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A Distance Measure for Perspective Observability and Observability
of Riccati Systems

Richard Seeber and Nicolaos Dourdoumas , Life Member, IEEE

Abstract—Systems governed by Riccati differential equations
arise in several areas of control system theory. In combination with
a linear fractional output, observability of such systems is relevant
in the context of robotics and computer vision, for example, when
studying the reconstruction of point locations from their perspec-
tive projections. The so-called perspective observability criteria
exist to verify this observability property algebraically, but they
provide only a binary answer. The present contribution studies the
assessment of perspective and Riccati observability in a quanti-
tative way, in terms of the distance to the closest nonobservable
system. For this purpose, a distance measure is proposed. An
optimization problem for determining it is derived, which features
a quadratic cost function and an orthogonality constraint. The
solution of this optimization problem by means of a descent algo-
rithm is discussed and demonstrated in the course of a practically
motivated numerical example.

Index Terms—Computer vision, nonlinear systems, observabil-
ity measures, optimization, perspective projection.

I. INTRODUCTION

Riccati differential equations play an important role in the field of
control theory. They occur in a variety of different contexts such as
robust and optimal control [1] or observability analysis and observer
design for time-varying systems [2], for example. This article studies
systems of Riccati differential equations with fractional outputs, which
are called Riccati systems in the following. As discussed in [3], [4],
these are of particular importance in the context of computer vision in
the form of perspective systems. Such systems describe the motion of
points and curves observed via their perspective projection by means
of a camera.

Extensive literature is available on observers for perspective sys-
tems; see, e.g., [5]–[9]. Contributions studying the observability of
such systems or of Riccati systems in general are more scarce. An
important breakthrough was achieved in [10], where a generalization
of the well-known Popov–Belevitch–Hautus rank criterion is shown to
be connected to the observability of Riccati systems. This connection
is shown via the closely connected concept of perspective observability
of linear time-invariant systems, which was studied before in [11]–[14]
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and more recently in [15], [16]. Observability of a subset of the Riccati
systems considered here is also investigated in [17].

While algebraic criteria may be used to check if a system is observ-
able in theory, ensuring the reliable operation of observers in practice
requires a quantitative assessment of this property. For linear time-
invariant systems, measures for observability (or for the dual property,
controllability) exist for this purpose, see, e.g., [18]–[21], and they are
used, e.g., for parameter design and sensor placement [22]. For Riccati
systems, no such measures have been studied yet.

This article considers the problem of quantitatively assessing per-
spective observability and observability of Riccati systems in terms of
their distance to unobservability. For this purpose, a distance measure
for perspective observability is proposed. It is shown that this measure
yields the distance to unobservability for both observability notions, and
hence may be used to assess their robustness with respect to parameter
perturbations in practice.

The article is structured as follows. Section II introduces Riccati
systems and Section III discusses some existing results regarding their
observability. The problem statement is then given in Section IV.
Section V discusses the distance to unobservability for Riccati systems
and proposes the distance measure for perspective observability as its
solution. Section VI studies properties of the distance measure and pro-
poses a nonlinear optimization problem for obtaining it. The numerical
solution of this optimization problem is discussed in Section VII. In
Section VIII, the proposed measure is computed numerically for an
exemplary system that describes the rotation of a point observed by
a perspective projection. Section IX gives a conclusion and a brief
outlook.

Throughout the article, the following notation is used. The identity
matrix is denoted by I, and MT and MH are written for the transpose
and complex conjugate (Hermitian) transpose of a matrix M. Its trace,
determinant, minimum singular value, and maximum singular value are
denoted by tr(M), det(M), σmin(M), and σmax(M), respectively,
and ‖M‖ is written for its Frobenius norm, i.e., ‖M‖ =

√
tr(MHM).

For a vector v, ‖v‖ means its Euclidian norm, i.e., ‖v‖ =
√
vHv.

II. RICCATI SYSTEMS

Consider the Riccati differential equation

dP

dt
= A11P−PA22 −PA21P+A12, (1a)

with the state matrix P of size (n− d)× d, and an output matrix
Q of size (m− d)× d, given by the relation

Q = (C11P+C12)(C21P+C22)
−1. (1b)
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Fig. 1. Exemplary trajectories of a point p governed by (2b) and its
camera image q projected onto the p1-axis with focal length f according
to (2a).

Therein, A11,A12,A21,A22 and C11,C12,C21,C22 are constant
matrices of appropriate1 sizes with rank[C21 C22] = d. These are real-
valued typically, but systems with complex-valued parameters, state,
and output are permitted here as well. The initial state is denoted by
P0 := P(0).

