
 

Hybrid Predictive Ensembles: Synergies Between
Human and Computational Forecasts
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Abstract:    An increasing proportion of decisions, design choices, and predictions are being made by hybrid
groups consisting of humans and artificial intelligence (AI). In this paper, we provide analytic foundations that
explain the potential benefits of hybrid groups on predictive tasks, the primary use of AI. Our analysis relies
on interpretive and generative signal frameworks as well as a distinction between the big data used by AI and
the  thick,  often  narrative  data  used  by  humans.  We  derive  several  conditions  on  accuracy  and  correlation
necessary for humans to remain in the loop. We conclude that human adaptability along with the potential for
atypical cases that mislead AI will likely mean that humans always add value on predictive tasks.
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1    Introduction

In early 2017, floods devastated coastal Peru resulting in
power outages and loss of Internet service. In response,
Google,  through  its  Project  Loon,  set  sail  a  helium
balloon capable of providing stopgap Internet access. As
the balloon traversed its path from Puerto Rico to Peru,
the  artificial  intelligence  guidance  system  repeatedly
steered  the  ballon  from  its  course.  Google’s  human
engineers would intervene. Yet, as soon as they put the
AI back in control, the AI would go rogue. One moment,
it would head toward Uruguay. The next it would pivot
the ballon toward Venezuela.  After  a  few iterations of
human–AI ping pong, the engineers realized that the AI
had  discovered  tacking,  a  pattern  of  zig-zagging  to
exploit wind patterns used by sailors for centuries.

The lack of transparency and the potential novelty of
AI strategies of Boeing’s 737 Max airplanes suffer from

a variety of design failures that can be traced to a poor
decision  making  protocol[1].  In  scenarios  involving
whether or not to raise or lower the nose of the plane,
Boeing’s  Maneuvering  Characteristics  Augmentation
System  (MCAS)  made  decisions  based  on  a  single
sensor. In brief, to avoid an angle between wing and the
airflow  too  large  (a  dangerous  combination),  MCAS
would lower or raise the nose of the plane automatically.
In  two  crashes,  that  sensor  was  damaged,  and  MCAS
mistakenly lowered the nose of the plane. Each time the
human pilot raised the nose, the AI would again lower it.
The humans and the AI were playing a game of tug of
war not unlike the humans and the AI steering the Google
Balloon. In the case of the Boeing 737 Max airplanes,
different  predictive models  had tragic consequences[2].
These  two examples  call  attention  to  a  trend  in  which
more of the deciding, designing, creating, and predicting
involve hybrids of human and artificial intelligence. The
present and future of cognitive work will surely involve
a  mangle  of  humans,  algorithms,  datasets,  subjects,
objects, and domains[3, 4]. As they seek to understand the
world, these hybrid groups will also shape it[5, 6].

In  this  paper,  we  analyze  the  potential  synergies
between humans and artificial intelligence. We focus on
a particular task: making accurate predictions. Our goals
are to provide some analytic foundations for the potential
wisdom and limits of hybrid crowds and to explore how
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the roles assigned to humans and AI within these hybrid
networks  will  likely  shift  and adapt  in  response  to  the
growing capabilities of AI[7, 8].

We have a variety of motivations for undertaking this
analysis.  First,  predictive  tasks  are  ubiquitous.  Many
marketing  forecasts,  stock  market  predictions,  and
actuarial  analysis  are  purely  predictive,  but  a  range  of
other tasks that would previously have been classified as
decision  making,  problem  solving,  matching,  design,
policy  formulation,  or  guidance  have  been  translated
into predictive tasks[9]. Essentially, any decision making
involves  predicting  the  consequences  of  the  available
options before choosing among them.

Second,  a  substantial  proportion  of  high  stakes
predictions, whether they involve hiring and admissions,
investments, inventory control, information acquisition,
pricing,  or  even  prison  sentencing,  now  rely  on
assemblages of humans and algorithms. Understanding
the perils and promises of these assemblages and crafting
a proper balance between the two will be a major concern
moving forward.

Third,  advances in AI have transformed the practice
of  prediction.  As  recently  as  a  few  decades  ago,
prediction  —  be  it  in  the  intelligence  community,
business, and even science — relied on a combination
of experience, small  amounts of data,  and gut instinct.
Massive increases in computational power, deeper and
broader datasets, and the development of new algorithms
have  increased  both  classification  accuracy  and  the
length  of  forecasting  windows.  Weather  forecasts  that
were hit or miss two days forward now predict with high
accuracy  a  week  in  advance.  The  increased  accuracy
resulting  from  the  application  of  evermore  powerful
algorithms  to  ever  larger  datasets,  begs  the  question:
should humans remain in the predictive arena at all, or
should we leave prediction to algorithms entirely? Some
take the position that models based on data should have
replaced humans long ago. One does not need AI to best
humans.  Even  linear  models  tied  to  data  outperform
human forecasters[10].

Fourth,  mature  literatures  in  psychology,  statistics,
and computer science enable the formulation of precise
technical claims that can be linked to the actualities of
wetware,  software,  and data  sources.  Recent  pushback
against “big data” in favor of “thick data” allows us to
connect  the  technical  literature  with  critical
contemporary questions[11].  Among them include:  Can

we trust AI? What if HAL goes rogue? Can AI be biased?
As  data  become  bigger,  does  that  limit  interpretive
flexibility?

Algorithms offer many advantages over people. Most
notably,  they  can  handle  far  more  data,  make  much
larger calculations, and they do not make mathematical
error.  And,  despite,  in  some  cases,  being  designed  to
mimic human cognition and the fact they encode, either
explicitly  or  implicitly,  human  representations  and
assumptions  about  the  world,  algorithms do not  suffer
from some of the most common cognitive biases, such
as anchoring, availability, and representativeness. Thus,
AI  proves  far  better  when  given  high  dimensional
datasets  that  exceed  human  capacities  such  as  gene
identification. With enough data, AI performs as well as
humans even in seemingly qualitative domains, such as
identifying high performing job applicants[12, 13].

We do not mean to imply that algorithms do not suffer
from  biases.  They  do.  Most  troubling,  biases  can  be
embedded in training data. For example, a corporation
might give an AI algorithm data on the career success of
every  employee,  e.g.,  internal  year  end  evaluations,
external  measures  of  success,  and  promotion  history,
and intend to  use  AI  to  predict  high potential  hires.  If
those data come from a world biased in favor of men,
AI  will  predict  that  men  have  higher  potential.  The
algorithm learns and amplifies the bias[14–16].

