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ABSTRACT This article proposes circular hidden quantum Markov models (c-HQMMs), which can be
applied for modeling temporal data. We show that c-HQMMs are equivalent to a tensor network (more
precisely, circular local purified state) model. This equivalence enables us to provide an efficient learning
model for c-HQMMs. The proposed learning approach is evaluated on six real datasets and demonstrates
the advantage of c-HQMMs as compared to HQMMs and HMMs.

INDEX TERMS Hidden quantum Markov model (HQMM), tensor network.

I. INTRODUCTION
Hidden Markov models (HMMs) are commonly used for
modeling temporal data, usually, in cases where the under-
lying probability distribution is unknown, but certain output
observations are known [1], [2]. Hidden quantum Markov
models (HQMMs) [3], [4] can be thought of as a reformu-
lation of HMMs in the language of quantum systems (see
Section II for formal definition). It has been shown that quan-
tum formalism allows for a more efficient description of a
given stochastic process than the classical case [3], [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13]. This article proposes
circular HQMMs and validates them to bemore efficient than
HQMMs.
We note that circular HMMs (c-HMMs) have been

proposed to model HMMs, where the initial and terminal
hidden states are connected through the state transition
probability [14]. c-HMMs have found application in speech
recognition [15], [16], biology and meteorology [17],
shape recognition [14], [18], biomedical engineering [19],
among others. Given the improved performance of c-HMMs
compared to HMMs, it remains open if such an extension
can be done for HQMMs, which is the focus of this article.
Even though multiple algorithms for learning HQMMs

have been studied, direct learning of the model parameters
is inefficient and results in poor local-optimal points [20]. To

deal with this challenge, a tensor network-based approach is
used to learn HQMMs [13], based on a result that HQMM
is equivalent to uniform locally purified states (LPS) ten-
sor network. The model in [13] deals with infinite horizon
HQMM, which involves uniform Kraus operators and, thus,
uniform LPS. Recently, a different learning approach was
proposed in [21] focusing on learning unitary parametriza-
tion of HQMMs. In this article, we model a finite sequence
of random variables, allowing us to have different Kraus
operators at each time instant. Furthermore, we extend the
finite-horizon HQMMs to circular HQMMs (c-HQMMs).
To train the parameters of the c-HQMM, we show the

equivalence of c-HQMMwith a class of tensor networks. To
do that, we first define a class of tensor networks called circu-
lar LPS (c-LPS). Then, we show that c-HQMM is equivalent
to c-LPS. Finally, we propose an algorithm to train c-LPS,
thus providing an efficient algorithm for learning c-HQMMs.
The results in this article show equivalence of finite-
horizon HQMMs and c-HQMMs to the corresponding tensor
networks. The key contributions of this work are summarized
as follows.

1) We propose c-HQMM for modeling finite-horizon
temporal data in Section III-A.
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FIGURE 1. Representation of a Moore-type HMM with observation
variables Yi , latent variables Xi , transition matrices Ai ⇐⇒ p(Xt |Xt−1),
emission matrices Ci ⇐⇒ p(Yt |Xt ), and prior probability π ⇐⇒ p(X1).

2) We propose c-LPS tensor networks in Section III-B,
and we show that c-HQMMs are equivalent to c-LPS
in Section III-C.

3) The connection between finite horizon HQMMs,
which involve nonuniform Kraus operators, and
nonuniform LPS is formalized and discussed in
Section III-C

4) We provide a learning algorithm for c-HQMM using
the tensor network equivalence in Section IV.

In order to validate the proposed framework of c-HQMM
and the proposed learning algorithm, we compare with stan-
dardHMMs (equivalent toMPSwith nonnegative real entries
in decomposition) and HQMMs. Numerical evaluation on
realistic datasets demonstrates the improved performance of
c-HQMMs for modeling temporal data.

II. RELATED WORK AND BACKGROUND
In this section, we briefly review the key related literature on
HMMs and tensor networks, with relevant definitions.

A. HIDDEN MARKOV MODELS
HMMs [1], [2] are a class of probabilistic graphical mod-
els with the greatest use in problems that enjoy an inherent
temporality. These problems consist of a process that unfolds
in time, i.e., we have states at time t that are influenced
directly by a state at t − 1. HMMs have found application in
such problems, for instance, speech recognition [22], gesture
recognition [23], face recognition [24], finance [25], com-
putational biology [26], [27], [28], among others. A hidden
Markov model can be defined in one of two ways: 1) Mealy
or 2) Moore, depending on the formulation. As shown in
Fig. 1, a finite-horizon Moore-type hidden Markov model
or HMM consists of a discrete-time, discrete-state Markov
chain, with hidden states Xt ∈ {1, . . . , r}, t ∈ {1, . . . ,N},1
plus an observation model p(yt |xt ). The corresponding joint
distribution has the form

p(X1:N,Y1:N ) = p(X1:N )p(Y1:N |Y1:N )

= p(X1)p(Y1|X1)�N
t=2p(Xt |Xt−1)p(Yt |Xt ).

(1)

1Finite horizon implies that N is finite, and thus the distributions can
depend on the time-index. This article focuses on finite horizon probability
distributions.

FIGURE 2. Mealy input–output HMM.

