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A Trisection Algorithm for Estimating Distance Measures for Strong
Observability and Strong Detectability

Roland Falkensteiner , Richard Seeber , and Martin Horn , Member, IEEE

Abstract—For reliably analyzing the properties of strong
observability and strong detectability of a system, continuous
distance measures can be used. When calculating these measures,
it is necessary to find the global minimum of a nonconvex target
function. The main contribution of this article is an optimization
algorithm that guarantees to find this global minimum in a fast and
efficient way by exploiting the special structure of the optimization
problem. Using this optimization algorithm, the distance measures
can be reliably calculated. The numerical properties and the
usefulness of the algorithm in practical applications are illustrated
by means of a numerical example.

Index Terms—Linear systems, mechatronics, observability mea-
sures, optimization algorithms.

I. INTRODUCTION

In real-world control applications, unknown external disturbances
are often present. The correct estimation of internal system states in
presence of disturbances and the reconstruction of these disturbances
is of particular importance in applications, like fault detection or robust
control. Many external disturbances can be modeled as unknown inputs.
For state estimation in presence of unknown inputs, strong observability
or strong detectability, as defined in [1], are essential system properties.
Standard criteria for these properties have binary character and their
reliable numerical evaluation is difficult, but important, for example, in
sensor placement [2]–[4]. Therefore, measures for reliable evaluation
of strong observability and strong detectability are of major interest.

For the evaluation of standard observability, or its dual controlla-
bility, of a system, a similar problem has been extensively studied.
Several continuous measures for observability and controllability have
been proposed, see [5] for an overview. These continuous measures
can be categorized into modal, energy, and distance measures. Modal
measures have been introduced in [6], and give information about
the controllability or observability of every mode separately. Energy
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measures analyze how much energy is necessary to bring the system
into a desired state, see [7]. Distance measures have been introduced
in [8], and yield the smallest perturbation in system matrices rendering
the system uncontrollable or unobservable.

In [9], the idea of distance measures was extended to systems with
unknown inputs and distance measures, for strong observability and
strong detectability, was introduced. These measures give the distance
to the closest non-strongly observable or non-strongly detectable sys-
tem, which is calculated by minimizing the smallest singular value
of the Rosenbrock matrix. The target function of this minimization
problem is nonconvex and can have multiple local minima. However,
for the correct determination of the measures, knowledge of the global
minimum is absolutely necessary.

For the calculation of the distance measures for standard controlla-
bility and observability, special algorithms have been proposed. In [10],
an iterative algorithm is presented, where estimations for the smallest
singular value and the corresponding singular vector were refined in
every iteration step. This algorithm only finds the local minimum and
the results depend on the initial conditions. In [11], an algorithm for
finding the minimum along a straight line using a bisection algorithm
was proposed. In combination with an appropriate grid, this algorithm
is able to find the global minimum. The algorithm in [12] uses a
similar approach, but directly determines the global minimum by a
trisection algorithm with the so-called Gu’s test as condition. In [13], a
quasi-Newton optimization is presented that finds a minimum and uses
Gu’s test to check if it is the global minimum.

For the calculation of the distance measures for strong observability
and strong detectability, as presented in [9], special algorithms have not
been studied yet. Several standard optimization algorithms can be used,
for example, grid search [14], quasi-Newton optimization [13], [15], or
genetic algorithms [16]. However, these optimization algorithms do not
guarantee to find the global minimum, and high computational costs
are necessary for increasing the degree of confidence in a solution. A
concept closely related to the distance measures for strong observability
and strong detectability is the minimum phase radius, as defined in [17].
In [18], an algorithm for computing this radius is presented, which also
does not guarantee to find the global minimum of the considered target
function.

In this article, an optimization algorithm for the reliable and efficient
calculation of measures for strong observability and strong detectability
is presented, which guarantees to find the global minimum of the
target function. This algorithm is based on a trisection approach in
combination with Gu’s test, as presented in [12] and [19], for standard
controllability, and extends these ideas to the strong observability case.
The properties of the algorithm are discussed and a numerical example
is given, in order to show its practical usefulness.

