
Quantum Internet Engineeringuantum
Transactions onIEEE

Received 11 May 2023; revised 22 September 2023; accepted 9 October 2023; date of publication 19 October 2023;
date of current version 28 November 2023.

Digital Object Identifier 10.1109/TQE.2023.3326093

Scalable QKD Postprocessing System
With Reconfigurable Hardware
Accelerator
NATARAJAN VENKATACHALAM1 (Member, IEEE), FORAM P. SHINGALA1 ,
SELVAGANGAI C1 , HEMA PRIYA S1 , DILLIBABU S1 ,
POOJA CHANDRAVANSHI2 , AND RAVINDRA P. SINGH2
1Society for Electronic Transactions and Security, Chennai 600113, India
2Physical Research Laboratory, Ahmedabad 380009, India

Corresponding author: Natarajan Venkatachalam (e-mail: natarajan.v.in@ieee.org).

This work was supported by the Department of Science and Technology, within the Ministry of Science and Technology, Government
of India, through the “Quantum enabled Science and Technology” program and Ministry of Electronics and Information Technology.

ABSTRACT Key distillation is an essential component of every quantum key distribution (QKD) system
because it compensates for the inherent transmission errors of a quantum channel. However, the interop-
erability and throughput aspects of the postprocessing components are often neglected. In this article, we
propose a high-throughput key distillation framework that supports multiple QKD protocols, implemented in
a field-programmable gate array (FPGA). The proposed design adapts a MapReduce programming model to
efficiently process large chunks of raw data across the limited computing resources of an FPGA.We present a
novel hardware-efficient integrated postprocessing architecture that offers dynamic error correction, mutual
authentication with a physically unclonable function, and an inbuilt high-speed encryption application that
utilizes the key for secure communication. In addition, we have developed a semiautomated high-level
synthesis framework that is compatible with any discrete variable QKD system, showing promising speedup.
Overall, the experimental results demonstrate a noteworthy enhancement in scalability achieved through the
utilization of a single FPGA platform.

INDEX TERMS High-level synthesis (HLS), key distillation engine (KDE), MapReduce framework, phys-
ical unclonable function (PUF), quantum key distribution (QKD).

I. INTRODUCTION
Secure data communication is a vital challenge in today’s
high-speed networks. The basic and most critical element of
a cryptographic solution is the encryption key, as defined by
Auguste Kerckhoffs in 1883 [15]. Traditional cryptographic
techniques that rely on the complexity of mathematical prob-
lems may become vulnerable in the face of the emergence
of quantum computers. Nevertheless, the same principles of
quantum mechanics that could potentially provide an adver-
sary with significant computational advantage can also be
harnessed to achieve unconditional security when establish-
ing a secret key between two communicating parties using
quantum key distribution (QKD). Different implementations
of QKD protocols exist, and they vary in how informa-
tion is encoded and decoded using quantum states [4], [12],
[14], [29]. In general, it comprises two channels: a quantum

communication channel for transmitting quantum infor-
mation and an authenticated classical channel. A quan-
tum communication channel transmits a quantum state of
a photon in a specific degree of freedom, such as po-
larization, time bin, phase, frequency, and so on, which
serves as a means for encoding and decoding key infor-
mation. The authenticated classical channel is used for se-
cret key reconciliation and is also required to synchro-
nize the transmitter and the receiver, often separated by
large distances. Owing to the inherently noisy nature of
the quantum channel, measurement device imperfections,
and noisy encoding/decoding, the raw key vector extracted
from the quantum channel may contain bit-flip errors. Con-
sequently, postprocessing techniques are required to con-
struct the final secret key at both the ends. A robust im-
plementation of QKD that provides sufficient throughput in

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 4, 2023 4100914

https://orcid.org/0000-0002-8926-4146
https://orcid.org/0009-0007-4744-6834
https://orcid.org/0009-0003-4268-6362
https://orcid.org/0009-0006-8725-5605
https://orcid.org/0000-0003-3018-777X
https://orcid.org/0000-0001-6802-877X
mailto:natarajan.v.in@ieee.org

Engineeringuantum
Transactions onIEEE

Venkatachalam et al.: SCALABLE QKD POSTPROCESSING SYSTEM

terms of the key rate in a real-time environment is chal-
lenging. Achieving the speed of quantum communication
necessitates a fast key distillation layer with efficient control
hardware.
The QKD postprocessing can be broken down into sub-

modules, namely: 1) synchronization; 2) sifting for era-
sure; 3) sifting for basis reconciliation; 4) random sampling;
5) parameter estimation (PE); 6) information reconciliation
(IR) and verification; 7) privacy amplification (PA); and 8)
key management. These classical components require mas-
sive computing and memory resources, which is why they
were earlier implemented on server systems. However, ow-
ing to complex infrastructure and the security assumption
of device isolation (trusted node architecture) [30], there
is a need for a solution that is stand-alone, compact, and
reconfigurable at low power consumption. Hence, the re-
search has now progressed toward field-programmable gate
array (FPGA) accelerators. A hardware description language
(HDL) is a language used to program FPGAs [13]. Any
HDL design is directly correlated with resource consumption
in the FPGA. As the design becomes more complex, the
need to streamline the design-flow process has led FPGA
developers to explore software-based productivity tools that
automate the register-transfer level (RTL) design flow; high-
level synthesis (HLS) is one such tool, and its adaptation to
QKD key distillation engine (KDE) is further described in
Section III.
One of the major engineering challenges in real-time im-

plementations of high-performance QKD networks is the
continuous storage and processing of large amount of data,
resulting in memory and computational overhead on the tar-
geted systems. Given that quantum encoding takes place at
frequencies in the hundreds of gigahertz range, it is essential
that classical postprocessing techniques operate in real time
to facilitate the extraction of a secure secret key at a level
consistent with the quantum process. The IR phase in post-
processing involves excessive dynamic computations and
memory accesses. Therefore, the overall processing time is
dominated by complex computations and unstructured mem-
ory management.
Recently, there has been an increased interest in acceler-

ating postprocessing using FPGAs [8], [9], [16], [25], [31],
[33] with limited memory storage and management capa-
bilities. However, extended memory units, such as static
random-access memory (SRAMs) and dynamic random-
access memory (DRAMs), can be used along with the FPGA
to overcome this drawback. A technological gap still exists
in the practical implementation of a high-throughput and ef-
ficient hardware–software codesign for large-scale quantum
key distillation. In this article, we propose an FPGA design
for large-volume data processing based on the MapReduce
programming model. This design aims to improve process-
ing throughput while ensuring security. We report a compre-
hensive experimental study to evaluate the performance and
efficiency of different QKD protocols.

We summarize the main contributions of our work as
follows.

1) A hardware-based KDE is designed with the capability
to support multiprotocol discrete variable (DV) QKD
systems.

2) A hardware-based MapReduce accelerator is designed
to achieve a significant speedup of the computationally
intensive tasks related to IR and PA.

3) A reconfigurable architecture attributed to a framework
is developed through HLS technology.

4) Mutual authentication for QKD systems using a phys-
ically unclonable function (PUF) is implemented.

5) Rate-adaptive error reconciliation codes are utilized to
optimize classical channel throughput, with enhanced
error correction capacity.

6) An on-device high-speed encryptor with a throughput
of up to 10 Gb/s is included.

7) A detailed experimental field trial for the following
three different protocols is presented:
a) Coherent one way (COW) [26];
b) BB84, developed by Charles H. Bennett and

Gilles Brassard in 1984. It is named after
the duo’s surnames (Bennett and Brassard,
BB84) [37];

c) BBM92, developed by Charles H. Bennett,
Gilles Brassard, and N. David Mermin in 1992.
It is named after the trio’s surnames (Bennett,
Brassard, and Mermin, BBM92) [36].