A Mealy input–output HMM [29] is a generalized Mealy
finite-state machine, in which the added layer of observed
nodes that represents a second observed sequence affects
the output sequence through the mediation of a hidden state
as shown in Fig. 2. As opposed to Moore-type HMM, the
observation no longer depends on current hidden state, but
on the previous hidden state and the input token. Note that
the expressive power of Moore and Mealy models are the
same [30]. But, the Mealy input–output HMMs are more
aligned to the definition of HQMM in the following section.

B. HIDDEN QUANTUM MARKOV MODEL
HQMM was introduced in [3] to model evolution from one
quantum state to another while generating classical output
symbols. To produce an output symbol, a measurement or
Kraus operation [31] is performed on the machine’s inter-
nal state. One can use an auxiliary quantum system called
ancilla to implement a Kraus operation. In every time step,
the internal state of the HQMM interacts with its ancilla,
which is then read out by a projective measurement. After
every measurement, the ancilla is reset into its initial state,
while the internal state of the HQMM remains hidden [4].
As in the classical case, an HQMM can be composed by the
repeated application of the quantum sum rule (plays the role
of transition matrices in HMMs) and quantum Bayes rule
(plays the role of emission matrices in HMMs) [32] encoded
using the sets of Kraus operators {Kt,w} (where the subscripts
w coincide with the output symbols of the HQMMmachine)
and {Kt,x} (where the subscripts x coincide with the given
observations), respectively, for t ∈ {1, . . . ,N}

ρ′
t =

∑
w

Kt,wρt−1K
†
t,w (quantum sum rule)

ρt = Kt,xρ′
tK

†
x

tr(
∑

x Kt,xρ
′
tK

†
t,x)

. (quantum Bayes rule)

We can condense these two expressions into a single term
for a given observation x by setting Kt,x,w = Kt,xKt,w, for
t = 1, . . . ,N, as follows:

ρt|x =
∑

w Kt,x,wρt−1|xK
†
t,x,w

tr(
∑

w Kt,x,wρt−1|xK
†
t,x,w )

. (state update rule)
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We now formally define HQMMs using the Kraus
operator-sum representation (the definition is modified
from [20] to account for finite N).
Definition 1 (HQMM): An N-horizon d-dimensional Hid-

den Quantum Markov Model with a set of discrete ob-
servations O is a tuple (Cd×d, {Ki,x,wx}), where the initial
state ρ0 ∈ Cd×d and the Kraus operators {Ki,x,wx} ∈ Cd×d ,
for all x ∈ O, i ∈ {1, . . . ,N},wx ∈ N, satisfy the following
constraints:

1) ρ0 is a density matrix of arbitrary rank;
2) the full set of Kraus operators across all observables

provide a quantum operation,2 i.e.,
∑

x,wx
K†
i,x,wx

Ki,x,wx = I for all i ∈ {1, . . . ,N}.

The joint probability of a given sequence is given by

p(x1, . . . , xN ) = �I
T

⎛
⎝∑

wxN

K†
N,xN ,wxN

⊗ KN,xN ,wxN

⎞
⎠

· · ·
⎛
⎝∑

wx1

K†
1,x1,wx1

⊗ K1,x1,wx1

⎞
⎠ �ρ0 (2)

where �I
T
, �ρ0 indicate vectorization (column-first conven-

tion) of identity matrix and ρ0, respectively. This model is
illustrated in Fig. 4(a).

This representation was used in [33, Algorithm 1] to de-
velop HQMMs by constructing quantum analogues of classi-
cal operations on graphical models, and show that HQMMs
are a more expressive model class compared to HMMs. This
fact that HQMMs can give more efficient descriptions of
classical stochastic processes was noted in the literature be-
fore as in [5] and [6]. HQMMs enable us to generate more
complex random output sequences than HMMs, even when
using the same number of internal states [4], [33]. In other
words, HQMMs are strictly more expressive than classical
HMMs [13].

C. TENSOR NETWORK
Tensor Network is a set of tensors (high-dimensional arrays),
where some or all of its indices are contracted according to
some pattern [34], [35]. They have been used to study many-
body quantum systems [36], [37]. Further, they have been
adopted for supervised learning in machine learning [38],
[39], [40]. Some of the classes of tensor networks we use in
this work include variants of matrix product states (MPSs)
and locally purified states (LPSs).
One class of tensor networks is MPS, where an order-

N tensor Td×···×d , with rank r has entry (x1, . . . , xN ) (xi ∈

2If
∑

w K†
wKw = I, then K = ∑

w KwρK†
w is called a quantum chan-

nel. However, if
∑

w K†
wKw < I, then K is called a stochastic quantum

operation.

{1, . . . , d}) given as

Tx1,...,xN =
r∑

{αi}Ni=0=1

Aα0
0 A

α0,α1
1,x1

Aα1,α2
2,x2

· · ·AαN−2,αN−1
N−1,xN−1

AαN−1,αN
N,xN

AαN
N (3)

where Ak, k ∈ {0,N + 1}, is a vector of dimension r, and
element (αk ) is denoted as Aαk

k . Further, Ak, k ∈ {1, . . . ,N}
is an order-3 tensor of dimension d × r × r, where element
(x, αL, αR) is denoted as AαL,αR

k,x .
Another class of tensor network that is studied in this ar-

ticle is the LPS, where an order-N tensor Td×···×d , with puri-
rank r and purification dimension μ has entry (x1, . . . , xN )
(xi ∈ {1, . . . , d}) given as:

Tx1,...,xN =
r∑

{αi,α′
i}Ni=0=1

μ∑
{βi}Ni=1=1

A
α0,α

′
0

0 Aβ1,α0,α1
1,x1

A†
β1,α

′
0,α

′
1

1,x1

Aβ2,α1,α2
2,x2

A†
β2,α

′
1,α

′
2

2,x2
· · ·AβN−1,αN−2,αN−1

N−1,xN−1

A†
βN−1,αN−2,αN−1
N−1,xN−1

AβN ,αN−1,αN
N,xN

A†
βN ,α′

N−1,α
′
N

N,xN
A

αN ,α′
N

N+1 (4)

where Ak, k ∈ {0,N + 1}, is an r × r matrix, where the

element (αk, α′
k ) is denoted as A

αk,α
′
k

k . Further, Ak, k ∈
{1, . . . ,N}, is an order-4 tensor of dimension d × μ × r × r,
where the element (x, β, αL, αR) is denoted as Aβ,αL,αR

k,x , and
elements belong to R or C, as defined based on the context.
The use of † refers to the Hermitian conjugate.
Tensor networks can be represented using tensor dia-

grams, where boxes represent tensors, and indices in the ten-
sors are represented by lines emerging from the boxes. The
lines connecting tensors correspond to contracted indices,
whereas lines that do not go from one tensor to another
correspond to open indices [35]. The tensor diagrams cor-
responding to tensor networks MPS and LPS can be seen in
Fig. 3(b) and 3(c), respectively.

D. RELATION BETWEEN HMMS AND TENSOR NETWORKS
As noted in [3], [6], [13], [41], [42], tensor networks have
direct correspondence with HMMs. Note that this connec-
tion was made (though not explicitly by name) in [43]. In
particular, nonnegative MPSs are HMMs [42], and uniform
locally purified states are HQMMs [13]. Note that equiva-
lence assumes that the tensor networks are normalized as
the probabilities, while we will not explicitly normalize the
tensor networks in the proofs, it will be accounted in the
learning.

E. LEARNING OF HQMM
Two state-of-the-art algorithms for learning HQMMs were
proposed in [20] and [33]. Both algorithms use an iterative
maximum-likelihood algorithm to learn Kraus operators to
model sequential data using an HQMM. The proposed algo-
rithm in [33] is slow, and there is no theoretical guarantee
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FIGURE 3. Tensor diagrams corresponding to different tensor networks.
Black end dots indicate boundary vectors. (a) An order-N Tensor T .
(b) An order-N MPS (Tensor Train) T (c) An order-N LPS T (d) An order-N
c-LPS T .

that the algorithm steps towards the optimum at every iter-
ation [20]. The proposed algorithm in [20], however, uses a
gradient-based algorithm. Although the proposed algorithm
in [20] can learn an HQMM that outperforms the correspond-
ing HMM, this comes at the cost of a rapid scaling in the
number of parameters. To deal with this issue, equivalence
between HQMMs and tensor networks have been considered
to achieve efficient learning [13], [42].

III. PROPOSED MODELS
A. PROPOSED C-HQMM
In this section, we propose a circular HQMM (c-HQMM) for
modeling temporal data.
Definition 2 (c-HQMM): An N-horizon d-dimensional

c-HQMM with a set of discrete observations O is a tu-
ple (Cd×d, {Ki,x,wx}), where the Kraus operators are given
as {Ki,x,wx} ∈ Cd×d , for all x ∈ O, i ∈ {1, . . . ,N},wx ∈ N.
The full set of Kraus operators across all observables provide
a quantum operation, i.e.,

∑
x,wx

K†
i,x,wx

Ki,x,wx = I, for all
i ∈ {1, . . . ,N}. The joint probability of a given sequence is

FIGURE 4. HQMM and c-HQMM: with observation variables xi , where Ki
are = Ki,xi ,wxi

and βi = |wxi
| is determined by the Kraus-rank. (a) A

HQMM. The rightmost connecting line at the boundary represents the
application of the identity. Black end dots indicate boundary vectors.
(b) A c-HQMM.

given by

p(x1, . . . , xN ) = tr

⎛
⎝

⎛
⎝∑

wxN

K†
N,xN ,wxN

⊗ KN,xN ,wxN

⎞
⎠

· · ·
⎛
⎝∑

wx1

K†
1,x1,wx1

⊗ K1,x1,wx1

⎞
⎠

⎞
⎠ (5)

where tr(·) indicates the trace of the resulting matrix. This
model is illustrated in Fig. 4(b).

B. PROPOSED C-LPS MODEL
In this section, we introduce circular LPS (c-LPS) as a tensor
ring extension of LPS, where an order-N with d-dimensional
indices, puri-rank r, and purification dimensionμ has entries
given as

Tx1,...,xN =
r∑

{αi,α′
i}Ni=1=1

μ∑
{βi}Ni=1=1

Aβ1,αN ,α1
1,x1

A†
β1,α

′
N ,α′

1
1,x1

· · ·AβN ,αN−1,αN
N,xN

A†
βN ,α′

N−1,α
′
N

N,xN
(6)

where Ak, k ∈ {1, . . . ,N}, is an order-4 tensor of dimension
d × μ × r × r, as shown in Fig. 3(d), where the element
(x, β, αL, αR) is denoted as Aβ,αL,αR

k,x .