To  give  a  specific  example  of  this  phenomenon,
Amazon  abandoned  a  hiring  algorithm  that  penalized
applicants who attended women’s colleges and that also
attached  negative  weight  to  the  word “woman”  in
applications.  The data the algorithm relied on to make
predictions came from a work force that was 60% male
and whose upper management was 74% male. The key
takeaway is not that the algorithm’s computations were
biased, but the algorithm was trained on biased data.

Relatedly, data can be missing dimensions, or encoded
in particular ways that produced biased outcomes. Data
on salaries may not include whether a person’s partner
works  for  the  same  organization.  If  that  percentage  is
high,  as  is  the  case  for  some  universities  and  medical
centers in non urban settings, the algorithm could make
biased inferences about the effect of marital status. More
generally, the features fed to an algorithm, what was left
in and what was left out, may well introduce bias.

Finally,  algorithms  can  either  restrict  structural
representations  as  would  be  the  case  with  a  linear
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predictor or allow for nearly any interaction as is the case
with deep learning algorithms. Both can produce biases.
Linear  predictors  cannot  identify  intersectional
discrimination –  penalties  for  being  from  an
underrepresented  racial  group and  a  woman.  Deep
learning  algorithms  can  create  bias  by  creating  joint
categories,  such  as  Skidmore  alumni  and  Pre-1970,
which would be a proxy for gender.§

Our  focus  in  this  paper  is  less  on  the  differences  in
biases than the fundamentals of how humans approach
predictive tasks differently than AI. We rely on thicker,
more  nuanced  understandings  that  we  often  embed
within  narratives.  We  can  speculate  on  nontrivial
alternative  futures,  something AI cannot  do very well.
Humans also take into account the ethical dimensions of
a decision based on a prediction. We may be less likely
to send seventeen year old teenagers to prison even if the
likelihood they commit another crime is high. We also
notice biases in outcomes along dimensions that might
not  have  been  explicitly  included.  People  would  note
that an algorithm only selected women or white men.

Of course, people themselves suffer from innumerable
biases  and  ethical  lapses.  Thus,  AI  can  check  on  our
biases, while we can question the potential narrowness
of AI. Given that AI and humans offer distinct strengths
and weaknesses, the practical question becomes how to
combine  them  to  make hybrid  predictions.  Ideally,
hybrid  predictions  would  exhibit  the  strengths  of
powerful  algorithms  applied  to  big  data  with  human
intuition  applied  to  thick  descriptive  narratives[11].  Or,
we use  the  more  popular  phrasing:  to  make thick data
synergistic with big data[17]. Here, we take a multi-model
approach  to  sketch  a  logic  for  how  that  might  be
accomplished[18].

Key to our analysis will be the observation that thick
data predictions differ  in form and style from big data
predictions.  Given  that  diversity,  the  combination
should be more accurate than the parts. That is not a new
insight. Scholars going back to Aristotle understood that
diversity underpins collective wisdom[19, 20]. Two heads
can  be  better  than  one  whether  they  are  the  heads  of
people or the less sophisticated heads of ants,  bees,  or
fish[21].  However,  diversity  offers  no  guarantees;  two
heads  can  also  perform  worse.  One  key  lesson  from
studying  ensembles  of  predictive  algorithms  has  been
that using techniques like boosting and bagging to create

synergistic  diversity  enhances  ensemble  accuracy[22].
Thus, not any diversity will do, the best ensembles must
be  constructed  thoughtfully.  That  same  logic  surely
holds for hybrid groups of humans and AI.

To sort how and why hybrid assemblages can be more
accurate, we rely on two mathematical frameworks for
modeling  prediction: generated  and  interpreted
signals[23].  Generated  signals  are  the  standard
formulation  in  economics,  statistics,  and  finance.  Any
one person’s or algorithm’s prediction is represented as
a  random  variable  whose  value  is  conditioned  on  the
value  of  the  outcome.  That  random  variable  is
characterized by a bias as well as an amount of variation.
The bias corresponds to the error that would arise given
the  person’s  way  of  thinking  if  they  had  all  relevant
information.  The  variation  corresponds  to  the
differences  that  arise  from  having  particular  sets  of
information or experiences. Pairs of predictions, people
and algorithms in this case, also exhibit some degree of
correlation.

Interpreted signals come from computer science. The
framework  assumes  an  underlying  feature  space  that
embeds  the  set  of  all  possible  states  along  with  an
outcome function that maps states to values. Predictors,
human  or  algorithm,  partition  the  state  space  into
equivalence classes and assign values to each class. In
this framework, people differ from one another and from
algorithms in how they partition the states of the world
and how they map sets in their  partitions to numerical
values or categories.

Our  approach  consists  of  two  steps.  First,  using  the
micro-level  detail  of  the  interpreted signal  framework,
we  sketch  an  informal  claim that  as  data  increase  and
encompass  more  of  what  humans  use  to  make
predictions, and as predictive algorithms become more
sophisticated,  those  predictions  from  AI  will  become
both  more  accurate  and  more  correlated  with  human
predictions. We refer to this as the accuracy-correlation
effect (ACE). We also differentiate between typical and
atypical cases,  with  the  later  being  instances  in  which
past data may not be relevant to the prediction at hand.

Given those constructs,  we then apply the generated
signal framework to draw inferences about how humans
and algorithms combine. We rely on two theorems: the
diversity  prediction  theorem and  the bias  variance
decomposition theorem.  Using these theorems,  we can
calculate  the  relative  contributions  of  humans  and  AI§ Skidmore was an all women’s college until 1971.
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based  on  their  accuracy  and  correlation  as  well  as  the
optimal weights to put on each. Though humans always
add accuracy at the margin, the optimal weight attached
to humans decreases as AI improves. For typical cases,
given  the  accuracy-correlation  effect,  in  the  future  we
should  expect  humans  to  add  little  to  accuracy  and
receive little weight.

Past, though, need not be prologue. Some predictions
and  classifications  include  new dimension  or  features.
A  shock,  such  as  a  pandemic  or  housing  crash,  may
produce  a  qualitative  disruption.  Here,  we  find  that  if
people (or algorithms) can predict when algorithms will
make  large  mistakes  with  a  reasonable  degree  of
accuracy, then the added value of humans may be quite
large. If people and algorithms cannot perform this type
of meta-prediction, then humans add less value.

