
 

Uncovering the Online Social Structure Surrounding COVID-19

Philip D. Waggoner*, Robert Y. Shapiro, Samuel Frederick, and Ming Gong

Abstract:    How do people talk about COVID-19 online? To address this question, we offer an unsupervised
framework that allows us to examine Twitter framings of the pandemic. Our approach employs a network-based
exploration of social media data to identify, categorize, and understand communication patterns about the novel
coronavirus on Twitter. The simplest structure that emerges from our analysis is the distinction between the
internal/personal,  external/global,  and generic  threat  framings  of  the  pandemic.  This  structure  replicates  in
different Twitter samples and is validated using the variation of information measure, reflecting the significance
and stability of our findings. Such an exploratory study is useful for understanding the contours of the natural,
non-random structure  in  this  online  space.  We contend  that  this  understanding  of  structure  is  necessary  to
address a host of causal, supervised, and related questions downstream.
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1    Introduction

The effects of the COVID-19 pandemic have been vast.
Each  wave  of  the  virus  has  wrought  continued  and
surprising havoc on nations and people around the world,
devastating  incomes,  disrupting  education  of  children
and  young  adults,  unsettling  the  provision  of  medical
care,  and  exacerbating  deep-seated  societal  and  racial
disparities.

A quickly growing repository of research has aimed to
understand  these  multifaceted  consequences.  For
example, researchers have examined the impacts of the
pandemic  on  the  stock  market[1],  educational
outcomes[2], and mental health[3]. Other areas of research
have  investigated  the  efficacy  of  governmental

interventions  in  slowing  the  pandemic[4],  and  studied
ethnic, racial, and income-based disparities in COVID-
19  risks  and  severity[5].  Further,  and  especially  in  the
early stage of the pandemic as we focus on in this paper,
some have found that there are differences in attitudes
toward and perceptions of the pandemic[6, 7].

Adding to the multidimensionality of the COVID-19
pandemic  is  the  complex  information  environment,
marked  by  rapid  communications  in  the  news  and  on
social  media.  In particular,  the diverse array of  actors,
network connections,  and information on social  media
offer  a  window into how people are responding to the
pandemic. Several studies have sought to understand the
networks and accounts involved in the spread of virus-
related  conspiracy  theories  and  misinformation[8].
Others have leveraged social media data in the context
of the pandemic to explore discrimination[9] and general
sentiment[10]. Public health research has also employed
social  media  data  to  predict  outbreaks  using  symptom
reports[11] and travel patterns[12].

Though  the  store  of  COVID-19  and  social  media-
related research is vast, we suggest that in order to fully
appreciate  the  scope  and  influence  of  the  information
environment  during  the  pandemic,  we  must  first
understand  the  structure  of  communications  about  the
virus.  That  is,  an  understanding  of  how  people
communicate  about  the  pandemic  on  social  media  is
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essential to understand how people react and adapt to and
make sense of such crises. Thus, we propose to explore
the  structure  of  online  communication  concerning  the
virus through analysis of the texts as (big) data conveyed
through  social  media.  In  our  initial  step  of  contextual
mining, the structures of immediate interest are the most
salient  and  separable  (sub)topics  related  to  the  virus.
These structures can provide insight into how the virus
is “framed” online, i.e., the perspective or standard for
judgment  that  stands  out  in  social  media
communications,  in  line  with  classical  work  on  media
and  framing[13].  While  our  exploratory  effort  will  not
fully  determine  these,  it  is  an  important  first  step  in
making  sense  of  the  complexity  of  social  media
communication and in providing a deeper understanding
of the pandemic’s multifaceted and widespread effects. 

2    Data & Method
Our  data  consist  of  thousands  of  tweets  related  to
COVID-19 or the coronavirus. To get these noisy data
into  analyzable  format,  we  first  preprocessed,  then
staged  the  text.  With  a  cleaned  and  staged  corpus,  we
transformed  the  data  to  be  passed  to  several  network
models.  Using  the  transformed  dataset,  we  leveraged
three  community  detection  algorithms  to  explore  the
structure  (modularity)  of  the  online  Twitter  space
relating  to  COVID-19.  These  steps  are  detailed  in  the
following subsections. 

