
 

Collective Computation, Information Flow, and the Emergence of
Hunter-Gatherer Small-Worlds

Marcus J. Hamilton*

Abstract:    Two key features of human sociality are anatomically complex brains with neuron-dense cerebral
cortices, and the propensity to form complex social networks with non-kin. Complex brains and complex social
networks facilitate flows of fitness-enhancing energy and information at multiple scales of social organization.
Here,  we  consider  how these  flows  interact  to  shape  the  emergence  of  macroscopic  regularities  in  hunter-
gatherer  macroecology  relative  to  other  mammals  and  non-human  primates.  Collective  computation  is  the
processing  of  information  by  complex  adaptive  systems  to  generate  inferences  in  order  to  solve  adaptive
problems. In hunter-gatherer societies the adaptive problem is to resolve uncertainty in generative models used
to predict complex environments in order to maximize inclusive fitness. The macroecological solution is to link
complex  brains  in  social  networks  to  form  collective  brains  that  perform  collective  computations.  By
developing theory and analyzing data, the author shows hunter-gatherers bands of ~16 people, or ~4 co-residing
families, form the largest collective brains of any social mammal. Moreover, because individuals, families, and
bands interact at multiple time scales, these fission-fusion dynamics lead to the emergence of the macroscopic
regularities  in  hunter-gatherer  macroecology  we  observe  in  cross-cultural  data.  These  results  show  how
computation is distributed across spatially-extended social networks forming decentralized knowledge systems
characteristic of hunter-gatherer societies. The flow of information at scales far beyond daily interactions leads
to the emergence of small-worlds where highly clustered local interactions are embedded within much larger,
but sparsely connected multilevel metapopulations.

Key  words:   complex  adaptive  systems;  hierarchically  modular  networks;  collective  brains;  macroecology;
allometry; mammals; primates

1    Introduction

A  central  goal  of  evolutionary  anthropology  is  to
develop mechanistic theories that explain how flows of
energy  and  information  between  humans  and  their
environments  create  the  diversity  we  observe  in  the
archaeological  and  ethnographic  records.  There  are
multiple  theoretical  approaches  to  this  problem.  Some
of the first formal work in this area used the mathematics
of  population  genetics  to  model  the  interaction  of

cultural  and  genetic  transmission  processes  in  human
populations[1, 2],  leading  to  rich  theories  of  dual-
inheritance,  cultural  evolution,  and  cumulative
culture[3, 4].  Despite  parallel  developments  in  human
behavioral ecology[5, 6], it was not until the development
of niche construction in the 1990s that the importance of
ecology  to  cultural  evolutionary  theory  was  fully
realized[7–9]. More recent work considers the impact of
networked  interactions  on  the  transmission  of
information  in  both  human  and  non-human
systems[10–13].  Related  research  in  complex  adaptive
social  systems  describes  how  networks  of  social
interactions  lead  to  the  emergence  of  the  nonlinear
scaling behavior that characterizes the growth and size
of many human social systems[14–20].
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Similarly,  studies  of  information  transmission  in
hunter-gatherer  societies  now  often  focus  on  the
complex  structure  of  social  networks[21–24].  Detailed
insights  come  from  ethnographic  case  studies  that
explicitly  model  the  flows  and  consequences  of
information transmission through real-world interaction
networks including the fitness consequences of network
position[25],  the  role  of  cooperation[26],  the  shared
knowledge  of  plants[27],  the  importance  of
story-telling[28, 29],  and the  accelerated pace of  cultural
evolution in multilevel social networks[30].

In  this  paper  the  author  hopes  to  contribute  another
perspective to this research by taking a complex adaptive
systems  approach  designed  to  understand  how
computation,  energy,  and  sociality  interact  to  shape
large-scale  macroscopic  regularities  of  hunter-gatherer
macroecology. Specifically, this paper asks how energy
and information flows at the individual level scale up to
shape  the  large-scale  organization  of  hunter-gatherer
metapopulations.  The  processing  of  energy  and
information across levels of social organization is what
we  refer  to  here  as collective  computation.  More
generally,  collective  computation  is  the  ability  of
complex  adaptive  systems  to  compute  solutions  to
problems by accumulating, aggregating, and deploying
information  across  scales[31].  For  example,  the  brain
performs  collective  computations  by  aggregating  the
firing  of  individual  neurons  to  perform  complex
behavioral  responses  to  external  stimuli[32, 33].
Collective computation plays a central role in Bayesian
theories of the brain where sensory information that the
brain receives from interacting with the world is used to
update  models  built  from  prior  experience[34].
Predictions  are  then  made  by  deploying  updated
information to produce increasingly accurate generative
models  of  the  world  with  obvious  fitness
consequences[35–37].

Computations are energetically expensive, and so the
costs  of  information  processing  are  integrated  into  the
energy budgets of complex adaptive systems, from the
increased  metabolic  costs  of  fueling  large  human
brains[38] to  the  ecological  costs  of  supporting
populations[18].  These  trade-offs  lead  to  the
optimizations  we  are  interested  in  here.  The  costs  and
benefits of large brains play a central role in evolution
of human ecology at all scales, from the scheduling of the
human life history[39] and the optimization of foraging

behaviors[40],  to  the  formation  of  social  networks  and
their  distribution  across  landscapes[18, 23].  Indeed,  the
propensity of humans to form social networks has been
central to the evolution of human ecology as cooperation
and learning aggregate and amplify the knowledge, skill,
and  experience  accrued  by  individuals  over  their
lifetimes.

1.1    Hunter-gatherer complex adaptive systems

Hunter-gatherer  societies  are  perhaps  definitive
examples  of  complex  adaptive  systems[41].  Hunter-
gatherer  populations  self-organize  to  form  multiscale
societies[42] composed of autonomous agents seeking to
maximize  inclusive  fitness  by  interacting  with  each
other and their environments. Time-scale separation in
rates of interaction at these multiple scales leads to the
emergence  of  macroscopic  regularities  that  appear  in
data  as  correlations  across  multiple  levels  of  social
organization and the environmental regulatory systems
on which they rely[18]. Hunter-gatherer societies are thus
best  thought  of  as  metapopulations  formed  by  the
constant  interaction  of  families,  groups,  and
subpopulations,  as  individuals  seek  to  optimize  their
time,  energy,  and  opportunity  budgets.  Human
behavioral  ecologists  have  built  deep  mechanistic
theories  of  these  optimizations  including  foraging
behavior,  time  allocation,  social  learning,  parental
investment, and patch residence time, many of which are
summarized  in  Ref.  [40].  While  behavioral  ecology
models  derive  these  optimizations,  collective
computation  is  the  process  by  which  statistically
sufficient regularities are extracted from environmental
signals  and  used  to  evaluate  decision  variables.  The
macroecological  perspective  we  pursue  here
coarse-grains over these local optimizations to focus on
how social groups solve the overall adaptive problem of
predicting  regularities  in  stochastic  environments
through collective computation.