3101911 VOLUME 4, 2023



Javidian et al.: LEARNING C-HQMM: A TENSOR NETWORK APPROACH Engineeringuantum
Transactions onIEEE

For each xi, i ∈ {1, . . . ,N}, the index contraction of Ai and
A†i over βi ∈ {1, . . . , μ} results in an order-4 tensor of di-
mension r × r × r × r. This 4-D array can be reshaped as an
r2 × r2 matrix and rewritten as τxi = ∑μ

βi=1 B
†
xi,βi ⊗ Bxi,βi ,

where {Bxi,βi}dxi=1 ∈ Cr×r. Similar to the MPS transfer ma-

trix (or transfer operator) [44], we call τ = ∑d
xi=1 τxi the

c-LPS transfer operator.

C. C-HQMM MODELS ARE C-LPS
We first note that nonnegative MPS (denoting by MPSR≥0

)
are HMM [42]. In other words, any HMM can be mapped
to an MPS with nonnegative elements, and any MPSR≥0

can
be mapped to a HMM. Similarly, local quantum circuits with
ancillas are locally purified states [42]. [13] recently consid-
ered an infinite time model of HQMM, where Kraus opera-
tors do not depend on time and showed the equivalence of
these HQMMs with the uniform LPS with a positive definite
matrix structure. However, our work considers a nonuniform
finite-time structure by having Kraus operators depend on
time.We note that the equivalent tensor structure correspond-
ing to c-HQMM is open, which is studied in this section.
The next result describes the relation between c-HQMM and
c-LPS:
Theorem 1: c-HQMM models and c-LPS models are

equivalent and have the same expressive power. Formally,
for a given c-HQMMmodel with the joint probability p there
exist a c-LPS structure T such that p(x1, . . . , xN ) = Tx1,...,xN
for all entries (x1, . . . , xN ), where the decomposition entries
Ab,a1,a2i,x ∈ C. Also, for a given c-LPSmodel T with the above
mentioned properties, there exist a c-HQMMmodel with the
joint probability p such that p(x1, . . . , xN ) = Tx1,...,xN for all
entries (x1, . . . , xN ).
We need the following lemmas to prove the theorem (the

detailed proof of lemmas are provided in the Appendix). The
following lemma shows that a c-HQMM operator can be
mapped to a c-LPS operator that computes the same function.
Lemma 1: From a given c-HQMM model with Kraus op-

erators of rank β and the joint probability p, one can con-
struct a c-LPS model, T , of the same puri-rank such that
p(x1, . . . , xN ) = Tx1,...,xN for all entries (x1, . . . , xN ).
The following lemma shows that the c-LPS transfer oper-

ator can be rescaled and transformed into a trace-preserving
map.
Lemma 2: For the given c-LPS with the transfer operator

τ = ∑d
x=1 τx, where τx = ∑μ

βi=1 B
†
x,βi ⊗ Bx,βi , x ∈ Xi, i ∈

{1, . . . ,N}, there exist an invertible matrix M and a scalar
α such that by replacing Bx,βi with αvec(M)1/2Bx,βi
vec(M)−1/2, where vec(M) is the vectorization of M, we
obtain a transfer operator for this c-LPS that is a trace
preserving map.
Now, we are ready to provide the proof of Theorem 1.
Proof of Theorem 1: In order to show the equivalence of

two models, we need to show that c-LPS can be mapped
to a c-HQMM that computes the same function, and vice

versa. First, we show that a c-LPS can be mapped to a c-
HQMM that computes the same function. From the definition
of the transfer operator for c-LPS models and the operators
defined for the c-HQMMs based on Kraus operators, it’s not
difficult to see that both models have operators of the same
form. Lemma 2 shows that the transfer operators in a c-LPS
can be rescaled and similarity transformed into one that is
trace-preserving. So, a c-LPS of order-N with d-dimensional
indices, puri-rank r, and purification dimension μ can be
rescaled and similarity transformed into a c-HQMM of
N-horizon with d-dimensional and the Kraus-rank μ.

Second, we show that a c-HQMM can be mapped to a
c-LPS that computes the same function. Since both models
have operators of the same form, Lemma 1 shows that the
operators in a c-HQMM can be mapped into operators in a
c-LPS that computes the same function. So, a c-HQMM of
N-horizon with d-dimensional and the Kraus-rank β can be
mapped into a c-LPS of order-N with d-dimensional indices,
puri-rank d, and purification dimension β. �

The proof structure can be directly specialized to HQMM,
where we can obtain the following result:
Lemma 3: For a given HQMM model with the joint

probability p there exist a LPS structure T such that
p(x1, . . . , xN ) = Tx1,...,xN for all entries (x1, . . . , xN ) where

the decomposition entries Ab,a1,a2i,x ∈ C and the evaluation

functional is restricted to the full Kraus rank �I
T
. Note that the

boundary matrices (i = 1,N) in LPS are vectors and we need
them to have nonnegative real elements, i.e., Ab,a1,a2i,x ∈ R≥0.
Also, for a given LPS structure T with the above mentioned
properties there exist a HQMM model with the joint prob-
ability p such that p(x1, . . . , xN ) = Tx1,...,xN for all entries
(x1, . . . , xN ).
Note that nonterminating uniform LPS (uLPS) are equiv-

alent to HQMM [13]. In uLPS, boundary vectors originate
from density matrices of arbitrary rank. As shown in [13],
the evaluation functional of uLPS can be rescaled and trans-
formed into a one that will converge to �I

T
when N → ∞.