In  the  discussion  at  the  end  of  the  paper,  we
contemplate  strategic  predictive  model  choice.
Specifically,  we  consider  the  possibility  that  humans
adapt  their  predictive  models,  and  the  thick  data  they
gather, in response to the algorithms. Humans may seek
out thick data that differ as much as possible from the big
data used by algorithms, thus avoiding or reducing the
accuracy-correlation  effect.  The  result  will  be  more
accurate  hybrid  predictions,  the  continued  value  of
humans as part of hybrids, and more support for the idea
of an adaptive assemblage making sense of  the world.
We also briefly discuss the potential gains from hybrids
consisting  of  crowds  of  people  and  ensembles  of
algorithms. 

2    Background: Human Prediction and Rise
of AI

Making accurate predictions has long been an important
skill whether engaged in politics, running a business, or
waging  war.  In  the  information  age,  predictive  ability
has  even  greater  currency.  While  nearly  everyone  is
aware of how advances in information technology have
altered our lives directly — we now have smart phones,
smart appliances, self driving cars, and an ever growing
Internet of Things – people are less aware of how much
of  that  impact  relies  on  predictive  algorithms.  Almost
every aspect of our modern lives has been impacted by
the  use  of  predictive  algorithms  applied  to  big  data.
Predictive AI informs product attributes from the color
of  clothing  to  the  length  of  songs,  political  platforms,
medical  treatments,  parole  decisions,  hiring  protocols,

building  designs,  and  advertising  content.  Algorithms
that  guide  self-driving  cars  and  auto-pilot  planes,
allocate inventory across stores, detect email spam and
cancerous  tumors,  recommend  life  partners,  and
translate  words  to  text,  also  rely  on  prediction  at  their
core. Enhanced algorithmic predictive accuracy enables
us  to  plan  further  ahead,  choose  more  wisely  among
alternatives,  allocate  resources  more  efficiently,  invest
in  the  technologies  and  cures  most  likely  to  improve
society, and more precisely to target advertisements and
information.

Prediction,  therefore,  receives  substantial  attention
from  the  academy.  Formal  studies  of  prediction  span
multiple disciplines ranging from finance to politics to
medicine and psychology. We make no attempt at a full
survey  of  this  vast  interdisciplinary  collection  of
literatures here. Instead, we call attention to five points
of consensus.

First,  success  at  prediction  involves  disciplined
thought. The most accurate predictors rely on multiple
models and frameworks, ground their forecasts in data,
and  follow  protocols  that  eliminate  biases[24].  Second,
given  that  prediction  requires  multiple  skills  and
experience,  people  differ  in  their  capacity  as
forecaster[25].  Who  predicts  most  accurately  in  any
context will vary, but predictive ability does transfer. An
expert at predicting the stock market may not be good at
predicting  outcomes  of  sports  contests  but  they  will
probably be better than average. Third, predictive ability
can  be  taught.  Learning  to  assign  base  rates,  avoiding
biases,  and  considering  multiple  scenarios  all  improve
accuracy.

Fourth,  groups  predict  more  accurately  than
individuals, and select groups fare better than large ones.
Though popular writers speak of the wisdom of crowds,
evidence  suggests  that  a  handful  of  top  forecasters
perform better  than an average of  the  entire  crowd[26].
The  finding  that  small  groups  predict  better  than
individuals  extends  to  algorithms.  A  central  takeaway
from  prediction  contests  has  been  that  ensembles  of
algorithms  have  greater  accuracy  than  individual
algorithms.

The logic underlying the increased accuracy of groups
and ensembles rests on a double application of statistical
reasoning. If biases are drawn from a distribution with
mean  zero  (a  strong  assumption),  then  given  a  set  of
biased predictors, the average bias across that set will be
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less, on average, than a random selection from it.
A  similar  logic  applies  to  variation.  Assuming

variations  in  predictions  have  similar  magnitude,  then
the  average  of  multiple  draws  will  have  less  variation
than a single random draw. In sum, averaging multiple
predictors reduces bias and variation.

Finally, predictive tasks vary in their difficulty. At one
extreme, we may know the set of possible outcomes and
have  accurate  priors  with  tight  ranges  on  the
probabilities. This is the case for outcomes of elections,
scores of sporting events, and the likelihoods of cancers
from  radiological  tests.  Predictors  in  these  cases
confront favorable signal to noise ratios, and seeing the
future  can  be  relatively  easy[27].  At  the  other  extreme,
we can confront deep uncertainty: We do not know the
set  of  possible  outcomes,  the  set  of  possible  future
courses  of  action,  or  their  likelihoods[28].  Thus,  any
claims  that  AI  can  predict  the  repercussions  of
international incidents or the spread of a pandemic such
as  COVID  with  high  fidelity  should  be  viewed  with
skepticism. 

3    Contributions of Big and Thick Data

We  now  describe  some  analytic  foundations  for
understanding  the  relative  contributions  of  algorithms
applied  to  big  data  and  humans  using  thick  data  in
making  predictions.  We  begin  with  the interpreted
signal framework  which  conceptualizes  prediction  as
estimating an outcome function

As an example,  suppose  that  we want  to  predict  the
future  performance  of  a  professional  quarterback  or  a
college dean. The state space (feature space) of an NFL
quarterback might include their college and pro statistics
as  well  as  measurable  physical,  psychological,  and
social attributes. Over years of experiences, coaches and
talent scouts hone their estimate of how these attributes
signal a future success or failure. For a potential dean,
relevant  attributes  might  include  past  experiences,
management  style,  an  ability  to  manage  budgets  and
crises,  and  communication  skills.  Faculty,
administrators,  and  hiring  consultants  all  make
predictions about the likely impact of a candidate based
on  these  attributes.  Those  predictions  differ  because
humans rely on different logics[29]. They apply different
criteria and weight similar criteria differently.

Algorithmic predictions also rely on models applied to
features.  Those  features  are  most  often  represented  in

numerical  form –  a  much  easier  task  when  evaluating
quarterbacks  than  deans,  but  they  can  also  build
predictions from qualitative inputs. Two algorithms that
learn differently from data, e.g., a random forest and a
neural net, will predict differently because they construct
different approximations of the true outcome function.
Humans and algorithms, because they encode and learn
differently, will also make different predictions.

X
F

C H

X

The  formal  construction  assumes  a  set  of  possible
states  of  the  world, ,  thinks  of  these  as  instances  or
cases, along with an outcome function  that assigns a
real value to each state. An algorithm, , and human, ,
each possesses interpretations that partition those states
of  the  world  into  categories  (disjoint  sets).  These
partitions  are  called interpretations .  For  each  set,  the
algorithm  or  human  assigns  a  value  or  a  class.  An
interpreted signal is therefore a mapping from each state
of the world to a set and then the assigning of a value
(or class) to each.