2.1    Preprocessing the text

We  began  with  a  corpus  of  8.4  million  tweets  posted
between  late  March  and  April  2020,  when  the  virus
reached its initial peak in America. Due to computational
expense and to pursue greater computational efficiency,
we drew and operated on four random samples of 40 000
English tweets from this initial dataset, producing a total
of 160 000 tweets for analysis parsed across four corpora.
In  addition  to  increased  computational  efficiency,  this
approach  allows  for  an  informal  validation  check
throughout where multiple samples and multiple fits of
models  are  directly  compared  and  contrasted.  The
expectation is similarity across samples given the size of
the random samples of tweets. This and other validation
efforts are described in depth later in the paper. Of note,
these  data  were  originally  scraped  using  the  rtweet
package,  and are archived at  Kaggle[14, 15].  The corpus
includes tweets selected based on use of at least one of
the following hashtags: #coronavirus, #coronavirusoutbreak,
#coronavirusPandemic,  #covid19,  #covid_19,

#epitwitter,  #ihavecorona,  #StayHomeStaySafe  (post
4/10/20), and #TestTraceIsolate (post 4/10/20).

. . . . . .

With our raw random samples, we then preprocessed
each  of  the  four  corpora  of  40  000  tweets  identically.
First,  we  removed  common  English  stopwords,
punctuation, numbers, URLs, and also set text to lower
case. Twitter is a notoriously noisy source of data given
“linguistic  noise,  message  brevity,  and  lack  of
labeled” text[16] .  For  example,  tweets  often  contain
special  characters  or  terms  that  do  not  contribute
substantive linguistic meaning making preprocessing a
challenge  requiring  frequent  inspection  and
character/term dropping (e.g., ♥, ●, ♂, ♀, “emic”, and so
on)§. We rinse and repeat this iterative cleaning process
until we obtain a cleaned corpus of substantively useful
content relating to the phenomenon of interest, which in
our  case  is  COVID-19/coronavirus,  broadly  defined.
Finally,  we  stripped  all  of  the  white  space  left  behind
from  the  text  cleaning  in  line  with  text  mining  best
practices[17]. See a sample of some of the most frequently
occurring words from the cleaned corpora in Table 1. 

2.2    Staging and transforming the text

Ai j

=

, vi v j

Ai j

We  staged  each  of  the  cleaned  corpora  in  three  steps.
First,  we  built  a  Term  Document  Matrix  (TDM)  with
terms  as  rows,  tweets  as  columns,  and  elements  as
frequencies of terms in tweets. Second, we transformed
the TDM into a Term-Term Matrix (TTM), with terms
in rows and columns giving term combinations across all
tweets.  Finally,  with  our  data  in  the  form to  allow for
connections  between  terms  used,  we  transformed  the
TTM  into  an  adjacency  matrix.  An  adjacency  matrix,

,  is  a square matrix where columns and rows act as
vertices (or “nodes”) of the network. In our case vertices
are terms, allowing for an understanding of term usage
of  multiple  terms across  tweets,  where  1  connected,
and 0  connected vertices for vertices,  and . Edges
connecting vertices capture term frequencies. Thus, we
encode ,
 

Table 1    Frequently occurring words.

Outbreak Help Virus
Lockdown Home Trump

Deaths Support World
 

§ Of note, given that we pre-filtered to collect only tweets using a COVID-
related hashtag, we dropped related words (COVID, coronavirus, etc.) to
focus on words used in association with COVID-19 and the coronavirus,
instead of the terms themselves to give a clearer sense of how people talk
about  the  virus  online,  given  that  we  know they  are  talking  about  it  to
begin with.