The rest of this article is organized as follows. Section II
covers related work and literature review. Section III cov-
ers the proposed system design, architecture, and implemen-
tation of KDE in hardware. Section IV defines the exper-
imental setup of the QKD protocols, and Section V pro-
vides the implementation results and the performance anal-
ysis of the design. Section VI describes the future work
and open challenges. Finally, Section VII concludes this
article.

II. RELATED WORK
One of the early attempts in 2012 to design a complete com-
pact QKD system that integrated optics and control hardware
into a single chassis was made by Zhang et al. [33]. They
implemented the decoy-state BB84 protocol, but the key dis-
tillation software stack faced challenges due to inefficient
computing devices, resulting in lower key rates. Around the
same time, Tanaka et al. [27] achieved a high-speed phase-
encodedBB84QKD system that covered a distance of 50 km.
They transmitted with a repetition frequency of tens of giga-
hertz using parallel transmission of photons and wavelength
division multiplexing. However, their work underscored
due to the requirement of massive computing and mem-
ory resources, making the system unsuitable for portable
applications.

4100914 VOLUME 4, 2023

Venkatachalam et al.: SCALABLE QKD POSTPROCESSING SYSTEM Engineeringuantum
Transactions onIEEE

FIGURE 1. Overview of the FPGA-based support system for multi-QKD protocols with corresponding postprocessing stages; M {1, 2, 3, 4} represents the
number of parallel mapper instances.

Efforts to accelerate data processing of measured qubits
have led to research on individual modules within the QKD
postprocessing. Cui et al. [9] focused on an efficient im-
plementation of the error reconciliation module by exploit-
ing FPGA parallelism and pipelining the execution between
read, write, and compute operations. Walenta et al. [28]
made significant strides toward a field-deployable QKD
system by integrating control hardware and data process-
ing units. Constantin et al. [8] provided a detailed de-
scription of key distillation modules, all implemented on
a single Xilinx Virtex 6 FPGA. However, the system size
remained substantial. An alternative to FPGA-accelerated
postprocessing is a pipelined software implementation. Zhou
et al. [34] proposed a multithreaded pipelined approach that
utilized multiple CPU cores to optimize performance param-
eters. Yuan et al. [32] configured a host server system with
FPGA-based accelerators for various QKD processing tasks.
Yang et al. [31] focused on parallelizing the IR phase for
continuous-variable QKD.
A recent review, by Li and Pang [16], has emphasized the

almost mandatory choice of the FPGA for QKD applications
due to its advantages in power consumption [23] and design
productivity, which are key features for critical applications,
such as for satellite quantum communication (CubeSat mis-
sions) [21]. It also highlighted the benefits of using HLS to
design and configure accelerators. Moving from the FPGA
to a system-on-chip (SoC) architecture, a recent work [25]
presented a hardware- and software-integrated architecture
suitable for practical QKD and quantum random number
generation schemes. This architecture optimally distributes
time-related and management tasks between the FPGA and
the CPU.
While previous designs focused on classical postprocess-

ing engines for specific QKD protocols, our proposal aims to
create a complete suite of algorithms compatible with mul-
tiple DV QKD protocols, implemented as a stand-alone and
isolated system with a parallel data storage and processing
framework. In the following sections, we provide a detailed
design implementation of this proposed architecture.

III. SYSTEM ARCHITECTURE AND DESIGN
METHODOLOGY
We propose an FPGA-based flexible high-throughput
key distillation framework that supports multiple QKD
protocols. This generalized key distillation framework is de-
signed to adapt to various QKD protocols. The KDE per-
forms all the postprocessing tasks and provides the final
key to the encryption application. To ensure effective im-
plementation, the entire postprocessing flow, as illustrated in
Fig. 1, can be executed in three distinct phases: the prepara-
tory phase, the data acquisition phase, and the reconciliation
phase.
The preparatory phase, as described in more detail in

Section III-C, involves alignment and measurement pro-
cesses to establish a low-loss and low-error quantum channel.
The software components required for the preparatory phase
are specific to the particular QKD protocol being used. In
this work, we have adopted the HLS framework to perform
tasks that require modifications based on the QKD protocol
and to create a unified integration platform for QKD postpro-
cessing. Specific methods, such as clock synchronization and
measurement alignment, are closely tied to the protocol im-
plementation specifications. We provide further details about
this platform in Section III-B.
The data acquisition phase (see Section III-D) involves

the gathering and transformation of the detected raw key
vector before proceeding to the reconciliation phase. The
gathering and time-stamping techniques used are generic
to any QKD protocol. On the other hand, data-sifting
methods depend on the specific QKD protocol and its
implementation.
The reconciliation phase, as described in Section III-E,

encompasses error estimation, correction, verification, and
PA modules, all of which are independent of the chosen
QKD protocol. It is worth noting that error correction and
PA techniques are computationally intensive. To address this,
our hardware design efficiently employs theMapReduce pro-
gramming model to further optimize throughput. This ap-
proach strikes a balance between hardware utilization and

VOLUME 4, 2023 4100914

Engineeringuantum
Transactions onIEEE

Venkatachalam et al.: SCALABLE QKD POSTPROCESSING SYSTEM

FIGURE 2. FPGA block design for the classical postprocessing engine describing all the modules and their interconnects.

bulky data processing. TheMapReduce data storage and pro-
cessing framework also assist in distributing complex data
processing tasks across the limited computing resources of
the FPGA.

A. FPGA-BASED PROCESSOR DESIGN
In this article, a single FPGA is used to perform all the control
and data processing for QKD. This FPGA fabric is designed
with a soft-core-processor-based SoC architecture. Process
control, task scheduling, and interface for data process-
ing modules are defined as a software development toolkit
(SDK) application program interface (API)-based software
application. Makni et al. [17] previously highlighted the
advantages of an FPGA-based SoC architecture. Fig. 2 il-
lustrates the high-level architecture, consisting of the con-
trol unit, data processing unit, and memory management
unit. The soft-core processor, along with the data process-
ing and control modules, is implemented on the FPGA’s
programmable logic. The board is equipped with 2 GB of
DDR3 SODIMMmemory, which is used for storing data re-
quired during processing. MicroBlaze, a soft processor core
designed for Xilinx FPGAs, is used in this architecture. It
is integrated with an AXI interconnect peripheral bus for
system-memory-mapped transactions, offering server–client
capability. Each data processing unit module interfaces with
the AXI data port of MicroBlaze for communication, while
DDR3 is interfaced with MicroBlaze over AXI instruction
cache and data cache ports. Further details regarding the
implementation of individual data processing, synchroniza-
tion, and authentication modules are provided in Sections
III-C–III-F. The control and data processing algorithms are
implemented as custom-developed intellectual property (IP)
cores, each serving a specific function. The software appli-
cation defines a flow of execution of each custom hardware
accelerator.

B. MULTIPROTOCOL QKD SUPPORT
Our design approach aims to create an efficient and config-
urable control and processing framework that can be seam-
lessly integrated into the design solution for any QKD pro-
tocol implementation, regardless of the underlying technol-
ogy. This generic framework, tailored for programmable
hardware, leverages HLS technology. HLS facilitates re-
configurability and the transformation of high-level algo-
rithmic descriptions into RTL models, making it acces-
sible to individuals without extensive HDL development
experience [13].

In our framework, we embrace modularity by incorporat-
ing independent IP cores for each control and data process-
ing task. Control modules can be developed by integrating
software drivers for optoelectronic components commonly
used in QKD experiments. These software drivers are often
available as open-source libraries in high-level programming
languages such as C/C++, making them directly compati-
ble with our design through HLS. These drivers play a vi-
tal role in configuring parameters like variable attenuation,
interference visibility, modulator bias, state of polarization,
and more, all of which contribute to the establishment of
a secure quantum channel. In addition, our design accom-
modates libraries for mathematical and computational utility
functions [24].
The Phase I modules, or preparatorymodules, as described

in Section III-C, are designed and tested using a QKD simu-
lator. Subsequently, they are refined to comply with the syn-
thesizable subset, and a test bench is developed to ensure that
their functionality remains intact. Optimization directives
and data types are added to enhance performance. During
synthesis, C functions translate into RTL blocks, function ar-
guments become RTL I/O, and arrays translate into memory
elements (e.g., RAM, ROM, or FIFO). To optimize hardware
resource utilization, HLS offers user directives. Pipelining
directives are integrated to meet timing constraints [35]. In

4100914 VOLUME 4, 2023

Venkatachalam et al.: SCALABLE QKD POSTPROCESSING SYSTEM Engineeringuantum
Transactions onIEEE

addition, we employ arbitrary precision data types in our
design [1].