To see the relevance of such systems in the context of computer
vision, consider, for example, the movement of a single point observed
by means of a camera. For simplicity and ease of illustration, consider-
ations are restricted to a two-dimensional space (the three-dimensional
extension is straightforward). Suppose that the point is observed by a
camera with focal length f and a horizontal (one-dimensional) image
plane located at the origin. Denoting the coordinates of the point
coordinates by the vector p := [p1 p2]

T, the coordinate of the camera
image q is then given by

q =
fp1

p2 + f
=
([

f 0
]
p
)([

0 1
]
p+ f

)−1

(2a)

i.e., by a perspective projection of the point onto the abscissa, as
depicted in Fig. 1. A Riccati system is then obtained, if the point
movement is governed by a Riccati differential equation, such as, for
example

ṗ =

[
0 ω

−ω 0

]
(p− p)− (η1p1 + η2p2)(p− p)

=

[
η1p1 ω + η2p1

−ω + η1p2 η2p2

]
p− p

[
η1 η2

]
p+

[
−ωp2
ωp1

]

(2b)

with parameters p = [p1 p2]
T, η1, η2, and ω. Fig. 1 depicts some

exemplary trajectories. For η1 = 0, η2 = 0, the differential equation
(2b) describes a rigid rotation of the point with angular velocity ω and
center p; with nonzero η1, η2, nonrigid motions may be modeled as
well; see [3].

III. OBSERVABILITY PROPERTIES

This section defines and discusses the observability of Riccati
systems, the related concept of perspective observability, and their
connection.

1The matrices A11,A12,A21,A22 and C11,C12,C21,C22 have sizes
(n− d)× (n− d), (n− d)× d, d× (n− d), d× d and (m− d)× (n− d),
(m− d)× d, d× (n− d), d× d, respectively.

A. Observability of Riccati Systems

The observability of system (1) may be defined in terms of its
solutions. Unlike with linear systems, a solution P(t) of (1) need not
exist for all t ≥ 0, however. Furthermore, even if P(t) exists for some
values of t, the output Q(t) need not be defined for all those values.

Let I(P0) denote the maximal (possibly empty or unbounded) time
interval of the form [0, T ) such that the solutionP(t) of (1a) with initial
value P0 exists and satisfies

det
[
C21P(t) +C22

] �= 0 for all t ∈ I(P0). (3)

System (1) is said to have a solution for a given initial value P0, if
I(P0) is nonempty. The observability of the Riccati system (1) is then
defined using essentially the same idea as in [23, Def. 2.1] by requiring
that two distinct initial states yield different outputs.

Definition 1: System (1) is called observable, if for all pairs of initial
values P(1)

0 ,P
(2)
0 , for which (1) has a solution, and for corresponding

outputs Q(1)(t),Q(2)(t), the following implication holds:

Q(1)(t) = Q(2)(t) ∀t ∈ I(P(1)
0

) ∩ I(P(2)
0

)⇒ P
(1)
0 = P

(2)
0 . (4)

The parameters of the Riccati system (1) may concisely be specified
in terms of a pair (A,C) with matrices A ∈ C

n×n, C ∈ C
m×n given

by

A =

[
A11 A12

A21 A22

]
, C =

[
C11 C12

C21 C22

]
. (5)

Note that the representation of (1) as such a pair is not unique. In
particular, (A− δI, νC) with any constant δ and non-zero constant
ν corresponds to the same system. Thus, it is often useful to impose
restrictions such as

trA22 = 0, ‖C21‖2 + ‖C22‖2 = 1 (6)

for example, to reduce ambiguity in that regard.2

In the following, the Riccati system (1) is commonly referred to by
its associated pair (A,C), where the integer d, which determines the
sizes of P and Q and thus the partitioning (5), is assumed to be given.
To differentiate between the classical notion of observability of the pair
(A,C) meaning observability of a linear system with dynamic matrix
A and output matrix C, and observability of the associated Riccati
system (1), the following notion of Riccati observability is introduced.

Definition 2 (Riccati Observability): For a given integer d, the pair
(A,C) with A ∈ C

n×n, C ∈ C
m×n is called Riccati observable if the

associated Riccati system (1) with P ∈ C
(n−d)×d, Q ∈ C

(m−d)×d is
observable.

B. Perspective Observability

In [10], it is shown that observability of the Riccati system (1) is
related to the so-called perspective observability of the pair (A,C). The
integer d, which determines the dimensions of the state P and output
Q of the Riccati system, is called the dimension loss in this context.
Originally, this form of observability was introduced in [12], where the
pair (A,C) is called perspectively observable with dimension loss d, if
for any solution of a linear time-invariant system with dynamic matrix
A and output matrix C, knowledge of the output up to d dimensions
permits reconstructing the initial state up to d dimensions. The defi-
nition used here follows [15], where for d > 0, the concept is defined
more formally in terms of the observability of linear vectorspaces. Here,

2Note, however, that in some special cases, the pair may not be determined
uniquely even with (6), e.g., for C11 = C21 = 0, C12 = C22, i.e., Q = I.
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the definition proposed therein is extended to affine rather than only
linear vectorspaces, which permits to include also the case d = 0, while
yielding an equivalent notion for d > 0.