This article is structured as follows. Section II gives preliminaries.
Section III introduces the theoretical foundation for the development
of the optimization algorithm. Section IV gives the optimization al-
gorithms based on the previous theorems. In Section V, a numerical
example is presented.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2398-0155
https://orcid.org/0000-0003-4430-5626
https://orcid.org/0000-0002-5845-1061
mailto:roland.falkensteiner@tugraz.at
mailto:richard.seeber@tugraz.at
mailto:martin.horn@tugraz.at
https://doi.org/10.1109/TAC.2022.3142120


IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 1, JANUARY 2023 479

II. PRELIMINARIES

Consider a linear system

Σ :
ẋ = Ax+Ew

y = Cx+Fw
(1)

with states x ∈ Rn, unknown inputs w ∈ Rq , outputs y ∈ Rp, and
A,E,C, and F being constant matrices of appropriate dimensions.
It is assumed that no prior knowledge about the unknown inputs w is
available, that rankE = q, and that more measurements than unknown
inputs are available (p ≥ q). Without loss of generality, any known input
is omitted. The matrices describing systemΣ are combined in the matrix

S =

[
A E

C F

]
. (2)

The operators MH,
∥∥M∥∥, and σmin(M) denote the complex con-

jugate transpose, the spectral norm, and the smallest singular value
of a matrix M, respectively. The complex conjugate of c ∈ C is
denoted by c̄ and its real part by Re(c). Furthermore, the complex
right open-half-plane is denoted by C+ = {c ∈ C|Re(c) > 0}.

A. Strong Observability and Strong Detectability

Strong observability or strong detectability were introduced in [1],
and are necessary system properties for state estimation in the presence
of unknown inputs. These properties are connected to the transmission
zeros of a system. Transmission zeros are the values λ0 ∈ C, for which
the matrix

R(S, λ) =

[
A− λI E

C F

]
(3)

satisfies rank(R(S, λ0)) < n+ q, as defined in [20]. According to
[1], a system Σ is strongly detectable if and only if (iff) it has no
transmission zeros λ0 in the positive complex half plane C+, i.e., iff
Re(λ0) < 0 holds for all λ0, whereR(S, λ0) is rank deficient. A system
Σ is strongly observable iff it has no transmission zeros at all.

B. Distance Measures for Strong Observability and
Strong Detectability

The rank condition for strong observability and strong detectability
has a binary character, and therefore, its reliable numerical evaluation is
difficult. In particular, numerical errors while checking the conditions
or small parametric perturbations of the system matrices could change
the result. In order to circumvent these issues, the continuous measures

μSO(S) = inf
Δ
{∥∥Δ∥∥ : (S+Δ) non-SO} (4)

= inf
λ∈C

σmin (R(S, λ)) (5)

μSD(S) = inf
Δ
{∥∥Δ∥∥ : (S+Δ) non-SD} (6)

= inf
λ∈C+

σmin (R(S, λ)) (7)

and their calculation are introduced in [9, Theorem 2]. The measures are
defined as the minimum norm parametric perturbation Δ that renders
the system non-strongly observable or non-strongly detectable. This
perturbation is calculated as the smallest singular value of R(S, λ) in
the corresponding part of the complex plane and can be considered the
distance from system S to a perturbed system with a transmission zero
at λ.

In the distance measures calculation, the minimization problem (5)
or (7) needs to be solved. The corresponding target function

f(λ) = σmin (R(S, λ)) (8)

can have multiple local minima, because multiple systems with different
transmission zeros λ but equal distance to Σ may exist. Therefore, f(λ)
is a nonconvex function, which can include local minima that give only
upper bounds for the global minimum. For the correct calculation of
the distance measures, it is therefore necessary to have an optimization
algorithm, which reliably finds the global minimum of f(λ).

III. THEORETICAL FOUNDATION FOR A GLOBAL

OPTIMIZATION ALGORITHM

In order to reliably find the global minimum of f(λ) despite its
nonconvexity, an algorithm is proposed to verify the existence of
successively tighter, lower, or upper bounds in every iteration step.
In this section, first a theorem for the existence of such bounds is given,
then a proposition for their verification is derived, and finally a corollary
of this proposition is presented for a lower dimension case.

A. Fundamental Theorem

The following theorem allows to check if a pair of values (q, q − δ)
contains a lower or upper bound of the global minimum.

Theorem 1: Consider an area Dγ = {λ ∈ C|Re(λ) ≥ γ} with γ ∈
(−∞, 0] ∪ {−∞} and q ∈ R. Let

μ∗(S) = inf
λ∈Dγ

f(λ) μγ(S) = inf
λ∈∂Dγ

f(λ) (9)

denote the minimum of f(λ) in Dγ and the minimum of f(λ)
along the border ∂Dγ , respectively. Assume that μγ(S) ≥ q ≥ μ∗(S)
holds. If δ ∈ R satisfies 0 ≤ δ ≤ q − μ∗(S), then there exists a λint =
αint+jβint with αint ≥ (γ + δ) such that

f(λint − δ) = q f(λint + δ) = q (10)

holds.
The following implications are obtained from Theorem 1 and bounds

for μ∗ can be derived, provided that q ≤ μγ holds:

Theorem 1 : q − δ ≥ μ∗

⇓

(10) :
f(αint + jβint − δ) = q

f(αint + jβint + δ) = q
⇒ q ≥ μ∗.