N {S 1,S 2, . . . ,S N}
V(S i) x

S i

Put  simply,  humans  and  algorithms  are  assumed  to
have  predictive  models  that  map  each  set  in  their
partition  to  a  value  or  a  truth  status.  A  human  that
partitions X  into   sets,   would  then
predict a value  that it assigns to each point  in the
set .

Using this formalization we can distinguish between
big data and thick data that will be foundational to what
follows.  By big  data,  we  mean  datasets  that  are  both
granular (Fig. 1 ):  They  include  multiple  attributes  for
each case, as well as large, they consist of multitudes of
cases or time periods. Data providing the DNA sequence
of  a  single  individual  are  granular  but  not  large.  Data
showing whether each of ten million Florida registered
voters cast a ballot in an election include lots of cases but
are not granular. Data showing credit card purchases for
everyone in Pittsburgh, Pennsylvania for 2014−2017 are
both granular and large in size. They satisfy both criteria
to be big.
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Fig. 1    Granularity and size of data.
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Unlike  big  data,  which  consist  of  (many)  discrete
attributes  and  many  observations  of  those  attributes,
thick  data  can  be  thought  of  as  richer  and  more
qualitative,  but  as  consisting of  relatively  fewer  cases.
To return to our example of NFL quarterback prospects,
big  data  would  consist  of  many statistics  such  as  pass
attempts,  yards  per  attempt,  completion  percentage,
touchdowns,  interceptions,  touchdown  passes,  etc.  for
many previous quarterback prospects as well as data on
their subsequent performance in the NFL.

Thick data have a continuous,  narrative nature,  such
as  is  the  case  for  this  evaluation  of  a  draft  prospect’s
performance  during  the  2007  NFL  combine: “ He  was
smooth and fluid, yet quick and strong. Thomas wasted
no motion, keeping the parts of him that were not moving
calm and composed. His technique was excellent, and he
really  looked  like  a  grown  man  playing  with  college
kids.”[30]

X

We illustrate the distinction between big and thick data
in Fig. 2. Each row is an observation and the horizontal
axis  represents ,  the  set  of  attributes  that  determine
outcomes.  As  shown  in Fig. 2 ,  big  data  used  by
algorithms and thick data used by humans differ in two
fundamental ways. First, algorithms handle many more
observations  than  people.  Algorithms  can  read  in
thousands,  millions,  or  even  billions  of  cases  of  high
dimensional  data.  A  human’s  experiences  may  be
limited to a few dozen cases or perhaps a hundred cases.
But humans also have potentially richer representations
of those cases.

The  relative  contributions  to  predictive  accuracy  of
big  and  thick  data  within  a  hybrid  group  depend  on
characteristics of the outcome function. That is to say,
which data source is more effective, as well as how they
might work in tandem to provide accurate predictions,
depend  on  how  attributes  map  to  outcomes  as  shown
through various cases in Fig. 3.

As can be seen from Fig. 3, both big data and thick data
may  fail  to  capture  some  of  the  attributes  that  impact
outcomes. However, they tend to do so in different ways.
Because big data are discrete, they can only cover a finite
number  of  attributes.  This  has  less  of  an  effect  on
prediction when either only a finite number of attributes
actually affect outcomes and the data capture most of the
relevant  attributes,  or  when  the  outcome  function  is
relatively tame so that the impact of unobserved values
can be accurately extrapolated from observed attributes.
The top row of Fig. 3 depicts the latter case. Thick data
that  capture  attributes  in  a  continuous  way,  may  omit
ranges of the feature space.

The bottom row of Fig. 3 depicts a complex outcome
function.  In  this  case,  big  data  accurately  approximate
the impact of some attributes, but miss other important
factors by a wide margin. Predictions based on thick data
are  more  likely  to  anticipate  discontinuities  or  sudden
jumps. This is because a person may possess a mental
model that predicts a tipping point, where the value of
a  single  attribute  causes  a  major  change  in  the
outcome[31].

As  an  example,  consider  an  applicant  for  a
mathematics  PhD program.  Big  data  might  contain  all
of a student’s grades and standardized test scores, while
thick data might be based on recommendation letters and
an  interview.  A  comment  made  in  a  letter “ in  recent
weeks,  she  has  made  exceptional  progress  on  a  major
unsolved  problem  in  mathematics” might  cause  a
different  reaction  to  a  human  evaluator  than  to  an
algorithm which scores the letter on a scale from one to
ten.

At the moment, thick data approaches may be better
at  capturing  discontinuities —factors  that  have  a  large
impact on outcomes that are not well approximated by
other  nearby  attributes —while  big  data  are  better  at
including a large set and wider range of characteristics.
These differences provide a hint that big data and thick
data  working  together  will  produce  more  accurate
collective  predictions.  Thick  data  can  catch  and  draw
attention  to  constellations  of  factors  that  night  slip
through the cracks between separated big data variables.
Even though big data cast a wider net, that net contains
holes. Ethnographers have long made similar arguments.
A  deep  engagement  involving  the  full  repertoire  of
human  senses,  walking  in  another  person’s  shoes,
produces a richer understanding.
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Fig. 2    Distinction between big and thick data.
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Another  strength  of  big  data  relative  to  thick  data
becomes  clear  when  we  consider  how  algorithms  and
humans make use of information contained in data. Both
algorithms and humans use data on past outcomes to fit
a  predictive  model  for  future  outcomes.  Error  in  these
models can be decomposed into three components: bias,
variance, and irreducible error.

F

F

Irreducible error is variability inherent in the outcomes
that  cannot  be  eliminated  by  any  model,  human  or
machine.  Bias  is  error  resulting  from  a  difference
between  the  functional  form  of  the  prediction  and  the
true relationship between attributes  and outcomes.  For
example, if the true outcome function, , is quadratic and
an  algorithm  allows  for  only  linear  functions,  the
algorithm’s  predictions  will  be  biased.  Increasing  the
space  of  possible  functions  that  an  algorithm  can  fit
reduces bias as one of those functions may be closer to

. This increase in model complexity comes at a cost; as
the model becomes more complex, parameter estimates
become  more  sensitive  to  the  specifics  of  past
observations inducing the third source of error, variance.
When trained on more and larger datasets, algorithmic
predictions exhibit low variance. Algorithmic predictors,
like  random  forests  and  neural  nets,  possess  almost
limitless flexibility, so the amount of variance and how
to balance it against bias become a choice variable rather
than a constraint.

