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Abstract:  Social computing is ubiquitous and intensifying in the 21st Century. Originally used to reference 

computational augmentation of social interaction through collaborative filtering, social media, wikis, and 

crowdsourcing, here I propose to expand the concept to cover the complete dynamic interface between 

social interaction and computation, including computationally enhanced sociality and social science, socially 

enhanced computing and computer science, and their increasingly complex combination for mutual 

enhancement. This recommends that we reimagine Computational Social Science as Social Computing, not 

merely using computational tools to make sense of the contemporary explosion of social data, but also 

recognizing societies as emergent computers of more or less collective intelligence, innovation and flourishing. 

It further proposes we imagine a socially inspired computer science that takes these insights into account as 

we build machines not merely to substitute for human cognition, but radically complement it. This leads to a 

vision of social computing as an extreme form of human computer interaction, whereby machines and 

persons recursively combine to augment one another in generating collective intelligence, enhanced 

knowledge, and other social goods unattainable without each other. Using the example of science and 

technology, I illustrate how progress in each of these areas unleash advances in the others and the beneficial 

relationship between the technology and science of social computing, which reveals limits of sociality and 

computation, and stimulates our imagination about how they can reach past those limits together. 

Key words: social computing; complex systems; computer supported cooperative work; computational 

social science; artificial intelligence; human computer interaction; human-centered computing  
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Abstract:  The Chicago Array of Things (AoT) project, funded by the US National Science Foundation, 

created an experimental, urban-scale measurement capability to support diverse scientific studies. Initially 

conceived as a traditional sensor network, collaborations with many science communities guided the project 

to design a system that is remotely programmable to implement Artificial Intelligence (AI) within the 

devices—at the “edge” of the network—as a means for measuring urban factors that heretofore had only 

been possible with human observers, such as human behavior including social interaction. The concept of 

“software-defined sensors” emerged from these design discussions, opening new possibilities, such as stronger 

privacy protections and autonomous, adaptive measurements triggered by events or conditions. We provide 

examples of current and planned social and behavioral science investigations uniquely enabled by 

software-defined sensors as part of the SAGE project, an expanded follow-on effort that includes AoT. 

Key words:  sensors; edge computing; computer vision; urban science 

 

1 A Very Brief History of Social Computing

Regardless of definition, social computing is exploding
in prevalence and intensity across the 21st Century
world. The most common view of social computing
concerns the intersection of human social behavior
and computational systems that (re)construct social
conventions and social contexts to enable interaction,
informed decision-making, and collaboration. Early
definitions restricted Social Computing to systems
that distributed information indelibly connected to the
identity of human contributors. In the 1994 special
edition of the Communications of the Association for
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Computing Machinery, Douglas Schuler emphasized
that Social Computing systems “support the gathering,
representation, processing, use, and dissemination of
information that is distributed across social collectivities
such as teams, communities, organizations, and markets.
Moreover, the information is not ‘anonymous’ but is
significantly precise because it is linked to people, who
are in turn linked to other people”[1]. This preservation
of human provenance enabled systems to build on
pre-existing relationships and reputations through
technologies like email, Bulletin Board Systems (BBS)
and multi-user gaming and socializing environments.

The first platform to showcase these principles was
PLATO, a computer system designed at the University
of Illinois at Urbana Champaign for teaching in
1960 (“Programmed Logic for Automatic Teaching
Operations”), which broadened by the early 1970s to
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include the first email and personal messaging (“Term-
talk”), online news (“NewsReport”), group discussion
(“Talkomatic”), newsgroups (“Notesfile”), message
boards (“Pad”), and multi-user dungeons or MUDs
(“dnd” and “Avatar”), space and battle games (e.g.,
“Spacewar!”, “Empire”, etc.)[2] These developments
were followed by ARPANET, which came online in 1967
and by the 1970s had developed widespread interactions
supported by elaborate standards of network etiquette
(“netiquette”) that evolved into the Internet. When the
World Wide Web was added in the mid-1990s, tens of
thousands of BBS systems located in the U.S. migrated
to web platforms as weblogs or “blogs”.

Social networking emerged with community websites
like GeoCities (1994), which included personal profiles,
friend lists and school affiliations. Explicit networking
sites emerged later, replacing web of contacts sites like
SixDegrees (1997) with those built around a model of
social circles like Friendster and LinkedIn (2003). Open
Diary (1998) and LiveJournal (1999) mixed profiles with
user-generated content to become the first social media
platforms. Improvements in compression technology
enabled a broadening of shareable media from text
to links to GIFs and memes, user-generated images
(Facebook, 2004) and video (YouTube, 2005)�.

