONI class captures all stable NI systems and in-
cludes within it the existing strict subclasses (e.g., SSNI [22],
SSNI [23], and OSNI [8], [18]). It also creates two new strict
subclasses: ISNI and VSNI. This article also establishes the
missing link between NI theory and classical dissipativity in
the sense of Willems [9]. A new time-domain dissipative supply

rate w(u, ū, ˙̄y) is introduced to characterize the full class of
IONI systems which involves the system’s input (u), an auxiliary
filtered version of the input (ū) and the time-derivative of an aux-
iliary output of the system ( ˙̄y). This article also proves that IONI
systems belong to a class of dissipative systems defined with
respect to the particular supply rate w(u, ū, ˙̄y). In addition to
the time-domain dissipative framework, a (Q(ω), S(ω), R(ω))-
dissipative supply rate is also developed to characterize IONI
systems. Most importantly, all these characterizations are shown
to be equivalent and they are also consistent with the original
pointwise frequency-domain definition of stable NI systems.
Furthermore, necessary and sufficient state-space conditions
are derived in LMI form to check whether a given system
is IONI(δ,ε,α,β) or ISNI or OSNI or VSNI or SSNI(α=1,β=1)

or SSNI(α=2,β=1). Finally, a necessary and sufficient internal
stability condition is also presented for a positive feedback
interconnection of an NI system with an OSNI system when
the NI system may contain poles on the jω-axis except at the
origin.
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