To have the equivalency of finite-horizon HQMM and LPS,
we need to restrict LPS models to the evaluation function
�I
T
, as stated in Lemma 3. It should be noted that HQMMs

with |w| = 1 can also be represented by MPS (as opposed to
LPS).

IV. LEARNING ALGORITHM FOR CIRCULAR LPS MODELS
In this section, we propose an algorithm for learning c-LPS
Models as in Theorem 1 via a maximum likelihood estima-
tion (MLE) approach. The proposed algorithm is a modifi-
cation of the algorithm proposed in [42] for learning LPS
models, except that we take into account the cyclic structure.
Note that a similar maximization likelihood algorithm is pro-
posed for learning MPS in [45].
Problem 1 (MLE for Distribution Approximation): As-

sume that {xi = (xi1, . . . , x
i
N )}ni=1 is a sample of size n from

an experiment with N discrete random variables. To estimate
this discrete multivariate distribution, we use c-LPS model

VOLUME 4, 2023 3101911
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FIGURE 5. Contraction of tensor ring to compute:
ZT = ∑

X1,...,XN
TX1,...,XN .

as defined in Section III-B. So, we have:

p(x1, . . . , xN ) �
r∑

{αi,α′
i}Ni=1=1

μ∑
{βi}Ni=1=1

Aβ1,αN ,α1
1,x1

A†
β1,α

′
N ,α′

1
1,x1

· · ·AβN ,αN−1,αN
N,xN

A†
βN ,α′

N−1,α
′
N

N,xN
.

Our objective here is to estimate tensor elements of the

c-LPS, i.e., w = A
βi,αLi

,αRi
i,xi

, for i = 1, . . . ,N, where αLi , αRi
refer to the left and right indices respectively. For this pur-
pose, we minimize the negative log-likelihood

L = −
∑
i

log
Txi
ZT

(7)

where Txi is obtained using the contraction of circular LPS,
and ZT = ∑

xi
Txi is a normalization factor.

To find the optimal solution, we calculate the derivative of
the log-likelihood with respect to w as follows:

∂wL = −
∑
i

∂wTxi
Txi

− ∂wZT

ZT
(8)

We use a minibatch gradient descent algorithm to mini-
mize the negative log-likelihood. First, we compute the sum
over a batch of training instances at each optimization step.
Then, we update parameters in the tensor network by a small
step in the inverse direction of the gradient. Since we use
tensors with complex elements (∈ C) in our experiments,
we use Wirtinger derivatives [46] regarding the conjugated
tensor elements. Now, we explain how to compute ∂wZT ,
ZT , ∂wTxi , and Txi in (8). For a c-LPS of puri-rank r, we com-
pute the normalization factor ZT by contracting the tensor
network

ZT =
∑

x1,...,xN

Tx1,...,xN . (9)

As shown in Fig. 5, we perform this contraction from left
to right by contracting at each step the two vertical indices
(corresponding to di and d

†
i with respect to the supports of Xi

and X†
i ) and then, each of the two horizontal indices (with

respect to αis and α′
is, respectively). Finally, we trace out

the indices corresponding to the rings. In this contraction,
we store intermediate results from the contraction of the first
i tensors in Ei, and we repeat the same procedure from the
right by storing intermediate results of the contraction of the

last N − i tensors in Fi+1. We compute the derivatives of the
normalization for each tensor as follows:

.

We can use a similar approach to compute Txi and ∂wTxi
for a training sample, except that we set the contracted index
corresponding to an observed variable to its observed value.
We note that a similar approach to learn the model can be
used for HQMM and HMM structures.
a) Asymptotic cost of evaluating c-LPS vs LPS: The

time complexity of evaluation of an order-N c-LPS with
d-dimensional indices, puri-rank r, and purification dimen-
sion μ is of order O(dμNr5) but for the LPS of the same
characteristics is of order O(dμNr3). Note that, based on
our experiments, the rank in c-LPS could be chosen smaller.
Further, our experiments show improved results in c-LPS
with same number of parameters.

V. NUMERICAL EVALUATIONS: MAXIMUM LIKELIHOOD
ESTIMATION ON REAL DATA
To evaluate the performance of the proposed algorithm
for learning c-HQMMs, we used the same datasets as
used in [42] and learn HMM, HQMM (nonuniform), and
c-HQMM using their respective tensor representations.
HMM is equivalent to MPSR≥0

, and is a baseline for other
structures. We show the equivalence of c-HQMMs to ten-
sor networks and also the equivalence of LPS and HQMM
for finite N with nonuniform Kraus operators, inspired by
findings in the literature [13], [42]. It is worth noting that
although the HMM is an important statistical tool for mod-
eling data with sequential correlations in neighboring sam-
ples, such as in time series data, it also has been used for
modeling nonsequence data via tensor decomposition in the
literature [42], [47]. We compare the performance of train-
ing HMM, HQMM, and c-HQMM using equivalent tensor
representations (i.e., MPS, LPS, and c-LPS, respectively) on
six different real nonsequence data of categorical variables,
where the following parameters are used.

1) Bond dimension/rank of the tensor networks: r =
2, 3, 4, 5, and 6.

2) Learning rate was chosen using a grid search on powers
of 10 going from 10−5 to 105.

3) Batch size, i.e., the number of training samples per
minibatch, was set to 20.