Human  predictors  suffer  from  the  same  trifecta  of
errors,  but  their  relative  contributions  differ.  The
flexibility that humans possess in our mental models can
reduce  bias,  but  this  flexibility  along  with  the  small
number of cases we observe make overfitting a concern.
As we construct more elaborate models in our head, we
are  less  able  to  apply  them  to  unfamiliar  settings,
resulting in potential bias. Human predictions also have
substantial noise — they depend on mood, time of day,
and  even  the  weather –  which  may  be  an  even  larger
source of error than bias[32].

We can now apply this framework to see the impact
of  increasingly  large  datasets  and  more  powerful
algorithms. Clearly, these changes increase the accuracy
of algorithms, but more important to our study of hybrid
groups,  as  big  data  include  more  cases  and  attributes,
correlations  change.  If,  for  example,  there  were  no
overlap  in  the  dimensions  considered  by  humans  and
algorithms, then predictions of algorithms and humans
might be negatively correlated. In fact, in the special case
of  binary  classifications,  interpreted  signals  with  non
overlapping dimensions imply negative correlation[23].

As  algorithms  consider  higher  dimensional  data,  it
likely overlaps more with the thick data used by humans
as  shown  in Fig. 4 .  As  the  overlap  increases,  the
correlation  of  the  classifications  should  also  become
more  positive.  We  refer  to  this  as  the  accuracy-
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Fig. 3    Trend of how big and thick data can fail to capture effects.
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correlation effect (ACE).
ACE:  As  datasets  become  bigger,  containing  more

cases  and  having  more  granularity,  algorithmic
predictions  become  more  accurate  and,  if  the  overlap
with  thick  data  increases,  it  is  more  correlated  with
human predictions.

As we show formally in the next section, the accuracy-
correlation  effect  greatly  diminishes  both  how  much
humans  contribute  to  accuracy  and  how  much  weight
should  be  given  to  human  predictions  within  a  hybrid
group. 

3.1    Predictable and atypical cases

Many  predictive  tasks  include  cases  in  which  context
differs  only  marginally  from the  cases  covered  by  big
data  and,  in  many  cases,  thick  data.  An  example  of  a
marginal  change  would  be  a  shift  in  tax  policy  or
environmental  standards.  In  these  cases,  algorithms
should outperform humans. However, cases can also be
qualitatively  different.  Qualitative  change  would
include natural disasters, financial meltdowns, new laws
– for example, a requirement that all cars be electric by
a certain date – and innovations.

Qualitative changes can, but need not, make past data
irrelevant.  We  can  distinguish  between  cases  that  are
predictable given data and those in which existing data
are not informative as predictors, i.e. atypical cases. We
will  assume  that  humans  make  more  accurate
predictions than algorithms in atypical cases because we
can  reason  from  analogy,  imagine  alternative  futures,
and understand causal mechanisms.

The  existence  of  atypical  cases  introduces  a  meta-
predictive  task,  namely,  determining  whether  an
instance  is  predictable  from  data  or  not. Figure 5
partitions  the  set  of  all  cases  into  two  regions:

Atypical

Predict

predictable and  atypical .  Each  region  contains  a
subregion. Within the set of atypical cases, there exists
a set of cases thought to be predictable (Error ), and
within the set of predictable cases, there exists a set of
cases thought to be atypical (Error ). 

3.2    Human + algorithm predictors

V
si i

N s̄ N

We  analyze  the  potential  value  of  hybrid  predictions
involving  humans  and  algorithms  using  a generated
signal framework.  Our  analysis  relies  on  two  well-
known  mathematical  identities.  The  first,  the diversity
prediction theorem states that the crowd’s squared error
equals  the  average  individual  squared  error  minus  the
diversity (variance) of the predictions. Suppose that the
true value of an unknown quantity equals  and that there
exists  a  collection  of  predictions  denoted  by  for  
equals 1 to . Let  equal the mean of these  predictions.

Diversity  Prediction  Theorem (crowd  error  equals
average error minus diversity):
 

(s̄−V)2 =
1
N

N∑
i=1

(si−V)2 − 1
N

N∑
i=1

(si− s̄)2.

h
c

(h > c)

We  now  apply  this  theorem  to  the  special  case  of
predictions of a single numerical value by a human ( )
and by an algorithm ( ). In what follows, we assume that
the  algorithm  is  more  accurate  than  the  human  and,
without  loss  of  generality,  that  the  human  predicts  a
larger value . (This second assumption makes it so
that we do not have to consider multiple cases.) Then the
equation can be rearranged to the following.

V
h

c

Half the Distance Rule: Given an outcome value ,
the average of a human, , and an algorithmic prediction,
, will be more accurate than the algorithm, if the squared

error  of  the  human  minus  the  squared  error  of  the
algorithm  is  less  than  half  the  distance  between  the
human’s and algorithm’s predictions, 
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Fig. 4    Increased overlap causing the accuracy-correlation
effect.
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Fig. 5    Predictable and atypical cases given big data (and
classification errors).
 

    96 Journal of Social Computing, June 2021, 2(2): 89−102    

 



(h−V)2− (c−V)2 <
(h− c)2

2
.

Θ > 1
Θ = 3

The previous rule can be restated in terms of relative
accuracy, where accuracy is defined as the inverse of the
squared error. A squared error of ten corresponds to an
accuracy of one-tenth. Define  to be accuracy of the
algorithm  relative  to  that  of  the  human.  If ,  this
means that the humans squared error equals three times
the squared error of the algorithm. We can then restate
the Half the Distance Rule as follows.

Three  Times  Better  Rule: If  the  algorithm  and
human  are  equally  like  to  err  in  the  same  or  opposite
directions,  then  the  algorithm  alone  will  be  more
accurate than an average of the human and the algorithm
if and only if the algorithm is at least three times more
accurate.

We first assume that the human and the algorithm are
equally  likely  to  err  in  the  same  direction  or  in  the
opposite  direction.  The  expected  squared  error  for  the
simple  average  of  the  human  and  the  algorithm  then
equals follows (α below denotes the sqaure root of θ):
 

1
2

(α2+1)(c−V)2− 1
8

[
(α+1)2+ (α−1)2

]
(c−V)2 =

α2+1
4

(c−V)2.