    158 Journal of Social Computing, June 2021, 2(2): 157−165    

 



 

Ai j =

{
1, if vi and v j are connected;
0, otherwise. (1)

 

2.3    Networks and community detection

Ai j

G = (V,E)
V

vi ∈ {1, . . . ,V} E
ei ∈ {1, . . . ,E}

{vi and v j,∀i , j}

To leverage community detection to uncover structure,
we need to first build a network. With , we built an
undirected and weighted network, , to explore
the structure of the COVID-19 Twitter space, where  is
defined as the full set of vertices, , and  is
defined as the full set of edges, . The edges
connect all vertices, . Of note, given the
size and noisiness of the data, we limited the terms in the
network to those that were mentioned at least 1250 times
across the 160 000 tweets in our corpora. The motivation
behind this decision was to home in on terms that are not
only more frequently used, but also more frequently used
with  each other,  giving greater  clarity  on the  structure
that  underlies  the  COVID-19  Twitter  space.  By
winnowing the space in such a way to explore the more
important  and  frequently  co-occurring  words,  the
resultant networks in Figs. 1 and 2 are clearer with fewer
nodes and edges.

G = (V,E)Given ,  we  leveraged  a  suite  of  local
community  detection  algorithms  to  more  explicitly
explore the structure of this space, as well as the contours
of this topology. Structure is defined by communities (i.
e., “modules” or “clusters”) of vertices in a network that
are  densely  connected  to  each  other,  while  retaining
sparse  connections  between  communities.  Density  in
our  context  suggests  people  in  one  module  are  using
similar terms to talk about COVID-19, relative to other
densely connected communities in other modules which
use unique terms to discuss COVID-19, and so on for all
communities found in the network. By being local, then
smaller groups of vertices (subgraphs) are considered on
an iterative basis.

The local community detection algorithms we used are
greedy optimization of  modularity[18],  Louvain[19],  and
walktrap[20]. The first algorithm uses a greedy search to
look  for  similarties  across  vertices.  Rather  than
exhaustively  searching  the  entire  space,  the  greedy
optimization  of  modularity  approach  to  detecting
communities  is  based  on  a  hierarchical  structure  of
progressively similar vertices. The agglomerative (or “b
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(a) Base network
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(d) Walktrap
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(b) Greedy optimization of modularity

 
Fig. 1    Community detection across three algorithms for Sample 1.
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ottom-up”) approach allows for structure to emerge on
the  basis  of  similarity,  and  by  implication  and
dissimilarity. The process is very similar to hierarchical
agglomerative clustering[21]. The goal is maximal intra-
module  density  and  also  inter-module  sparsity.  The
second  algorithm,  Louvain,  seeks  to  learn  clustering
structure locally and is also greedy. But the innovation
of the Louvain algorithm is based in an additional step
of  building  a  subgraph  based  on  the  first  iteration
(formerly  global  modularity),  and  iteratively  finding
new communities to maximize modularity. Finally, the
third algorithm, walktrap, seeks to learn clustering in a
local way and is very similar to the prior two algorithms.
The key difference is in constructing the communities,
the  walktrap  algorithm  takes  a  series  of  short  random
walks between vertices, . Shorter walks signal a higher

vi

v j

probability that the vertex is in a community with  and
 via local modularity, and longer walks suggest it likey

belongs to a different community. In sum, these local and
greedy  approaches  to  community  detection  offer
extremely  computationally  efficient  approaches  to
searching a space, and uncovering structure in a network.

Finally,  after  the  network  and  community  detection
algorithms, we validate the community detection results
in several ways in line with best practices for statistical
validation  of  community  detection  algorithms[22, 23].
Specifically,  Refs.  [22, 23] offer several approaches to
validate  the  robustness  and  significance  of  structure
uncovered from community detection. In line with their
recommendation,  we  validate  results  in  two  ways  and
present the validation results in the section following the
results: comparing structure to random noise, and then
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Fig. 2    Community detection across three algorithms and four samples.
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comparing each algorithm to each other. 