C. PREPARATORY PHASE
The operation of the control unit primarily involves configur-
ing the QKD protocol and relies heavily on software drivers
of optoelectronic components. The integration of this func-
tionality has been given in detail in [24]. Furthermore, the re-
maining components of the current KDE can be reconfigured
to accommodate various QKD protocols with minimal effort.
Each submodule within the system is designed as a separate
proprietary library (IP core), making it readily reusable for
different QKD protocol configurations. Consequently, the
switching time between different protocols is reduced, sim-
plifying the process of building interoperable systems. These
design considerations enhance the flexibility and adaptability
of the KDE to support a range of QKD protocols.

1) SYNCHRONIZATION AND CLASSICAL CHANNEL
COMMUNICATION
Precise timing information recording the launch of a quan-
tum state from Alice and its arrival at Bob is crucial for ef-
fective key sifting. To achieve time synchronization, we have
adopted the commercial White Rabbit Lite Embedded node
(WR-LEN), as part of our system architecture. WR-LEN
is a versatile synchronization solution capable of accom-
modating various classical communication protocols [19].
WR-LEN leverages two essential technologies: Synchronous
Ethernet (SyncE) and the enhanced precision time protocol
(PTP). SyncE ensures frequency matching, while PTP en-
ables precise offset adjustments of the clock. This synchro-
nization is facilitated over a single channel, which serves a
dual purpose—providing both synchronization and a means
for exchanging information required for classical postpro-
cessing.
For high-speed communication, which occurs at gigabit-

per-second rates, we have utilized the Aurora 8B/10B pro-
tocol. Developed by Xilinx, this protocol is designed for
point-to-point serial links and serves as a robust link layer
communication protocol. An important feature of the Aurora
8B/10B protocol is that it is an open standard, making it avail-
able for implementation by anyone. In our implementation,
we have employed this protocol for data transmission over
the classical channel. However, it is worth noting that our
proposed system is flexible and supports integration with any
standard communication protocol.

D. QKD DATA ACQUISITION
In a QKD system, data are collected by Alice and Bob us-
ing dedicated hardware components. The key information
is derived from the measurement device by recording the
time stamps. This time-stamping capability is essential for
each side to implement a full-stack QKD postprocessing
system. In a real-world scenario, a fully integrated hardware
KDEwith an embedded operating systemwould handle these

tasks. However, in our implementation, two desktop comput-
ers are used on each side to record the experimental data and
also serve as command-and-control systems for the FPGAs.
The hardware and firmware used for time stamping and mea-
surement are based on open-source components that have
been developed and utilized in other QKD experiments. To
record the time-of-flight measurement of the single photons
detected by a single photon detector (SPD), time-to-digital
converters (TDCs) are employed. The SPD outputs a de-
tected photon as a nuclear instrumentation module pulse,
often referred to as a “click,” which is then read by the FPGA.
A multichannel tapped delay line TDC was developed based
on a reference design provided by Adamic and Trost [38].
This TDC logic is integrated into an IP core for the FPGA
interface. Furthermore, the design framework includes inter-
faces to and from the optical setup using digital-to-analog
converters (DACs) and analog-to-digital converters (ADCs).
ADCs and DACs are crucial for controlling the optical com-
ponents, e.g., ADC is used to drive the coherent laser, and
the DAC is used for amplitude and phase modulation. The
specific details of the ADC and DAC implementations are
beyond the scope of this article.

1) SIFTING
After the quantum transmission and measurement, Alice and
Bob utilize the classical channel to derive a secret key. The
alignment step involves procedures to synchronize the de-
tection times (time stamps) in Bob’s reference frame with
Alice’s key bits in her reference frame. This process can
be extensive in terms of effort and transmitted information.
The sliding window protocol is used for alignment, and the
autocorrelation coefficient is used to confirm the alignment.
The basis sifting procedure filters out inconclusive or in-

compatible measurement results at Bob’s end compared to
Alice’s preparation. Depending on the implemented QKD
protocol, the required information exchange (e.g., measure-
ment basis) might need to be bidirectional, as in standard
BB84, or unidirectional, as in the distributed-phase-reference
(DPR) protocol. As a result of the sifting procedure, both
Alice and Bob have a set of nsift elements.

In the BB84 protocol, Alice stores two bits to describe
the prepared state, the key bit value, and the basis choice.
Bob also stores two-bit information about the measurement
choice and measurement outcome, along with the time stamp
of the detection. After the alignment step, Bob announces one
bit describing the measurement choice for each detection,
and Alice responds with one bit containing the xor value
between Bob’s and her measurement choice. This method is
chosen to reduce communication overhead in the classical
channel. Therefore, the communication rate for basis sifting
in the BB84 protocol is calculated as mBB84BS = 2× nQ bits,
where nQ is the number of measurement outcomes Bob has
recorded.
In the COW protocol, Alice encodes the key information

in two consecutive time bins. Alice’s nsift elements contain
two bits each, describing the prepared state and indicating

VOLUME 4, 2023 4100914

Engineeringuantum
Transactions onIEEE

Venkatachalam et al.: SCALABLE QKD POSTPROCESSING SYSTEM

whether the state is a signal or decoy. Bob’s nsift elements
contain two-bit information: one holds the decoded key bit
and the other indicates which detector clicked (data line
or monitoring detector). Bob also records the time stamp
of the detection. For each detection, Bob announces the
�time stamp/2� information during the alignment phase and
one bit describing the detector click during the basis sifting
phase. In this case, no response is required from Alice to sift
out incompatible detection. Therefore, the communication
rate for basis sifting in the COWprotocol ismCOW

BS = nQ bits,
where nQ is the number of measurement outcomes Bob has
recorded.

E. RECONCILIATION PHASE
IR is a critical phase in every QKD system, aiming to gen-
erate an identical key between the sender and the receiver
through error correction codes (ECCs). Unless the error in
the sifted key is below a certain threshold, it cannot be used to
derive a secure secret key. The process begins with key sifting
of the raw key obtained through quantum transmission. The
error introduced during quantum transmission is then esti-
mated. This error information guides the selection of ECC
parameters, as explained in Section III-E3. In this section,
we introduce a novel approach to effectively implement a
computationally intensive part of the QKD postprocessing
stack. We integrate error estimation, correction, verification,
and PA into a MapReduce framework, demonstrating the
computational advantages of this approach.