(c−V)2 α2 < 3
This  expression  is  less  than  the  algorithm’s  squared

error, , if and only if .
Notice that the Diversity Prediction Theorem does not

explicitly include bias and correlation, though they enter
implicitly  through  the  diversity  term.  To  make  the
effects of bias and covariation explicit, we can invoke the
Bias-Variance Decomposition Theorem.  Keep in  mind
that  when  using  the  generated  signal  framework,  we
represent  each  prediction,  whether  by  human  or
algorithm, as a random variable.

0.03

A random variable’s bias corresponds to the expected
difference of the mean of that variable from the mean of
the  variable  of  interest.  If  on  average,  someone
predicting electoral outcomes overstated the democratic
party vote by 3%, then that person would have a bias of

. For each pair of predictors, we can compute their
covariance:  the  expected  value  of  the  product  of  each
prediction from its mean. Two predictors with positive
covariance generally err in the same direction and will
be  less  accurate  than  two  predictors  with  negative
covariance.

The Bias-Variance  Decomposition  Theorem states

s̄ N
s1 sN V

Bias(s)
Var(s)

Cov(s)

that the expected error of an average of random variables
(representing predictions) equals their average bias plus
their  average  variance  plus  their  average  pairwise
covariance. As above, let  denote the average of the 
predictions,  to , and  denote the true value. Assume
the  average  bias  equals ,  the  average  variance
equals ,  and  the  average  pairwise  covariance
equals 

Bias-Variance  Decomposition  Theorem:  Expected
error  equals  average  bias  plus  average  variance  plus
sample covariance,
 

E[(s̄−V)2] = Bias(s)2+
1
N

Var(s)+
(
1− 1

N

)
Cov(s).

h
c

In the case consisting of one human  and algorithmic
predictor , the equation can be written as
 

E

(h+ c
2
−V

)2 =
(Bias(h)+Bias(c))2

4
+

Var(h)+Var(c)
4

+
Cov(h,c)

2
.

The previous expression can be difficult to interpret.
To  build  intuition,  assume  neither  the  human  nor  the
algorithm has any bias. The degree to which the human
can  be  less  accurate  but  still  contribute  positively  to
accuracy in combination with the algorithm depends on
the correlation between the predictions.

Notice that if the predictions become more negatively
correlated, an even less accurate human still results in a
hybrid pair  that  exceeds the accuracy of  the algorithm
alone. From the previous equation, we have
 

2Bias(h) ·Bias(c)+Bias(h)2+Var(h)+2Cov(h,c) <
3Bias(c)2+3Var(c).

Var(h)+2Cov(h,c) < 3Var(c)

It follows that a simple average of the human and the
algorithm  will  be  more  accurate  if  and  only  if

. Given this insight, we can
then derinve analog of  the Three Times Better  Rule to
include covariance.

Two  to  Six  Rule: If  the  algorithm  and  human’s
covariance  lies  between  minus  one-quarter  and  one-
quarter of the human variance, then the algorithm alone
cannot be more accurate than an average of the human
and  the  algorithm  if  the  algorithm  is  only  twice  as
accurate as the human, and the algorithm alone must be
more accurate than the simple average if the algorithm
is more than six times as accurate.

Recall from our analysis using interpreted signals that
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the more diverse the data that humans and algorithms use
and the more different their models, the more likely they
make  negatively  correlated  predictions.  If  we  take  the
degree  of  correlation  as  a  proxy  for  the  difference
between humans and algorithms,  that  is,  if  we assume
that thick data human predictions differ markedly from
big data algorithmic predictions, then a hybrid prediction
could outperform the algorithm even if the human were
four or five times less accurate.

Moreover,  if  we  relax  the  assumption  of  equal
weighting  and  allow  less  weight  on  the  less  accurate
human  predictor,  then  the  weighted  average  of  the
human and the algorithm will always be more accurate
than  the  algorithm  alone.  However,  as  we  place  less
weight on the human, we reduce the contribution of the
human  to  collective  accuracy.  Even  though  thick  data
always  add  predictive  accuracy  under  weighted
averaging, it may add very little.

Θ

1+Θ
1

1+Θ

To see how little the human might add, assume that the
human and the algorithm make independent predictions.
In this case, the optimal weighting of the two predictions
corresponds  to  their  relative  accuracies,  that  is,  the
optimal  weightings  on  the  algorithm  and  the  human

equal  and  ,  respectively.  With  these
weightings,  the  expected  squared  error  of  the  hybrid
equals
 

E

(Θc+h
1+Θ

−V
)2 = ΘVar(c)

(1+Θ)
,

Θ

Θ+1
which  equals  times  the  expected  error  of  the
algorithm.

Θ

Thus,  given  independent  predictions,  the  expected
squared error from a weighted combination of a human
and an algorithm will always be less than the expected
squared error of the algorithm alone. However, as is clear
from  the  expression,  the  contribution  of  the  human
decreases in the relative accuracy of the algorithm. And,
as discussed at length earlier,  larger datasets and more
powerful  algorithms  surely  mean  that ,  the  relative
accuracy of the algorithm increases. And, yet, if we take
the calculation above seriously, people remain relevant.
Even if the computer algorithm was ten times as accurate
as  the  human,  the  human  would  increase  accuracy  by
nine percent, a non trivial amount.

The accuracy-correlation  effect suggests  that  the
independence  assumption  may  be  problematic.  The

(wc,wh)

weights to place on the human and the algorithm should
therefore  be  adjusted  to  take  into  account  covariance.
The optimal weighting on the algorithm and the human,

, are given by the following expression[33]:
 (
ΘVar(c)−Cov(h,c)

(1+Θ)Var(c)−2Cov(h,c)
,

Var(c)−Cov(h,c)
(1+Θ)Var(c)−2Cov(h,c))

)
.

It  follows  that  the  expected  squared  error  given  the
optimal weighting is given by the following expression:
 

ΘVar(c) ·Var(c)−Cov(h,c)2

(1+Θ)Var(c)−2Cov(h,c)
.

Taking into  account  positive  correlation places  even
less weight on the human. Of course, if correlation was
negative, the human would get relatively more weight.

Var(h) = 6,Var(c) = 3 Θ = 2
Cov(h,c) = −1
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The  fact  that  the  weight  on  the  human  decreases  in
both the accuracy of the algorithm and in the correlation
between algorithm and human implies that both parts of
the accuracy-correlation effect reduce the contribution
of  the  human  predictor.  In  addition,  accuracy  and
correlation  have  an  interactive  effect,  thus  further
reducing  the  weight  on  the  human predictor.  To  show
this, we first work through an example and then create
a parametrized family to show the shape of  the effect.
Assume  that  ( ),  and

. The optimal weights on the algorithm and

the human are  and . The expected squared error of

an  optimally  weighted  hybrid  group  equals ,  a
reduction  of  just  under  50%.  Next,  assume  that  the
correlation switches from negative one to positive three-
fourths.  The optimal  weights  on the algorithm and the

human become  and , and the hybrid’s squared error

grows to .
Weight on Human, Hybrid Accuracy Improvement:
Low Algorithm Accuracy

 

Θ = 2
Cov(h,c) = −1 , (36%,48%);
Cov(h,c) = 0.75 , (30%,23%).