If λint exist, for which (10) holds, then

U = q ≥ μ∗ (11)

yields an upper bound. If no such point exists, then the assumptions of
Theorem 1 are contradicted, and

L = q − δ < μ∗ (12)

yields a lower bound.
Remark: Note that Theorem 1 is formulated such that bounds for

either μSO or μSD can be deduced by means of a parameter γ. For the
determination of μSO, set γ = −∞ to ensure that ∂Dγ includes C. For
the determination of μSD, set γ = 0 to restrict Dγ to C+.
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Fig. 1. Sketch for Theorem 1.

Proof: A full proof of Theorem 1 is given in Appendix A. In the
following, a short summary of the proof is presented. Fig. 1 shows the
geometrical relations of the proof as a visual aid.

Due to the continuity of f(λ), it is possible to find a closed curve
∂Dγ , where f(λ) = q holds with the point of minimum P∗, at which
f(λ∗) = μ∗(S) holds, in its interior. Consider two points P1 and P2

located on ∂Dγ with the same imaginary part as P∗. There exists a
lower bound for the distances η1 and η2 from the two points P1 and P2

to P∗. The lower bound can be derived from the fact that the change of
function value of f(λ) is bounded by f(λ∗ + η)− f(λ∗) ≤ |η| as can
be shown by using Weyl’s inequality [21]. By inserting the function
values for f(λ∗ + η) and f(λ∗), the lower bounds are given by η1 ≥
q − μSO(S) and η2 ≥ q − μSO(S), respectively. When ∂G is shifted
left and right by δ, new versions∂GL and∂GR are obtained, respectively.
There exist points of intersection between ∂GL and ∂GR at Pint =
(αint, βint), where (10) holds since δ ≤ q − μSO(S) holds. The right-
shifted version ∂GR is strictly in Dγ , with Re(∂GR) ≥ (γ + δ), as
shown in Fig. 1, and therefore any point of intersection Pint is in Dγ

with αint > (γ + δ). �

B. Verification of Intersection

The challenge when using Theorem 1 for finding bounds onμSO and
μSD is now to verify if a point of intersection Pint does exist in order
to show that (10) holds. For this verification the following proposition
is introduced.

Proposition 2: Let α, δ ∈ R and γ ∈ (−∞, 0] ∪ {−∞}. Consider
the matrices

M(α) =

[
−αI+A−EGFTC −EGET−I

q2I−CTC+CTFGFTC αI−AT+CTFGET

]
(13)

N =

[
−I 0

0 I

]
(14)

Π(δ) = I⊗M(δ) +M(−δ)⊗ I (15)

Γ = −I⊗N−N⊗ I. (16)

There exists λint = αint + jβint satisfying (10), iff the matrix pair
Π(δ), Γ has a purely real-valued eigenvalue αint ≥ (γ + δ), i.e.,
det(Π(δ)− αintΓ) = 0, and the corresponding matrices

Ma = M(αint + δ) Mb = M(αint − δ) (17)

share a common purely imaginary eigenvalue jβint.
Proof: A proof is given in Appendix B.

Remark: For the verification of the existence of Pint and conse-
quently λint satisfying (10) in Theorem 1, the following steps are nec-
essary. First, check if the matrix pair Π(δ), Γ has a purely real-valued
eigenvalue αi, for which αi ≥ (γ + δ) holds. Second, for every αi,
calculate the eigenvalues of M(αi + δ) and M(αi − δ). If they share
a common purely imaginary eigenvalue jβint for a αint = αi, then
there exists a point Pint = (αint, βint) and λint satisfying (10).

C. Minimization Along the Border

Applying Theorem 1 requires the knowledge of μγ , the minimum
value of f(λ) on the border ∂Dγ located at P∗γ = (α∗γ + jβ∗γ). It is
necessary to find an algorithm for minimizing f(λ) along ∂Dγ , i.e.,
a line with λ = γ + jβ with β ∈ R. For the construction of such an
algorithm, a corollary for an upper bound of μγ can be deduced from
Proposition 2 by inserting αint = γ and δ = 0. In case γ = −∞ is
chosen, μγ = σmin(F) holds, as given in Appendix A1. Otherwise,
the following corollary can be used.