In 1994, the same year that Schuler restricted the
definition of Social Computing to information tools
tied to people, Ward Cunningham created a knowledge
base and associated wiki code he titled “WikiWikiWeb”
to facilitate the co-creation of content about design
patterns among programmers at his company. Other
wikis followed, including Wikipedia in 2001. Users
have stable identities on Wikipedia, information-sharing
and question-answering sites like Stack Overflow, and
sharing economy sites like Uber and AirBnB, but they
are effectively anonymous in their creation of content
and provision of services. Nevertheless, reputation
scores from prior interactions off-set anonymity to
provide confidence in those with whom we interact[4]�.

�Social networking and media, collaborative creation and
tagging were part of a broad shift toward an interactive Web 2.0
that engaged users as creators and not merely consumers, bringing
a greater proportion of social life—much of it anonymous—onto
the internet[3].

�More anonymous than wiki-contributions or question
answers, social bookmarking sites also emerged in the late
1990s, beginning with itList (1996) and WebTagger (1997), but
expanding with de.li.cious (2003), which enabled collaborative
tagging of websites and other content.

Online services at the turn of the 20th Century
began to aggregate completely anonymous information
through collaborative filtering to increase the relevance
of recommendations provided by web-based services.
Collaborative filtering assumes that people who share
known qualities likely share others unknown. Two
people like Toy Story; one likes Toy Story 2; maybe
the other would like Toy Story 2 too? Widely used
in recommendations about Amazon products, Netflix
movies, Spotify songs, and Tinder romantic partners,
information about others like the user is leveraged to
help them effortlessly follow the most relevant crowd.
Google used a similar social principle in its initial
website scoring PageRank algorithm. By representing
semantically relevant pages in proportion to the links
they receive from other pages, Google enabled people
new to a domain—outsiders with no local knowledge or
connections—to visualize and follow the local crowd[5].
These developments have led to an update in conceptions
of Social Computing, broadened to not only include “the
use of computational devices to facilitate or augment the
social interactions of their users”, but also “to evaluate
those interactions”—even indirect and anonymous ones—
“in an effort to obtain new information”[6].

Beyond definitions, scholarship in social computing
has focused on some issues and neglected others. For
example, work and life among programmers receives
disproportionate attention in social computing because
this population has always been overrepresented online.
From the origins of social messaging and media[7] to
the contemporary widespread production of open source
software on collaborative sites like GitHub[8], which
enable unparalleled observation of online collaboration,
programmers and technologists spend more of their lives
online. Moreover, based on widespread connections
between information systems, business, and business
school scholars, there has been sustained interest
in social computing about commercial content and
brand management, knowledge sharing and discovery,
and peer-to-peer influence, especially as relevant to
enterprise[9].

Another subfield that has shone light on aspects of
social computing at the intersection of collaboration,
coordination and computing is Computer Supported
Cooperative Work (CSCW). CSCW launched in the
1980s[10] to explore “how collaborative activities
and their coordination can be supported by means
of computer systems”[11]—networking, hardware,
software, and services. Like social computing, CSCW
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has a design orientation that has enlisted social
and behavioral scientists, information and computer
scientists, and applied researchers in education, health,
and organizations committed to understanding and
augmenting productive cooperation with computation.

Another area of social computing research considers
the design of systems and formalisms that shape
enable efficient online auctions[12], negotiations[13],
allocations[14], transactions[15], and collective decision-
making[16]. This tracks the explosion of research on
mechanism design in economics, such as matching
systems (e.g., the Kidney Exchange, medical residency
placement) that achieve socially desirable distributional
outcomes[17]. This includes attention to the emergence
of novel protocols like blockchain, which facilitate
automated consummation and persistent documentation
of transactions through the interchange of smart
contracts [18]. One of the most vibrant areas of
social computing research—sometimes termed socially
intelligent computing[19]—examines how systems
unleash or inhibit collective intelligence among their
members. This includes research on the design of
crowdsourcing where crowds are assembled online to
accomplish a simple or complex task[20]. This research
also considers the emergence and intelligence of online
communities and markets[21].

New frontiers of social computing are on the
horizon, such as consequences of ubiquitous computing
access and online social connectivity, richer and more
immersive media, the explosion of computational speed
promised by quantum computing, and most recently the
catalysis of novel social interaction between humans
and AI companions, assistants, chatbots, devices and
appliances, and between these nonhuman intelligent
agents�.

This vast and growing swath of online activity has
heretofore constituted social computing. But I argue
that our understanding could be enriched through
deeper interchange with related work in the social and
computing sciences—not just to unhinge and expand
social computing itself, but to broker a deeper compact
between social and computing research. Here I propose
to expand the concept of social computing to cover the
complete dynamic interface between social interaction
and computation.

� Some of these trends have been encapsulated in the term
Web 3.0, coined by reporter John Markoff to include the semantic
web, ubiquity, 3D immersiveness, connectivity, and AI[22].