4) Number of iterations was set to a maximum of 1000.
5) The dimension of the purification index, i.e.,μ for LPS

and c-LPS was set to 2.

We briefly introduce the following real datasets used in our
experiments here.

3101911 VOLUME 4, 2023



Javidian et al.: LEARNING C-HQMM: A TENSOR NETWORK APPROACH Engineeringuantum
Transactions onIEEE

1) The biofam dataset was constructed by Müller et al.
[48] from the data of the retrospective biographical
survey carried out by the Swiss Household Panel in
2002. In includes only individuals who were at least
30 years old at the time of the survey for whom we
consider sequences of family life states between ages
15 and 30. The biofam dataset describes thus family
life courses of 2000 individuals born between 1909
and 1972. Biofam data includes 16 state variables:
The states numbered from 0 to 7 are defined from the
combination of five basic states, namely Living with
parents (Parent), Left home (Left), Married (Marr),
Having Children (Child), Divorced; The covariates are:
Sex, birthyr (birth year), nat_1_02 (first nationality),
plingu02 (language of questionnaire), p02r01 (reli-
gion), p02r04 (religious participation), cspfaj (father’s
social status), cspmoj (mother’s social status).

2) The lymphography data was obtained from the Uni-
versity Medical Centre, Institute of Oncology, Ljubl-
jana, Yugoslavia [49]. All attribute values in the
database have been entered as numeric values corre-
sponding to their index in the list of attribute values
for that attribute domain as given here: class (normal
find, metastases, malign lymph, fibrosis), lymphatics
(normal, arched, deformed, displaced), block of affere
(no, yes), block of lymph. c (no, yes), block of lymph.
s (no, yes), by pass (no, yes), extravasates (no, yes),
regeneration of (no, yes), early uptake in (no, yes),
lym.nodes dimin (0-3), lym.nodes enlar (1-4), changes
in lym. (bean, oval, round), defect in node (no, lacunar,
lac. marginal, lac. central), changes in node (no, lacu-
nar, lac. margin, lac. central), changes in structure (no,
grainy, drop-like, coarse, diluted, reticular, stripped,
faint), special forms (no, chalices, vesicles), disloca-
tion of (no, yes), exclusion of no (no, yes), no. of nodes
in (0–9, 10–19, 20–29, 30–39, 40–49, 50–59, 60–69,
>=70).

3) SPECT Heart data is a dataset on cardiac Single Pro-
ton Emission Computed Tomography (SPECT) im-
ages. Each patient classified into two categories: 1)
Normal and 2) abnormal [49].

4) 1984 United States Congressional Voting Records
includes votes for each of the U.S. House of Repre-
sentatives Congressmen on the 16 key votes identified
by the CQA. The CQA lists nine different types of
votes: voted for, paired for, and announced for (these
three simplified to yea), voted against, paired against,
and announced against (these three simplified to nay),
voted present, voted present to avoid conflict of in-
terest, and did not vote or otherwise make a position
known (these three simplified to an unknown disposi-
tion) [49].

5) Primary Tumor dataset was provided by Ljubljana
Oncology Institute [49]. All attribute values in the
database have been entered as numeric values corre-
sponding to their index in the list of attribute values

TABLE I Characteristics of Real Datasets Used in Experiments

for that attribute domain as given here: class (lung,
head & neck, esophasus, thyroid, stomach, duoden
& sm.int, colon, rectum, anus, salivary glands, pan-
creas, gallblader, liver, kidney, bladder, testis, prostate,
ovary, corpus uteri, cervix uteri, vagina, breast), age
(<30, 30-59, >=60), sex (male, female), histologic-
type (epidermoid, adeno, anaplastic), degree-of-diffe
(well, fairly, poorly), and 13 binary (yes, no) vari-
ables: Bone, bone-marrow, lung, pleura, peritoneum,
liver, brain, skin, neck, supraclavicular, axillar, medi-
astinum, and abdominal.

6) Solar Flare dataset contains 3 potential classes. Each
class attribute counts the number of solar flares of a
certain class that occur in a 24 h period [49].

Each data point reported here is the lowest negative log-
likelihood (7) obtained from 10 trials with different (random)
initialization of tensors3. We used 75% of each dataset for
training (for this purpose, we fit the model to the data and
then we evaluate the negative log-likelihood of the fitted
model) and 25% for the testing case (for this purpose, we
use the fitted model to the training data directly to evaluate
the negative log-likelihood of the trained model for testing
data). A summary of data characteristics for our evaluations
listed in Table I.
Key Highlights w.r.t. Results: The obtained results, sum-

marized in Fig. 6, show the following.

1) The tensor representations can be used to learn differ-
ent HMMs.

2) We observe that despite the different algorithm
choices, c-LPS and LPS lead to better modeling of the
data distribution for the same rank compared to MPS
on almost all datasets.

3) The results indicate that c-HQMM outperforms
HQMM and HMM.