1.2    Traditional  knowledge  as  collective
computation

A  common  feature  of  many  ethnohistoric
hunter-gatherer societies are knowledge systems[43] that
integrate  social,  ecological,  and  environmental
information into cohesive cultural belief traditions[44–46].
Here,  knowledge  accumulated  over  generations
essential  to  survival  and  cultural  identity  are  encoded
into  norms  of  behavior,  craft,  kinship,  mythology,  art,
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and ritual[29, 47–49]. The resulting traditions of belief are
central  to  hunter-gatherer  adaptations  and  are
transmitted  rigorously  and  systematically  across
generations.  The “Dreaming” traditions  common  to
many Aboriginal Australian hunter-gatherers provide a
prime  example[50].  In  Dreaming  cultures,  from  birth,
individuals  are  embedded  in  living  landscapes  of
mythical  events  and  inherit  custodial  obligations  to  a
particular  region  of  the  landscape  and  all  the  sacred
knowledge  it  contains[51].  Landscapes  are  overlain  by
networks of songlines, or dreaming tracks, created by the
epic journeys of Ancestral beings as they travelled across
the  country  forming rivers,  mountains,  springs,  plants,
and animals[52]. Dreaming tracks often extend across the
territories of neighboring groups and some traverse the
entire continent. These songline networks form mental
maps that link locations, people, and resources in space
and can only be traversed by memorizing the appropriate
song  cycles[51, 53, 54] in  a  tradition  often  described  as
“singing up” the landscape[55].  Stars and constellations
are then used to build star maps facilitating travel along
dreaming  tracks[56–58].  People  thus  have  the  ability  to
travel  far  beyond their  familiar  landscapes by learning
the  appropriate  song  cycles  from  the  appropriate
custodians  of  the  landscapes  they  will  be  traversing.
Dreaming  tracks,  star  maps,  and  song  cycles  create
multidimensional  virtual  worlds  through  which
individuals  navigate  their  social,  biological,  and
physical environments. Thus, all individuals from birth
are nodes in a vast network that extends across the entire
continent, the properties of which are encoded in local
belief  systems  and  maintained  for  millennia[51].  These
traditions allow individuals to build detailed inferential
models of resources, people, and landscapes far beyond
local experience. In this sense, a dreaming tradition is a
collective computation that solves the adaptive problem
of detecting, extracting, and storing regularities from a
dynamic,  stochastic,  fluctuating  social  and  physical
environment, by encoding accumulated information into
culturally-inherited knowledge systems.

1.3    Tinbergen’s four questions

The goal of this paper is to develop an intuition into the
role collective computation and information flow plays
in structuring hunter-gatherer macroecology at multiple
spatial-temporal scales. To do this the paper focuses on
the  cross-cultural  analysis  of  hunter-gatherer  societies

and their comparison to non-human primates (hereafter
primates,  unless  otherwise  stated)  and  non-primate
mammals  (hereafter  mammals,  unless  otherwise
stated).  A  useful  framework  for  our  discussion  is  to
consider how Niko Tinbergen’s four questions[59] apply
to  the  ecological  and  evolutionary  role  of  collective
computation in hunter-gatherer societies :

(1)  Phylogeny: What  is  the  evolutionary  history  of
collective computation in hunter-gatherer societies?

(2)  Causation: How  is  collective  computation
performed in hunter-gatherer societies?

(3)  Function: What  is  the  adaptive  function  of
collective computation in hunter-gatherer societies?

(4)  Ontogeny: How  is  collective  computation
integrated into the life history of hunter-gatherers?

The  remainder  of  this  paper  examines  collective
computation in hunter-gatherer societies by quantifying
how individual computation scales up in social groups to
form what is sometimes termed the collective brain[60].
The  paper  starts  by  considering  the  computational
scaling of mammalian, primate, and human brains. Next
a model is derived to describe the allometric scaling of
group  size  across  mammals,  primates,  and  hunter-
gatherers.  The  scaling  of  individual  computation  and
social  groups  are  then  combined  to  form  collective
brains and the resulting organization of hunter-gatherer
macroecology.  At  the  end  of  the  paper  we  summarize
answers to Tinbergen’s questions.

2    Data and Method

2.1    Datasets and sources

To address the phylogenetic, causative, functional, and
ontogenetic  role  of  collective  computation  in
hunter-gatherer  societies,  the  paper  uses  three
comparative dataset: (1) mammal brain composition; (2)
mammal  species  ecology;  and  (3)  cross-cultural
hunter-gatherer  macroecology.  The  first  is  data  on
mammal brain composition from Herculano-Houzel that
includes various metrics of brain size including counts
of neurons in various parts of the brain for 39 species[61].
The  second  dataset  is  a  combined  macroecological
database compiled by the author from published sources.
These  data  focused  on  various  ecological  traits  of
mammal  species.  Mammal  body  mass,  group  size,
population density, and home range size came primarily
from  the  PanTHERIA  database[62],  with  additional
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group size data from Jetz et al.[63]. Home range data came
from Kelt and van Vuren[64]. Primate group sizes came
from Dunbar et al.[65]. Additional body mass data were
extracted from the Amniote database[66]. Mammal brain
mass  data  came  from  a  combination  of  Isler  and  van
Schaik[67],  Sol  et  al.[68],  and  Barton  and  Capellini[69].
Data were examined and cleaned: obvious outliers and
errors in the datasets were followed up through original
sources, comparison to additional published sources and/
or respected online sources, including Animal Diversity
Web  and  the  IUCN  Red  List  of  Threatened  Species.
These data were included in the analyses if verified, and
if not they were omitted. The third dataset is the Binford
cross-cultural  hunter-gatherer  database[70],  which
includes  social  group  size  estimates  at  five  levels  of
social  organization,  in  addition  to  estimates  of
population density, and territory size for 339 populations.
These data were compiled by Binford and his research
team  over  many  years  and  consist  of  metrics  derived
from the ethnographic literature generated over the 20th
century.

2.2    Macroecological modeling approach

We take a macroecological approach to the comparative
analyses  of  brain  anatomy,  species  ecology,  and
hunter-gatherer  socioecology.  Macroecology  is  the
study  of  complex  adaptive  systems  in  ecology.
Macroecology  is  a  top-down  theoretical  approach
focusing on the statistics of the interaction of organisms
with  their  environments  across  multiple  scales  of
organization and observation,  and how these influence
the abundance, diversity, and distribution of biological
species as they compete for space[71].  For comparative
analyses  across  species  the  independent  variable  in
macroecological studies is commonly a measure of mass;
in this paper, either some measure of brain mass or body
mass  (i.e.  body  size).  For  cross-cultural  comparative
analyses  of  hunter-gatherer  societies  the  independent
variable  is  population  size.  A  standard  goal  in  scaling
analysis  is  understanding  how  the  dependent  variable
responds  to  a  change  in  the  independent  variable;  i.e.,
how  does  a  focal  property  of  the  system  change  in
response to a change in size of the system?

In  macroecology,  body  size  is  considered  a
fundamental variable as it sets the metabolic demand of
an  organism – the  rate  at  which  an  organism uptakes,
transforms,  and  expends  energy  to  support  life

functions–including  the  scheduling  of  life  history  and
many  aspects  of  behavioral  ecology[71, 72].  Body  size
also  correlates  closely  with  brain  size[73],  and so  brain
size correlates closely with an organism’s metabolic rate
and  life  history.  However,  it  is  also  important  to
understand  how  aspects  of  brain  anatomy  vary  with
aspects of brain size across species[38]. Of course, there
is a sense in which while the metabolic cost of the brain
is  a  significant  proportion  of  the  whole  organism
metabolic  budget  (~20%–25% in  humans),  ultimately
the  metabolic  cost  of  performing  all  brain-related
functions is the whole organism metabolic rate.