High Algorithm Accuracy
 

Θ = 6
Cov(h,c) = −1 , (22%,44%);
Cov(h,c) = 0.75 , (5%,1%).

Var(c) = 1

7
9

2
9

5
9

Now, assume that better data make the algorithm three
times  as  accurate,  so  that .  Assume  that  the
correlation remains at negative one. The optimal weights

become  and  with an expected squared error of .
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Var(h) = 6
Var(c) = 1 Cov(h,c) = 0.75 Θ = 6

21
22

1
22

Finally,  consistent  with  the accuracy-correlation
effect,  assume  that  when  the  algorithm  becomes  three
times  as  accurate  that  the  covariance  switches  from
negative  one  to  positive  three-fourths: ,

, and . This implies that 
and  the  optimal  weights  on  the  algorithm  and  human

equal  and .

87
88

1
7

In this last scenario, the weight attached to the human
falls  below  5%.  The  expected  squared  error  of  the
weighted average of the algorithm and the human equals

, a negligible improvement over the algorithm alone.
To  see  the  magnitude  of  the  interaction.  If  the  effects
were independent, the improvement on accuracy would

be , or approximately 14%. Instead, due to the positive
correlation,  adding the human only increases  accuracy
by 1%.

Var(h) = 9 Θ,

Cov(h,c) =
Θ−5

8

Θ

Θ

To  capture  how  the accuracy-correlation  effect
diminishes  the  contribution  of  human  predictors  more
generally, we create a parametric family of algorithmic
predictors. We first set , and let  the relative
accuracy  advantage  of  the  algorithm,  lie  in  the
interval[1, 9]. To embed the accuracy-correlation effect,
we assume that the covariance takes the following form:

.  We  can  then  plot  the  reduction  in
squared  error  from  adding  the  human  and  creating  an
optimal hybrid group. Recall that as  increases from 1
to 9, the squared error of the algorithm reduces from 9 to
1. We should therefore expect the absolute reduction in
squared  error  to  decrease.  As  shown  in Fig. 6 ,  the
percentage  reduction  falls  markedly  as  increases
because of the accuracy-correlation effect. 

3.3    Predictability from data and atypical events

The cases we have considered so far assume that the big

data are relevant to the predictive context. As discussed
earlier, past data may not be of much use in predicting
an outcome for  a  large  change to  a  system such as  an
external shock or an attribute taking on an extreme value.
Past data may also be of limited use when predicting the
implications  of  a  novel  decision  or  strategic  move.  In
these  instances,  humans  may  be  more  accurate  than
algorithms given the human capacities to draw analogies
and to imagine alternative futures.

To  make  the  choice  to  use  a  human  rather  than  an
algorithm requires being able to classify a prediction as
atypical as  opposed  to predictable  from  data.  The
amount  by  which  humans  can  improve  accuracy  on
atypical  events  depends  on  how  often  atypical  events
must occur, how accurately they can be recognized, and
on the relative accuracy of humans in those cases.

Ironically, identifying the set of atypical cases is itself
a predictive task. The more transparent the algorithm, the
better the human can predict that the algorithm is making
a  large  mistake.  Thus,  as  algorithmic  performance
improves,  making  algorithmic  predictions  more
interpretable becomes more important[34].

As already noted, deciding to abandon the algorithm
involves  a  prediction  that  the  case  is  atypical.  And,
whether  abandoning  is  statistically  supported  depends
on the accuracy of that prediction in a way that can be
made precise. We restrict attention here to what we see
as the most relevant case, that is in which the algorithm
is more accurate than the human in the predictable region,
and the human is more accurate than the algorithm in the
atypical region.

Atypical

Predict

Recall  from Fig. 5 ,  we  need  to  consider  four
possibilities: (1) instances thought to be predictable from
big data that are predictable, (2) instances thought to be
predictable  from  big  data  that  are  atypical
(Error ), (3) instances thought to be atypical which
are  atypical,  and  (4)  instances  thought  to  be  atypical
which are predictable given big data (Error ).

Predict

Atypical

If  we  assume  the accuracy-correlation  effect,  the
human  predictor  receives  little  weight  in  the  hybrid
prediction. Thus, the accuracy of hybrid prediction will
be  approximately  the  same  as  the  algorithm’s  alone.
Therefore,  in  the  predictable  region  minus  Error ,
hybrid  prediction  will  be,  to  first  approximation,  the
algorithm’s  prediction.  The  same  is  true  for  instances
thought  to  be  predictable  that  turn  out  to  be  atypical
(region  Error ).  Whether  or  not  to  abandon  the
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Var(h)= 9 ΘFig. 6    Contribution of human: ,  ranges from 1

to 9.
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Predict

Atypical

algorithm therefore hinges on the relative accuracies of
the human and the algorithm in regions Error  and
the  atypical  region  minus  Error ,  the  instances
classified as predictable but that are actually atypical.

Predict

Θ

Atypical

In  the  region  Error  outcomes  are  predictable
given big data, and the human has a squared error equal
to  times that of the algorithm. In that region, the human
makes the prediction, which is a mistake. In the atypical
region  minus  Error ,  the  human  also  makes  the
prediction  alone.  In  these  cases,  that  is  the  correct
decision.  Whether  abandoning  the  algorithm improves
accuracy depends on the size of those regions relative to
the sizes of predictive errors as stated below.

Θ

Ψ

The  Ratio  Rule: If  the  ratio  of  correctly  identified
atypical  cases  to  incorrectly  identified  atypical  cases
exceeds the ratio of the product of algorithmic advantage,

,  and  algorithmic  error  on  predictable  cases  to  the
product  of  human  advantage  on  atypical  cases ,  and
human  error  on  atypical  cases,  then  letting  humans
predict  cases  identified  as  atypical  reduces  expected
squared error iff the following holds,
 

Prob(Atypical−ErrorAtypical)
Prob(ErrorPredict)

>
(Θ−1)Var(cP)
(Ψ −1)Var(hA)

.