Corollary 3: Let γ ∈ (−∞, 0]. There exists λint = γ + jβint, for
which (10) holds, iff the matrix M(γ), as defined in (13), has a purely
imaginary eigenvalue jβint.

Proof: Corollary 3 is a special case of Proposition 2, whereαint = γ
and δ = 0. Then, Ma = Mb = M(γ) holds and Ma and Mb share
all eigenvalues. Since M(γ) has a purely imaginary eigenvalue at jβ,
det(Π(0)− γΓ) = 0 holds, because

det(Π(0)− γΓ)

= det(I⊗M(0) +M(0)⊗ I+ I⊗ γN+ γN⊗ I)

= det(I⊗ (M(0) + γN) + (M(0) + γN)⊗ I)

= det(I⊗M(γ) +M(γ)⊗ I)

(18)

and

(I⊗M(γ)+M(γ)⊗I)(v⊗w)

= (v⊗M(γ)w)+(M(γ)v⊗w)

= jβ(v⊗w)−jβ(v⊗w) = 0

(19)

with eigenvectors w and v of M(γ) for the eigenvalues jβ and −jβ,
respectively.

Since δ = 0 holds, (10) reduces to

f(γ + jβint) = q (20)

and can be used as a bound for a bisection algorithm.

IV. ALGORITHMS

In this section, a trisection algorithm for calculation of μSO and μSD

is presented. The steps of the algorithm are described, the conditions
for the bounds and their values are given, and the initial condition of the
algorithm is discussed. In addition, a bisection algorithm for calculation
of μγ is given.

A. Trisection Algorithm for the Calculation of Strong
Observability and Strong Detectability

Using the results presented in Section III, an algorithm for finding
the global minimum μ∗ of f(λ), given by Algorithm 1, can be con-
structed by the following steps. First, a possible range μ∗ ∈ [L0, U0] is
initialized, such that it includes the global minimum. The definition of
L0 and U0 is given in the next paragraph. Afterwards, in every iteration
step i, the parameters

δ =
1

3
(Ui−1 − Li−1) q =

2

3
(Ui−1 − Li−1) (21)
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Algorithm 1: Estimation of μSO or μSD.

initialize for μSO: γ←−∞, L0←0, U0←σmin(F), i=1
forμSD: γ←0, L0←0, U0←μγ , i=1

repeat
δ ← 1

3
(Ui−1 − Li−1)

q ← 2
3
(Ui−1 − Li−1)

if conditions for Proposition verified then
Li ← Li−1
Ui ← q

else
Li ← q − δ
Ui ← Ui−1

end if
until Ui − Li < ε

are chosen, such that the resulting bounds split the range of the previous
step in thirds, hence, the name trisection algorithm. By verifying if a
point of intersection exists using Proposition 2, either (11) or (12) can
be used for adaptingLi orUi accordingly. The stopping criterion for the
algorithm is given by Ui − Li < ε. The range [Li, Ui] always includes
μ∗, and therefore it can be guaranteed to find μ∗ with a precision of ε.

The values L0 and U0 are chosen as L0 = 0 and U0 = μγ , re-
spectively, because 0 ≤ μ∗ ≤ μγ always holds. Furthermore, selecting
U0 = μγ ensures that the condition q ≤ μγ in Theorem 1 holds in every
iteration step of the algorithm.

The value of γ can be chosen, such that Algorithm 1 calculates
either μSO or μSD. For μSO, select γ = −∞. In this case, μγ =
lim|λ|→∞ f(λ) = σmin(F) holds, as given in Appendix A1. For μSD,
select γ = 0. The calculation of μγ is discussed in the next section.

The possible range for μ∗ is reduced by a factor of 2/3 in every
iteration step, and can be calculated as Ui − Li = (U0 − L0)(2/3)

i.
Starting from this equation and insertingL0 = 0, the necessary number
of iteration steps for finding the minimum μ∗ with precision ε is given
by

itri =

⌈
ln(ε/U0)

ln(2/3)

⌉
. (22)

Remark: A reduction of computation cost is possible by reformulat-
ing the generalized eigenvalue problem of size (2n)2 × (2n)2 in (51).
Similar to the considerations in [19], (51) can be reduced to a 2n× 2n
standard eigenvalue problem by splitting X up into submatrices, and
further exploiting symmetry properties. This modification is given in
Appendix B1.