3    Finding

As  our  goal  is  to  uncover  the  structure  of  a  largely
unknown space, the first stage offers a starting place to
disentangle how people discuss COVID-19 on Twitter.
We  are  looking  for  different  clusters  of  similar  terms
used  to  discuss  COVID-19.  These  similarities  (within
clusters) and differences (between clusters) found across
the  results  from  the  three  community  detection
algorithms  provide  progress  toward  our  goal  of
searching for structure in a data space that is still new and
rapidly  evolving.  The  strikingly  consistent  finding
across  all  algorithms  and  samples  is  that  three
communities emerge based on language used in tweets.
We pull these patterns apart in the following discussion.

Community detection results are presented in Figs. 1
and 2, with communities denoted by color, Fruchterman
Reingold layout is used for consistent node placement to
allow for more direct comparison across all algorithms.

First, Fig. 1  includes  results  from  the  first  of  four
samples, and allows for a zoomed in look at the results.
Of  note,  the  three  communities  are  evident.  One
community contains words lockdown, home, and stay.
Another community contains words deaths, new, cases,
and outbreak. And the third community contains many
words  such  as  people,  world,  need,  and  help.  These
communities are largely consistent across the different
algorithms.  The  greatest  difference  is  in  the  walktrap
algorithm  (as  shown  in Fig. 1d ).  But  the  greedy
optimization (Fig. 1b) and Louvain (Fig. 1c) algorithms
show identical communities of words. See Table 2 for a
complete  view  of  the  words  in  each  community  by
algorithm.

Community  1  focuses  on  the  personal  domain  with
terms “home”, “stay”, and “lockdown” (for two of the
three  algorithms),  whereas  Community  2  focuses
externally  on  the  non-personal,  or  global  domain  with
frequent co-occurrence of terms like “support”, “world”,
“trump”, and so on. Finally, Community 3 focuses more

generically  on  terms  associated  with  the  threat  that
comes  from  COVID-19  with  terms  like “cases”,
“deaths”, and “new”. It is striking that the configuration
of words in each community is highly stable, with only
two  words  differing  across  communities  (“lockdown”
and “outbreak”).  The  differences  are  consistently  with
the  walktrap  algorithm.  The  greedy  optimization  of
modularity  and  Louvain  algorithms,  though,  are
identical  in  word  configurations.  Taken  together,  the
stability  in  communities  suggests  that  people  discuss
COVID-19  online  in  either  personal  (Community  1),
global (Community 2), or threat (Community 3) terms.

Zooming out, we can see this deep consistency across
all three algorithms, as well as all samples of tweets in
Fig. 2. The key take away is the same as that previously
discussed  following Table 2 ,  which  is  that  three
communities  were  found  across  all  samples  and  all
algorithms,  with  the  sole  exception  of  the  walktrap
algorithm in Sample 3 (Fig. 2c).

Further,  the  configuration  of  words  in  each
community  are  highly  consistent.  In  many  cases,  the
words in each community are identical (e.g., “stay” and
“home” appearing  together  in  all  iterations
corresponding  with  the  personal  community/
Community 1).

In  sum,  the  framing  of  COVID-19  in  online/social
media discussion is quite consistent, where people seem
to  be  discussing  COVID-19  in  one  of  three  ways:
personal  (Community  1),  global  (Community  2),  or
generic  threat  (Community  3).  Such  frames  could  be
further interpreted as signaling devices. It is frequently
noted that social media are used as an avenue to make
signals of many kinds, whether mobilization efforts[24],
message  delivery[25],  or  political  preferences[26].  And
though  it  was  found  partisan  differences  in  attitudes
toward the pandemic in the earlier days of COVID-19[6],
partisan  division  and  affective  polarization  have  only
continued  to  heighten  and  intensify[27, 28].  Presumably
these  attitudes  had  not  reached  a  level  that  could  be
picked up in our analysis of some of the earliest days of

 

Table 2    Words by community across algorithms.