4) In many cases, the performance difference for training
datasets between LPS and c-LPS for ranks 5 and 6 is
more significant than those with ranks 2 and 3. Further,
the improvement depends on the dataset. We also note
that we plot negative of log likelihoods, so the gap
in the likelihoods is larger. The results suggest that
in generic settings HQMM and c-HQMM should be

3A user manual that explains how to create a model, load a dataset
and train the model on the dataset is available at supplementary material:
https://github.com/majavid/Circular-Hidden-Quantum-Markov-Models

VOLUME 4, 2023 3101911

https://github.com/majavid/Circular-Hidden-Quantum-Markov-Models


Engineeringuantum
Transactions onIEEE

Javidian et al.: LEARNING C-HQMM: A TENSOR NETWORK APPROACH

FIGURE 6. Maximum likelihood estimation with tensor networks MPS,
LPS, and c-LPS for learning HMM, HQMM, and c-HQMM, respectively,
from the data on different datasets: (a) biofam dataset of family life
states from the Swiss Household Panel biographical survey [48]; datasets
from the UCI Machine Learning Repository [49]: (b) Lymphography, (c)
SPECT Heart, (d) Congressional Voting Records, (e) Primary Tumor, and (f)
Solar Flare for the training and testing datasets, respectively.

preferred over both HMM models. Further, c-HQMM
gives the best performance among the considered
models.

5) Fig. 6, also, shows the result for different tensor net-
work representations on the testing sets for different

FIGURE 7. Convergence plots for the Primary Tumor dataset for D = 2, 3,
and 20 000 iterations.

data, indicating consistency with the observations (1)–
(4) and confirm them. However, the main advantage
of using c-LPS (c-HQMMs) over LPS (HQMM) and
MPS (HHMs) comes to the scene in testing sets and the
improvement of performance is pronounced in these
cases, indicating the stability and nonoverfitting of
c-LPS (c-HQMMs) in practice. The similarity of c-
LPS performance behavior (see data points and curves)
across training and testing sets confirms this observa-
tion.

6) c-LPS (c-HQMM) has slightly more parameters than
LPS (HQMM) due to the existence of the cycle. This
cyclic structure allows for better structural learning
with a single rank parameter. For noncyclic structures,
the corner ranks being smaller and center ranks being
larger limit the generalization. Due to better structural
learning, the test error with c-LPS is significantly better
than the baselines. Such an improved generalization
characteristic with cyclic structures have been seen in
other problems for c-MPS, for instance in data com-
pletion and data classification problems [39], [40].
To see the convergence rate of MPS, LPS, and c-LPS,
we depicted the convergence plots for the Primary Tu-
mor dataset for D = 2, 3, and 20 000 iterations in Fig.
7. Note that the approaches converge within 20 000
iterations. Although MPS converges much faster than
others, LPS and c-LPS converge to better optimal
points.

VI. CONCLUSION
This article proposes a new class of HMMs, that we called
c-HQMMs. c-HQMMs can be used to model temporal data.
We proved that c-HQMMs are equivalent to c-LPS models.
Leveraging this result, we proposed anMLE-based algorithm
for learning c-HQMMs from data via c-LPS. We evaluated
the proposed learning approach on six real nonsequence
datasets, demonstrating the advantage of c-HQMMs on mul-
tiple datasets compared to HQMMs and HMMs. Testing the
performance of the proposed algorithm on temporal data is
left as further work.
Code and data for reproducing our results is available

at: https://github.com/majavid/Circular-Hidden-Quantum-
Markov-Models.
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APPENDIX
PROOFS
In this Appendix, we will prove the different Lemmas that
help proving the main Theorem. The following lemma shows
that a c-HQMM operator can be mapped to a c-LPS operator
that computes the same function.
Lemma 4: From a given c-HQMM model with Kraus op-

erators of rank β and the joint probability p, one can con-
struct a c-LPS model, T , of the same puri-rank such that
p(x1, . . . , xN ) = Tx1,...,xN for all entries (x1, . . . , xN ).
Proof: From the definition of the transfer operator for

c-LPS models and the operators defined for the c-HQMMs
based on Kraus operators, it’s not difficult to see that
both models have operators of the same form. Now, we
map

∑
xi,wxi

K†
i,xi,wxi

⊗ Ki,xi,wxi
, i ∈ {1, . · · · ,N} to tensors

Ai,A
†
i , i ∈ {1, . · · · ,N} in an c-LPS. For this purpose, we set

βi = |wxi |, i.e., the Kraus-rank in c-HQMM plays the role of
purification dimension in c-LPS. For fixed values xi and wxi ,
Ki,xi,wxi

and K†
i,xi,wxi

are r × r matrices that play the role of

tensors Ai and A†i in the c-LPS, respectively.
The following lemma shows that the c-LPS transfer oper-

ator can be rescaled and transformed into a trace-preserving
map. �
Lemma 5: For the given c-LPS with the transfer operator

τ = ∑d
x=1 τx, where τx = ∑μ

βi=1 B
†
x,βi ⊗ Bx,βi , x ∈ Xi, i ∈

{1, . . . ,N}, there exist an invertible matrix M and a scalar
α such that by replacing Bx,βi with αvec(M)1/2Bx,βi
vec(M)−1/2, where vec(M) is the vectorization ofM, we get
a transfer operator for this c-LPS that is a trace preserving
map.
Proof: To show that the c-LPS transfer operator is trace

preserving is equivalent to show that the identitiy �I is the
fixed point of τ †, i.e., τ †�I = �I. Assume that τ is not trace pre-
serving.Without loss of generality assume that the two eigen-
values of τ with greatest magnitude, λ1, λ2, satisfy |λ1| >
|λ2|. If we replace Bxi,βi , xi ∈ {1, . . . , d} with Bxi,βi/