2 What is Computing? What is Sociality?

In their most common usage, computers are machines
built to externalize human cognition. Cognition
is the mental process of acquiring knowledge and
understanding through thought, fueled with the data of
sense and experience. Computers were designed for
human programmatic instruction to carry out sequences
of mathematical and logical operations on their behalf.
Charles Babbage proposed to design the first steampunk
computer—the difference engine—because human
computation of measurements to improve the British
Nautical Almanac was so tedious and error prone[23].
Alan Turing, Claude Shannon and others updated
computer designs for the digital age and vastly expanded
the cognitive target of computation as not merely
calculation but general, artificial intelligence[24, 25].

If computation is machine cognition, then sociality
and communication are human networking. Sociality is
the inclination to companion with others; the property
of being friendly that initiates and sustains positive
social relations. Sociality is a core human inclination[26]

and has increasingly been tied to humanity’s global
dominance over other species through large-scale
cooperation[27]. It is notable that the same Babbage
who designed the first computer with blueprints
of unprecedented detail also designed the efficient
breakdown of efficient social relations between human
laborers in enterprise[28].

How do the principles underlying computing and
sociality fit together? First they can be efficiently co-
embedded. In the human realm, efficient economies
involve specialization and trade, just as efficient
enterprises and governments involve specialized roles
linked through networks and hierarchies. In the realm
of machines, efficient computation similarly involves
networking or distributed processing, which trades
space for time. At the extreme end is DNA computing,
which exponentially splits and parallelizes arithmetic
operations, doubling the pools required to store results
with each new RNA replication[29]. In the analysis
of data, random forests and deep neural networks
are models designed to discover complex, nonlinear
associations by fragmenting predictions into smaller
operations then reassembling. Conversely, for humans,
efficient communication requires the deployment
of relevant language[30]. The efficient allocation of
goods and services requires the design of relevant
institutions[31]. Similarly, for computer systems, efficient
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networking requires computation to design, a central task
of electrical engineering.

In the evolution of human cognition and sociality,
which came first? The enlightenment answer was
that reason led to collaboration: Social contracts
emerged when individuals realized that they could
do better together. In this account, cognition led to
sociality as lawless and undersocialized agents agreed
to be governed together[32]. This contrasts starkly with
new thinking[33] and experimental evidence about this
relationship. In the Enigma of Reason[34], cognitive
scientists Hugo Mercier and Dan Sperber demonstrate
persuasively that seeming defects in human reason
resolve if reason evolved not to produce generalized
knowledge, but to facilitate sociality by persuading that
someone is a trustworthy member of one’s group. In this
conception, sociality preceded and drew forth reason,
which increased sociality. Regardless of precise priority,
sociality is not cognition’s afterthought.

I argue for a vision of social computing that
considers cognition and communication—computation
and networking—between any combination of
humans, machines and other agents (e.g., pets, states,
corporations), because this approach will allow us a
much broader field of comparisons to evaluate and better
design those we want. Computation and networking
could occur exclusively among machines as in the
internet of things. Cognition and communication could
occur exclusively among humans through politics,
economics and society. Alternatively computation could
take place inside humans, and networking through
machines as in Web 1.0; or computation could take
place inside machines, and networking through humans
as in the use of mechanical calculators for the Nautical
Almanac.

More realistic configurations involve not only
computation and communication, but also sensing
and action, which may be performed across complex
networks of humans and machines. Consider the social
computing involved in a simple supervised machine
learning algorithm. Human sensors ingest data and
cognitively classify it, then communicate classification
to machines that compute a function to match and
generalize those classes to new data. In crowdsourcing,
a human agent designs a task, communicates it through
a computational system to a crowd, as in Amazon
Mechanical Turk, whose members use cognition (e.g.,
“rank the safety of these places”), human sensors (e.g.,
“draw/take pictures of (un)safe places”), or human

actions (e.g., “physically assemble this kit”). In Alex
‘Sandy’ Pentland’s winning entry for DARPA’s red
balloon challenge, he used a machine platform to
contract with human spotters to place the location of 100
balloons DARPA had floated around the United States.
Spotters could contract others, who could contract others,
recursively, fragmenting the prize between them all[35].
In an open source software community, human coders
produce computer code, comment on each other’s code,
like each other’s comments, which likes are aggregated
by algorithm to create visible popularity signals.

In summary, social computing could and should
include much more than human sociality supported
by machine cognition. It traces the possibility of the
union of cognition and communication with humans
and machines. This recommends we expand the
notion of social computing to include computationally
enhanced sociality and social science; socially enhanced
computing and computer science; and their increasingly
complex combination for mutual enhancement.