Definition 3 (Perspective Observability): For a given integer d, the
pair (A,C) with A ∈ C

n×n, C ∈ C
m×n is called perspectively ob-

servable, if for any two complex-valuedd-dimensional affine subspaces
X (1)(t),X (2)(t) of C

n and corresponding output spaces Y(1)(t),
Y(2)(t) of Cm that satisfy3

dX
dt

= AX , Y = CX (7)

the following implication holds:

Y(1)(t) = Y(2)(t) for all t ⇒ X (1)(0) = X (2)(0). (8)

Note that for d = 0, the affine subspacesX andY collapse to vectors
x and y; in this case, perspective observability is thus equivalent to
classical observability of the linear time-invariant system dx

dt
= Ax,

y = Cx.
In [13], it is shown that perspective observability may be checked

by means of the following generalization of the well-known Popov–
Belevitch–Hautus observability criterion.

Theorem 1 ([13, Th. 2]): The pair (A,C)with matricesA ∈ C
n×n,

C ∈ C
m×n is perspectively observable with dimension loss d if and

only if

rank

[∏d+1
i=1 (λiI−A)

C

]
= n (9)

holds for all λ1, . . . , λd+1 ∈ C.
Note that the matrix λiI−A has rank n unless λi is an eigenvalue

of A. For applying the criterion, it is thus sufficient to check the rank
condition for λ1, . . . , λd+1 taken from the set of eigenvalues of A.

In [10], a connection between Riccati observability and perspective
observability is shown in the form of the following theorem. Note that
its converse only holds subject to some additional conditions, which
are discussed later in Section VI-D.

Theorem 2 ([10, Th. 2.1]): If the pair (A,C) is perspectively
observable, then it is Riccati observable.

IV. PROBLEM STATEMENT

If the Riccati system (1) is not observable, then there are initial
states that cannot be reconstructed using the output. Unlike in the case
of linear systems, however, the reconstruction need not be impossible
for all initial states. To see this, consider the pair (A,C) with d = 1
and

A =

⎡
⎢⎣
1 0 −1

0 1 0

0 0 0

⎤
⎥⎦ , C =

1√
2

[
1 0 −1

0 1 1

]
. (10)

The corresponding Riccati system is

dp1
dt

= p1 − 1,
dp2
dt

= p2, q =
p1 − 1

p2 + 1
(11)

with state [p1 p2]
T and output q. If the time derivative q̇ of the output,

which is given by

q̇ :=
dq

dt
=

(p2 + 1)(p1 − 1)− (p1 − 1)p2
(p2 + 1)2

=
p1 − 1

(p2 + 1)2
, (12)

3For a given initial value X (0), the solution of system (7) is understood as
X (t) = eAtX (0) = {eAtx : x ∈ X (0)}.

is non-zero, one can compute p1, p2 from (11), (12) using

p1 =
q2

q̇
+ 1, p2 =

q

q̇
− 1. (13)

The system is not observable, however, because q(t) = 0 holds for all
t regardless of p2, when the initial value of p1 is one.

Due to this fact, an observer constructed for a nonobservable Riccati
system may still work most of the time, but will fail for certain initial
conditions. Thus, checking observability before constructing an ob-
server is of crucial importance. In practice, this is not enough, however,
because reconstructing the state even for an observable system, while
always possible in theory, may be ill-conditioned. Therefore, rather
than just verifying whether a given system is observable or not, it is
important to quantify observability numerically.

To address this issue, the distance to unobservability may be con-
sidered. Such a distance was first considered for linear time-invariant
systems in [19], [24]. In addition to quantifying observability, it allows
to assess robustness of observability in the presence of parameter
uncertainties. The present contribution considers the following problem
of determining the distance to Riccati unobservability or to perspective
unobservability: For a given pair (A,C), what is the distance, in
terms of the norm of the change in parameters, to the closest Riccati
unobservable or perspectively unobservable system?

V. DISTANCE TO RICCATI UNOBSERVABILITY

To put the considered problem into context, the problem of quanti-
tatively measuring observability in general is first discussed. For the
classical, dual properties observability and controllability of linear
time-invariant systems, several measures have been proposed in the
literature for this purpose; see, e.g., [19]–[21]. In the following, prop-
erties desired from such a measure for any observability property are
introduced similar to [25], [26].

Definition 4 (Observability Measure): A real-valued function
μ(A,C) is called an observability measure for the pair (A,C), if
it satisfies the conditions
1) non-negativity: μ(A,C) ≥ 0 for all A,C;
2) continuity: μ(A,C) is a continuous function of A,C; and
3) consistency: μ(A,C) �= 0 ⇔ (A,C) observable.

While such a formal definition is typically not considered in the
literature, it is clear that these properties are desirable: Consistency
guarantees that a loss of observability causes the measure to vanish,
and continuity ensures that this cannot happen abruptly when changing
the parameters.