Body  size  is  therefore  a  useful  comparative
independent  variable  as  it  captures  many  fundamental
aspects of a species ecology[72].  Moreover, it serves as
a basis for building rich axiomatic, mechanistic theories
of energy flows in ecology and allows us to predict the
expected  value  of  a  trait  for  a  given  body  size,  and
whether  observed  data  are  consistent  with  predictions.
So,  for  humans  we  can  then  ask  what  the  predicted
ecology  of  a  mammal  (or  a  primate)  of  our  body  size
should be from fundamental ecological principles. Any
deviations from expectations therefore point to specific
ecological  and  evolutionary  mechanisms,  highlighting
the particular ways human ecology may differ from other
animals in some respects, but may be entirely predictable
in other respects.

Within the human species, body size can be effectively
held  constant,  at  least  on  size  scales  relevant  to
allometric  scaling  across  species[74].  As  such,  the
relevant change of scale is not an inter-specific change
in body size, but an intra-specific change in the number
of individuals with similar body sizes (i.e., group size,
or  population  size,  for  example).  Note  then  that
population  size  can  still  be  considered  a  measure  of
population  biomass.  So,  the  questions  of  interest  in
human macroecology is how some aspect of the ecology
of  a  human  population  changes  across  populations  of
different sizes (or total biomass).

2.3    Statistical approach

n = 39

For  the  allometry  of  brain  mass,  cortical  mass,  and
neuron count we use OLS regression as the sample size
( )  does  not  provide  enough  power  for  a
mixed  model  controlling  for  order,  or  a  full
phylogentically-controlled  model.  These  data  are
divided simply into primate species  vs.  other  mammal
species, as this is the primary question of interest in this
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section  of  the  paper.  Similarly,  for  the  analyses  of
mammal  species,  again,  the  data  are  divided  into
primates  and  other  mammals  and  measures  the
allometries with OLS regression. This is to be consistent
with  the  brain  anatomy  data,  as  we  later  combine  the
results of the two analyses and so they must be subject
to  the  same  statistical  treatment.  However,  we  also
provide  results  of  a  mixed  linear  model  of  the
cross-species data where mammal order is introduced as
a random effect. The effect sizes of mammal order in this
model  are  consistent  with  the  OLS  results.  For  the
cross-cultural  data,  we  use  one-way  ANOVAs  where
appropriate  and  fixed  effects  models  when  we  are
interested in the differential  scaling across pre-defined
groups,  such  as  group  sizes  at  the  various  levels  of
hunter-gatherer  metapopulations,  or  across  ecosystem
types. All statistical results are provided either in figures
or tables.

As  the  sample  sizes  and  scales  of  resolution  differ
widely  across  the  three  datasets  we  do  not  control
attempt  to  control  for  phylogenetic  autocorrelation  in
either the mammal or the hunter-gatherer data. There are
published phylogenies for mammals[75], but there are no
equivalent  phylogenetic  trees  that  capture  the
evolutionary  relatedness  of  hunter-gatherer  societies.
Therefore, for consistency, we do not attempt to control
for phylogeny in either case.

Statistical  tests  and  figures  are  generated  in  the  R
statistical  computing  environment[76].  Basic  statistics
use the R base package. Mixed linear models use the lme4
package[77] and  the  merTools  package[78].  All  data  are
available  as  supplementary  material  attached  to  this
paper.

3    Results

3.1    Currencies, optimizations, and gambits

The assumption, or phenotypic gambit, made here is that
fitness-maximizing  foragers  reduce  the  uncertainty  in
the  models  they  construct  of  their  worlds  by  updating
prior  beliefs  with  new  information  they  extract  from
their  environments.  By  definition,  a  net  gain  in
information  is  a  net  decrease  in  model  uncertainty[32]

leading  to  increased  predictability  and  improved
inferences  of  the  world[35].  The  goal  is  to  minimize
surprisal  by  maximizing  the  mutual  information
between the model used to generate inferences about the

environment  and  the  actual  physical  structure  of  the
environment.  Ethnographic  examples  may  include
models used to predict the location of resources in time
and space, or macroscopic features of the environment
used to inform mobility decisions, such as when to leave
a  patch.  Thus  uncertainty-minimizers  optimize
metabolic budgets by minimizing energy and time costs.
By  accumulating  relevant  information  about  the
environment  in  the  form  of  sufficient  statistics,
uncertainty-minimizers generate increasingly predictive
models  of  their  world,  which  are  used  to  compute
increasingly  effective  inferences.  Larger  groups  of
cooperators have the potential to accumulate increasing
amounts  of  information,  but  will  necessarily  incur
increasing energy costs in finite environments. As such,
group sizes, and the broader structure of social networks
emerge  from  scale-dependent  trade-offs  between  the
benefits of information processing versus the ecological
costs of maintaining the aggregate metabolic demand of
group members.

This paper focuses on the fundamental currencies of
energy  and  information  and  their  optimization  in
hunter-gatherer  populations.  A  common  measure  of
energy  in  biological  systems  is  metabolism,  which  is
defined as the uptake,  transformation,  and expenditure
of energy by an organism to fund the ecological demands
of growth,  maintenance,  reproduction,  and motility[72].
Collective  computation  is  the  natural  informational
counterpart to metabolism in complex adaptive systems.
In this paper, we generalize the definition given by Brush
et  al.[31],  where  collective  computation  is  the
accumulation,  aggregation,  and  deployment  of
information in order to make inferences about the world
that solve adaptive problems.

3.2    Tinbergen’s first question: Phylogeny

Tinbergen’s  first  question  considers  the  evolutionary
origins  of  collective  computation  in  hunter-gatherer
societies. Answering this requires us to consider the deep
evolutionary  history  of  collective  computation  in
primates  and  mammals.  We  begin  by  considering
collective  computation  at  the  individual  level.  The
fundamental  units  of  computation  in  the  brain  are
neurons,  which  transmit  information  to  other  nerve,
muscle,  and  gland  cells.  Neurons  are  responsible  for
receiving  and  transmitting  sensory  input  from  the
external world which is used to create and update models
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that  allow  organisms  to  make  inferences  of  their
environments[34].  The  differential  ability  to  compute
accurate  inferences  about  the  world  is  central  to
biological fitness[32, 79].

There  are  tight  correlations  between  body  mass,
metabolic rate, and brain mass across mammals[73], and
humans have particularly large brains for a mammal with
an average adult body mass of ~60 kg[80]. However, the
uniqueness of the human brain is the number of neurons
in  the  cerebral  cortex  rather  than  the  total  number  of
neurons in the brain (~86 billion)[38, 80, 81]. The number
of neurons in the mammalian cortex correlates positively
with cognitive ability measured as task performance in
behavioral  experiments,  and  so  following
Herculano-Houzel[82],  here  we  use  the  number  of
cortical neurons in the mammal brain as a basic measure
of cognitive ability, and thus cognitive computation. We

use these data in Ref. [61] to develop an intuition into the
differential  scaling  of  cognitive  computation  across
mammals  (denoted by subscript m),  primates  (denoted
by subscript p), and humans.

We  describe  the  scaling  relationship  between  a
dependent variable, Y,  and an independent variable, X,
as a power law, which has the mathematical form,
 

Y(X) = aXβ (1)

a β

Y X

(β = 1) (β , 1)

where  is a normalization constant and  is a scaling
exponent describing how  responds to a change in ;
both parameters are time and scale invariant. Note that
power laws are flexible functions as they allow for both
linear  and nonlinear  responses.