1) MAPREDUCE-BASED HARDWARE ACCELERATOR FOR
RECONCILIATION
Hadoop is an open-source ecosystem that enables the stor-
age, processing, and analysis of large volumes of data.
MapReduce is a crucial processing component of the Hadoop
framework. The proposed design framework leverages the
MapReduce programming model to efficiently store and
process large chunks of sifted key vectors obtained from
quantum measurement hardware. This is accomplished at a
rate faster than the FPGA’s clock. The resulting bottlenecks
are overcome by employing new optimization strategies to
buffer data and pipeline the processing of multiple blocks
of sifted key vectors simultaneously. The FPGA’s onboard
block RAM (BRAM) is organized into distinct memory
banks. Each bank buffers data to only one computational
node (a map instance) via a unique address and an indepen-
dent data bus. This allows multiple replicated pipelines to
execute in parallel and optimally utilize the FPGA’s hardware
resources. The implementation is done taking into consid-
eration the hardware resource limitation, the operating fre-
quency, and the throughput of the pipeline, based on which
the best parameter configuration is recommended to improve
pipeline efficiency.
The scheduler, based on MicroBlaze, invokes the MapRe-

duce framework. Running at a clock frequency of 100 MHz,
it operates a C++ SDK-based application that controls and
interconnects all data processing and control modules of the

Algorithm 1: Combined Error Correction and PA Pro-
cess Using the MapReduce Framework.
Input: Sifted_Key_Vector, QBER, Security Parameter
ρ

Output: Final key
Initialisation: binary m ∗ n parity-check matrix Hm∗n
/* Stage 1: the map stage*/
classMapper
Method Map (Sifted_Key_Vector, LDPC Instance)
for each block of Sifted_Key_Vector do
Error_correction (Sifted_Key_Vector, Blocksize)
if BER = 0 then

Emit (Error_Corrected_Key)
end if

end for
for All blocks do

Error_verification
if (Result=success) then
Emit (Error_Corrected_Key, Result)

end if
end for
class Combiner
Method Combine (Error_Corrected_Key, LDPC
Instance)
Emit (Result)
return Combined_Corrected_Key
/* Stage 2: the reduce stage*/

class Reducer
Method Reduce (Combined_Corrected_Key,
Security Parameter)
Privacyamplification()
Emit (Result)
return FinalKey

KDE. The execution of the MapReduce hardware acceler-
ator consists of two stages: map and reduce. In the map
function (first step), subtasks, namely, splitting and mapping,
are performed. First, a splitting function divides the input
stored in onboard synchronous DRAM (SDRAM) (DDR3)
into smaller blocks based on a user-defined block size. The
map function then takes these smaller blocks as input and
performs error correction and error verification (EV) on each
subblock.
The chosen block size for PA is 106 bits or more to miti-

gate the finite-key-security effects [3] of the QKD protocol.
Owing to the resource-intensive nature of ECC for larger
block sizes, the design approach chosen involves multiple
iterations of ECC with smaller block sizes. The output of the
mapper is temporarily stored in block RAM and combined
and sent to the PA module, which acts as the reducer. After
the PA step, the final key is written back to DDR3 memory.
The data flow across these stages is depicted in Fig. 3, and
Algorithm 1 outlines the implementation flow.

4100914 VOLUME 4, 2023

Venkatachalam et al.: SCALABLE QKD POSTPROCESSING SYSTEM Engineeringuantum
Transactions onIEEE

FIGURE 3. MapReduce programming-model-based framework for IR.

The number of mapper instances declared in the design
depends on the input block size and the required output block
size. In our case, the design is tested with two, three, and
four instances of the mapper. The ECC runs a single itera-
tion over a block size of 8192 bits. The input size for the
PA reducer module is 1 007 616 bits, so for three instances
of the mapper, 41 iterations (1 007 616 = 8192× 3× 41)
of each instance are required to generate the desired output
size.
Increasing the number of mapper instances can reduce

the number of iterations, thereby decreasing the time com-
plexity of the implementation, up to a point. This scalabil-
ity potential is demonstrated in Fig. 7. By incorporating a
MapReduce framework into the KDE, a high throughput of
400 kb/s is achieved for a block size of 106 compared to
40 kb/s without MapReduce. Further optimization and more
powerful hardware could potentially scale the design to seven
instances of the mapper, enabling PA on larger block sizes
with a substantial increase in throughput. Our design model
draws inspiration from the implementation of Neshatpour
et al. [20].

2) PARAMETER ESTIMATION
After the sifting process, Alice needs to estimate the ap-
proximate lower limit of the error introduced during the
transmission of quantum states. This estimation is deter-
mined by comparing a randomly sampled subset of the
sifted key vector, which is shared by Bob. The inequality
described in (1) is proved using Chernoff–Hoeffding-type
bounds and is dependent on the sample size. Based on the
deduced error, the key distillation process is either aborted or
continued

Error rate of sampled subset ≈ Error rate

of remaining bits+�. (1)

The approximate error rate is estimated as
∑r

n=1
1
N , where r

represents the number of errored bits received, and N is the
total number of exposed bits. This value is captured as the
quantum bit error rate (QBER) of the quantum channel.
In the proposed design, the random sampling of exposed

bits and the QBER calculation is implemented on the Mi-
croBlaze processing system. This implementation involves
modulo 2 additions and a single 32-bit division operation.
The QBER estimate plays a crucial role in determining
whether a secure secret key can be extracted through fur-
ther processing. If the QBER exceeds a predefined thresh-
old (defined for each protocol, considering errors due to de-
vice and measurement imperfections as well as the amount
of information that can potentially be leaked to an all-
powerful quantum adversary through the devices or the
channel), the iteration is aborted, and the derived key is
discarded.

3) LOW-DENSITY PARITY-CHECK (LDPC) ERROR
CORRECTION
LDPC codes have been extensively researched as forward
ECCs for QKD systems [10], [11], [18]. In the proposed
system, LDPC codes are implemented as an IP core us-
ing the HLS design flow described in [24]. The technique
used to construct the LDPC parity check matrix is known
as protograph code construction. Protograph codes are cre-
ated by expanding a base protograph. The resulting LDPC
parity check matrix is a combination of submatrices. In the
proposed system, an irregular parity check matrix is con-
structed and populated with values from the Galois field of
two elements [GF(2)]. Index positions of the elements of the
matrix containing a value of one are stored in the local mem-
ory of MicroBlaze. The row and column indexes are used
to construct a Tanner graph at the decoder. A soft-decision

VOLUME 4, 2023 4100914

Engineeringuantum
Transactions onIEEE

Venkatachalam et al.: SCALABLE QKD POSTPROCESSING SYSTEM

FIGURE 4. Flow diagram of the LDPC codes.

message-passing decoder propagates the belief deduced for
each syndrome bit iteratively and decodes the sifted key bit
value. The encoding and decoding technique used in the
proposed design is a standard technique described in the lit-
erature [10], [11]. The QBER plays a crucial role in selecting
an efficient LDPC code for the quantum communication sys-
tem. The goal is to choose an LDPC code dimension such that
it maximizes the achievable rate while keeping the error rate
below a certain threshold. This process involves determining
the LDPC code threshold using the measured QBER.
The approach described in the work by Andrew et al. [22]

is followed for deriving the LDPC codes in the proposed
design. This reference likely provides detailed insights into
constructing LDPC codes tailored for quantum communi-
cation systems. Fig. 4 illustrates the algorithmic flow of
the LDPC code implementation, which involves steps such
as code construction, threshold determination, and LDPC
code adaptation based on the measured QBER. The proposed
design incorporates rate-adaptive LDPC codes, which are
designed to adapt to variations in the QBER. These rate-
adaptive LDPC codes are constructed based on the principles
outlined in the work by Elkouss et al. [11]. Here is how
the rate-adaptive LDPC codes work in the proposed design:
The dimension of the parity check matrix is taken as 7680×
8192. As described in the PE module, a subset of the key (the
exposed key) is shared to estimate the QBER. Based on the
estimated QBER, the size of the syndrome vector (denoted
as (7680− f), where f is the reduction factor) is determined
for error reconciliation. This adaptation is achieved using a
technique called “puncturing,” which is further elaborated
in the work by Elkouss et al. [11]. The rate-adaptive LDPC
codes are designed to optimize the code rate based on the
QBER. This optimization involves shortening message bits
and puncturing parity bits to maximize the channel capacity.
The reduction factor f is inversely proportional to the QBER,
and it helps in adjusting the code dimension accordingly.

FIGURE 5. Plot recording the outcome of the Monte Carlo simulations
for QBER from the range of {7–30%} resulting in reduced block sizes
[(8192 − f), in bits] with corresponding code rate as the primary axis.

Through Monte Carlo simulations, the implemented LDPC
codes have been evaluated to be capable of correcting up to
25% block errors, with a maximum tested input size of 109

bits (1 GB) and a maximum of 50 decoder iterations. The
primary objective of rate-adaptive LDPC codes in this design
is to take a full-capacity LDPC code and dynamically adjust
the code rate based on the QBER. This is done to optimize
the code’s performance. Fig. 5 provides an illustration of this
rate adaptation process.