Existence of such a measure requires, however, that the set of
observable systems is open. In the following, this is shown to be
the case only for perspective observability. Motivated by this result, a
distance measure for perspective observability is then introduced, which
is finally shown to yield also the distance to Riccati unobservability.

A. Nonexistence of Measures for Riccati Observability

The following counterexample illustrates that the set of Riccati
observable systems in general is not open, and hence measures in the
sense of Definition 4 do not exist for Riccati observability.

Example 1: Consider the pairs (Aε,C) with a non-negative param-
eter ε and matrices Aε, C given by

Aε =

⎡
⎢⎣
−1 0 0

0 1 0

−ε ε 0

⎤
⎥⎦ , C =

[
1 1 0

0 0 1

]
. (14)
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For d = 1, the corresponding Riccati systems (1) are

dp1
dt

= −p1 + ε(p21 − p1p2) (15a)

dp2
dt

= p2 + ε(p1p2 − p22) (15b)

q = p1 + p2 (15c)

with state [p1 p2]
T and output q. For ε = 0, this is an observable linear

system; thus, (A0,C) is Riccati observable. Otherwise, two different
solutions that yield the same output q(t) are given by p1(t) = ε−1,
p2(t) = 0 and p1(t) = 0, p2(t) = ε−1. Thus, (Aε,C) is not Riccati
observable for ε > 0. By consistency and continuity, one then has for
any Riccati observability measure μ the contradiction

0 �= μ(A0,C) = lim
ε→0

μ(Aε,C) = lim
ε→0

0 = 0. (16)

Thus, no function μ satisfying Definition 4 exists for the case of Riccati
observability.

The following proposition formalizes the insight of this example by
extending it to the general case.

Proposition 1: For positive integers d, n,m, let R(n,m)
d be the set

of all pairs (A,C) with A ∈ C
n×n, C ∈ C

m×n that correspond to
observable Riccati systems. If n− d ≥ 2, then the set R(n,m)

d is not
open.

Proof: The proof is given in the Appendix. �

B. Distance Measure for Perspective Observability

Unlike the set of Riccati observable systems, the set of perspectively
observable systems is open, because it is characterized by the alge-
braic rank condition (9). Hence, motivated by the considered distance
problem for Riccati observability, the following distance measure for
perspective observability is introduced, cf. [27]. Denoting by Pd the
set of pairs that are not perspectively observable for a given dimension
loss d, it is defined as

μd(A,C) := inf

{∥∥∥∥∥
[
Ã

C̃

]∥∥∥∥∥ : (A+ Ã,C+ C̃) ∈ Pd

}
. (17)

It is straightforward to verify that (17) satisfies Definition 4; in
particular, item 3 holds because the set of perspectively observable
systems is open: If (A,C) is perspectively observable, then it is
contained in a neighborhood of perspectively observable systems, and
hence μd(A,C) > 0.

In the following section, an optimization problem for this measure is
formulated and its properties are discussed. Furthermore, the following
connection to the distance to Riccati unobservability is shown.

Theorem 3: Suppose that (A,C) is not perspectively observable.
Then, for every ε > 0, there exists Ã such that ‖Ã‖ ≤ ε holds and the
pair (A+ Ã,C) is not Riccati observable.

Proof: The proof is given in Section VI-D. �
From Theorems 2 and 3, the following corollary is obvious; it

shows that the proposed distance measure indeed solves the considered
distance problem to Riccati unobservability.

Corollary 1: For the pair (A,C), the distance to Riccati unobserv-
ability is given by the distance measure for perspective observability
μd(A,C).

VI. DISTANCE MEASURE

To study the proposed distance measure as defined in (17), an alge-
braic characterization of perspective observability is first introduced.
Then, an optimization problem for the distance measure is derived, its

properties are studied, and its connection to Riccati observability is
shown.

A. Algebraic Characterization of Perspective Observability

Using the criterion for perspective observability given in Theorem 1,
the following technical lemma may be obtained.

Lemma 1: The following statements are equivalent:
1) The pair (A,C) with A ∈ C

n×n, C ∈ C
m×n is not perspectively

observable.
2) For every vector u ∈ C

d+1 with ‖u‖ = 1, there exist matrices
V ∈ C

n×(d+1), S ∈ C
(d+1)×(d+1) such that

VHV = I, AV = VS, CVu = 0 (18)

holds.
3) There exists a nonzero vector u ∈ C

d+1 as well as two matrices
V ∈ C

n×(d+1), S ∈ C
(d+1)×(d+1) such that (18) holds.

Proof: The proof is given in the Appendix. �

B. Optimization Problem for the Distance Measure

By rewriting the constraint in (17) using the algebraic characteriza-
tion of perspective observability in Lemma 1, the following optimiza-
tion problem is obtained.