B ∝ Mβ βp

βm

Figure 1a and Table 1 shows the scalings of brain mass,
B, and body mass, M, where . For primates  =
0.90  (0.74–1.06),  and  for  other  mammals  =  0.72
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Fig. 1    Allometric scaling of brain mass, cortical mass, and cortical neurons across non-primate mammals (blue points), non-
human primates (orange points), and humans (red point) using data from Herculano-Houzel et al.[61] (a) Brain mass increases
with body mass slightly faster in primates than other mammals, though the difference in slopes is non-significant (see main text
for statistical results). The human brain is large for an equivalently-sized mammal, but only slightly larger than expected for an
equivalently-sized primate.  (b)  The number of  cortical  neurons  increases  with cortical  mass  faster  in  primates  than in  other
mammals, and so primate brains have a much higher density of neurons in their cortices than other mammals. (c) The number
of cortical neurons increases with brain mass nearly twice as fast in primates than in other mammals. Human brains have a near
predictable number of cortical neurons for a primate, but more importantly they have more cortical neurons than any other
mammal in the dataset.
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t35

(0.67−0.77). Though primate brain mass increases with
body mass faster than in other mammals, the difference
between the slopes is not statistically significant at the
95% level (  = 1.97 and p = 0.06).

C ∝ Bc
α αp = 0.93

αm = 0.65

t35

Figure 1b and Table 1 show the scaling of the number
of  cortical  neurons, C,  and  cortical  mass, Bc,  where

.  For  primates  (0.79–1.08)  and  for
other mammals  (0.62–0.69). Here, the number
of  cortical  neurons  increases  with  cortical  mass
significantly  faster  in  primates  than in  other  mammals
(  = 1.97 and p = 0.001), and so the density of neurons
in primate cortices is significantly greater than in other
mammals.

C ∝ Bγ

γp = 0.84 (0.64−1.04)
γm = 0.47 (0.42−0.51)

t35

Figure  1c  and Table  1 show  the  number  of  cortical
neurons, C, scales with brain mass, B, where . For
primates   and  for  mammals

 ,  so  the  number  of  neurons  in
primate brains increase significantly faster than in other
mammals (  = 3.05 and p = 0.004). Humans have the
most cortical neurons of all species in the dataset.

E ∝ M3/4 E

M

Cp ∝ E1.12
p

Cm ∝ E0.62
m

The  number  of  cortical  neurons  in  primate  brains
increases with body mass nearly twice as fast  as other
mammals, but it is important to note that humans have
a  predictable  number  of  cortical  neurons  for  a  60  kg
primate. Recalling Kleiber’s Law, , where  is
the  basal  metabolic  rate  of  a  typical  individual  in  a
species, and  is the average adult body mass, then the
cognitive  return  on  whole  organism  metabolic
investment  in  primates  is ,  which  is  nearly
twice that in other mammals, . So, a doubling
of  the  metabolic  rate  in  a  primate  results  in  a  ~110%
increase in neurons, whereas the same doubling in other

mammals  results  in  only  a  ~60% increase  in  neurons.
Moreover, the cognitive return on metabolic investment
is  superlinear  in  primates  and  sublinear  in  other
mammals.

As  a  consequence  of  Kleiber’s  Law,  mammals  with
larger body masses have slower reproductive rates, but
increased life  spans[72] resulting  in  body-size  invariant
life-time  reproductive  effort  across  mammals[83] and
humans[84].  However,  Kleiber’s  Law  also  describes
economies  of  scale  where  mass-specific  metabolic
efficiency  increases  with  body  mass,  and  so  natural
selection will favor increased body masses if the result
is  to  decrease  mortality,  even  if  reproductive  rates  are
reduced. The neuron scaling results presented here show
that  in  primates  larger  body  mass  correlates  with
disproportionate increases in cognitive ability compared
to other mammals. As a large-bodied primate, humans
inherited  an  evolutionary  legacy  of  neuron-dense
cerebral cortices.

3.3    Tinbergen’s second question: Function
3.3.1    Social group size allometry
Tinbergen’s  second  question  concerns  the  adaptive
function  of  collective  computation  in  hunter-gatherer
societies.  To  answer  this,  we  describe  how  cognitive
ability scales up allometrically in groups by developing
a macroecological model of group size. Social group size
can be defined in many ways as there are many reasons
social  mammals  live  in  groups[85–87].  One  method  of
estimating  the  average  size  of  social  groups  is  the
average  number  of  conspecifics  (related  or  not)  an
individual  encounters  while  performing  daily  tasks[62].

 

Table 1    Brain mass, cortical mass, and cortical neuron allometry.

Dependent variable

Mln[Body mass, ] Cln[Cortical neurons, ]
Mammal Primate Mammal Primate Mammal Primate

Mln
∗∗∗0.72 ∗∗∗0.90 − − ∗∗∗0.47 ∗∗∗0.84 

(0.67, 0.77) (0.74, 1.06) − − (0.42, 0.51) (0.64, 1.04)

Bln
− − ∗∗∗0.65 ∗∗∗0.93 − −
− − (0.62, 0.69) (0.79, 1.08) − −

Constant
∗∗∗−3.11 ∗∗∗−3.32 ∗∗∗16.86 ∗∗∗17.12 ∗∗∗14.85 ∗∗∗14.02 

(−3.47, −2.76) (−4.59, −2.06) (16.76, 16.97) (16.55, 17.70) (14.52, 15.18) (12.44, 15.61)
Number of observations 28 11 28 11 28 11

R2 0.97 0.93 0.98 0.95 0.95 0.88
Residual Std. Error (SE) 0.43 0.49 0.24 0.41 0.40 0.61

F statistic ∗∗∗943.28 ∗∗∗122.17 ∗∗∗1341.41 ∗∗∗161.81 ∗∗∗460.49 ∗∗∗67.47 

∗∗∗ denotes p < 0.01Note: .
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As such, group size  is a function of the encounter rate
of an individual with conspecifics  over the home range

.  Assuming  the  encounter  rate  of  conspecifics  is
proportional to population density , then
 

S ∝ λH ∝ DH (2)

D ∝ MβD βD = −3/4

H ∝ MβH βH = 1
D = N/A

N A
l2 l

lds

ds

A

As is well-known in mammal ecology, the scaling of
population  density  and  body  mass  is  described  by
Damuth’s Law[88],  where , and home
range scales as , where [63]. In Damuth’s
Law,  population  density  is  defined  as ,  where

 is the number of individuals and  is a sampled area,
measured  in  units ,  where  could  be  meters  or
kilometers.  Note  that  we  can  equivalently  write ,
where  is the dimension of the area sampled. Therefore,
in a 3-dimensional environment, the area  in Damuth’s
Law has an additional spatial dimension, and so we can

D ∝ M(−βD)(ds/de) ∝ M−1/2 dewrite , where  is the foraging
dimension  of  the  environment.  Following Formula  (2)
we then have an expression for group size as a function
of  body  mass  and  the  dimension  of  the  foraging
environment,
 

S (M) ∝ M(ds/de)βD+βH (3)

S ∝ M1/4

S ∝ M1/2

which  in  2  dimensions  gives ,  and  in  3
dimensions .  Formula  (3)  predicts  that  for  a
given body mass, group sizes are larger in species that
forage in three dimensions than species that forage in 2
dimensions, a prediction we confirm in data below.