B. Bisection Algorithm for Computation of Initial Bound

From Corollary 3, it is possible to construct an algorithm for finding
the minimum μγ given by Algorithm 2. First, a possible range μγ ∈
[L0, U0] is defined, with L0 = 0 and U0 = σmin(F) to ensure that μγ

is included, as given in Appendix A1. Afterwards, in every iteration
step i a parameter

q =
1

2
(Ui−1 − Li−1) (23)

is chosen, splitting the range of the previous step in half. For deriving
the bounds for the bisection algorithm, the following set of equivalences
can be drawn from Corollary 3:

Algorithm 2: Estimation of μγ .

initialize L0 ← 0, U0 ← σmin(F ), i = 1
repeat
q ← 1

2
(Ui−1 − Li−1)

if conditions for Corollary 3 hold then
Li ← Li−1
Ui ← q

else
Li ← q
Ui ← Ui−1

end if
until Ui − Li < ε

μγ ≤ q < σmin(F)



(20) : f(γ + jβint) = q



Corollary 3 : jβint purely imaginary EV of M(γ).

If M(γ) has a purely imaginary eigenvalue, then Ui = q ≥ μγ is
a new upper bound for μγ . Conversely, Li = q < μγ is a new lower
bound forμγ , ifM(γ)does not have a purely imaginary eigenvalue. The
stopping criterion for the algorithm is given byUi − Li < ε. Therefore,
it can be guaranteed to find μγ with a precision of ε.

The possible range for μγ is reduced by a factor of 1/2 in every
iteration step. Following the same considerations as in the previous
section, the necessary number of iteration steps for finding the minimum
along the imaginary axis μγ with precision ε is given by

ibi =

⌈
ln(ε/U0)

ln(1/2)

⌉
. (24)

V. NUMERICAL EXAMPLE

In order to show the practical usefulness of the presented algo-
rithms, they are implemented in MATLAB and tested for a numerical
example. For comparison with a state-of-the-art global optimization
algorithm, the genetic algorithm ga, included in the MATLAB Global
Optimization Toolbox, is used. In order to find the global minimum with
acceptable confidence, an initial population size of 103 and a minimum
improvement of the fitness function of 10−10 are chosen for the ga
algorithm.

As a practical application, the strong observability and strong de-
tectability of the steel beam, shown in Fig. 2, are analyzed for different
sensor configurations. One end of the beam is fixed, and on the free
end an unknown force F is acting. At two locations z1 and z2, the
displacement, the acceleration, or both can be measured.

A linear modal model of the cantilevered beam, as presented for
example in [22], is given by

A =

[
0 I

−Ω2 −Γ

]
, E =

[
0

Φw

]

C =

[
ΦT

y 0

−ΦT
yΩ

2 −ΦT
yΓ

]
, F =

[
0

ΦT
yΦw

]
(25)

where Ω = diag(ω0,1, ω0,2, . . . , ω0,k) is a diagonal matrix con-
taining the resonance frequencies ω0,j , (j = 1, . . . , k), Γ =
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Fig. 2. Beam with positions of applied force F and measurements y
(image used courtesy of ANSYS, Inc.).

TABLE I
MODAL PARAMETERS FOR SYSTEM (25)

TABLE II
µSO, µSD, AND CORRESPONDING SPEEDUP OF CALCULATION TIMES GIVEN

BY THE RATIO
tgen
ttri

diag(γ1, γ2, . . . , γk) is a diagonal matrix containing the correspond-
ing modal damping ratios γj , (j = 1, . . . , k), and k is the number
of modes considered in the model. The matrices Φw ∈ Rk×1 and

ΦT
y =

[
ϕy1 ϕy2

]T
∈ R2×k collect the mode shape vectors at the

points z1 and z2, respectively. The mode shapes describe how sensitive
the system is for excitation and measurement at a specific point. The
beam is modeled by the first k = 8 modes and the resulting system is of
ordern = 16. The modal parameters for the system (25) are determined
using the finite element simulation program Ansys Academic Student
2019 R3 and are given in Table I.

As an illustration of the iterative calculation process for the beam
with acceleration and position measurement at z1, Fig. 3 shows the
mesh plot of f(λ) and the closed curves with f(λ) = qi. It can be
observed how the closed curves first include multiple local minima but
get closer and closer to the global minimum in every iteration step.

Using algorithms presented in Section IV with a precision of
ε = 10−10, the distance measures for strong observability and strong
detectability are calculated. The results are given in Table II. If only an

Fig. 3. Mesh plot of f(λ), closed curves f(λ) = qi, and position of
minimum for beam with acceleration and position measurement at z1.

acceleration sensor is used, the system is neither strongly observable nor
strongly detectable. If an acceleration sensor and a displacement sensor
are used at the same position z1, then the system is not strongly observ-
able but strongly detectable. If acceleration sensors and displacement
sensors are used at different locations, the system is strongly observable
and strongly detectable. All these properties are correctly indicated by
the corresponding values of μSO and μSD.