√
λ1, we

obtain a transfer operator τ ′ that enjoys the leading eigen-
value of magnitude 1. Note that this rescaling leaves the
joint probability distributions unchanged. In this case, the
quantum Perron-Frobenius theorem [50, chapter 16] implies
that λ1 = 1 and τ ′† has a unique fixed-point operator �σ∗ (i.e.,
τ ′†�σ∗ = �σ∗) which is the vectorization of a full-rank (and so,
invertible) positive density matrix.
Now, we replace Bxi,βi , xi ∈ {1, . . . , d} with B′

xi,βi
=

σ
1/2
∗ Bxi,βiσ

−1/2
∗ . We show that τ ′′ = ∑N

xi=1 τ ′
xi

is a trace

preserving map. Note that since σ∗, σ−1/2
∗ , and σ

1/2
∗ are

Hermitian, we have σ∗† = (σ∗)T , σ †−1/2
∗ = (σ−1/2

∗ )T , and

σ †1/2∗ = (σ 1/2
∗ )T , respectively. For threematricesX,Y,Z that

W = XYZ, we have (ZT ⊗ X )�Y = �W . Using these proper-
ties, we have

τ
′′†�I =

⎛
⎝ d∑
xi=1

τ
′†
xi

⎞
⎠�I =

⎛
⎝ d∑
xi=1

⎛
⎝ μ∑

βi=1

B′††
xi,βi ⊗ B

′†
xi,βi

⎞
⎠

⎞
⎠�I

=
⎛
⎝ d∑
xi=1

⎛
⎝ μ∑

βi=1

(
σ

−1/2
∗

)T
B†

†
xi,βi

(
σ
1/2
∗

)T ⊗ σ
−1/2
∗

× B†xi,βiσ
1/2
∗

⎞
⎠

⎞
⎠�I

=
((

σ
−1/2
∗

)T ⊗ σ
−1/2
∗

) ⎛
⎝ d∑
xi=1

μ∑
βi=1

B†
†
xi,βi

⊗ B†xi,βi

⎞
⎠

×
((

σ
1/2
∗

)T ⊗ σ
1/2
∗

)
�I

=
((

σ
−1/2
∗

)T ⊗ σ
−1/2
∗

)
τ

′†
xi
�σ∗

=
((

σ
−1/2
∗

)T ⊗ σ
−1/2
∗

)
�σ∗ = �I.

So, the transfer operator τ can be rescaled and similarity
transformed into one that is trace-preserving. �
Lemma 6: For a given HQMM model with the joint

probability p there exist a LPS structure T such that
p(x1, . . . , xN ) = Tx1,...,xN for all entries (x1, . . . , xN ) where

the decomposition entries Ab,a1,a2i,x ∈ C and the evaluation

functional is restricted to the full Kraus rank �I
T
. Note that the

boundary matrices (i = 1,N) in LPS are vectors and we need
them to have nonnegative real elements, i.e., Ab,a1,a2i,x ∈ R≥0.
Also, for a given LPS structure T with the abovementioned
properties there exist a HQMM model with the joint prob-
ability p such that p(x1, . . . , xN ) = Tx1,...,xN for all entries
(x1, . . . , xN ).
Proof: The given LPS, as defined in Section II, has entries

of the form

Tx1,...,xN =
r∑

{αi,α′
i}Ni=0=1

μ∑
{βi}Ni=1=1

A
α0,α

′
0

0 Aβ1,α0,α1
1,x1

A†
β1,α

′
0,α

′
1

1,x1

× Aβ2,α1,α2
2,x2

A†
β2,α

′
1,α

′
2

2,x2

· · ·AβN−1,αN−2,αN−1
N−1,xN−1

A†
βN−1,αN−2,αN−1
N−1,xN−1

AβN ,αN−1,αN
N,xN

× A†
βN ,α′

N−1,α
′
N

N,xN
A

αN ,α′
N

N+1 .

Since both models have operators of the same form, we can
write and manipulate the joint probability of a sequence of N
observations as the unnormalized probability mass function
over N discrete random variables {Xi}Ni=1 as follows:

p(x1, . . . , xn) = �I
T

⎛
⎝ μ∑

βN=1

B†xN ,βN ⊗ BxN ,βN

⎞
⎠

· · ·
⎛
⎝ μ∑

β1=1

B†x1,β1 ⊗ Bx1,β1

⎞
⎠ �ρ0 (10)
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where �I is the right boundary (also called evaluation func-
tional) is the vectorized version of the identity matrix, i.e.,
AN+1 = I, and �ρ0 is the vectorized version of the initial state,
i.e., A0 = ρ0. So, LPS models and HQMMs differ only in
two things: 1) while LPS can have an arbitrary Kraus-rank
evaluation functional, HQMMs are restricted to the identity

evaluation functional �I
T
of full Kraus rank; and (2) HQMMs

operators are trace-preserving.
Following the same approach used in the proof of Theo-

rem 1, the transfer operator of an LPS can be rescaled and
similarity transformed into one that is trace-preserving. For
the uniform LPS models, the evaluation functional of this

transformed model will then converge to �I
T
[13]. However,

in a finite-horizon LPS this may not be the case.
Therefore, HQMM model is equivalent to a LPS struc-

ture where the decomposition entries Ab,a1,a2i,x ∈ C, where the
evaluation functional is restricted to the vectorized of the
identity matrix, i.e., �I

T
. �
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