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Abstract:    Compartmental  pandemic  models  have  become  a  significant  tool  in  the  battle  against  disease
outbreaks. Despite this, pandemic models sometimes require extensive modification to accurately reflect the
actual  epidemic  condition.  The  Susceptible-Infectious-Removed  (SIR)  model,  in  particular,  contains  two
primary parameters: the infectious rate parameter  and the removal rate parameter , in addition to additional
unknowns such as the initial infectious population. Adding to the complexity, there is an obvious challenge to
track the evolution of these parameters,  especially  and ,  over time which leads to the estimation of the
reproduction  number  for  the  particular  time  window, .  This  reproduction  number  may  provide  better
understanding on the effectiveness of isolation or control measures. The changing  values (evolving over time
window) will lead to even more possible parameter scenarios. Given the present Coronavirus Disease 2019
(COVID-19) pandemic, a stochastic optimization strategy is proposed to fit the model on the basis of parameter
changes over time. Solutions are encoded to reflect the changing parameters of  and , allowing the changing

 to  be  estimated.  In  our  approach,  an  Adaptive  Differential  Evolution  (ADE)  and  Particle  Swarm
Optimization (PSO) are used to fit the curves into previously recorded data. ADE eliminates the need to tune
the parameters of the Differential Evolution (DE) to balance the exploitation and exploration in the solution
space. Results show that the proposed optimized model can generally fit the curves well albeit high variance
in the solutions.

Key  words:   Susceptible-Infectious-Removed  (SIR)  model;  adaptive  differential  evolution;  Coronavirus
Disease 2019 (COVID-19)

1    Introduction

Compartmental mathematical models have been widely
used  to  predict  the  spread  of  the  infectious  disease  in
every epidemic circumstance. For example, it has been
used  for  predicting  the  spread  of  Severe  Acute
Respiratory  Syndrome  (SARS)[1] and  the  occurred
Coronavirus  Disease  2019  (COVID-19)[2].  The  most
common  compartmental  model  is  Susceptible-
Infectious-Removed (SIR) model.  The accuracy of the
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model  largely  depends  on  the  parameter  tuning  of  the
model.  In  Ref.  [3],  conventional  approaches,  which
include  deterministic  and  mathematical  approaches,
were used to determine basic reproduction number .
Note that the basic reproduction number  refers to an
average number of secondary cases generated from one
primary case, without immunity and vaccination in the
community[4].  When ,  it  means  that  the  disease
transmission  is  exponential  while  indicates  the
controlled  virus  transmission.  In  addition,  the
importance  of  the  fundamental  reproduction  number
was thoroughly discussed.

In  order  to  optimize  the  data  fitting  process  to
determine  the  model  parameters,  various  stochastic
approaches have been used as a feasible means. It is due
to  its  ability  to  acquire  almost  optimal  solution  in
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multimodal  error  fitness  surface.  For  example,  in
Ref. [5], the authors applied a mixture Gaussian fitting
method  (singular  spectral  analysis-Gaussian  fitting
method) for fitting the model to real data. The model was
validated using retrospective data available from China
and  Republic  of  Korea,  and  partially  validated  by
currently available data from Italy, Spain, USA, and the
UK.  Then,  the  three  model  parameters  were  linked  to
physical  meanings  and  interpretations  related  to  the
COVID-19 pandemic.

In Ref. [6], an SIR curve fitting model was presented
using combinational parameter techniques. In Ref. [7],
the authors applied Differential  Evolution (DE) with a
specific  parameter  for  fitting the  curve to  Susceptible-
Exposed-Infectious-Removed  (SEIR)  model.  The
fitness  of  the  optimisation  used  was  solely  based  on
infection  rate.  The  outcome  of  the  research  was  the
acquisition  of  the  model  parameters.  In  Ref.  [8],
researchers applied Particle Swarm Optimization (PSO)
for  the  purpose  tuning  a  model  and  subsequently
predicting growth of pandemic based on the simulation.
In  Ref.  [9],  PSO  was  applied  to  optimize  a  neural
network for predicting rise in daily cases of COVID-19.
In  particular,  the  authors  evaluated  and  compared
several  approach  using R2  metric.  The  research
highlighted  the  flexibility  of  applying  stochastic
approaches  in  tuning  systems  regardless  of  machine
learning prediction model or epidemic model itself. Note
that R2  and  root  mean  square  error  (RMSE)  are  two
commonly used goodness of fit measurements for fitting
COVID-19 predictions against actual scenarios.