This expansion reimagines the emerging field
Computational Social Science as Social Computing,
inviting us to conceive of social systems as complex,
collective computers. The results of such a project
could, in turn, catalyze a more socially informed
computer science, recommending deviations from core
research paradigms such as the Artificial (humanoid)
Intelligence project to another that seeks a human
complementary Alien Intelligence. This rotation and
inversion of social and computing reconfigures social
computing as an extreme form of human computer
interaction where machines and persons recursively
combine to augment one another in generating collective
intelligence, enhanced knowledge, and other social
goods unattainable without each other. In the sections
below I explore these possibilities, then conclude with
a research example of how social computing could
recompute science, but also politics, business and
society.

3 Computational Social Science as Social
Computing

Before 2000, Computational Social Science referred to
computing the consequences of theoretical assumptions
in social simulations. This drew upon classic
work like Thomas Schelling’s Micromotives and
Macrobehavior[36], which showed how outcomes like
neighborhood ethnic segregation could arise from small
and rare preferences for homophily that nevertheless
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passed a critical threshold. In the 1990s this program
flourished into efforts that simulated artificial societies
using agent-based models[37, 38], generalizing the
question of whether a given set of social rules was
sufficient to generate observed social outcomes in the
world.

After 2000, the rise of the web and profusion of
social life on it turned computational social science
to pursue computer-assisted analysis of the explosion
of social data becoming available from blogs, social
media, social networking and other traces of digital
communication[39, 40]. For social scientists the social
data revolution includes “high throughput” archives,
observatories, surveys, and experiments[41]. High
throughput emerged as a desiderata of research at
the turn of the 21st Century with experiments in
drug discovery, genomics, biology, and chemistry that
used robotics, advanced data processing and sensitive
detectors to rapidly conduct millions of tests, potentially
answering many questions simultaneously[42]. High
throughput archives result from the massive digitization
of historical materials, such as the Google Books project,
a vast collaboration with academic libraries around the
world, instigated not to produce free archives, but to
teach Google how to read. It has been accompanied by
innumerable focused projects, such as the digitization of
historical newspapers by content providers like ProQuest,
past parliamentary and congressional debates by the U.S.
and European governments, and ancestral records by the
Church of Jesus Christ of Latter-day Saints. Together,
these provide novel views on historical culture, language,
politics and kinship.

High throughput human observatories arise from the
vast sensor array of mobile phones, social media, check-
out scanners, credit card transactions, and fitness apps
that provide unprecedented views of human behavior
and interaction. High throughput surveys involve the use
of crowdsourcing and deployment of simple information
tasks at massive scales on digital platforms ranging
from Wikipedia to XBox[43]. These often deploy active
learning to make them adaptive and reduce sample size,
focusing only on questions most relevant to respondents,
information about which models are most uncertain, or
both[44]. Finally, high throughput digital experiments are
flourishing, facilitated by broadband that enables groups,
teams and communities to interact with no perceivable
latency. Because of the ubiquity of mobile phones, such
experiments can be ecologically situated within natural
contexts, like farmers whose experimental participation

can be directed by real-time protocols[45].
These sources are creating big social data,

which creates novel opportunities to study rare
but consequential events like viral videos that spark
collective attention[46], novel behavior that sets off
cascades of copying, or network connections that bridge
distant social or cultural communities[47]. For anything
that sits in the tail of the frequency distribution, big data
is small data and small data is no data. The supply of
big social data has generated demand for tools that can
turn unstructured digital information into forms ready
for analysis. Models and tools have met this demand,
many of them invented by research scientists in social
media and networking companies that benefit from their
analysis to better target ads and make recommendations.
Most of these tools use deep neural networks applied
to text, images, communication networks and arbitrary
tabular information.

Analysis of social data has been associated with a
social analytics revolution that now enables the modeling
of high-dimensional data with dimension reduction
techniques like LASSO (“least absolute shrinkage and
selection operator”) and approaches for discovering
nonlinear interactions through random forests and deep
learning. These efforts have led to models that in some
cases sufficiently explain almost all of the variation in
social outcomes of interest[48], while in other cases they
cannot[49]. In successful cases, such models have enabled
a new generation of simulations. High performance
computing has fueled these advances, just as cloud-based
storage has enabled computation over dispersed data, the
creation of enclaves for protected data, pipelines that
perform analysis as a service, and distributed adaptive
surveys and experiments that draw on a common pool
of models accessible from everywhere. Finally, artificial
intelligence is helping to create hypotheses, and examine
simulated agents in the wild[50].

In reimagining computational social science as social
computing, we see that computational methods do not
merely “plug-in” to pre-established social scientific
pipelines, but come with epistemic entailments that alter
what social science knows and who knows it. In an era of
small data collected from expensive surveys, interviews
and observation, social scientists relied on strong models,
with many theoretical assumptions, in order to make
inferences. With small data you would not mine that data
for new insight, but reserve it for testing what you think
you know. Big data invites us to weaken our models,
ceding more intelligence and creativity to algorithms.
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With big data, machines can help us discover hypotheses
on some data, and test it on others. This does not mean
theory is less important: keeping more theories in play
will increase what we learn from data.