For the calculation of μSO, 70 iteration steps are necessary in every
sensor configuration, as can be determined by (22). The number of
iteration steps for the calculation of μSD ranges from 28 to 43 iteration
steps because it depends on the start value given by the minimum
along the imaginary axis. This minimum is first calculated by using
the bisection algorithm in 42 iteration steps, as can be calculated using
(24). In Table II, the ratio between the calculation times on off-the-shelf
hardware (Notebook, Intel Core i5-8265 U, 1.80 GHz) of the trisection
algorithm, with reduced eigenvalue problem ttri and of the genetic
algorithm tgen, is given for different sensor configurations. It can be
seen that the trisection algorithm finds the minimum roughly two to
five times faster than the genetic algorithm.

VI. CONCLUSION

This article presented an algorithm for reliable and efficient calcu-
lation of measures for strong observability and strong detectability of
linear and time-invariant systems. The challenge in calculating these
measures was to solve a minimization problem with nonconvex target
function. The main contribution of this article was an algorithm, which
guarantees to find the global minimum of the target function for a given
precision within a fixed number of iteration steps. The algorithm was
constructed by exploiting the special structure of the target function.
Using even more sophisticated numerical techniques, further reduction
of the computational load may be possible. The computationally most
expensive operation was finding the real eigenvalues of (51) or (59).
In [19], a divide and conquer approach for efficient calculation of
real eigenvalues was presented, which may be used in the presented
algorithm as well.

APPENDIX

A. Proof of Theorem 1

The singular value decomposition is continuous in the change of
matrix entries, and therefore f(λ) is continuous in λ. Due to the fact
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that

μγ(S) ≥ q ≥ μ∗(S) (26)

holds, it follows that there exists a λ1, such that f(λ1) = q.
Since f(λ) is continuous and (26) holds, there exist closed curves

that satisfy f(λ) = q. The point of minimum P∗ = (α∗, β∗) in Dγ , at
which f(λ∗) = f(α∗ + jβ∗) = μ∗ holds, must lie within one of these
closed curves. Let ∂G denotes the closed curve with the smallest area G
with P∗ in its interior. From (26), it follows that all points on ∂G are in
Dγ , as shown in Fig. 1. On a line parallel to the real axis with P∗ on it,
there exist two points P1 = (α∗ − η1, β

∗) and P2 = (α∗ + η2, β
∗) on

∂G with η1, η2 ∈ R, η1 > 0, and η2 > 0. If the line crosses ∂Gmultiple
times, then P1 and P2 are chosen as the points closest to P∗. For the
points P1 and P2

f(λ∗ − η1) = f(λ∗ + η2) = q (27)

holds. The point P∗ lies within G and also on the line segment between
P1 and P2. Therefore, any point on this line segment lies within G.

The change of singular values of a matrix T ∈ Rm×n is bounded by
the norm of the perturbation U ∈ Rm×n

|σk(T+U)− σk(T)| ≤ σ1(U) =
∥∥U∥∥ (28)

as described by Weyl’s inequality, see for example [21]. If

T = R(S, λ) =

[
A− λI E

C F

]
U =

[
ηI 0

0 0

]
(29)

with η ∈ R is inserted in (28) and the smallest singular value is
considered, then

|σmin(R(S, λ + η))− σmin(R(S, λ))| ≤
∥∥∥∥∥
[
ηI 0

0 0

]∥∥∥∥∥ (30)

⇔ f(λ∗ + η)− f(λ∗) ≤ |η| (31)

holds, and the change of function value is bounded by the norm of
change of argument |η|. Combining (31) with the relation (27) for points
P1 andP2, it is possible to give lower bounds for their distances η1 and
η2 to the point of minimum P∗ as

η1 ≥ q − μ∗(S) η2 ≥ q − μ∗(S). (32)

If the curve ∂G is shifted left and right, i.e., in parallel to the
imaginary axis, by a distance δ, two continuous closed curves

∂GL = {λ− δ|λ on ∂G} (33a)

∂GR = {λ + δ|λ on ∂G} (33b)

are obtained. On the curve shifted to the left ∂GL, there exist two points
P1L = (α∗ − η1 − δ, β∗) and P2L = (α∗ + η2 − δ, β∗). On the curve
shifted to the right ∂GR, there exist two points P1R = (α∗ − η1 +
δ, β∗) andP2R = (α∗ + η2 + δ, β∗). The pointP1L is left ofP1R since
their real parts satisfy