In Ref. [10], the authors applied PSO for the purpose
of pandemic model fitting for cholera outbreak. Notably,
the authors ended with a note stating that tuning the PSO
parameters could be a challenging task. The use of neural
networks  for  prediction  of  rising  cases  of  epidemic
infection has been applied in Ref. [11]. Neural network
has been used as an efficient method to predict infection
rising cases for policy evaluation. In this aspect, various
other meta-heuristics approaches should be considered,
particularly those with lesser complexity for tuning the
parameters.  Considering  the  issues  presented  in
Ref. [10], DE would be an excellent option since it has
dominated  optimization  research  for  a  decade  with
variations  of  auto  tuning  of  parameters  with  varied
benchmarking challenges[12].

In this paper, we explore two evolutionary algorithms,
i.e.,  the  Adaptive  DE  (ADE)  and  PSO for  tuning  SIR
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pandemic  model  parameters  to  fit  the  actual  recorded
data.  In  specific,  this  paper  deals  with  acquiring  the
effective  reproduction  number  value  for  a  specific
time  window  (ΔT )  using  SIR  pandemic  model.  The
model depends on the parameters of transmission rate,

 and removal rate, . The research covers the intricate
strategies  applied,  in  particular,  using  COVID-19  data
as  the  test  ground  of  the  proposed  methodology.  To
summarize, the main contributions of this research work
are as follows:

βT γT

RT =
βT
γT

●  A  new  approach  in  evaluating  and   using
stochastic  optimization  and minimal  data  (daily  cases)
with  minimalist  SIR  model  and  subsequently  the
reproduction  number  for  the  time  windows  in  which

 is proposed.
●  An  encoding  approach  to  acquire  SIR  parameters

values is used.

2    System Model

2.1    SIR model

N S

In this section, we present a brief discussion of the SIR
model. SIR remains the most reliable methodology for
predicting or evaluating pandemic situations, such as in
Refs.  [13–17].  In  fact,  as  the  COVID−19  pandemic
unfolds  itself,  government  strategies  and  evaluation
have almost exclusively been based on pandemic models.
The basic model consists of three groups of individuals
in a population of , i.e., susceptible ( ), infectious (I ) ,
and removed (R).

Individuals who have not been infected but are prone
to  infection  are  classified  as  susceptible.  Infectious
individuals  are  those  who have  been infected  with  the
disease  and  are  capable  of  transmitting  it  to  others.
Individuals who have been removed are those who have
been  recovered  from  the  disease  with  immunity  or
isolated  so  that  they  cannot  infect  others.  The  transfer
diagram of SIR model is shown in Fig. 1.

The SIR model is given by the following equations[18]:
 

dS (t)
dt
= −βI(t)S (t)

N
(1)

 

dI(t)
dt
=
βI(t)S (t)

N
−γI(t) (2)

 

 

S
βSI/N

I
γI

R

 
Fig. 1    Transfer diagram of the SIR model.
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dR(t)
dt
= γI(t) (3)

N = S (t)+ I(t)+R(t) β γ

S (t) I(t)
R(t)

t

where ,  and  are transmission and
removal rate constants, respectively, and , , and

 are  the  number  of  susceptible,  infectious,  and
removed individuals at time , respectively.