Computational social science as social computing
would explicitly consider the computational cost or
complexity of operations, which encourages a shift from
random samples to optimized inference, a movement
described by Suchow and Griffiths: “experimental
design as algorithm design”[51]. If networking has
no perceivable latency, then we can invest each new
experimental task or survey question as a function of
model uncertainty based on the unfolding stream of
prior results, rather than rituals of reliability that spend
samples unevenly across questions of more and less
importance to our understanding.

Computational social science in the era of social
computing also implies a new generative standard
for social scientific epistemology, which refurbishes
one forged in the era of data-less simulation: “don’t
trust it if you can’t generate it”[38]. With large scale
data and increasingly precise models, in some areas
we can now develop social simulations sufficient
and plausible enough to explain nearly all the
phenomenon of interest[48]. This represents a shift in
attention from discovering and testing mechanisms to
predicting and generating “digital doubles” of complete
social phenomena—from necessary but not sufficient
explanations to sufficient but not necessary ones. This
represents a corollary shift from social science to
social technology. The design of a social algorithm
that consistently produces desired outcomes may not
hinge on accurate explanations of social systems in the
wild, but it is highly relevant to the construction of
human services on the web. This has likewise expanded
concerns beyond causal inference to prediction—from
strategies for minimizing model bias to also reducing
model variance[52]. Nevertheless, to compute social
policy, models will need to not only predict the most
likely future, but identify factors that predictably change
that future. This has led social scientists to recruit
insights from machine learning into their quest for causal
explanation[53] as many experts in machine learning have
come to see causality as the next great frontier in their
field[54] in a quest to yield simulations that effectively
redesign society.

This focus on generation, simulation and prediction
moves from singular explanations that account for a
small percentage of variation in outcomes to combined

and competing explanations within the same sufficient
model[55]. This retunes social science for the solving
of real world problems, but also leads to messier
explanations, as one theory may not dominate others.
Attention to multiple, simultaneous influences has led to
new targets of statistical inference, like the minimization
of false discovery rate for a collection of findings, rather
than estimates for each individual one[56].

Finally, social computing adds a fundamentally
new objective to computational social science. It
poses the question, how do social systems compute
solutions to their problems and how could they do it
better? Work in data-driven animal collective behavior
has identified how swarming fish efficiently compute
defensive formations[57], just as human voting systems
and deliberations are designed to socially compute
maximum agreement. Understanding how and when
social systems compute well and poorly in the noisy
environments of the real world will hold secrets for
a more socially informed and responsive computer
science.

4 Computer Science as Social Computing

Networking is a central aspect of emerging computing
systems, such as the internet of things that links
appliances, houses, cars, stoplights and smart contracts
to signal and transact with one another. Anticipating
the thicket of interactions that result would benefit from
generations of social science, especially as translated
into the concerns of social computing.

There is rich historical precedent for the use of social
computations to inspire machine ones. Oliver Selfrige
was inspired by human election systems as inspiration
for ensemble methods in machine learning, influencing
the efforts to average individual decision trees into
a “random forest”. Each tree becomes a voter in the
system, trained on a distinct but overlapping subset of
experiences from data[58].

Seymour Pappert and Marvin Minsky began work
on a compositional theory of intelligence they called
“Society of Mind” in the early 1970s, which matured
into Minsky’s 1985 book of the same title[59]. In this
view, intelligence emerges from the interaction of
diverse and various cognitive agents, not from a singular
mechanism. Directly influenced by child psychology,
Minsky nevertheless constructed his motivation and
guiding metaphor for the project from the division of
labor in society.

Recent research on deep learning neural networks has
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begun to use network methods to perform social analysis
of their structure. For example, deep convolutional
graph models have recently been used to improve
predictions about new ties in online social networks[60].
By incorporating hyperbolic geometry into those
models, which captures the hierarchy intrinsic in
social and biological networks[61], predictions markedly
improved[62]. While it may be no surprise that
adding social properties improves models of social
data, work by some of the same computer scientists
reveals that social properties may be important for
arbitrary prediction. They generated a series of neural
network models to perform object detection on images
from the popular ImageNet and CIFAR databases,
then showed that the most successful graph structures
had high average path length and medium clustering
coefficients, which they argue is similar to the structure
of neurological networks[63].This also represents a core
feature of social networks that balance weak and strong
ties—novelty and cohesion. Other work demonstrates
how randomly generated neural network designs perform
well on a range of vision tasks, suggesting room for
the design of improved networks[64] that could benefit
from network properties based on social computing
systems like deliberative human communities that
achieve desirable outcomes. For example, a recent
experiment with human teams showed that those with a
higher intelligent quotient in solving problems did not
have more intelligent members, but members sensitive
to one another’s contributions who contributed to team
discourse in roughly equivalent turns[65]. These kinds
of findings suggest possible regularization strategies for
deep learning methods, such as a weight variance penalty,
that could improve on heuristic approaches widely used
today. I put forward the hypothesis that principles we
discover to be consistently useful in social computing
systems may also be useful for the design of networked
computer systems more broadly.