Re(λ1L) = α∗ − η1 − δ < α∗ − η1 + δ = Re(λ1R) (34)

and therefore P1L is in the exterior of ∂GR. Furthermore, P2L is to the
right of P1R, because

Re(λ2L) = α∗ + η2 − δ ≥ α∗ − η1 + δ = Re(λ1R) (35)

holds due to the fact that δ ≤ q − μSO ≤ η1 and, analogously, δ ≤ η2.
From (34) and (35), it follows that two points P1L and P2L exist on

∂GL, one in the interior and one in the exterior of ∂GR, respectively.
Since ∂GL and ∂GR are continuous closed curves, there exists at least
one point of intersectionPint = (αint, βint) of the two curves ∂GL and
∂GR.

Since ∂G is strictly in Dγ , also the right-shifted version ∂GR is
strictly inDγ , with Re(∂GR) ≥ (γ + δ), as shown in Fig. 1. Therefore,
any point of intersection Pint between ∂GL and ∂GR is in Dγ with
αint > (γ + δ).

From the definition of the shifted curves (33), it follows that λint + δ
and λint − δ are on ∂G and solutions for (10). Therefore, (10) has at
least one solution λint in Dγ with αint > (γ + δ).

B. Limit of f

Lemma 4: For the function

f(λ) = σmin (R(S, λ)) =

[
A− λI E

C F

]
(36)

it holds that lim|λ|→∞ f(λ) = σmin(F).
Proof: Consider the transformation

Q(S, λ) =

[√
c
λ
I 0

0 I

][
A− λI E

C F

][√
c
λ
I 0

0 I

]

=

[
c
λ
A− cI

√
c
λ
E√

c
λ
C F

]
(37)

with c = 2σmin(F) preserving rankQ(S, λ) = rankR(S, λ), if λ �=
0. As |λ| approaches infinity, (37) becomes

lim
|λ|→∞

Q(S, λ) = Q∞(S, λ) =

[
−cI 0

0 F

]
. (38)

The operations of finding the limit of the function and calculating the
singular values can be interchanged, and it follows that lim|λ|→∞ f(λ) =
σmin(Q∞(S, λ)) = min{c, σmin(F)} = σmin(F) holds for the limit
of f(λ).

C. Proof of Proposition 2

From the definition of the singular value decomposition it follows
that if f(λ) = σmin(R(S, λ)) = q holds, then there exists a vector z
such that

R(S, λ)HR(S, λ)z = q2z (39)

holds. It is possible to split (39) up into the following two equations:[
A− λI E

C F

][
z1

z2

]
=

[
v

w

]
(40a)

[
AT − λ̄I CT

ET FT

][
v

w

]
=

[
q2z1

q2z2

]
. (40b)

From the second line of (40a), w = Cz1 +Fz2 can be calculated
and inserted into the second line of (40b), giving

ETv+FTCz1+FTFz2 = q2z2

z2 = −GETv −GFTCz1 (41)

whereG = (FTF− q2I)−1. Since q satisfies q < σmin(F) this inverse
exists. Inserting w and z2 into the first lines of (40a) and (40b), one
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can obtain[
A−λI−EGFTC −EGET−I

q2I−CTC+CTFGFTC −AT+λ̄I+CTFGET

] [
z1

v

]
=0.

(42)
The variable λ can be split up into its real and imaginary part λ =

α+ jβ. In (42), the imaginary part can be separated to get[
−αI+A−EGFTC −EGET−I

q2I−CTC+CTFGFTC αI−AT+CTFGET

]
︸ ︷︷ ︸

M(α)

[
z1

v

]

= jβ

[
z1

v

]
. (43)

One can see that jβ is a purely imaginary eigenvalue of M(α).
For the two shifted curves, λ = λint + δ and λ = λint − δ can be

inserted into (43) to get

M(αint + δ)

[
z1

v

]
= jβint

[
z1

v

]
(44a)

M(αint − δ)

[
z1

v

]
= jβint

[
z1

v

]
. (44b)

Both M(αint + δ) and M(αint − δ) are Hamiltonian and
M(αint − δ) and−M(αint − δ)T share the same eigenvalues. Exploit-
ing the structure of M(α), (44) can be separated into

M(αint + δ) = M(δ) + αintN (45a)

−M(αint − δ)T = −M(−δ)T − αintN (45b)

with N =

[
−I 0

0 I

]
.