R0

∆t
RT

The initial reproduction number  is often used as the
R value over an entire period, while, in practice, the R
value changes over a period of time. In this paper,  we
consider  the  reproductive  value  for  a  particular  time
window  ( ).  The  windowed  effective  reproduction
number, , therefore, can be expressed by[19]
 

RT (k) = βT (k)/γT (k) (4)

βT (k) γT (k) β γ

k
RT

∆t = 1 ∆t = 2

RT (0) = R0 = β/γ

where  and  are the effective  and  constants
during period , respectively. According to Ref. [20], the

 value should be on a frequent basis, such as weekly,
in  order  for  the  government  to  implement  suitable
intervention  programs.  Here,  we  assume  that  the
reproduction  number  changes  every  one  week  or  two
weeks.  Therefore,  the  time  step  for  observation
(evaluation window) is either  or  (in weeks).
This  concept  is  shown  in Fig.  2.  We  assume  that  the
initial  reproduction  number  is  given  by

.  Furthermore,  this  may  be  seen  as  a
trade-off to reduce complexity in searching the solution
and representation.

I0

t = 0

I0 = U/α U

t = 0 α > 0

U

U

We also note  that  one important  parameter, I ,  is  not
known. In this case random testing in the population may
reveal  a  rough  value,  nevertheless  this  data  is  often
elusive  and  difficult  to  ascertain.  Similarly,  the  initial
infectious population, , is also unknown, but it can be
speculated that this value is not far from the initial value
reported  on  daily  basis  ( ).  For  the  sake  of  this
research, we introduce , where  represents the
daily  positive  case  (reported  at )  and .  Some
research work has considered  as the number of daily
cases  of  positive  infection.  In  fact,  based  on  the  SIR
model,  should belong to the removed group as they are

t = 0

quarantined  or  hospitalized,  thereby  no  longer  having
infectious capability in the population. The accumulated
removed  population  (at )  is  estimated  by
considering  the  daily  active  cases,  those  who  are  still
isolated in hospital/isolation center,  and those who are
recovered.

2.2    Adaptive differential equation

N
{XG

r1
,XG

r2
,XG

r3
} i

XG
i = [xG

i,1, x
G
i,2, . . . , x

G
i, j, . . . , x

G
i,N]T i = 1,2, . . . ,P

r1,r2,r3 ∈ {1,2, . . . ,P} i , r1 , r2 , r3

G = 1,2, . . . ,Gmax

Differential  evolution  concept  has  been  discussed  in
Refs.  [12, 21, 22].  Basically,  differential  evolution
works  by  selecting  three -dimensional  auxiliary
vectors  for  each -th  solution  vector

 for  ,  where
, , P is the population

size, and  is the maximum generation.
VG

i = [vG
i,1,v

G
i,2, . . . ,v

G
i, j, . . . ,v

G
i,N]TThe mutated vector, , is

formed as follows:
 

VG
i = XG

r1
+F(XG

r2
−XG

r3
) (5)

UG
i = [uG

i,1,u
G
i,2, . . . ,u

G
i, j, . . . ,u

G
i,N]T

where F  is  the differential  weight.  The mutated vector
and  the  principal  parent  generate  a  trial  vector

 using the following rule:
 

uG
i, j =

 uG
i, j, if randi, j[0,1] ⩽Cr;

xG
i, j, otherwise

(6)

Cr randi, j[0,1]

j i

where  is  the  crossover  rate  and  is  a
random  number  drawn  from  standard  uniform
distribution for each -th component of the -th vector.
The next generation is calculated as follows:
 

XG+1
i =

 UG
i , if g(XG

i ) ⩾ g(UG
i );

XG
i , if g(XG

i ) < g(UG
i )

(7)

g(·)where  is the fitness function to be optimized.