Theorem 4: Consider the pair (A,C) with A ∈ C
n×n, C ∈ C

m×n

and let the dimension loss d ≤ n− 1 and a vector u ∈ C
d+1 with

‖u‖ = 1 be given. Then, the distance measure μd is given by
μd(A,C) =

√
κ, where κ is the solution of the nonlinear optimization

problem

κ := min
V,S

‖AV −VS‖2 + ‖CVu‖2 (19a)

subject to

VHV = I, V ∈ C
n×(d+1), S ∈ C

(d+1)×(d+1). (19b)

Remark 1: For d = 0, the well-known optimization problem

μ0(A,C) = min
s∈C

min
vHv=1

√
‖(A− sI)v‖2 + ‖Cv‖2

= min
s∈C

σmin

[
A− sI

C

]
(20)

for the distance measure of observability is obtained [19], [28].
Proof: It is first shown that μd(A,C) ≤ √

κ holds. To that end,
denote by V,S the optimal solution of (19). Consider the pair (Â, Ĉ)
with

Â = A− (AV −VS)VH, Ĉ = C−CVuuHVH. (21)

Using VHV = I and uHu = ‖u‖2 = 1, one verifies that ÂV = VS,
ĈVu = 0 holds; thus, (Â, Ĉ) is not perspectively observable accord-
ing to Lemma 1, item 3. Therefore, one has

μd(A,C) ≤
∥∥∥∥∥
[
A− Â

C− Ĉ

]∥∥∥∥∥ =

∥∥∥∥∥
[
(AV −VS)VH

CVuuHVH

]∥∥∥∥∥
=

√
‖AV −VS‖2 + ‖CVu‖2 =

√
κ. (22)

To showμd(A,C) ≥ √
κ, let the matrices Ã, C̃ attain the minimum

in (17), i.e., let (A+ Ã,C+ C̃) be the pair closest to (A,C) that is
not perspectively observable. By Lemma 1, item 2, there exist matrices
V, S with VHV = I such that

(A+ Ã)V = VS, (C+ C̃)Vu = 0. (23)
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One then has

μd(A,C) =

∥∥∥∥∥
[
Ã

C̃

]∥∥∥∥∥ ≥
√∥∥∥ÃV

∥∥∥2 + ∥∥∥C̃Vu
∥∥∥2

=

√
‖AV −VS‖2 + ‖CVu‖2 ≥ √

κ (24)

which concludes the proof. �
While the structure of the optimization problem (19) reflects the

algebraic structure visible in Lemma 1, the number of optimization
variables can be reduced by further minimizing the objective function.
This is shown in the following corollary.

Corollary 2: Consider the pair (A,C)withA ∈ C
n×n,C ∈ C

m×n

and let the dimension loss d be given. The distance measure μd is
given by μd(A,C) =

√
κ, where κ is the solution of the nonlinear

optimization problem

κ := min
V

∥∥(I−VVH)AV
∥∥2 + σmin(CV)2 (25a)

subject to

VHV = I, V ∈ C
n×(d+1). (25b)

Remark 2: Note that the objective function in (25a) depends only
on the space spanned by the columns of V: It is invariant with respect
to replacing V by VQ with a matrix Q ∈ C

(d+1)×(d+1) that is unitary,
i.e., QHQ = QQH = I. Therefore, the optimization problem always
has multiple global optima.

Proof: In Theorem 4, the unit-length vector u may be chosen
arbitrarily. Thus, minimizing with respect to u does not change κ and
(19) may equivalently be written as

κ = min
u

min
V,S

‖AV −VS‖2 + ‖CVu‖2 (26)

subject to the constraints (19b) and ‖u‖ = 1. Taking VHV = I into
account, one has

‖AV −VS‖2 =
∥∥(I−VVH)AV

∥∥2
+
∥∥S−VHAV

∥∥2 (27)

and minimization of terms in (26) with respect to S, u yields

min
S

‖AV −VS‖ =
∥∥(I−VVH)AV

∥∥ (28a)

min
‖u‖=1

‖CVu‖ = σmin(CV). (28b)

Thus, κ is given by

κ = min
V

∥∥(I−VVH)AV
∥∥2 + σmin(CV)2 (29)

subject to VHV = I, which completes the proof. �

C. Bounds of the Distance Measure

When using the distance measure in practice, it is useful to know the
range of values that the measure can take. The following proposition
gives lower and upper bounds for this purpose.

Proposition 2: The distance measure μd(A,C) satisfies the in-
equalities

√
σmin(CHC) ≤ μd(A,C) ≤√σmax(CHC) for all ma-

trices A ∈ C
n×n, C ∈ C

m×n.
Remark 3: Note that the given lower bound is nonzero if and only

if rankC = n.
Proof: The inequality may be obtained from optimization problem

(25). Denoting its optimal solution by V, one has

μd(A,C) ≥ σmin(CV) =
√

σmin(VHCHCV)

≥
√

σmin(CHC). (30)

Furthermore, using any matrices V, S that satisfy VHV = I and
AV = VS, one obtains

μd(A,C) ≤
√

‖(I−VVH)AV‖2 + σmin(CV)2

=

√
‖(I−VVH)VS‖2 + σmin(CV)2

= σmin(CV) ≤
√

σmax(CHC) (31)

which completes the proof. �

D. Connection to Riccati Observability

In order to draw the connection to Riccati observability and to
prove Theorem 3, the following lemma is introduced. It is essentially
a restatement of [10, Th. 2.2] in terms of the algebraic criterion from
Section VI-A.