Community Greedy optimization Louvain Walktrap
1 home, stay, lockdown home, stay, lockdown home, stay

2
now, time, people, help, every,
need, support, world, health, virus,
trump

now, time, people, help, every,
need, support, world, health, virus,
trump

now, time, people, help, every, need, support,
world, health, virus, trump, outbreak,
lockdown

3 cases, deaths, new, outbreak cases, deaths, new, outbreak cases, deaths, new
Note: Words that are not identical across all three algorithms are in bold.
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the pandemic. More research on the partisan aspect, as
well as how and whether these frames have evolved in
the  later  stages  of  the  pandemic,  especially  as  more
pandemic-focused policymaking has occurred, would be
a useful follow up to our work.

Regardless,  we  can  see  from  the  results  that  the
framing of COVID-19 on social media is also in line with
presentation  of  a  signal.  That  signal  could  be  urging
people  to  focus  internally/personally  and  keep  others
safe (Community 1/personal), or using social media as
an outlet to reach and discuss COVID-19 in global terms
and on a global scale (Community 2), or as a reporting
mechanism, such as querying and describing the number
of new cases, outbreaks, and deaths due to COVID-19
(Community 3). Such an understanding of Community
3,  especially  given our  coverage of  the  earlier  days of
COVID-19,  could  be  using  social  media  to  signal  a
generic threat from COVID-19, distinct from a personal
or global casting of impact. In short, our results offer a
foundational  starting  place  to  contextualize  and
categorize  linguistic  trends  and  patterns  of  discussing
COVID-19 in an online environment. 

4    Validation
This section focuses on validating findings to this point.
Beyond the near identical community configurations of
words relating to the different spheres, whether personal,
global,  or  descriptive,  we  turn  now  to  offer  several
formal checks of validation of these patterns across all
algorithms.  We  proceed  with  two  checks  in  this  vein:
first,  comparing  patterns  across  each  algorithm  to
patterns  found  from  random  noise;  and  second,
comparing  stability  of  communities  across  each
algorithm to each other.

C C′

Validation  of  community  detection  results  is  an
important  part  of  any  community  detection  analysis,
given  the  potential  for  different  configurations  of
communities from different algorithms or from different
samples  of  data.  We  focus  our  validation  efforts  on  a
recent measure, Variation of Information (VI)[29], which
is  defined as  the  information  lost  balanced against  the
information gained from two partitions of a single graph.
As summarized in Ref. [30], VI balances the entropy for
each cluster/module,  and , in a common data space,
 

VI(C,C′) = H(C|C′)+H(C′|C) (2)

H(C)
C

where  defines the entropy associated with a given
cluster ,
 

H(C) = −
K∑

k=1

P(k)logP(k) (3)

k ≡Ck P(k)
k ∈ K

where , and  is the probability an observation
belongs to a given cluster, .

Building  on  this  framework  defining  VI,  the  first
approach to validation is to compare VI for the clustering/
modularity  found  from  each  algorithm  compared  to
clustering  found  from  a  random  graph,  but “ with  the
same degree distribution of the original graph, but with
completely random edges”[23]. Regarding interpretation,
“low  values  represent  more  similar  clusters  and  high
values  represent  more  different  clusters”[23].  See  the
results for each algorithm compared to the random/null
version  across  various  perturbations  of  the  graph  in
Fig. 3.

Perturbations, as defined in Ref. [30], are different size
changes  to  the  original  network.  Large  percentages  of
perturbations  correspond  to  larger  changes  to  the
original  network.  The  idea  is  to  explore  whether
modularity/clustering changes across different versions
of the original network. This provides a useful baseline
to  compare  to  the  real  communities  discovered  in  the
analysis described in the previous section.