Cr Cr
Differential  evolution  has  been  known  to  be  highly

sensitive to  and F. Proper settings of  and F have
high  complexity.  In  order  to  enable  proper  tuning,  we
apply an automated tuning approach as stated in Ref. [8],
which is as follows:
 

F =

 α̂+ (1− α̂)× sin
(

πt̂
maxiter −

π
2

)
, if t̂ ⩽ maxiter

2 ;
α̂− (1− α̂)× cos

(
π
2 −

πt̂
maxiter

)
, otherwise

(8)

 

Cr =

 β̂+ (1− β̂)× sin
(

πt̂
maxiter −

π
2

)
, if t̂ ⩽ maxiter

2 ;
β̂− (1− β̂)× cos

(
π
2 −

πt̂
maxiter

)
, otherwise

(9)

α̂ β̂ t̂
maxiter

where  and   are  constants,  is  the  generation  of
iteration,  and  is  the  maximum  number  of
iterations.

 

Δt=2 week RT(1)

1 2 3 4 5 6 7 8

RT(1)  RT(2)  RT(3)  RT(4)  RT(5)  RT(6)  RT(7)  RT(8)

RT(2) RT(3) RT(4)

Δt=1 week

Weeks under observation
1st Oct 2020 24th Nov 2020 

RTFig. 2    Evaluation window for estimating .
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2.3    PSO

xi

vi x ∈ Rn

P

G

(i+1)

PSO  has  been  discussed  thoroughly  in  many  research
papers,  such  as  in  Ref.  [23].  Suppose  that  we  have  a
population of particles denoted by their positions  and
velocities ,  where .  Each  particle  has  memory
that can record its best position, , i.e., where it gives the
best  value  and  also  the  best  position  that  have  been
explored  by  all  the  particles  in  the  population, .  The
update equations of particle p for the d-th dimension at
iteration  are expressed by
 

xd
p(i+1) = xd

p(i)+ vd
p(i+1) (10)

and
 

vd
p(i+1) = w · vd

p(i)+ c1 ·ρ1 · (Pd
p(i)− xd

p(i))+
c2 ·ρ2 · (Gd

p(i)− xd
p(i))

(11)

w ρ1 ρ2

c1 c2

where  is  the  inertia  factor,  and   are  random
numbers  between  0  and  1,  and  and   denote  self-
confidence  and  swarm  confidence  coefficients,
respectively.

2.4    Implementation

−R2

In  the  implementation,  the  negative  of  coefficient  of
determination, , is chosen as the fitness function as
an  evaluation  of  goodness-of-fit.  The R2  is  a  suitable
metric  compared  to  the  normalized  RMSE.  The
coefficient of determination is defined as
 

R2 = 1−
∑

i(yi− ŷi)2∑
i(yi− ȳi)2 (12)

yi ŷi

ȳ

[∞,−1]

where  is  the  data  instance,  is  the  predicted  data
instance,  and  is  the mean of the data.  Since this is  a
minimization  approach,  the  fitness  function  value  is
defined in the range of ,  in which −1 denotes a
perfect fitting.

k = 1,2, . . . ,8
k = 1,2, . . . ,4

[β1,γ1, . . . ,

β8,γ8,α]
[β1,γ1, . . . , β4,γ4,α]

In this paper, as we observe data for eight weeks, we
encode  the  solution  as  follows.  For  1-week  window,
there  are  eight  periods,  i.e.,  while  for  2-
week  window,  we  have .  Therefore,  the
solution length for 1-week window is 17, i.e., 

 while for 2-week window, it is a 9-dimension
vector, i.e., .

3    Results and Discussion

3.1    Simulation setting

In this  paper,  two regions in Malaysia are selected for
evaluation of our proposed method. The data sources are

obtained  from  legitimate  government  sources※

corroborated with daily case reporting. SIR models are
deployed  to  fit  into  the  data  of  two  island  states  in
Malaysia, i.e., Penang island and Labuan island (referred
as Location 1 and Location 2 in this paper, respectively).
The time frame for the data is from 1st October 2020 to
24th November 2020.

w = 1 c1 = c2 = 0.1

In  the  SIR  model,  although  there  are  death  cases
reported, the number is too insignificant for modelling
purposes. In addition, we assume that all  the cases are
local  transmissions.  SIR  model  does  not  consider
imported  cases  into  the  model.  The  initial  values  are
shown in Table 1. For PSO algorithm setting, after some
intensive  simulations,  we  choose  the  following
parameter values:  and .