Lemma 2: Suppose that item 3 of Lemma 1 is fulfilled with
rankV = d+ 1 and that the following two d× (d+ 1) matrices have
maximal rank

rank
[
0 I

]
V = rank

[
0 I

]
CV = d. (32)

Then, the pair (A,C) is not Riccati observable.
Proof: The proof is given in the Appendix. �
Using this technical lemma, Theorem 3 can now be proven.
Proof of Theorem 3: Let matrices V,S and vector u be as in item

2 of Lemma 1. Furthermore, let matrices Ṽ1, Ṽ2 ∈ C
n×(d+1) be such

that Ṽ1u = Ṽ2u = 0 and that

rank
[
0 I

]
Ṽ1 = rank

[
0 I

]
CṼ2 = d. (33)

Existence of such matrices is verified by comparing the number of
constraints with the degrees of freedom. Then, the matrix V+ Ṽ with
Ṽ = ε1Ṽ1 + ε2Ṽ2 satisfies (32) for almost all ε1, ε2, and moreover
C(V + Ṽ)u = 0 holds. Choosing

Ã = (−AṼ+ ṼS)
[
(V+ Ṽ)H(V + Ṽ)

]−1
(V+ Ṽ)H (34)

furthermore achieves (A+ Ã)(V + Ṽ) = (V+ Ṽ)S and applying
Lemma 2 shows loss of Riccati observability for (A+ Ã,C). The
proof is concluded by noting that ‖Ã‖ can be made arbitrarily small
by making ε1, ε2 small enough. �

VII. COMPUTATION OF THE DISTANCE MEASURE

Computing the distance measure requires solving the optimization
problem (25), which is nonconvex due to the orthogonality constraint
(25b). In general, it cannot be solved analytically, and efficient methods
to find its global optimum only exist for d = 0, i.e., for classical observ-
ability; see [28]. Nevertheless, local optima may be found numerically;
this section discusses a procedure to do so.

The handling of orthogonality constraints is studied in the literature,
e.g., in [29]–[31]. In [31], a gradient descent procedure based on the
Cayley transformation is proposed. Here, a descent algorithm based on
this idea is applied to the optimization problem (25) in Corollary 2 with
cost function

J(V) :=
∥∥(I−VVH)AV

∥∥2 + σmin(CV)2 (35)

in the following.
Consider decision variables Vk ∈ C

n×(d+1) in iteration k of the
algorithm’s execution, which satisfyVH

k Vk = I. An admissible matrix
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Vk+1 for the next iteration is then computed as Vk+1 = V̄k(τk),
where τk is a step-size, and the Cayley transformation-based function
V̄k is given by

V̄k(τ) :=
(
I+

τ

2
Wk

)−1 (
I− τ

2
Wk

)
Vk. (36)

Therein, Wk = −WH
k is a skew-symmetric matrix, whose choice

is discussed later. This function satisfies V̄k(0) = Vk as well as
V̄H

k (τ)V̄k(τ) = VH
k Vk = I for all τ , thus preserving the orthogo-

nality constraint. Its derivative at τ = 0 is given by

∂V̄k

∂τ

∣∣∣∣
τ=0

= −WkVk. (37)

By proper choice of the matrix Wk, one may ensure that the inequality
J(V̄k(τ)) < J(Vk) holds for small enough τ > 0, provided that Vk

is not a local optimum. An appropriate step-size τk to decrease J may
thus be obtained by means of a line search.

In [31], the matrix Wk is obtained from the gradient of the objective
function. The function J is not differentiable, however, if the multiplic-
ity of the minimum singular value σmin(CV) is greater than one. To
see this, note, for example, that

σmin

[
1 0

0 1 + ε

]
=

{
1 ε ≥ 0

1 + ε ε < 0
(38)

holds for |ε| ≤ 1. Thus, (38) is not differentiable at ε = 0. To neverthe-
less use the descent algorithm, the following proposition gives a descent
direction of the objective function J defined in (35) regardless of its
differentiability.

Proposition 3: Consider the function J in (35) for given matrices
A ∈ C

n×n and C ∈ C
m×n. For a given matrix Vk ∈ C

n×(d+1) satis-
fyingVH

k Vk = I, letu ∈ C
d+1 be any unit-length right singular vector

corresponding to the smallest singular value of the matrix CVk and,
using the abbreviation

G := 2AHAVk + 2CHCVkuu
H

− 2AHVkV
H
k AVk − 2AVkV

H
k A

HVk (39)

define Wk := GVH
k −VkG

H. If the matrix Wk thus defined is
nonzero, then τ̄ > 0 exists such that with the function V̄k(τ) defined
in (36), the inequality J(V̄k(τ)) < J(Vk) holds for all τ ∈ (0, τ̄ ].