Another principle that holds widely across social
contexts involves the power of cognitive diversity for
solving complex, nonroutine problems. In science,
technology, design, or any domain in which quality
is prized above speed, diverse ensembles rule. The
rise of the web has seen a sharp increase in
observational[66–70], theoretical and experimental social
computing research[71–74] on the “wisdom of crowds”
phenomenon, which implies that a collective’s aggregate
response exceeds the accuracy of its members. This
research demonstrates that diverse crowds rule. Crowd

wisdom hinges on the independence and diversity of
information[66] and approach[75] held by its members.
This is manifest in data science competitions like Kaggle
where ensemble models (e.g., boosted forests or deep
networks) have always won and never been bested
by a best-fit single model. My own and others’ work
on collective achievement in science and technology
suggests that diversity and independence plays a
similarly critical role there, where dense communities
slow the speed of advance by collapsing the space
of ideas imagined and explored[70, 76, 77]. The wisdom
of diverse crowds suggests the possibility that new
diverse weight initialization approaches could improve
the optimization of complex, networked models in deep
learning. But it also suggests a deeper design challenge
for computer science as social computing.

5 AI as Alien Intelligence

In 1955, two alternative and competing visions for AI
were ratified in the same year. Young assistant professor
John McCarthy from Dartmouth College applied to
the Rockefeller Foundation for funding that would
support 10 people for an 8 week study of “Artificial
Intelligence”. The workshop occurred the following
summer involving Claude Shannon, Marvin Minsky,
Oliver Selfridge, John Holland, Herbert Simon, Allen
Newell and a few others in an event many have hailed as
foundational for the field of Artificial Intelligence. The
project covered topics ranging from neural networks
and the theory of computation to national language
processing, abstraction and human(oid) creativity. The
view of AI that emerged from this meeting draws on the
“imitation game” approach to assessing intelligence[25]:
Intelligence is to mimic humans who represent the
standard of intelligence. Artificial intelligence became
even more deeply tied to human intelligence with
Arthur Samuel’s work to develop a computer checkers
player in the late 1950s, and his coining of “machine
learning”[78] to reflect algorithms that not only produced
outcomes apparently indistinguishable from humans, but
which directly learned from human activity (e.g., human
checkers games).

And yet with 7 billion humans on earth and growing, is
the production of more artificial humanoid intelligences
the most interesting intellectual target? Not for computer
science as social computing. The wisdom of diverse
crowds suggests an alternative vision for AI as Alien
Intelligence, not most but least like humans and human
groups in order to achieve cognitive diversity for
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social computing—to help human collaborators think
differently, bigger and better. Such a program would
draw insight from computational social science as social
computing to model how humans, groups and societies
collectively think and act, then use novel objective
functions like Bayesian Surprise[79], multiple objectives
like surprise and support, or oppositionally structured
objectives like those in Generative Adversarial Networks
(GANs)[80] to grow computational Alien Intelligences
that radically complement the humans with whom they
collaborate.

The construction of Alien Intelligences (AIs)
could enable heightened strategic action, where
the concealment of purpose may be critical for
competitive performance—where failing the Turing
test is the best stealth. This approach could be used
to cultivate strategies explicitly designed to interfere
with contemporary theories of mind, and evolve as
expectations update. Consider the game of “free chess”,
where competitors may be any combination of humans
and machines. The first international tournament in
2005 was won by two amateur players running four off-
the-shelf chess simulators on three cheap machines[81].
They likely beat Grand Masters Vladimir Kosyrev and
Konstantin Landa running powerful single chess engines
not only because their total system was better, but
because they did not play an integrated game of chess.
They played many such games simultaneously and short-
circuited the expert ability to template a response. They
were fundamentally unpredictable. Similarly, Alpha Go,
Deep Mind’s Go-playing robot was initially trained on
hundreds of thousands of human games, but Alpha Go
Zero was trained only against other naive adversaries
like itself, growing what many master Go players
described as an unfamiliar and decentering “alien”
strategy[82]. Alpha Go Zero achieved this because
GO is such a complex game that its training had
been reduced to traditional, heuristic human strategies.
Simultaneously incorporating data on human strategies,
and the computable universe of alternatives could allow
a player that intentionally and directly defies human
expectation, with much less effort and even in cases
where successful games cannot be simulated.

In order to radically, not incrementally, augment
human intelligence to face complex challenges, AI
as alien intelligence could provoke decision-makers,
strategists, creators, researchers and teams of the same
with ideas, approaches and analyses that humans and
human groups could not have conceived of themselves.