3.2    Results and analysis

∆t = 2
N

∆t = 2 N = {50,100,200}

Table 2 shows the R2 values for both mean and median
of the fitness solutions (the difference between median
and  mean  would  indicate  the  variance  in  the  fitness
acquired) for  week using ADE. DE is a population-
based optimization approach in which  represents the
number of search agents. Each population configuration
is  run  10  trials  to  show  the  average  performance.  For

 week,  we  use .  The  results
further  solidify  the  justification  to  apply  a  stochastic
optimization  approach  as  opposed  to  the  deterministic
approach. The results indicate that the fitness surface is
highly multimodal with many local minima.

∆t = 1
∆t = 1

Table 3 shows similar metrics for  week using
ADE.  Note  that  the  SIR  with  week  requires  to
double the population due to the fact  that  the problem
complexity has approximately doubled. The implication
of these results is that the time window could be better
optimized using lesser parameters. Recall the Occam’s
razor principle which states that the smaller model may
be  more  efficient  in  representing  a  particular
 

Table 1    Initial parameter values for SIR.

Parameter
Initial value

Location 1 Location 2
Number of population 1 790 000 99 500

Number of susceptible individuals 1 788 570 99 472

t = 0
Number of reported daily

cases ( ) 5 1

t = 0
Number of hospitalized/isolation

individuals ( ) 138 27
 

※ http://covid-19.moh.gov.my/terkini-negeri/112020/kemaskini-negeri-
sehingga-18-november-2020
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RT

phenomenon.  In  this  case  longer  time  window  yields
lesser  parameters  for  optimization  and  model
representation. In addition, the results show that better
performing  configurations  are  found  with  higher
population  in  the  optimization  problem.  Using  the
obtained ,  we  perform  the  curve  fitting  for  both
locations  as  shown  in Fig.  3.  We  observe  that  both
configurations give relatively good fitting.

RT

∆t = 2 ∆t = 1

The  predicted  effective  values  are  also  shown in
Tables 2 and 3 for both locations. Applying p-value to
evaluate  the  two  time  windows  in  consideration,  i.e.,

 week  and  week,  yields  the  average  of
0.9706 and 0.9736 for Location 1 and 0.9789 and 0.9839
for Location 2, respectively. The difference of 0.003 (p-
value = 0.2454) and 0.005 (p-value = 0.0323) shows that

> 0.001

∆t = 2

the difference is statistically significant ( ). Thus,
it shows that smaller time window consideration yields
slight  improvement  in  the  curve  fitting.  Nevertheless,
the  difference  is  marginal  and  larger  time  window
(  week) may be applied to reduce computation load.

R0

β γ α

β γ

Tables 4 and 5 show the results for PSO algorithm. It
can be seen that the results are marginally better than the
ADE results. PSO parameters, on the other hand, must
be carefully selected, as opposed to the ADE. Moreover,
we also compare the R2  when  is used for the entire
eight weeks as seen in Table 6. The , , and  values
are  also  selected  using  the  ADE  and  PSO  algorithms.
The  equivalent R2  values  are  presented  showing  the
mean,  median,  and  the  best  fitting  configurations.  As
expected,  considering  changing  and   values

 

∆t = 2Table 2    Reproduction number (refer to Eq. (4)),  week, ADE.