The  parameters  in  Formula  (3)  are  estimated  from
inter-specific mammal species data. Figure 2a and Table 2
show that for both primates and other mammals, home
ranges  scale  approximately  linearly  with  body  mass,
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Fig. 2    Allometric scaling of home range and population density in humans (red), primates (orange), and mammals (blue). In the
panels on the left, the fitted functions are OLS regressions and the slope parameters given in the panels. The panels on the right
are the effect sizes for each mammal order from a mixed linear model of the data used to generate the figure on the left. The
vertical line is a zero effect and the orange vertical line is the primate effect size. (a) Home ranges increase approximately linearly
with body mass in both primates and mammals (see Table 3 for details in the following). Hunter-gatherers have large home ranges
for their body mass. (b) The primate effect size is similar to other mammal orders. (c) Primate population densities decrease with
body mass more shallowly than other mammals, but hunter-gatherers have especially low population densities for both mammals
and primates. (d) The primate effect size is similar to other mammal orders.
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H ∝ M1

Dm ∝ M−0.74
m

Dp ∝ M−0.47
p

S p ∝ M0.46
p

S m ∝ M0.14
m

,  and Fig.  2b  shows  that  population  density  in
mammals  scales  as ,  whereas  for  primates

 (see Table  2 for  confidence  intervals  and
test statistics). So, across primates and mammals home
ranges scale approximately linearly with body mass, but
within  those  home  ranges,  for  a  given  body  mass,
population  densities  are  higher  in  primates  than  other
mammals,  consistent  with  the  dimension  of  their
respective  foraging  niches. Figure  3a  shows  that,  as
predicted, primate group sizes scale with body mass as

, whereas social group sizes in other mammals
scale  a  little  shallower  than  expected,  at .
Interestingly, hunter-gatherer band sizes (the equivalent
of  mammal  social  group  sizes  in  a  home  range),  are
considerably  smaller  than  expected  for  a  primate,  but
larger  than  expected  for  other  mammals.  Small  band
sizes would be consistent with the fact hunter-gatherers
generally forage in niches that are close to 2-dimensional,
with  the  possible  exception  of  high  canopy  forests,
fishing,  or  excavating  roots,  tubers,  and  fossorial
animals, for example. As such, primates maintain larger
group sizes by the increased resource supply rates and
decreased competition of 3-dimensional foraging niches.
Hunter-gatherer  group  sizes  are  constrained  by
2-dimensional  foraging  niches  leading  to  increased
intraspecific competition exacerbated by the specialized
food resources in the human diet. However, as we will
explore  below,  hunter-gatherers  integrate  these  small
local groups into much larger networks facilitating flows
of energy and information far beyond local interactions.
3.3.2    Constructing the collective brain
Following Muthukrishna and Henrich[60] this paper uses
the  term collective  brain to  refer  to  the  collective

G
S

C
G = S C

computational  power  of  a  social  group:  the  collective
brain, ,  is  simply  the  product  of  the  species-specific
group size, , and the average number of cortical neurons,

,  in the brain of each individual in the group, and so
. In hunter-gatherers,  the collective brain is the

average number of cortical neurons in the human brain
and  the  average  band  size  of  a  society.  Following
Formula (3) we then have a general expression for the
collective brain,
 

G(M) = S C ∝ M(ds/de)βD+βH+βN (4)

which in non-primate mammals predicts
 

Ĝ(M)m = S mCm ∝ M1/4+1/2 ∝ M3/4 (5)

and in primates,
 

Ĝ(M)p = S pCp ∝ M1/2+3/4 ∝ M5/4 (6)

As  such,  collective  brains  in  non-primate  mammals
are  predicted  to  scale  sublinearly  with  body  mass,
whereas  in  primates  collective  brains  are  predicted  to
scale superlinearly. Given the scaling results in Tables 1
and 3 we find in mammals,
 

G(M)m = S mCm ∝ M0.45+0.14 ∝ M0.59 (7)

and in primates,
 

G(M)p = S pCp ∝ M0.74+0.46 ∝ M1.20 (8)

Empirically,  the  computational  power  of  primate
social groups increases with body mass twice as fast than
in other mammals: doubling the body size of a mammal
increases the computational power of a group by 60%;
doubling  the  body  size  of  a  primate  increases  the
computational  power  of  a  social  group  by  120%.  To
visualize  this  scaling  relationship, Fig.  3e  shows  the
estimated  collective  brain  (i.e.,  converting  mammal
brain masses in the dataset to the estimated number of

 

Table 2    Home range and population density.

Dependent variable
Hln[Home range, ] Dln[Population density, ]

Mammal Primate Mammal Primate

Mln
∗∗∗1.00 ∗∗∗0.93 ∗∗∗−0.74 ∗∗∗−0.47 

(0.94, 1.05) (0.79, 1.07) (−0.79, −0.70) (−0.60, −0.35)

Constant
∗∗∗−9.78 ∗∗∗−9.00 ∗∗∗8.87 ∗∗∗7.03 

(−10.18, −9.38) (−10.13, −7.86) (8.55, 9.20) (6.06, 8.00)
Number of observations 719 225 832 212

R2 0.65 0.42 0.55 0.22
Residual SE 2.24 1.57 2.06 1.27

F statistic ∗∗∗1320.44 ∗∗∗164.72 ∗∗∗1012.25 ∗∗∗58.39 

∗∗∗ denotes p < 0.01Note: .
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Fig. 3    Allometric scaling of  collective features of  groups by body size across hunter-gatherers (red),  primates (orange),  and
mammals (blue). In the panels on the left, the fitted functions are OLS regressions and the slope parameters are in the upper left.
The panels on the right are the effect sizes for each mammal order from a mixed linear model of the data on the left. The vertical
line is a zero effect and the orange vertical line is the primate effect size. In each case, the positive random effect size for mammals
is much greater than any other mammal order. (a) The allometry of group size and body size is 3-fold steeper in primates than
other mammals, and hunter-gatherers have a broad range of band sizes. (b) The random effect for primates shows the primate
group size allometry is much steeper than other mammal orders with the exception of cetartiodactyls (even-toed ungulates). (c)
The allometry of the estimated number of cortical neurons in the brain is much steeper in primates than other mammals, and
humans have more cortical neurons for their body size than other primates. (d) The random effect for primates indicates the
response of a change in the number cortical neurons to a change in body size is much greater in primates than other mammals.
(e) The allometry of the estimated collective brain (group size  cortical neurons) in mammals, primates, and humans. (f) The
effect size for primates is much greater than other mammal orders, showing that the collective brain of primate groups increases
significantly faster than any other mammal. Hunter-gatherer collective brain sizes are much as predicted for a primate of our
body size as smaller than predicted group sizes are compensated by larger than predicted cortical neurons. The primate allometry
is twice as steep as other mammals. Nevertheless, human hunter-gatherers have the largest collective brains of all species in the
dataset.
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cortical neurons using the scaling parameters in Table 1)
as a function of body mass in primates, mammals, and
human hunter-gatherers. Hunter-gatherer bands have the
predicted  collective  brain  for  a  primate  of  kg  as
small  social  group  sizes  (Fig.  3a)  are  compensated  by
encephalized  brains  (Fig.  1a). Figure  3e  shows  that
hunter-gatherers have the largest collective brains of any
mammal.