Financial, creative and intellectual arbitrage occurs when
individuals with information from one market or domain
of activity bring it to another where it is not yet present,
but valuable. Acts of value-producing cognitive arbitrage
can be accelerated with alien intelligences unconstrained
by human incentives to over-coordinate or flock together.
Consider a recent experiment in which Hirokazu Shirado
and Nicholas Christakis staged a color coordination
game where players sat in an online network and were
each tasked with changing the color of their network
node to contrast with those to whom they were connected.
When they added robots to central locations in the
graph, which did not follow human conventions but
exhibited random noise in color choice, this disrupted
local coordination but substantially improved global
coordination, including game play between humans,
leading to increased collective performance[83]. Because
humans were most likely to coordinate with one another
locally, the design of diverse robots that were worse at
coordination, fluctuating with some randomness, best
complemented human players and improved collective
computation. One could also imagine the converse
approach for training machine learning algorithms:
strategically placing humans in the loop where they
can productively perturb certainty within the network of
components in the learning system.

6 Social Computing as Extreme Human
Computer Interaction

The construction of alien intelligences that are not
most, but least like human agents in order to assemble
optimal diversity in human-computer groups defies
not only core tenets of Artificial Intelligence, but its
twin sister Augmented Intelligence. The same year
that John McCarthy assembled his initial workshop
on Artificial Intelligence, William Ashby detailed
the possibility of “Amplifying Intelligence” in his
Introduction to Cybernetics[84]. Soon after, Douglas
Englebart put forward a program to “Augment Human
Intellect”[85], which J.C.R. Licklider described as “Man-
Computer Symbiosis”[86]. The vision behind amplified
or augmented human intelligence was to accelerate
human thinking by reducing friction and allowing
unmediated access to information for reference and
manipulation. If humanoid robots are the natural
embodiment of artificial intelligence; screens, mice,
file systems and hypertext are the embodiment of
augmented intelligence with new human computer
interfaces (eeg helmets, eye-tracking systems, etc.)
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emerging to facilitate novel augmentations. These efforts
gave rise to the fields of human-computer interaction
(HCI) and Human-centered computing (HCC). HCI has
historically focused on design principles that increase
intuitive familiarity and decrease frictions when using
an interface, while HCC has attended to the systems
and technological practices that achieve human goals. If
we reimagine HCI and HCC as social computing, then
augmenting human intellect through seamless interfaces
and integrated systems seems incremental and doomed
to diminishing marginal returns. HCI and HCC as social
computing will incorporate principles like diversity,
which promotes collective creativity and intelligence
through the creation of cognitive dissonance[87] and
destabilizing conflict[88].

Interlocutors who disagree must nevertheless be able
to communicate. Furthermore, Sinan Aral’s research
on communication through social networks reveals a
trade-off between diversity and bandwidth[89]. Novel
information comes through conversation with those who
are different from you, but more information comes
through conversation with those who are similar. HCI
and HCC as social computing will seek to discover the
optimal balance of information, perspective and friction
required to compute the innovation or performance we
desire.

The ultimate validation of this approach will be
the fruitfulness of a research program inspired by
the breaching experiments of sociologist and ethno-
methodologist Harold Garfinkel. Garfinkel identified the
existence of social and cultural norms by violating them
and observing the reaction[90]. Research programs of this
type will likely lead to more extreme human computer
interaction, in which machines and persons recursively
combine to provocatively augment one another and
generate enhanced knowledge, collective intelligence
and social goods unattainable and unimaginable without
each other.

7 Social Computing for Science

My own recent work on collective achievement in
science and technology suggests some of the synergies
that could be achieved from integrating computational
social science, socially inspired computer science, and
human computer interaction as social computing. In
science, dense communities constitute echo chambers
that slow the speed of advance by collapsing the space
of ideas imagined and explored[70, 76]. Findings from
connected communities are less likely to reproduce

than those from diverse, disconnected ones[77]. The
largest and most predictable factor in outsized, disruptive
success in discovery or invention is when a small
group[91] of scientific or inventive outsiders—people
with backgrounds distant from a given field’s problem,
travel to that distant audience and solve that problem
with patterns alien to the receiving field[48]. This
could allow us to instrument scientific and technical
abduction, where problems identified through the
collision of deductive expectations and unexpected
inductive findings are resolved with new, alien ideas
and patterns that make the surprising unsurprising. With
more data and better models than ever before on how
scientists and inventors collectively think, we are now
uniquely in a position to build alien intelligences with
new objectives, which systematically avoid places that
humans have overthought in order to identify promising
leads that could not have been conceived before.