Since M(αint + δ) and −M(αint − δ)T share a common purely
imaginary eigenvalue at jβint, the Sylvester equation

(M(δ) + αintN)X+X
(
M(−δ)T + αintN

)
= 0 (46)

(M(δ))X+X
(
M(−δ)T

)
= αint (−NX−XN) (47)

will be used. The two matrices share a common eigenvalue iff the
Sylvester equation has a nonzero solution X.

Using the Kroneckers product property vec(TXU) = (UT ⊗
T) vec(X), where vec(X) denotes the vector of stacked columns of
X, and NT = N, (47) can be rearranged into

(I⊗M(δ) +M(−δ)⊗ I) vec(X)

= αint (−I⊗N−N⊗ I) vec(X) (48)

with

Π(δ) = I⊗M(δ) +M(−δ)⊗ I (49)

Γ = −I⊗N−N⊗ I. (50)

This gives a generalized eigenvalue problem

(Π(δ)− αintΓ) vec(X) = 0 (51)

of size (2n)2 × (2n)2. As a result, the problem of finding a nonzero
solution X for (47) can be reduced to checking if the generalized
eigenvalue problem (51) has a real solution αint.

Conversely, suppose that αint is a purely real solution of the general-
ized eigenvalue problem (51) and jβint is a purely imaginary eigenvalue
of M(αint + δ) and M(αint − δ). Then, the existence of αint ensures
that the matrices in (44) share a common eigenvalue, and there exists a
vector z �= 0 such that

(M(αint ± δ)− jβintI)z = 0 (52)

holds. Equation (52) is equivalent to (43), and can be reformulated back
into (39). It is clear that q is a singular value of R(S, λ), and therefore
condition (10) holds.

D. Reduction of Generalized Eigenvalue Problem

Starting from (47), the matrices X, M(δ), and M(−δ)T
can be

partitioned into

M(δ) =

[
−δI+A−EGFTC −EGET−I

q2I−CTC+CTFGFTC δI−AT+CTFGET

]

= Ma =

[
Ma11 Ma12

Ma21 Ma22

]
(53)

M(−δ)T
=

[
δI+A−EGFTC q2I−CTC+CTFGFTC

−EGET−I −δI−AT+CTFGET

]

= Mb =

[
Mb11 Mb12

Mb21 Mb22

]
(54)

X =

[
X11 X12

X21 X22

]
(55)

and (47) can be reformulated as

[
Ma11 Ma12

Ma21 Ma22

][
X11 X12

X21 X22

]
+

[
X11 X12

X21 X22

][
Mb11 Mb12

Mb21 Mb22

]

= αint

{[
I 0

0 −I

][
X11 X12

X21 X22

]
+

[
X11 X12

X21 X22

][
I 0

0 −I

]}
.

(56)
Using the property of the Kronecker product, (56) can be vectorized

into

⎡
⎢⎢⎢⎣
Ka11UKb11 Kb21 Ka12 0

Kb12 Ka11+Kb22 0 Ka12

Ka21 0 Ka22+Kb11 Kb21

0 −Ka21 −Kb12 −Ka22−Kb22

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
vec(X11)

vec(X12)

vec(X21)

vec(X22)

⎤
⎥⎥⎥⎦ = 2αint

⎡
⎢⎢⎢⎣
vec(X11)

0

0

vec(X22)

⎤
⎥⎥⎥⎦ (57)

where Kaxy = (I⊗Maxy) and Kbxy = (Mb
T
xy ⊗ I). From second

and third lines of (57), vec(X12) and vec(X21) can be calculated and
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inserted into first and fourth lines, to get{[
Ka11+Kb11 0

0 −Ka22−Kb22

]
−
[
Kb21 Ka12

−Ka21 −Kb12

]
[
Ka11 +Kb22 0

0 Ka22 +Kb11

]−1 [
Kb12 Ka12

Ka21 Kb21

]}
[
vec(X11)

vec(X22)

]
= 2αint

[
vec(X11)

vec(X22)

]
. (58)

Therefore, αint can be found by solving the eigenvalue problem

Πred

[
vec(X11)

vec(X22)

]
= αint

[
vec(X11)

vec(X22)

]
(59)

with

Πred =

{[
Ka11+Kb11 0

0 −Ka22−Kb22

]
−
[
Kb21 Ka12

−Ka21 −Kb12

]
[
Ka11 +Kb22 0

0 Ka22 +Kb11

]−1 [
Kb12 Ka12

Ka21 Kb21

]}
1

2
.

(60)
As a result, instead of the (2n)2 × (2n)2 generalized eigenvalue

problem in (51), a 2n× 2n eigenvalue problem given by (59) may be
solved to find αint.
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