3.4    Tinbergen’s third question: Causation
3.4.1    Hunter-gatherer metapopulation structure
Tinbergen’s  third  question  asks  how  collective
computation  is  performed  in  hunter-gatherer  societies.
To  answer  this,  first  we  examine  the  ways  in  which
neighboring  hunter-gatherer  bands  are  connected  and
integrated  into  larger  social  networks.  Hunter-gatherer
populations  are  multiscale  societies  where  bands
composed  of  co-residing  families  are  connected  to
others  across  the  landscape  forming  large-scale,  low
density, and decentralized metapopulations. Empirically,
these  multiscale  societies  form  self-similar,
hierarchically  modular  networks[23] as  shown  in
Fig. 4. The kinship ties that bind families are extended to
non-kin within co-residing bands by norms of reciprocal
altruism and resource sharing[89]. Bands typically move
multiple times over the course of a year as local foraging
patches  are  depleted[90].  Moreover,  individuals  move
through  the  broader  social  network  in  several  ways:
families may choose to relocate to another band or form
a new band; individuals often visit friends and relatives
in other bands; or husbands and wives change bands after
marriage. As such, there is a constant demographic churn
at  the  local  level.  At  an  aggregate  level,  in  some
environments (particularly hot  and cold deserts)  bands
may  seasonally  disaggregate  into  individual  families,

and at other times local bands may aggregate into large
temporary camps. Periodically, perhaps every few years,
multiple bands may aggregate for mass events, such as
puberty ceremonies, or communal foraging events, such
as  rabbit  drives  or  bison  jumps  (see  Refs.  [91, 92]).
Hunter-gatherer  metapopulations  are  connected  by
fission-fusion  dynamics  at  all  levels  and  timescales  of
the  social  network  which  serve  to  cycle  information
(both  social  and  genetic)  far  beyond  the  daily
interactions  of  individuals  within  bands.  For  example,
Ache  foragers  of  northern  Paraguay  and  the  Hadza
foragers of Tanzania interact with around 1000 people
over their lifetimes, which may constitute much of the
entire metapopulation[24].
3.4.2    Hunter-gatherer hierarchical modularity

Ω

ω1

ω2 Ω

Sω SΩ

θ = Sω+1/Sω ≈ 4

(S 1)
(S 2)

(S 3) (S 4)

SΩ

A hunter-gatherer metapopulation consists of  levels,
labelled from the lowest level  (families), the second
level  (bands),  up  to  the  highest  level ,  the
metapopulation. The number of individuals, or average
group size, at each level is denoted , and so  is the
total  number  of  individuals  in  the  metapopulation.
Statistically,  the  branching  ratio  across  all  levels  is
constant, ,  in  which  case
hunter-gatherer  metapopulations  form  self-similar
hierarchically  modular  networks[23]:  that  is  to  say,  on
average there are four individuals in a family , four
families in a band , four bands in a regional cluster
of bands ,  four clusters form a subpopulation ,
and  four  subpopulations  form  the  greater
metapopulation,  (Figs.  4a  and 5).  Importantly
however,  as  this  branching  ratio  is  an  average  across
hundreds of populations, the observed branching ratio of
any individual population may differ considerably from
the average. It  is  interesting to note that the branching
structure of these networks does not vary across different

 

Table 3    Group size, estimated number of cortical neurons, and estimated collective brain mass.

Dependent variable
Sln[Group size, ] Cln[Cortical neurons, ] Gln[Collective brain, ]

Mammal Primate Mammal Primate Mammal Primate

Mln
∗∗∗0.14 ∗∗∗0.46 ∗∗∗0.45 ∗∗∗0.74 ∗∗∗0.59 ∗∗∗1.22 

(0.12, 0.15) (0.39, 0.52) (0.45, 0.46) (0.72, 0.77) (0.57, 0.62) (1.13, 1.31)

Constant
∗∗∗−0.41 ∗∗∗−1.60 ∗∗∗15.16 ∗∗∗14.72 ∗∗∗14.72 ∗∗∗13.08 

(−0.54, −0.29) (−2.11, −1.08) (15.11, 15.20) (14.51, 14.92) (14.54, 14.91) (12.38, 13.78)
Number of observations 1,035 290 961 227 584 202

R2 0.20 0.39 0.96 0.94 0.79 0.79
Resid SE 0.83 0.85 0.27 0.30 0.92 0.99
F statistic ∗∗∗265.02 ∗∗∗186.40 ∗∗∗22 038.22 ∗∗∗3272.10 ∗∗∗2210.72 ∗∗∗733.11 

∗∗∗ denotes p < 0.01Note: .
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environments. Figure  4b  and Table  3 illustrate  this
invariance: an ANOVA shows the average size of social
groups at the five levels does not vary across ecosystem
types, and in Fig. 4c and Table 4 the regression model
shows the variation within group sizes across the levels
of  the  network  is  independent  of  local  environmental
productivity,  measured  as  net  primary  production
(g C m−2 yr−1).
3.4.3    Hunter-gatherer small worlds

S
ω = 2

K

Hierarchically modular networks have small-world-like
properties  here  dense  clusters  of  local  connections  are
linked  by  sparse  global  connections[93].  Amongst
individuals co-residing with multiple families in a band,
daily  interactions  between  are  likely  frequent  and
ubiquitous.  Assume all  co-residing individuals, ,  in a
band, , interact with each other, then the expected
connectivity is given by the number of edges, , which
in a fully-connected bi-directional network is
 

K2 = S 2(S 2−1) ≈ S 2 (9)

θ

However,  above the band level  interactions between
individuals in the metapopulation are far less frequent.
If we assume inter-band connectivity is minimized then
it  can  be  shown  that  connections  between  bands  are
proportional to the branching ratio , and so we have
 

Kω = θ(Sω−1) ≈ S 1
ω (10)

S
ω > 2
in which case inter-band connectivity is linear in  for

.  This  leads  to  the  modular  network  structures
shown in Fig. 5, generated from the average properties
of the Binford data used in this paper: internally bands
are  fully  connected,  but  each  band  is  minimally
connected  to  other  neighboring  bands  creating  a
statistically self-similar hierarchical modular network.

3.5    Tinbergen’s fourth question: Ontogeny
3.5.1    Hunter-gatherer family formation
Tinbergen’s  fourth  questions  ask  how  collective
computation  is  integrated  into  the  ontogeny  of
hunter-gatherers  and  their  societies.  To  begin,  human
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n= 339Fig. 4    Hierarchically modular structure of hunter-gatherer networks using data from Binford ( )[70]. (a) Social group sizes

at five levels of social organization for 339 populations show a geometric series. (b) The same social group size data at each of the
five levels plotted by the ecosystem of the population, showing the geometric increase in group size holds across habitats. For
statistical results, see Table 4 in the following. (c) Social group size at each level plotted as a function of the net primary production
of the environment for each population, showing that the variation in group size within each level is independent of environmental
productivity. For statistical details see Table 5 in the following. (d) Hunter-gatherer territory size plotted as a function of total
population size  (Level  5),  plotted by ecosystem type for  each population.  Across  ecosystems hunter-gatherer  populations  are
structured by self-similar networks, and exhibit economies of scale in space-use where larger networks. For statistical results, see
Table 6 in the following.
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family formation is driven by the interplay of expensive
brains, complex foraging niches, offspring-provisioning,
high infant mortality rates, high inputs of childcare, and
so  necessary  divisions  of  tasks  and  labor  by  age  and
gender  among  closely-related  kin[39, 94, 95].  Further,  in
hunter-gatherer  societies  the  kinship  ties  that  bind
families  are  extended  beyond  the  family  to  non-kin:
alloparenting is essential to childcare[96, 97], and groups
of families create long-term inter-dependent networks of
reciprocal  altruism  where  key  resources  (particularly
meat)  are  shared  altruistically,  with  the  understanding
that  shared  resources  will  be  reciprocated  in  the
future[90, 98, 99].  As  such,  hunter-gatherer  family

formation emerges from the evolution of the human life
history,  which  evolved  within  an  ultra-social
environment that includes fitness-enhancing inputs from
non-kin. The ability to form, negotiate, and police such
social  networks  requires  cognitive  inputs  and
computations over the entire collective.
3.5.2    Hunter-gatherer band size
Bands  emerge  from  the  economic  ties  that  bind  co-
residing families[100, 101], but there is no consensus on the
mechanisms  that  ultimately  constrain  the  number  of
families that co-reside[24, 40, 101, 102]. However, it is useful
to  consider  how  the  two  fundamental  currencies  of
energy and information may come into play in limiting