4) ERROR VERIFICATION
EV is an essential step followed by error correction to ensure
the integrity of the decoded key vector. There still remains
a finite probability that the sifted key vector shared between
Alice and Bob may contain errors necessitating an additional
step of EV. To implement this integrity check, we employ
the universal hash function technique referred to in [7]. The
error-corrected key, along with a preshared key, serves as in-
put to the hash function. This preshared key can be generated
either from the FPGA-based true random number generator
(TRNG) module or as part of the QKD-generated key from
the previous iteration.
In our implementation, the block size of the input is large.

To ensure information-theoretic security, a preprocessing
procedure, as shown in Algorithm 2, is employed to extract
128 bits from a large input block, as required by the archi-
tecture of the Poly1305 algorithm [5]. This output, associated
with each chunk [C1,C2, . . . ,Ct], along with the 256-bit pre-
shared key, is used as input to Poly1305, which generates a
128-bit tag. The tags generated by both Alice and Bob are
compared at Bob’s end. Bob then communicates the EV flag
to Alice. If any of the tags are erroneous, the specific chunk
will be discarded.

5) PRIVACY AMPLIFICATION
PA is one of the most vital postprocessing steps. Within
postprocessing, the transmission of the key vector fromAlice
to Bob requires mandatory classical communication for sift-
ing, error detection, correction, and verification, which can
lead to information leakage. Information leakage can also
occur due to eavesdropping attacks on the quantum channel.

4100914 VOLUME 4, 2023

Venkatachalam et al.: SCALABLE QKD POSTPROCESSING SYSTEM Engineeringuantum
Transactions onIEEE

Algorithm 2: EV Algorithm.
Input: Error-corrected key of size N.
Output: t Tags each 128 bits.
t ← Number of Tags
k ← 128
Eck ← Error_Corrected_Key[b1, . . . , bN]
[c1, c2, . . . , ct]← Split(Eck)
Size← N

t
while Size > k bits do

for i← 1, t� Iterate over each chunk do
D2i−1,D2i← Split(ci) � Di, size = size/2
Ci← XOR(D2i−1,D2i)

end for
Size← Size

2
end while
TagAlice,i← Poly1305(Ci,Alice random seed))
TagBob,i ← Poly1305(Ci,Bob random seed))
Send TagAlice,i to Bob
Verify TagAlice,i == TagBob,i

Therefore, to ensure a strict level of security, it is necessary
to eliminate this amount of leaked information through a
PA step. In PA, the partially secure key is transformed into
a completely secure key through public discussion. This is
achieved by computing a publicly chosen two-universal hash
function of the key vector. We use Toeplitz hashing to alter
the error-corrected key vector by an adjustable compression
ratio, guaranteeing the security of the remaining secret key
bits. The compression ratio is derived from the estimate of
the information leakage [39].
A very simple implementation idea for a large-scaled PA

scheme is to directly perform multiplication operations be-
tween the weak key W and the Toeplitz matrix T (A), re-
sulting in a computational complexity of O(n2). We reduce
the complexity to O(n log n) by using fast Fourier transform
instead of normal multiplication [8].W is taken as the error-
corrected key, which is of length n. Both Alice and Bob
decide on a final secure key length, denoted as r, with rig-
orous statistical analysis. Furthermore, Alice and Bob pub-
licly discuss a random seed of length (n− 1) to construct
the universal hash function. The random seed is generated
using an FPGA-based TRNG at Alice. Our PA scheme for
KDE mainly consists of three steps, i.e., splitting with shuf-
fling, sub-PA, and secure key merging, as described in detail
in [8].

F. AUTHENTICATION OF QKD SYSTEMS WITH PUF
The QKD system requires authentication to ensure that the
received data are from the intended device and to verify
that there have been no modifications in the data received
through a public channel. Numerous techniques have been
introduced to authenticate the public channel; however, the

state-of-the-art authenticationmechanisms are based on clas-
sical cryptographic primitives and are only loosely coupled
with QKD hardware electronics.
In our article, we have implemented an arbiter PUF-

enabledmutual device authentication protocol [2]. PUFs rep-
resent a promising security primitive that guarantees unclon-
ability, uniqueness, and tamper-evident properties. Our goal
is to employ PUFs for QKD device identification and data
integrity maintenance, effectively addressing the security re-
quirements of QKD systems and providing a means to verify
the integrity of both the device and the transmitted message.
Our approach involves implementing an Arbiter PUF-

enabled mutual device authentication protocol to establish
authenticity and integrity among the devices participating
in the quantum key negotiation process. The execution of
PUF-based authentication occurs at two levels. In the first
level, during device enrollment, the device’s unique identity
is presented as a challenge to the PUF, and the response
is recorded and extracted. This information exchange takes
place exclusively through a secure channel and is a one-time
enrollment process. During authentication, the QKD system
necessitates a public channel for communication. Therefore,
each QKD device, in conjunction with KDE, is equipped
with a PUF, where the response depends on its unique physi-
cal characteristics. If an attacker attempts to tamper with the
hardware or software associated with the QKD device, any
deviation from the device’s expected behavior is detected,
indicating a potential breach of privacy. Consequently, under
reasonable assumptions, PUFs are more secure and robust
against device tampering andman-in-the-middle attacks over
the classical channel for QKD, given their tight integration
with the hardware governing the QKD system.

G. ADVANCED ENCRYPTION STANDARD (AES)
ENCRYPTION
We have implemented an efficient hardware architecture for
the AES-256. The AES algorithm, as defined by the Na-
tional Institute of Standards and Technology of the United
States, has gained widespread acceptance. Our implementa-
tion achieves a throughput exceeding 10 Gb/s for both en-
cryption and decryption processes when utilizing the Xilinx
Virtex Family device XC7VX485T. The hardware design
approach relies on precalculated lookup tables (LUTs) and
parallelly executable instances, resulting in a less complex
architecture that offers high throughput and low latency. The
speedup is achieved by running the key expansion module
independently of the AES rounds. AES with a larger key size
is considered resistant to attacks by powerful quantum ad-
versaries, making it an ideal choice for applications utilizing
QKD-generated keys. Consequently, AES is employed for
secure image, video, or message encryption.

IV. EXPERIMENTAL SETUP
To validate and analyze the performance of the KDE de-
signed and implemented, data were collected from quantum
experiments conducted at the Physics Research Laboratory

VOLUME 4, 2023 4100914

Engineeringuantum
Transactions onIEEE

Venkatachalam et al.: SCALABLE QKD POSTPROCESSING SYSTEM

FIGURE 6. Experimental scheme of (a) BB84 protocol and (b) BBM92 protocol, which includes both optical and electronic arrangements.
EPS: entangled photon source, FM: flip mirror, PM: prism mirror, M: mirror, F: filter, FC: fiber coupler, BS: balanced beam splitter, PBS: polarization beam
splitter, DPBS: dual-wavelength PBS, HWP: half-wave plate, SMF: single-mode fiber, MMF: multimode fiber, SPCM: single-photon counting modules,
PPKTP: Periodically poled potassium titanyl phosphate. LD: laser driver, BD: beam dumper.