Proof: Define the function

J̃(V) :=
∥∥(I−VVH)AV

∥∥2 + ‖CVu‖2 (40)

which satisfies J̃(V) ≥ J(V) for all V, because uHu = 1. This
function J̃ is differentiable; with the abbreviations

J̃1(V) := trVHAHAV (41a)

J̃2(V) := truHVHCHCVu = trVHCHCVuuH (41b)

J̃3(V) := trVHAHVVHAV = trVHAVVHAHV (41c)

it may be written as J̃ = J̃1 + J̃2 − J̃3 for matrices V satisfying
VHV = I. Differentiation then yields

∂J̃1

∂VH
= AHAV,

∂J̃2

∂VH
= CHCVuuH (42a)

∂J̃3

∂VH
= AHVVHAV+AVVHAHV (42b)

see, e.g., [32], [33] for differentiation rules. Thus, one can see that G
is the gradient of J̃ evaluated at Vk, i.e.,

G =

⎡
⎣ ∂J̃

∂VH
+

(
∂J̃

∂V

)H
⎤
⎦

V=Vk

= 2
∂J̃

∂VH

∣∣∣∣∣
V=Vk

. (43)

Due to skew-symmetry of Wk, and denoting the real part of a complex
number z by Re z, one then has

Re trWH
k Wk = Re tr(VkG

H −GVH
k )Wk

= Re trVkG
HWk +Re trWkVkG

H

= 2Re trGHWkVk. (44)

With (37), the derivative of J̃(V̄k(τ)) at τ = 0 thus satisfies

d

dτ
J̃
(
V̄k(τ)

)
= Re trGH dV̄k

dτ

∣∣∣∣
τ=0

= −Re trGHWkVk

= −Re tr
1

2
WH

k Wk = −1

2
‖Wk‖2 < 0 (45)

if Wk is non-zero. Therefore, a positive constant τ̄ exists, such that for
all τ ∈ (0, τ̄ ], the relation

J
(
V̄k(τ)

) ≤ J̃
(
V̄k(τ)

)
< J̃

(
V̄k(0)

)
= J

(
Vk

)
(46)

holds, which completes the proof. �
Using the derivative in (45), the step size τk in each iteration k

may be computed using backtracking line search based on the Armijo–
Goldstein condition [34] according to τk = αβjk with the abbreviation

jk = min{j ∈ N : J(V̄k(αβ
j)) ≤ J(Vk)− αβj γ

2
‖Wk‖2} (47)

and positive initial step-size α and parameters β, γ ∈ (0, 1).

VIII. NUMERICAL EXAMPLE

Consider system (2) with η1 = η2 = 0, which describes the rotary
motion of a point observed by a camera with focal length f as shown
in Fig. 1. With angular velocity and center of rotation being given by
ω and (p1, p2), respectively, it is described by the pair (A,C) with

A =

⎡
⎢⎣

0 ω −ωp2
−ω 0 ωp1
0 0 0

⎤
⎥⎦ , C =

[
f 0 0

0 1 f

]
(48)

and d = 1. Note that this pair does not satisfy (6). Instead, C is
scaled such that it depends affinely on the focal length f ; this way,
the perturbation of C considered in the distance measure’s definition
(17) is more meaningful from a practical point of view. According to
Proposition 2, an upper bound for the distance measure is given by√

σmax(CHC) =
√

1 + f2.
Using the procedure outlined in Section VII, the distance measure

μd(A,C) was computed numerically for p1 = 2, p2 = 2. As initial
values for the descent algorithm, 20 random matrices V0 ∈ C

3×2

satisfyingVH
0 V0 = Iwere used, and optimization was terminated once

|Jk − Jk−1| ≤ 10−6. Table I lists the statistics of the number of cost
function evaluations, including those required for evaluating (47), with
β = 0.5 and different step-size parameters α, γ.

Fig. 2 depicts distance measures obtained for different values of f
as well as local minima obtained for all algorithm runs with f = 1 as
a function of ω. One can see that μd(A,C) = 0 holds for ω = 0. This
is consistent with the fact that system (2) is not observable for ω = 0,
because the location of a stationary point cannot be reconstructed. For
ω �= 0, the results allow to conclude robustness of Riccati observability
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TABLE I
STATISTICS OF NUMBER OF COST FUNCTION EVALUATIONS FROM 4500

OPTIMIZATIONS WITH f ∈ {0.25, 0.5, 1}, ω ∈ [0, 5], AND RANDOM INITIAL
CONDITION V0 FOR β = 0.5 AND DIFFERENT PARAMETERS α, γ

Fig. 2. Local optima and distance measure μd(A,C) obtained using
the descent algorithm with α = 1, β = γ = 0.5 for (48) with p̄1 = p̄2 = 2
and different values of the focal length f as a function of the angular
speed ω.

with respect to parameter perturbations that do not exceed the value of
the distance measure. The depicted results furthermore suggest that
the observability of the system is improved with increasing values of
angular velocity ω or focal length f . Both facts match the intuition
that reconstruction of the point’s position becomes harder as the point
moves slower or the size of its camera image decreases.