Location Statistics N = 50Mean ( ) N = 50Median ( ) N = 100Mean ( ) N = 100Median ( ) N = 200Mean ( ) N = 200Median ( ) Best

Location 1

R2 0.9683 0.9681 0.9825 0.9807 0.9812 0.9812 0.9933
k = 1 2.1476 1.9749 3.0735 1.6853 2.2436 1.4586 1.433
k = 2 0.6499 0.6520 0.8286 0.8408 1.1281 0.8492 0.8967
k = 3 1.1616 1.1374 1.1253 1.0026 0.5598 1.0026 0.9573
k = 4 2.3310 0.5664 0.7676 0.6887 0.7182 0.7182 1.3782

Location 2

R2 0.9730 0.9731 0.9790 0.9818 0.9846 0.9847 0.9929
k = 1 2.0900 1.4789 1.7870 1.4540 2.6101 2.0748 0.9690
k = 2 1.4502 1.3929 1.4685 1.3155 1.2542 1.2474 1.2791
k = 3 0.8194 0.8631 0.8851 0.9493 0.9633 0.9755 0.9495
k = 4 0.6654 0.7187 3.2681 0.6116 0.3669 0.2751 0.6040

 

 

∆t = 1Table 3    Reproduction number (refer to Eq. (4)),  week, ADE.

Location Statistics N = 100Mean ( ) N = 100Median ( ) N = 200Mean ( ) N = 200Median ( ) N = 400Mean ( ) N = 400Median ( ) Best

Location 1

R2 0.9690 0.9670 0.9744 0.9720 0.9782 0.9790 0.9930
k = 1 6.2934 4.0270 3.4974 3.7000 12.0936 2.3466 2.6012
k = 2 1.7927 1.1935 6.6500 1.5137 5.9416 1.3216 0.9011
k = 3 1.1862 1.0867 0.8747 0.9108 7.4998 1.4240 1.3797
k = 4 2.1275 0.7421 1.5863 1.3450 1.3424 0.7796 0.9343
k = 5 2.1785 1.2690 1.4310 0.8234 0.9309 0.6478 0.4931
k = 6 1.2547 0.8417 0.9600 0.9682 2.1103 1.3090 1.2370
k = 7 0.6576 0.3818 0.6932 0.4898 1.0559 0.8094 0.4867
k = 8 0.8810 0.9365 2.2159 1.3637 4.2264 0.8526 0.5281

Location 2

R2 0.9807 0.9823 0.9855 0.9858 0.9854 0.9855 0.9922
k = 1 36.6926 2.7802 5.3952 3.5627 3.3423 2.5594 8.1336
k = 2 2.2009 0.9945 5.2385 1.8750 3.6015 1.4780 1.4676
k = 3 2.391 1.0355 1.1338 0.5998 1.1473 0.9453 0.9158
k = 4 1.7081 1.4657 2.2666 1.6887 1.6442 1.4295 1.5477
k = 5 1.1123 1.0658 1.2121 1.1859 1.2293 1.2822 1.8707
k = 6 0.5969 0.5774 0.6056 0.6159 0.5488 0.6090 0.8754
k = 7 1.2831 0.8412 1.1061 0.4584 1.0200 0.8818 1.2561
k = 8 5.7382 1.7488 0.9855 0.9974 0.7026 0.4770 1.5663
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inevitably yields better fitting.
The plots in Fig. 4 show the fitness progression of the

best  solutions  for  ADE  and  PSO  methods.  The  plots
show that the optimization method does not converge too

 

∆t = 2Table 4    Reproduction number (refer to Eq. (4)),  week, PSO.

Location Statistics N = 50Mean ( ) N = 50Median ( ) N = 100Mean ( ) N = 100Median ( ) N = 200Mean ( ) N = 200Median ( ) Best

Location 1

R2 0.9822 0.9874 0.9902 0.9924 0.9939 0.9947 0.9986
k=1 2.1179 1.9196 2.1159 2.0532 2.1780 2.0179 1.4835
k=2 0.9557 0.9751 0.9201 0.9164 0.8735 0.9269 0.9452
k=3 0.9553 0.9874 1.0300 1.0522 1.0932 1.0862 1.0414
k=4 0.7044 0.7586 0.9329 0.9478 0.8146 0.8605 0.9321

Location 2

R2 0.9912 0.9940 0.9897 0.9933 0.9928 0.9936 0.9964
k=1 2.2371 2.0849 2.0748 1.7933 2.8439 2.2829 1.7418
k=2 1.3575 1.3113 1.4277 1.4592 1.2766 1.3117 1.1171
k=3 0.8980 0.9240 0.8831 0.8942 0.9331 0.9181 1.0094
k=4 0.6338 0.6577 0.7068 0.6538 0.5954 0.6715 0.2982

 

 

∆t = 1Table 5    Reproduction number (refer to Eq. (4)),  week, PSO.