in Ahmedabad, India, where the polarization-based BB84
QKD protocol [6] and the BBM92 QKD protocol were im-
plemented. Details of the experimental setups are depicted in
Fig. 6. In the BB84 setup shown in Fig. 6(a), weak coherent
pulses are generated by using a variable optical attenuator at
the output of a pulsed laser with a repetition rate of 80 MHz.
The encoded state is then propagated in a free-space lossy
medium with channel transmissivity estimated at 70%. At
Bob, there is a polarization-based detection setup consisting
of a balanced beam splitter (BS; a passive random basis se-
lector) with a polarizing beam splitter (PBS) on the reflected
arm (measurement in H,V), and a combination of the half-
wave plate with PBS (measurement in D,A) on the trans-
mitted arm. At the output ports of the PBS, the photons are
detected by fiber-coupled avalanche photodiodes (Excelitas
SPCM AQRH-14-FC). The BBM92 protocol is just the en-
tangled version of the BB84 protocol. The BBM92 protocol
involves pairs of entangled photons. In this protocol, a com-
mon sender prepares the entangled photon source and sends
it to Alice andBob through the quantum channel. In Fig. 6(b),
the polarization Sagnac interferometer is used to prepare en-
tangled photons. In this interferometry, a diagonally polar-
ized 405-nm continuous-wave laser with an output power of
∼ 5 mW is used to pump a 30-mm-long Type-0 periodically
poled potassium titanyl phosphate (PPKTP) crystal of period
3.425 μm. A lens L1 of focal length 400 mm is used to focus
the pump beam on the crystal to generate entangled photons.
The horizontally polarized pump beam is transmitted through
the dual-wavelength PBS (DPBS) in a clockwise direction,
and vertically polarized light is reflected through the DPBS
in a counterclockwise direction. Since both the clockwise
and counterclockwise pump beams follow the same path but
in opposite directions inside the Sagnac interferometer and
the Type-0 PPKTP crystal is placed symmetric to the DPBS,
the implemented scheme is robust against any optical path
changes to produce spontaneous parametric downconversion
photons in orthogonal polarizations with ultrastable phase.
At the output of the Sagnac interferometer, a filter is used

TABLE 1 Performance Metrics of Each KDE Module Implemented on
Hardware Including Both Alice’s and Bob’s Design

TABLE 2 Utilization Report of the Alice (Transmitter) and Bob (Receiver)
KDE Designs Without MapReduce Framework (WOMF), and With
MapReduce Framework (WMF; Three Parallel Instances)

to block the pump beam while transmitting the entangled
photons. A prism mirror is used to separate the entangled
photon pairs. One photon is sent to Alice, and another photon
is sent to Bob (each has a detection setup) through launching
optics. The detection setup is the same as BB84. The output
from the SPD is fed into electronics for recording the counts
per integration time, and these data are then used to derive
the sifted key vector. The sifted key vector is the input to the
KDE.

V. IMPLEMENTATION AND ANALYSIS
The developed KDE hardware design is tested and veri-
fied using quantum bits (raw key vector) collected from the

4100914 VOLUME 4, 2023

Venkatachalam et al.: SCALABLE QKD POSTPROCESSING SYSTEM Engineeringuantum
Transactions onIEEE

TABLE 3 MapReduce-Based IR; Implementation Validation on Intel CPU Core for {1,3,4} Number of Parallel Instances Using Python’s Inbuilt Functional
Programming Feature, Running the Same Algorithms

quantum experiments implementing the BB84 protocol [see
Fig. 6(a)], the BBM92 protocol [see Fig. 6(b)], and the COW
protocol. The QKD control and postprocessing hardware de-
signs are implemented on a Virtex-7 VX485T Xilinx FPGA.
Table 2 provides a record of the area and utilization pa-
rameters for the hardware implementation of the KDE de-
sign, both with MapReduce framework (WMF) and without
MapReduce framework (WOMF) in the parallel architecture.
Utilization summaries of the transmitter (Alice) and receiver
(Bob) designs with three parallel instances are captured in
WMF.
Table 1 records the implementation efficiency and perfor-

mance of each module in KDE design in terms of latency
and key rate. The execution time is determined by consider-
ing both the number of clock cycles required to process the
module and the clock period, determined by the board’s clock
frequency. The key rate is derived from the total input block
size divided by the time and the maximum delay path.
In terms of resource utilization, an increase in the uti-

lization of logic cells and block RAM units is observed in
Table 2, only on the receiver side with theMapReduce frame-
work. This is primarily due to the computationally intensive
LDPC decoder. This can be reduced by adopting optimized
decoder implementations. The experiment is conducted for
each protocol, collecting and processing 10 MB of raw key
bits. The variations in QBER recorded in the experiments
are used to validate the effectiveness of rate-adaptive LDPC
codes with a threshold error correction capacity of 25% at
90% efficiency. Table 3 summarizes the average performance
of both the FPGA implementation and CPU core imple-
mentation. Table 4 presents the performance of our imple-
mented design across various QKD experimental settings
and compares performance at different QBER values. It is
worth noting that while increasing the number of parallel
instances, there is a significant increase in key rate and subse-
quently a decrease in utilization time due to the parallel post-
processing system implementation. Performancewise, Fig. 7
illustrates that as QBER increases, execution time or la-
tency also increases, inversely affecting the secret key ex-
traction rate. However, leveraging more parallel instances

TABLE 4 Implementation Results for Multiple Parallel Instances of the
Mapper

in the design can reduce latency, thereby increasing the
key rate.

VI. FUTURE WORK AND OPEN CHALLENGES
Our experimental studies provide valuable insights into com-
plexity estimation, computing resource requirements, and
bandwidth needs for establishing a fully integrated QKD
system. These findings lay the groundwork for the fu-
ture development of large-scale commercial QKD systems.
The proposed work utilizes a generic MapReduce design
framework, which can be extended to build interconnected
FPGA-based systems for large-scale applications. Future
work may explore novel approaches, such as viewing FP-
GAs as individual coprocessors within computing clusters
with server–client architecture, offering scalability for QKD
systems. Nonetheless, several challenges remain. First, the
complexity of the FPGA-based framework for quantum key
reconciliation on large datasets requires further optimiza-
tion for enhanced efficiency and performance. Second, the
integration of QKD systems with reconfigurable FPGA

VOLUME 4, 2023 4100914

Engineeringuantum
Transactions onIEEE

Venkatachalam et al.: SCALABLE QKD POSTPROCESSING SYSTEM

FIGURE 7. Plot of (a) number of parallel instances of mapper in the
Hadoop framework versus execution time in seconds and (b) execution
time, in seconds, versus key rate in kb/s, for COW, BB84, and BBM92
QKD protocols at varying QBER (measured during the quantum
experiment).

accelerators presents challenges in terms of interoperabil-
ity and reconfigurability. Third, QKD systems are sensi-
tive to clock synchronization and memory management, re-
quiring solutions and optimizations to achieve reasonable
performance.

VII. CONCLUSION
In this article, we presented a design that enhances scalabil-
ity and enables faster key reconciliation for QKD systems
by leveraging the FPGA-based MapReduce architecture. We
introduced a novel reconfigurable architecture that optimizes
resources through the use of reusable blocks. In addition, our
research introduced a PUF-based authentication protocol to
facilitate mutual device authentication and secure message
exchange for QKD devices. Our experimental results demon-
strated that the hardware design strikes a balance between
resource utilization and throughput. Consequently, imple-
mentingMapReduce-based QKD postprocessing functional-
ity directly in hardware emerges as a preferred technique to
meet the computational and critical security requirements of
commercial QKD systems. An added advantage of FPGA-
based key distillation is its capacity to enhance performance
and compatibility with various QKD experimental setups.
Typically, a QKD KDE utilizes a combination of individual
IP core libraries to construct complete postprocessing pro-
tocols, including a data encryption module. This approach
allows for the creation of a securemulti-QKD protocol-based

key distillation hardware with FPGA systems. For those in-
terested, the source codes supporting the findings of this
study are available upon reasonable request from the corre-
sponding author. Access to the code can also be requested
via the GitHub repository.1

ACKNOWLEDGMENT
The authors would like to acknowledge and thank Dr. Jothi
Ramalingam and Sarika K Menon for their invaluable as-
sistance and insightful discussions. The authors would also
like to acknowledge M. Swathi Mithran for his support and
assistance.

REFERENCES
[1] A. Alhamali et al., “FPGA-accelerated Hadoop cluster for deep learning

computations,” in Proc. IEEE Int. Conf. Data Mining Workshop, 2015,
pp. 565–574, doi: 10.1109/ICDMW.2015.148.