IX. CONCLUSION

The problem of assessing perspective observability and the observ-
ability of Riccati systems in terms of the distance to unobservability
was considered. It was shown that in the latter case, the distance
may be zero even for some observable systems. The reason is that
the set of observable Riccati systems, unlike the set of perspectively
observable systems, is not open. Nevertheless, the distances for the two
observability notions were shown to coincide, and a distance measure
for obtaining them was proposed. A nonlinear optimization problem
for this distance measure was derived and a descent algorithm for its
numerical solution was discussed. The effectiveness of the proposed
approach for quantifying Riccati observability was shown using a
practically motivated example.

Future work may focus on restricting the form of permitted per-
turbations, for example, to compute the distance measure only among
systems exhibiting certain structural properties.

APPENDIX

Proof of Lemma 1: Suppose that matricesV,S, and a nonzero vector
u satisfying (18) exist. Let λ1, . . . , λd+1 be the eigenvalues of S. Then,

one has due to Cayley–Hamilton

d+1∏
i=1

(λiI−A)V = V

d+1∏
i=1

(λiI− S) = 0 (49)

and thus [∏d+1
i=1 (λiI−A)

C

]
Vu = 0. (50)

Since ‖Vu‖ = ‖u‖ �= 0, one has Vu �= 0; hence, (A,C) is not per-
spectively observable according to Theorem 1.

Conversely, assume that (A,C) is not perspectively observable
and let u be any unit-length vector. By Theorem 1, there exist
λ1, . . . , λd+1 ∈ C and a unit-length vector w that satisfy

d+1∏
i=1

(λiI−A)w = 0, Cw = 0. (51)

Let q(s) be the minimal polynomial of w, i.e., the polynomial with
minimal degree such that q(A)w = 0 holds, and let W be the space
spanned by the vectors w,Aw, . . . ,Adw. This space is A-invariant,
i.e.,AW = W , and has dimension dimW = deg q(s) ≤ d+ 1 due to
(51). Using the following lemma from [35], an A-invariant subspace
V containing W with dimV = d+ 1 is constructed.

Lemma 3 ([35, p. 202]): Let W be an A-invariant subspace of Cn

satisfying dimW < n. Then, there exists a vector h /∈ W such that
(A− cI)h ∈ W for some eigenvalue c of A.

With h as in this lemma, the space spanned by h and vectors
in W is A-invariant and has dimension dimW + 1; thus, repeated
application eventually yieldsV . LetV be a matrix, whose columns form
an orthonormal basis for V and which satisfies Vu = w ∈ W ⊆ V .
This matrix then fulfills VHV = I and CVu = Cw = 0. Due to the
A-invariance of V , a matrix S furthermore exists such that AV = VS
holds.

Proof of Lemma 2: For W ∈ C
(d+1)×d, consider the solution

X(t) = eAtVW = VeStW, Y(t) = CVeStW (52)

of the system Ẋ = AX, Y = CX. With an appropriate partitioning
X = [XT

1 XT
2 ]

T, Y = [YT
1 YT

2 ]
T, it is straightforward to verify

thatP(t) = X1(t)X2(t)
−1,Q(t) = Y1(t)Y2(t)

−1 is a solution of the
Riccati system (1), cf. [10]. For almost all W, one has rankX2(0) =
rankY2(0) = d due to (32), guaranteeing existence of these solutions
on a nonempty time interval. Moreover, Q(t) and P(0) only depend
on the images of Y(t) and X(0), respectively. Since rankCV ≤ d
and rankV = d+ 1, the same Q(t) but different P(0) are obtained
for almost all W, proving loss of Riccati observability. �

Proof of Proposition 1: Denote by e1 and e2 the first and second
standard-basis vector, respectively, and by 1 a vector of ones, each with
length as appropriate from context. Consider the Riccati system

Ṗ = A11P−PA21P, Q = C11P (53)

with P ∈ C
(n−d)×d, Q ∈ C

(m−d)×(n−d) and parameters

A21 = ε1 · (−eT
1 + eT

2 ), C11 = 1 · 1T (54)

and A11 = diag(−1, 1, 2, . . . , n− d− 1). For ε = 0, this is an ob-
servable linear time-invariant system with matrix-valued state P, while
for every ε �= 0, the two constant solutions P(1)(t) = 1

εd
e1 · 1T and

P(2)(t) = 1
εd
e2 · 1T yield the same constant output Q(t). �
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