Ψ = 10

Θ = 4 (hA)
(cP)

If, for example, humans are ten times as accurate as the
algorithm on atypical cases ,  and algorithms are
four times as accurate as humans on predictable cases,

. If human error on atypical cases, Var  equals
two times Var ,  then human need only be one-sixth
as likely to correctly classify as an atypical case as it is
to incorrectly classify a predictable case. 

4    Discussion and Conclusion

We  have  presented  an  analysis  of  how  humans  and
algorithms  can  jointly  make  better  predictions  than
either alone in many instances. By taking a theoretical
approach guided by empirical evidence, at the moment,
hybrid  groups  should  perform  better  than  algorithms
alone.  So  far  as  humans  rely  on  thicker  data  than
computers, they add more accuracy, and if there exists
atypical  events and  even  a  crude  ability  to  recognize
them,  humans  could  improve  accuracy  by  reducing
mistakes. This has the added advantage of building faith
in  hybrid  predictors,  and,  counter-intuitively,  in
algorithms.  By  not  allowing  algorithms  to  make  big
mistakes, faith in algorithms increases.

Our  formal  analysis  has  considered  a  rather  small
crowd –  one  human  and  one  algorithm.  If  we  allow

groups of people with exposure to different types of thick
data and diverse algorithms (random forests and neural
networks) based on different caches of data, both what
we call the human and the algorithm would improve. Our
entire analysis of a single human and a single algorithm
could then be reinterpreted as  representing a  crowd of
humans  and  an  ensemble  of  algorithms  with  some
caveats. With a group of humans, we might be able to
further divide the atypical cases. Subject matter experts
or specialists could be more accurate for specific atypical
cases.

The question of whether humans will continue to be
of  value  when  making  contributions  merits  deeper
consideration.  Continual  technological  advancements
make  datasets  larger  and  larger  and  algorithms  more
sophisticated enabling algorithms to make increasingly
accurate  forecasts  and  classifications.  Assuming  there
are  only  modest  changes  and  improvements  to  how
people predict, one could infer that the contributions of
humans measured quantitatively would wane, with the
caveat that we would still add value in atypical cases.

That line of thinking implies the necessity of greater
interpretability of algorithmic predictions so that we can
better predict the atypical. That will surely be the case.
As  implied  by  our  formalism,  if  enhancing
interpretability reduces misclassification of predictable
and  atypical  instances,  then  it  will  yield  significant
increases in accuracy. It also follows that hybrid groups
may be implemented more as an “or” than an “and,” by
which  we  mean  we  may  use  AI  in  some  cases  and
humans in others.

We believe these conclusions suffer from a failure to
take  into  account  human and AI’s  adaptive  capacities.
First, recall that humans and AI differ in the information
we can process, how we represent it, and how we derive
predictions.  Thus,  we should  not  think of  humans and
AI  as  doing  the  same  thing  when  making  predictions.
Second, humans learned to make predictions without AI
as a potential partner. We develop protocols for how to
predict  with  an  eye  toward  improving  individual
accuracy through noise and bias reduction.

Those skills will remain useful, but they surely differ
from the skills that would best complement AI. Through
adaptation,  humans  can  complement  algorithms
regardless of how wide and deep big data become. We
can do so by learning to gather types of thick data and
types of models that are accurate where the algorithms
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fail. We can think of how humans predict as the outcome
of a cooperative game. Algorithm developers build the
largest  possible  dataset  and  an  ensemble  of  predictive
models. Humans then explore and contemplate missing
attributes or seek to identify conditions in which AI may
fail.  In  the  future,  humans  may  well  specialize  on
atypical cases – a form of adaptation to the algorithm.
Overall,  so  long  as  humans  can  continue  to  identify
different attributes, that is, continue to construct thicker
data,  or  better  understand  atypical  cases,  they  will
continue to increase accuracy.

The  cooperative  game  framing  also  reveals  that
algorithm  designers  should  take  into  account  the
capacities  of  human  predictive  collaborators.  The
optimal  algorithms to  be  part  of  a  hybrid  group might
differ  from  algorithms  design  to  make  predictions
without the aid of humans. Higher order algorithms may
well  guide  humans  as  to  what  thick  data  they  might
gather  by  pointing  to  regions  of  low  predictive
confidence  or  limited  interpretability.  Rather  than  a
competition between humans and computers, the future
of  hybrid  predictors  will  be  a  complex  search  for
symbiosis. The particulars cannot be known, but we can
almost certainly predict that the roles and contributions
of the participants will both adapt to ever growing data
and greater computational power.

Appendix

n = 2 h c
Proof of Half the Distance Rule: Write the Diversity
Prediction Theorem for  using  and  as the two
predictions. This gives the following expression:
 (

h+ c
2
−V

)2

=
1
2

[
(h−V)2+ (c−V)2

]
− 1

4
(h− c)2.

(h−V)2− 1
2

(h− c)2 < (c−V)2This can be rewritten as 
which gives the result.

(h− c) h c
V

α Θ

h c V (h− c) = (α−1)(c−V)
h > V > c (h− c) =

(α+1)(V − c)

Proof of Three Times Better Rule: The magnitude
of  depends upon whether  and  err in the same
direction or opposite directions from the true value, .
Let  denote the square root of . If, for example, both
 and  exceed , then . If they err

in  opposite  directions, ,  then 
.

Var(xP)
x = h,c

Var(xA)

Proof of Ratio Rule: Let  denote the expected
squared  error  of  a  predictor  of  type  in  the
predictable  region  and  denote  the  expected
squared  error  in  the  atypical  region.  Given  our

Var(hP) = ΘVar(cP) Var(cA) =
ΨVar(hA) EP EA

ErrorPredict ErrorAtypical

Θ

(EP)Var(cP)+Prob(Atypical−EA)
Var(cA) Prob(EP)Var(hP)+Prob(Atypical−EA)
Var(hA)

assumptions,  and  
. To simplify notation, let  and  denote the

regions  and .  For  large values of
, it follows that the hybrid–deference rule will have a

lower  expected  squared  error  than  an  algorithm  alone
provided  that  Prob

 exceeds  
. This can be simplified as

 

Prob(Atypical−EA)(Ψ −1)Var(hA) >
Prob(EP)(Θ−1)Var(cP).

Cov(h,c) =
−1
4

Var(h)

Cov(h,c) =
1
4

Var(h)

Var(h)+2Cov(h,c) < 3Var(c)

Proof of Two to Six Rule:  and

.  Plugging  these  into  the  equation
 gives the result.
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