The use of diverse scientific viewpoints was drawn
upon by pioneering information scientist Donald
Swanson in his manual approach to “literature-based
discovery” called the ABC model of hypothesis
generation. If concepts A and B are studied in one
literature, and B and C in another, Swanson assumed
transitivity to hypothesize that A implies C, then
demonstrated that novel A-to-C inferences were likely
to be true, although unlikely to be arrived at via
other means[92–95]. Through this approach, Swanson
hypothesized that fish oil could lessen the symptoms
of Raynaud’s blood disorder and that magnesium
deficits are linked to migraine headaches[96]. This
heuristic relies on an implicit understanding of how
diverse understandings could be combined into powerful
new knowledge. Moreover, Swanson’s approach
acknowledged, but did not explicitly identify differences
in the experiences and views of scientists it arbitraged
to generate insights the scientific system would not
have naturally discovered. Diversity in exposure to
distinct cultural milieu has been shown relevant for
scientific advance, with the observation that scientific
collaborations from diverse countries receive more
citations[97], but also the Foreman thesis in the history
of science that national contexts constitute unique views
on the world that shape what science can be imagined.
Quantum mechanics emerged in the Weimar Republic as
part of a philosophical movement against causality[98].

Now, consider a social computing approach that
extends far-beyond the approach by Swanson, described
above, by directly incorporating the distribution of
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diverse perspectives. A Nature article published in 2019
revealed how embedding chemicals and properties to a
vector space from millions of prior research publications
can be used to predict 40% of the novel associations
more than two decades into the future[99]. These tools are
now becoming widely used to generate new hypotheses
in the biological, material and physical sciences. A
neural embedding-based analysis ignores the patterns
of collaboration and diversity underlying how past
discoveries were made. Our preliminary experiments to
incorporate information about the distribution of authors
and their connections between fields dramatically
improve the accuracy of novel discovery predictions
by more than 100%. As suggested above, adding
this information further allows us to make inferences
regarding who would likely have been the discoverers,
but also forecast promising discoveries that could not be
made without a computational alien intelligence system
of this kind.

8 Socially Computing Everything

Recomputing science by recursively exploring how
scientific cognition and communication could be
augmented through machine experimentation and
extension recalls the legendary Ship of Theseus.
Plutarch, the first century Greek historian, wrote a
history of Theseus, the mythical founder of Athens,
who traveled with other Athenian youths to Crete.
They sought to free Athens, which had become a
tributary to King Minos by defeating Minos’ Minotaur,
a half bull/half man who was to consume the Athenian
tributes. With the help of Daedalus, who had created the
Minotaur’s labyrinth, and Ariadne, Minos’ love struck
daughter, Theseus killed the Minotaur and escaped with
the youth. Theseus’ ship returned to liberated Athens,
Theseus died and slipped into legend, and the Athenians
eventually “took away the old planks as they decayed,
putting in new and stronger timber in their places,
insomuch that this ship became a standing example
among the philosophers, for the logical question of
things that grow; one side holding that the ship remained
the same, and the other contending that it was not the
same”[100].

Like the decaying ship of Theseus, machines
have been constructed to recompute human sensation,
cognition and communication with increasing sensitivity,
capacity and expressiveness. As more and more of
Theseus’ ship was replaced by newer, better planks,

when did it cease to be Theseus’ ship? As more and
more scientific components are augmented by machines,
when does it cease to be science? As more and more
political processes are bolstered with machines, when
does it cease to be a polity? As more and more business
and commerce utilize machines, when does it cease to
be an economy? It doesn’t. But neither is it the same
science, policy or economy as before. Social computing
is the new ship of Theseus, inviting us to redesign
legendary institutions for greater collective intelligence,
flourishing, and innovation.

As a field, social computing will be unhinged and
expanded if we consider the complete dynamic interface
between social interaction and computation. It will be
enriched by engaging more deeply with computational
social science, which will help to provoke and explore
the possibility of a socially informed computer science.
But the greatest contribution may come from convening
other fields, from cognitive science to communication to
computing, together in conversation to design systems
that generate social goods impossible to conceive alone.
With the power to create goods comes the capacity to
unleash bads, Matrix-like scenarios with humans trapped
in webs of machines that update nightmares of child
labor from the industrial revolution for the age of AI.
And this is why social computing must also convene the
critical theorists, philosophers, and artists, to imagine
and warn of danger.

Social computing will be most productive as an impure
science—in tension with technology. Science identifies
stable patterns in the social and natural worlds, but
the view that technology simply flows from scientific
insight[101] ignores the vast history of successful, but
inexplicable inventions and curiosities that provoke
science[102]. These include the Bessemer Process to
remove carbon in making steel or Edison’s etheric
force, later rediscovered as the wireless transmission
of electromagnetic radiation[103]. Successful techniques
and novelties suggest scientific regularities to be
discovered and harnessed. By exploring the limits of
society and computation—investigating with science;
insulting with technology—social computing can
unhinge our imaginations and focus our effort on how
they can reach past those limits together. It is in the
hope of this chaotic conversation, partly beyond human
comprehension, certainly at risk of peril, that we launch
the journal of social computing.
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