Notice in Fig. 3, across all algorithms, the curves for
the  real  communities  are  higher  than  those  for  the
random version at various perturbations of the original
network.  Taken  with  the  comparison  across  each
algorithm and in line with Ref. [23], this suggests that
clusters found in the greedy optimization and walktrap
algorithms are largely unstable and near 50%, meaning
the “ found  community  structure  is  a  result  of  chance
fluctuations  and  it  is  not  plausible”[30].  Thus,  with  the
significantly lower VI scores for the Louvain algorithm
in Fig. 3b ,  we  might  conclude  at  this  point  that  the
clusters  found  from  the  Louvain  algorithm  are  more
stable  and  trustworthy  across  many  versions  of  the
original  network  and  in  comparison  to  the  other
algorithms. Yet, recall that the results from the Louvain
and  greedy  optimization  algorithms  were  nearly
idenitcal across all four samples. Thus, this suggests that
while  the  Louvain  algorithm  is  more  efficient  and
trustworthy, we can also trust the results from the greedy
optimization  algorithm,  given  the  similarity  with
Louvain. Yet, it seems that the walktrap algorithm is the
least  trustworthy  at  this  point  given  the  differences  in
both word configurations from Figs. 1 and 2, compared
to the more reliable results from the Louvain algorithm.
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To  deepen  our  validation  efforts,  we  turn  lastly  to
directly compare VI scores across all algorithms and at
various perturbations of the original network. The results
are presented in Fig. 4.

Of  note,  we  can  see  more  directly  that  the  Louvain
algorithm  has  consistently  lower  VI  scores  across
multiple perturbations. This offers direct evidence of the
increased efficiency and trustworthiness of the Louvain
algorithm (and thus the word configuration results from
the main analysis) compared to the other two algorithms.
And  recall,  the  core  finding  from  the  Louvain  (and
greedy  optimization)  algorithm(s),  was  the  stable
presence of three communities across all four samples,
showing that  people tend to discuss COVID-19 online
under one of three frames: personal, global, or generic

threat. 

5    Concluding Remark

Our  study  at  this  juncture  is  an  exploratory  one  that
allows for an unsupervised and assumption-free look at
noisy Twitter data in the context of an ongoing, rapidly-
developing, and complex global pandemic. Our task is to
uncover  the  ways  in  which  people  frame  COVID-19
online, focusing on the earlier days of the pandemic.

The  simplest  structure  that  emerges  is  a  distinction
between  the  internal/personal,  external/global,  and
generic threat dimensions of the pandemic. As a result,
we  have  built  a  general,  but  consistent  framework  to
understand  and  categorize  differences  in  Twitter
patterns. Such an exploratory study helps by providing
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Fig. 3    Community detection across three algorithms for real communities and synthetic (random) version.
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Fig. 4    Community detection across three algorithms.
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a step in understanding the contours of the natural, non-
random structure in this online space.

We are  hopeful  our  research  will  act  as  a  launching
place for other similarly situated studies to go deeper in
pulling  this  structure  apart,  especially  as  more  overt
public opinion studies relating to the pandemic begin to
surface, e.g., Ref. [28]. Such future work would allow for
addressing related questions, such as a supervised task
of measuring sentiment, explicitly probing the political
aspects  of  discussing  COVID-19  on  Twitter,  and  also
alternative  approaches  to  uncovering  communities  in
this  space  (e.g.,  global  instead  of  local  approaches  to
community detection).

Further,  we  encourage  researchers  to  build  on  our
findings by exploring nuance in these online discussion
networks. Specifically, we take the tweets at face value
in this research. But there is room to expect fake news,
spam,  and  other  malicious  uses  of  Twitter  to  be
impacting  the  discussion  space  at  some  level[31, 32].
Future work aimed explicitly at these and related topics
would  provide  valuable  extensions  of  our  work.  Such
studies  would  also  allow  for  a  deeper  dive  into  the
personal, global, and descriptive structure we uncovered,
but explicitly accounting for the potential bias flowing
from misinformation and fake news on Twitter.

Finally,  a  common problem with  network studies  of
this sort is relying on hashtags to filter the data space, as
hashtags  are  complex[33],  and  can  be  attempts  to  gain
popularity[34], rather than signaling genuine discussion.
While we made no assumptions of motivation behind the
formation of tweets on the part of the user, future work
might consider parsing and exploring Twitter and relate
online discussion data in a different way, such as tweets
or  discussions  among  specific  communities  like
academia, finance, or government.
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