[2] N. N. Anandakumar, M. S. Hashmi, and M. A. Chaudhary, “Implemen-
tation of efficient XOR arbiter PUF on FPGA with enhanced unique-
ness and security,” IEEE Access, vol. 10, pp. 129832–129842, 2022,
doi: 10.1109/ACCESS.2022.3228635.

[3] D. Bacco, M. Canale, N. Laurenti, G. Vallone, and P. Villoresi, “Ex-
perimental quantum key distribution with finite-key security analysis
for noisy channels,” Nature Commun., vol. 4, no. 1, pp. 1–8, 2013,
doi: 10.1038/ncomms3363.

[4] C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Exper-
imental quantum cryptography,” J. Cryptol., vol. 5, no. 1, pp. 3–28, 1992,
doi: 10.1007/BF00191318.

[5] D. J. Bernstein, “The poly1305-AES message-authentication code,”
in Proc. Int. Workshop Fast Softw. Encryption, 2005, pp. 32–49,
doi: 10.1007/11502760_3.

[6] A. Biswas, A. Banerji, N. Lal, P. Chandravanshi, R. Kumar, and R. P.
Singh, “Quantum key distribution with multiphoton pulses: An advan-
tage,” Opt. Continuum, vol. 1, no. 1, pp. 68–79, 2022, doi: 10.1364/OPT-
CON.445727.

[7] J. L. Carter and M. N. Wegman, “Universal classes of hash func-
tions,” J. Comput. Syst. Sci., vol. 18, no. 2, pp. 143–154, 1979,
doi: 10.1016/0022-0000(79)90044-8.

[8] J. Constantin et al., “An FPGA-based 4Mbps secret key distillation engine
for quantum key distribution systems,” J. Signal Process. Syst., vol. 86,
no. 1, pp. 1–15, 2017, doi: 10.1007/s11265-015-1086-1.

[9] K. Cui, J. Wang, H.-F. Zhang, C.-L. Luo, G. Jin, and T.-Y. Chen, “A real-
time design based on FPGA for expeditious error reconciliation in QKD
system,” IEEE Trans. Inf. Forensics Secur., vol. 8, no. 1, pp. 184–190,
Jan. 2013, doi: 10.1109/TIFS.2012.2228855.

[10] AR Dixon and H. Sato, “High speed and adaptable error correction for
megabit/s rate quantum key distribution,” Sci. Rep., vol. 4, no. 1, pp. 1–6,
2014, doi: 10.1038/srep07275.

[11] D. Elkouss, J. Martinez-Mateo, and V. Martin, “Information rec-
onciliation for quantum key distribution,” 2010, arXiv:1007.1616,
doi: 10.48550/arXiv.1007.1616.

[12] B. Frhlich et al., “Long-distance quantum key distribution secure
against coherent attacks,” Optica, vol. 4, no. 1, pp. 163–167, 2017,
doi: 10.1364/OPTICA.4.000163.

[13] M. Gurel, A Comparative Study Between RTL and HLS for Image Pro-
cessing ApplicationsWith FPGAs. San Diego, CA, USA: Univ. California,
2016.

[14] K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quantum
key distribution using coherent light,” Phys. Rev. A, vol. 68, no. 2, 2003,
Art. no. 022317, doi: 10.1103/PhysRevA.68.022317.

[15] A. Kerckhoffs, “La cryptographie militaire,” J. des Sci.
Mil., vol. IX, pp. 5–38, Jan. 1883. [Online]. Available:
https://petitcolas.net/kerckhoffs/crypto_militaire_2.pdf

[16] H. Li and Y. Pang, “FPGA-accelerated quantum computing emulation
and quantum key distillation,” IEEE Micro, vol. 41, no. 4, pp. 49–57,
Jul./Aug. 2021, doi: 10.1109/MM.2021.3085431.

1https://github.com/SETSQKD

4100914 VOLUME 4, 2023

https://dx.doi.org/10.1109/ICDMW.2015.148
https://dx.doi.org/10.1109/ACCESS.2022.3228635
https://dx.doi.org/10.1038/ncomms3363
https://dx.doi.org/10.1007/BF00191318
https://dx.doi.org/10.1007/11502760_3
https://dx.doi.org/10.1364/OPTCON.445727
https://dx.doi.org/10.1364/OPTCON.445727
https://dx.doi.org/10.1016/0022-0000(79)90044-8
https://dx.doi.org/10.1007/s11265-015-1086-1
https://dx.doi.org/10.1109/TIFS.2012.2228855
https://dx.doi.org/10.1038/srep07275
https://dx.doi.org/10.48550/arXiv.1007.1616
https://dx.doi.org/10.1364/OPTICA.4.000163
https://dx.doi.org/10.1103/PhysRevA.68.022317
https://petitcolas.net/kerckhoffs/crypto_militaire_2.pdf
https://dx.doi.org/10.1109/MM.2021.3085431
https://github.com/SETSQKD

Venkatachalam et al.: SCALABLE QKD POSTPROCESSING SYSTEM Engineeringuantum
Transactions onIEEE

[17] M.Makni, M. Baklouti, S. Niar, andM. Abid, “Hardware resource estima-
tion for heterogeneous FPGA-based SoCs,” in Proc. Symp. Appl. Comput.,
2017, pp. 1481–1487, doi: 10.1145/3019612.3019683.

[18] J. Martinez-Mateo, C. Pacher, M. Peev, A. Ciurana, and V. Martin,
“Demystifying the information reconciliation protocol cascade,” 2014,
arXiv:1407.3257, doi: 10.48550/arXiv.1407.3257.

[19] P. Moreira, J. Serrano, T. Wlostowski, P. Loschmidt, and G. Gaderer,
“White rabbit: Sub-nanosecond timing distribution over ethernet,” inProc.
Int. Symp. Precis. Clock Synchronization Meas., Control Commun., 2009,
pp. 1–5, doi: 10.1109/ISPCS.2009.5340196.

[20] K. Neshatpour et al., “Energy-efficient acceleration of MapReduce appli-
cations using FPGAs,” J. Parallel Distrib. Comput., vol. 119, pp. 1–17,
2018, doi: 10.1016/j.jpdc.2018.02.004.

[21] D. K. L. Oi et al., “CubeSat quantum communications mis-
sion,” EPJ Quantum Technol., vol. 4, pp. 1–20, 2017, doi:
10.1140/epjqt/s40507-017-0060-1.

[22] A. K. Pradhan, A. Thangaraj, and A. Subramanian, “Construction of
near-capacity protograph LDPC code sequences with block-error thresh-
olds,” IEEE Trans. Commun., vol. 64, no. 1, pp. 27–37, Jan. 2016,
doi: 10.1109/TCOMM.2015.2500234.

[23] M. Qasaimeh, K. Denolf, J. Lo, K. Vissers, J. Zambreno, and P. H. Jones,
“Comparing energy efficiency of CPU, GPU and FPGA implementations
for vision kernels,” in Proc. IEEE Int. Conf. Embedded Softw. Syst., 2019,
pp. 1–8, doi: 10.1109/ICESS.2019.8782524.

[24] U. Sisodia, “Using high-level synthesis to migrate open source software
algorithms to semiconductor chip designs,” in System Level Flows for SoC
Architecture Analysis and Design. Noida, India: CircuitSutra Technolo-
gies, 2020.

[25] A. Stanco et al., “Versatile and concurrent FPGA-based architecture for
practical quantum communication systems,” IEEE Trans. Quantum Eng.,
vol. 3, 2022, Art. no. 6000108, doi: 10.1109/TQE.2022.3143997.

[26] D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and
simple one-way quantum key distribution,” Appl. Phys. Lett., vol. 87,
no. 19, 2005, Art. no. 194108, doi: 10.1063/1.2126792.