 

Table 4    ANOVA table of social group size by organizational level and ecosystem.
Df Sum Sq Mean Sq F value Pr (>F)

Level 4 3575.79 893.95 1361.89 0.0000
Ecosystem 6 45.28 7.55 11.50 0.0000

Level: ecosystem 24 21.49 0.90 1.36 0.1129
Residual 1156 758.80 0.66 − −

 

 

 

n= 256
Fig. 5    Network structure of six simulated hunter-gatherer metapopulations visualized as hierarchical modular networks using
the branching statistics from Fig. 4. In each simulated metapopulation the nodes in the networks are families ( ) linked by
multiple levels of interaction to form the subpopulations of the greater metapopulation. Fusion-fusion dynamics occur at multiple
levels  of  the  hierarchy  as  individuals,  families,  and bands  move,  interact,  aggregate,  and disperse  at  various  timescales.  The
frequency of local interactions forms the modularity of the subpopulations, which vary in number. Each family exists in a small-
world of dense local interactions, but is connected to the larger network by sparse global interactions. As a result, all families are
connected  to  all  others  by  short  path  lengths  that  extend  across  the  entire  metapopulation  (generated  using  the  EcoNetGen
package in R[79]).
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the number of co-residing families. Consider the finite
nature of energy available to human foragers. Data show
that  hunter-gatherers  adjust  population density rather
than  population size in  response  to  the  level  of
environmental productivity on local landscapes[18, 91, 101]

S

H

r
r ∝ S βr βr > 1

e e ∝ S 2

n = r− e ∝ r0S βr − e0S 2

βr < 2 r0 > e0

r− e = 0

(Fig.  4c),  and  so  the  size  of  the  social  group, ,  is
invariant  to  environmental  productivity.  However,
home  range  size,  (the  area  required  by  a  group  of
foragers to encounter the resources needed to meet their
combined  energy  budget),  varies  with  environmental
productivity[18].  As  such,  the  level  of  intraspecific
competition − the number of individuals cooperating and
competing−is  invariant  to  local  environmental
productivity.  While  competition is  invariant,  resources
are  finite  ultimately  limiting return rates  and therefore
the ability to maintain the energy demands of foragers
and  their  dependents.  Even  if  we  assume  total  energy
return rates, , from cooperative foraging are superlinear
( , where ), following Eq. (9) then the energy
cost of competition  in a band will go as , and so
competition outpaces cooperation with increasing group
size. The net return is then , where
1<  and  (see Figs. 4a and 4b), which the data
suggest is maximized at ~16 individuals. The upper limit
of band sizes is then set where : the largest band
size  in  the  data  set  is  70  people  in  the  Niitsitapi
(Blackfoot), an equestrian society of the North American
Plains.

c0

c

K c = c0K = c0S 2

b = b0S βb βb < 2
b0 > c0

As group size increases,  not  only there is  increasing
intraspecific competition over finite resources, but there
is  also  an  increasing risk  of  free  riders.  To detect  free
riders  an  individual  must  monitor  not  only  their
interactions with others, but all interactions in the group
as a whole, as a free rider may cooperate with some and
defect with others. If we assume the cost of monitoring
a link in the network is a constant, , then, following Eq.
(9),  the  per  capita  cost, ,  of  monitoring  all  the
interactions, ,  in  a  group goes  as .  So,
like  energy,  the  per  capita  informational  benefits  of
cooperation will necessarily be less than quadratic, as the
exchange of information between individuals cannot be
perfect[18, 103]. That is, if there the benefit of cooperating
partners  is  positive  but  not  perfect,  then  benefits  will
increase  as, ,  where .  Therefore,  the
initial informational benefits to cooperation ( ) are
quickly  outpaced  by  the  costs  of  policing  group
interactions. Hunter-gatherer band sizes are thus limited
both  by  competition  over  energy  and  imperfect
information  exchange,  independent  of  environmental
productivity.

Average band sizes of ~16 individuals correspond to
~4 co-residing families. However, by maintaining links

 

Table 5    Hunter-gatherer social  group size  across  levels  by
net primary productivity NPP.

Dependent variable
Sωln[Social group size, ]

NPP −0.0001 (−0.001, 0.0005)
Level 2 ∗∗∗1.14  (0.79, 1.48)
Level 3 ∗∗∗2.45  (2.12, 2.79)
Level 4 ∗∗∗3.62  (3.27, 3.97)
Level 5 ∗∗∗5.38  (5.06, 5.71)

NPP: Level 2 0.0003 (−0.0004, 0.001)
NPP: Level 3 0.0001 (−0.001, 0.001)
NPP: Level 4 −0.0000 (-0.001, 0.001)
NPP: Level 5 −0.0004 (-0.001, 0.0003)

Constant ∗∗∗1.52  (1.24, 1.80)
Number of observations 1191

R2 0.81
Residual SE 0.83

F statistic ∗∗∗572.35 

∗∗∗ denotes p < 0.01Note: .
 

 

Table  6    Linear  model  of  hunter-gatherer  territory  size  by
population size and ecosystem type.

Dependent variable
Aln(Territory size, )

S 5ln ∗∗∗0.74  (0.32, 1.16)
ECOS YS T EMCoast ∗∗−4.59  (−8.19, −0.98)
ECOS YS T EMDesert −0.56 (−4.47, 3.35)
ECOS YS T EMForest ∗−3.17  (−6.70, 0.36)

ECOS YS T EMGrassland −2.28 (−5.29, 0.72)
ECOS YS T EMTropical ∗−3.46  (−6.92, −0.01)
ECOS YS T EMTundra −0.22 (−4.63, 4.19)
P ECOS YS T EMCoastln : 0.15 (−0.37, 0.66)
P ECOS YS T EMDesertln : −0.14 (−0.73, 0.44)
P ECOS YS T EMForestln : 0.11 (−0.41, 0.63)

P ECOS YS T EMGrasslandln : 0.02 (−0.42, 0.47)
P ECOS YS T EMTropicalln : 0.06 (−0.47, 0.58)
P ECOS YS T EMTundraln : 0.001 (−0.65, 0.65)

Constant ∗∗∗34.21  (3.47, 9.11)
Number of observations 339

R2 0.58
Residual SE 1.19

F statistic ∗∗∗34.21 

∗ denotes p < 0.1 ∗∗ denotes p < 0.05 ∗∗∗ denotes p < 0.01Note: ; ; .
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with neighboring bands, families exist in a small-world
of dense local connections linked to many other small-
worlds  throughout  the  network  by  short  path  lengths;
dispersed, low density hunter-gatherer metapopulations
are bound by the strength of weak ties[104]. Equations 9
and 10 suggest that the cost of maintaining links between
bands is much less than within bands as the interaction
frequency is far less. As such, the decentralized, modular,
and  hierarchical  network  structure  of  hunter-gatherer
metapopulations  maintains  global  connectivity  but
reduces the connectivity costs by minimizing the links
that  allow  people,  material,  and  information  to  flow
through the network at multiple scales.