Location Statistics N = 100Mean ( ) N = 100Median ( ) N = 200Mean ( ) N = 200Median ( ) N = 400Mean ( ) N = 400Median ( ) Best

Location 1

R2 0.9872 0.9885 0.9938 0.9959 0.9940 0.9946 0.9984
k=1 3.4207 2.7461 3.8724 3.4887 3.1363 2.9536 1.9073
k=2 2.3961 2.1817 1.7921 1.3049 1.7025 1.6083 1.1019
k=3 0.9386 0.9873 1.0833 1.2029 1.0288 0.9333 1.3687
k=4 0.9866 0.9560 0.8631 0.7258 0.8789 0.8797 0.6196
k=5 1.0558 1.1078 1.1365 1.2498 1.1507 1.1442 1.0225
k=6 0.9528 0.9610 1.0737 1.0177 0.9170 0.8284 1.2794
k=7 1.2682 0.9534 0.8411 0.9110 1.1074 1.1162 0.7647
k=8 0.9467 0.7704 1.5176 1.3483 0.8972 0.6906 1.3287

Location 2

R2 0.9912 0.9940 0.9897 0.9933 0.9928 0.9936 0.9964
k=1 2.6529 1.4316 2.2347 1.8208 4.7703 2.2475 1.0548
k=2 2.9566 3.2377 1.9441 1.7001 3.3855 2.7042 3.9589
k=3 1.9804 1.3786 1.6192 1.4230 1.2325 1.1814 1.1545
k=4 0.8740 0.9692 1.3988 1.4416 1.2417 1.1617 1.0088
k=5 1.3500 1.2473 1.0528 1.0130 1.2926 1.3006 1.1136
k=6 0.7184 0.7087 0.6639 0.6938 0.5411 0.5565 1.0415
k=7 0.5750 0.5201 0.9515 0.9163 0.9771 0.8169 0.9367
k=8 1.3453 1.2995 1.4330 1.3111 0.9799 0.8771 2.6551
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Fig. 3    Curve fitting for Location 1 and Location 2 using ADE.
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early,  thereby  allowing  optimal  solution  finding.  Note
that the overall best configurations are selected based on
the fitness.

4    Conclusion and Future Work

βT γT

RT

A stochastic curve fitting has been proposed to discover
 and   and  subsequently  the  reproduction  value

candidate  for  the  various  periods  of  consideration.
Furthermore, we have proposed an encoding method to
represent the various parameters with some assumptions
of the initial infectious population. The initial infectious
number in the community is difficult to find and estimate,
it is also considered as a tunable parameter for modelling.
When applied to curve fitting on COVID-19 on specific

locations,  the  results  show  that  there  are  varying
solutions  available,  hence  increasing  the  variability  of
the  possible  scenarios.  In  particular,  it  must  also  be
highlighted that parameter balance between exploitation
and  exploration  plays  an  important  role  given  this
finding.  Due  to  complexity  of  this  problem,  different
curve fitting on acquired data may pose different fitness
surface. In stating this, stochastic approaches, especially
those  with  automated  parameter  setting  could  be  high
advantageous for this type of problem.

Future works may look into further evaluation on other
data to investigate suitability of the proposed approach.
Most  real  time  reports  often  just  report  the  daily
occurrence  and  therefore  these  may  be  lumped  as
removed  cases  as  stated  in  the  paper.  In  view  of
vaccination, the approach model may simply include the
vaccination population as removed in view of immunity.
Again,  the  vaccination  data  are  often  reported  by  the
authorities and would, therefore, be an easy extension to
the proposed approach.
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