[27] A. Tanaka et al., “High-speed quantum key distribution system for 1-Mbps
real-time key generation,” IEEE J. Quantum Electron., vol. 48, no. 4,
pp. 542–550, Apr. 2012, doi: 10.1109/JQE.2012.2187327.

[28] N. Walenta et al., “A fast and versatile quantum key distribu-
tion system with hardware key distillation and wavelength multi-
plexing,” New J. Phys., vol. 16, no. 1, 2014, Art. no. 013047,
doi: 10.1088/1367-2630/16/1/013047.

[29] W. Wang, K. Tamaki, and M. Curty, “Measurement-device-independent
quantum key distribution with leaky sources,” Sci. Rep., vol. 11, no. 1,
pp. 1–11, 2021, doi: 10.1038/s41598-021-81003-2.

[30] F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, “Secure quantum key
distributionwith realistic devices,”Rev.Modern Phys., vol. 92, no. 2, 2020,
Art. no. 025002, doi: 10.1103/RevModPhys.92.025002.

[31] S.-S. Yang, Z.-G. Lu, and Y.-M. Li, “High-speed post-processing in
continuous-variable quantum key distribution based on FPGA implemen-
tation,” J. Lightw. Technol., vol. 38, no. 15, pp. 3935–3941, Aug. 2020,
doi: 10.1109/JLT.2020.2985408.

[32] Z. Yuan et al., “10-Mb/s quantum key distribution,” J. Lightw.
Technol., vol. 36, no. 16, pp. 3427–3433, Aug. 2018, doi:
10.1109/JLT.2018.2843136.

[33] H.-F. Zhang et al., “Real-time QKD system based on FPGA,” J.
Lightw. Technol., vol. 30, no. 20, pp. 3226–3234, Oct. 2012, doi:
10.1109/JLT.2012.2217394.

[34] J. Zhou, B. Liu, and B. Zhao, “A pipeline optimization model for QKD
post-processing system,” in Proc. Inf. Commun. Technol.-EurAsia Conf.,
2014, pp. 472–481, doi: 10.1007/978-3-642-55032-4_48.

[35] M. D. Zwagerman, “High level synthesis, a use case comparison with
hardware description language,”M.S. thesis, School of Eng., Grand Valley
State Univ., Allendale Charter Township, MI, USA, 2015.

[36] C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography
without Bell’s theorem,” Phys. Rev. Lett., vol. 68, no. 5, pp. 557–559,
1992, doi: 10.1103/PhysRevLett.68.557.

[37] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key dis-
tribution and coin tossing,” in Proc. IEEE Int. Conf. Comput., Syst., Signal
Process., 1984, pp. 175–179, doi: 10.1016/j.tcs.2014.05.025.

[38] M. Adamič and A. Trost, “A fast high-resolution time-to-digital converter
implemented in a Zynq 7010 SoC,” in Proc. Austrochip Workshop Micro-
electronics, 2019, pp. 29–34, doi: 10.1109/Austrochip.2019.00017.

[39] C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer, “Gener-
alized privacy amplification,” IEEE Trans. Inf. Theory, vol. 41, no. 6,
pp. 1915–1923, Nov. 1995, doi: 10.1109/18.476316.

Natarajan Venkatachalam (Member, IEEE)
received the M.Sc. degree in applied mathemat-
ics and Ph.D. degree in computational sciences
from Anna University, Chennai, India, in 2010
and 2015, respectively.

He is currently a Scientist with the Society
for Electronic Transactions and Security (SETS),
Chennai, and has worked in the cybersecurity
area for nearly 15 years. Prior to joining the
SETS, he was a Postdoctoral Research Associate
with Quantum Engineering Technology, Univer-

sity of Bristol, Bristol, U.K. His research interests include secure quantum
communications and experimental quantum key distribution systems, in
particular fundamental, and applied postquantum cryptography.

Dr. Venkatachalam is an Active Member of the Cryptology Research
Society of India and the Computer Society of India.

Foram P. Shingala received the M.E. degree in
computer science and engineering from Madras
Institute of Technology, Chennai, India, in 2017.

She is currently a Scientist with the Society for
Electronic Transactions and Security, Chennai.
She has worked on the proof-of-concept demon-
stration of coherent one-way quantum key distri-
bution (QKD) system with field-programmable-
gate-array-based classical reconciliation algo-
rithms for QKD. Her current research interests
include quantum cryptography and computing.

Selvagangai C received the M.E. degree in very
large scale integration design from the PSG Col-
lege of Technology, Coimbatore, India, in 2018.

In 2019, she joined the Society for Electronic
Transactions and Security, Chennai, India, as a
Research Fellow. Her current research interests
include classical reconciliation and key distilla-
tion algorithms for quantum key distribution and
field-programmable gate array programming.

Hema Priya S received the B.Tech. degree in
electronics and communication and the M.Tech.
degree in very large scale integration design from
Anna University, Chennai, India, in 2015 and
2017, respectively.

She is currently a Project Scientist with the
Society for Electronic Transactions and Secu-
rity, Chennai. Her research interests include field-
programmable gate array design and verification,
quantum cryptography, and hardware security.

VOLUME 4, 2023 4100914

https://dx.doi.org/10.1145/3019612.3019683
https://dx.doi.org/10.48550/arXiv.1407.3257
https://dx.doi.org/10.1109/ISPCS.2009.5340196
https://dx.doi.org/10.1016/j.jpdc.2018.02.004
https://dx.doi.org/10.1140/epjqt/s40507-017-0060-1
https://dx.doi.org/10.1109/TCOMM.2015.2500234
https://dx.doi.org/10.1109/ICESS.2019.8782524
https://dx.doi.org/10.1109/TQE.2022.3143997
https://dx.doi.org/10.1063/1.2126792
https://dx.doi.org/10.1109/JQE.2012.2187327
https://dx.doi.org/10.1088/1367-2630/16/1/013047
https://dx.doi.org/10.1038/s41598-021-81003-2
https://dx.doi.org/10.1103/RevModPhys.92.025002
https://dx.doi.org/10.1109/JLT.2020.2985408
https://dx.doi.org/10.1109/JLT.2018.2843136
https://dx.doi.org/10.1109/JLT.2012.2217394
https://dx.doi.org/10.1007/978-3-642-55032-4_48
https://dx.doi.org/10.1103/PhysRevLett.68.557
https://dx.doi.org/10.1016/j.tcs.2014.05.025
https://dx.doi.org/10.1109/Austrochip.2019.00017
https://dx.doi.org/10.1109/18.476316

Engineeringuantum
Transactions onIEEE

Venkatachalam et al.: SCALABLE QKD POSTPROCESSING SYSTEM

Dillibabu S received the B.E. degree in electron-
ics and communication engineering from Anna
University, Chennai, India, in 2005.

He is currently a Scientist with the Society for
Electronic Transactions and Security, Chennai.
He is also a Ph.D. Research Scholar with the
Worcester Polytechnic Institute, Worcester, MA,
USA. He has experience in the field of cryptog-
raphy and hardware security for 16 years. His
research interests include differential power anal-
ysis from cryptography, side-channel analysis of

hardware cryptographic modules, and postquantum cryptography.

Pooja Chandravanshi received the B.Tech.
degree in electronics and telecommunication
from the Bhilai Institute of Technology (BIT),
Durg Chhattisgarh, India, in 2016.

She is currently a Scientist with the Physical
Research Laboratory, Ahmedabad, India. Her re-
search interests include electronic circuits and
field implementation of quantum key distribution
protocols.

Ravindra P. Singh is currently a Senior Profes-
sor and the Chair of Atomic, Molecular and Opti-
cal Physics Division, Physical Research Labora-
tory, Ahmedabad, India. His research interests in-
clude light scattering, phase singularities of light,
nonlinear optics, quantum optics, and quantum
information. He is also engaged in experiments
on high dimensional entangled states, free space
quantum communication, satellite-based quan-
tum key distribution, and quantum radar.

4100914 VOLUME 4, 2023

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