4    Discussion

The  empirical  results  in  this  paper  show  that  hunter-
gatherer  bands  composed  of  a  handful  of  co-residing
cooperating families form powerful collective brains[60]

with higher computational capacity than any other social
group  of  primates  or  other  mammals.  This  is  because
human brains  are  not  only  large  for  a  mammal  of  our
body  size,  human  cerebral  cortices  have  particularly
high  neuronal  densities  compared  to  other  mammal
species[38].  As  neuronal  density  in  the  cerebral  cortex
correlates  with  cognitive  ability[83],  human  brains  are
particularly  efficient  at  information  processing[32].
Current  perspectives  in  theoretical  evolutionary
neuroscience suggest  these cognitive computations are
used  to  build  inferential  models  of  complex  external
worlds,  allowing  for  the  prediction  of  environmental
uncertainty, and therefore the maximization of inclusive
fitness[34, 35, 80].  Individual  computational  capacity  is
aggregated within bands, which are then aggregated to
form distributed cognitive networks at higher levels of
aggregation  in  the  multiscale  metapopulation[105, 106].
Thus,  collective  computation  at  multiple  levels  is  an
inherent  aspect  of  the  evolution of  human life  history,
behavioral  ecology,  and  macroecology,  as  fitness-
enhancing contributions from non-kin play an important
role in human evolutionary ecology[39].

This  paper  highlights  the  central  role  collective
computation plays in the organization of hunter-gatherer
macroecology. The complex adaptive system approach
taken here shows how top-down, comparative analyses
add an additional and complementary perspective to the
bottom-up  approaches  traditionally  developed  in
anthropology  which  often  identify  the  roles  particular

sets of transmission rules, cultural norms, or behaviors
play in structuring social systems at much larger scales.
Macroecology  explicitly  places  the  human  traits  of
interest to anthropologists within the broader context of
the  energetic  and biophysical  principles  that  shape the
ecology  of  all  other  organisms.  In  this  way
macroecology  establishes  a  principled  comparative
baseline along which we can observe human systems and
measure their deviations from other species.

Despite  the  enormous  diversity  of  hunter-gatherer
societies in the ethnographic record, cross-cultural data
show remarkable  macroscopic  regularities  in  the  scale
and  structure  of  hunter-gatherer  societies  across
different  environments,  reflecting  an  invariance  in  the
flow of information across different environments. The
multiscale  structure  of  metapopulations  emerges  from
fission-fusion  dynamics  as  individuals,  families,  and
bands move through a nested hierarchy of social groups
at multiple levels of social organization at various time
scales.  These  dynamics  form  a  fluid,  hierarchically
modular  social  network  where  individuals,  genes,  and
social information cycle at scales are far beyond the local
scale  of  daily  interactions  among  co-residing
families[24, 107, 108]. This complex structure is ultimately
shaped by energy constraints on the flow of information
among  social  groups  at  different  levels  of  social
organization resulting in scale-dependent optimizations,
modularity, and time-scale separation in dynamics[109].

A key feature of this social structure is the formation
of co-residing families in bands. Band size is a trade-off
between the collective benefit of increasingly predictive
models  that  resolve  environmental  uncertainty  versus
the  ecological  maintenance  costs  of  supporting  group
members, and the policing costs of detecting free riders.
Data  and  theory  show that  the  average  size  of  hunter-
gatherer bands in the ethnographic record is smaller than
predicted  for  a  60  kg  primate;  the  primate  scaling
parameters in Table 2 predict hunter-gatherer band sizes
of ~32, whereas the empirical average across cultures is
~16, half the predicted value[23, 101] (but see Ref. [100]).
Smaller  than  predicted  social  group  sizes  are
compensated  by  larger  than  predicted  human  brain
masses such that the collective brain mass of a hunter-
gatherer band is much as predicted for a 60 kg primate,
and is among the largest of any mammal, regardless of
body  mass  (Fig.  3e).  Given  the  tight  scaling  of  the
number  of  cortical  neurons  and  brain  mass  in  both
mammals and primates (Fig. 1c), hunter-gatherer bands
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then  have  the  highest  computational  power  of  any
mammal or primate social group. But more importantly,
information  is  exchanged  throughout  metapopulations
at scales far beyond the daily interactions of co-residing
individuals:  the  information  processing  capacity  of  an
entire hunter-gatherer metapopulation is clearly unique
in the mammalian world. This metapopulation structure
thus  provides  the  benefits  of  a  large  social  network
(i.e., access to potential cooperators; allies; innovators;
marriage partners; defenders; raiders; and economies of
scale in general), but minimizes much of the ecological
and computational costs of maintaining connectivity.

At the largest scale, hunter-gatherer metapopulations
are  decentralized  networks  where  the  optimizations  of
energy  and  information  flow  that  constrain  band  size
play out  at  local  scales.  The collective computation of
hunter-gatherer  societies  is  to  achieve  local  optima by
minimizing  band  sizes  thus  minimizing  the  costs  of
maintaining  network  connectivity  in  a  much  larger
metapopulation. These trade-offs result in small-worlds.
The  macroecological  solution  is  to  maintain  large
metapopulations by distributing local subpopulations in
space.  In  urban  scaling  theory,  cities  are  sometimes
referred  to  as social  reactors[16],  a  term  capturing  the
hyper-productivity  of  dense  nucleations  of  people  and
their interactions concentrated in space. In this spirit, we
might  then  refer  to  hunter-gatherer  societies  as social
diffusers,  a  term  capturing  the  optimal,  adaptive
decentralized modularity of people and their interactions
dispersed in space. The challenge now is to understand
how  the  social  diffusion  that  characterized  the  deep
evolutionary  history  of  human  sociality  eventually
nucleated to form the social reactions of the Holocene.

5    Conclusion

In the introduction, we posed Tinbergen’s four questions
to help frame the phylogenetic, causative, adaptive, and
ontogenetic  roles  of  collective  computation  in
hunter-gatherer macroecology. Here, we summarize the
answers:

Phylogeny.  Collective  computation  in  humans  has
deep phylogenetic  roots  as  the complex 3-dimensional
environments of primate evolutionary history promoted
large  complex  brains[110].  The  increasingly  2-
dimensional  niches  of  the  hominin  lineage  required
specialized diets of nutrient-dense resources to fuel the
increasingly  expensive  hominin  brain,  which  in  turn
required  complex  predictive  models,  collective

behaviors, and extensive cooperation[38, 39, 111].
Causation.  Macroscopic  regularities  are  extracted

from  the  environment  and  used  to  inform  decision-
making processes. Optimizations at the individual level
scale up to form the collective behavior of social groups
integrated  into  extensive  social  networks  across
landscapes  to  form  hierarchically  modular
metapopulations. Thus, hunter-gatherer societies are not
small-scale (sensu [112]), but small-world.

Function.  Collective  computation  is  the  scale
invariant  processing  of  information  at  multiple
spatial-temporal  levels  of  hunter-gatherer  social
organization.  Information  is  used  to  build  models  to
make  inferences  about  the  world  that  resolve
environmental  uncertainty  and  therefore  maximize
fitness  by  optimizing  energy  budgets,  time  allocation
strategies, reproductive decisions, and survival.

Ontogeny. Information processing at levels above the
individual  is  deeply  integrated  into  all  aspects  of  the
human  life  course,  including  the  scheduling  of  life
history  events[39],  the  social  learning  of  culturally
inherited  information[2],  the  mastery  of  complex
skills[113, 114],  cooperation  amongst  non-kin[90, 108],  and
the coordinated mobility of individuals in space[23, 91].
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