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ABSTRACT Quantum machine learning (QML) has received increasing attention due to its potential to
outperform classical machine learning methods in problems, such as classification and identification tasks.
A subclass of QML methods is quantum generative adversarial networks (QGANs), which have been
studied as a quantum counterpart of classical GANs widely used in image manipulation and generation
tasks. The existing work on QGANs is still limited to small-scale proof-of-concept examples based on
images with significant downscaling. Here, we integrate classical and quantum techniques to propose a new
hybrid quantum–classical GAN framework. We demonstrate its superior learning capabilities over existing
quantum techniques by generating 28 × 28 pixels grayscale images without dimensionality reduction or
classical pre/postprocessing on multiple classes of the standard Modified National Institute of Standards
and Technology (MNIST) and Fashion MNIST datasets, which achieves comparable results to classical
frameworks with three orders of magnitude less trainable generator parameters. To gain further insight into
the working of our hybrid approach, we systematically explore the impact of its parameter space by varying
the number of qubits, the size of image patches, the number of layers in the generator, the shape of the
patches, and the choice of prior distribution. Our results show that increasing the quantum generator size
generally improves the learning capability of the network. The developed framework provides a foundation
for future design of QGANs with optimal parameter set tailored for complex image generation tasks.

INDEX TERMS Machine learning algorithms, quantum circuit, quantum computing, quantum algorithm,
quantum simulation.

I. INTRODUCTION
Generative adversarial networks (GANs) are one of the best
examples of deep learning success in generative learning [1].
It consists of a generator and a discriminator competing
against each other, where the generator attempts to gen-
erate realistic data (such as images) whereas the discrimi-
nator attempts to differentiate between real and generated
data. Ultimately, the goal of the framework is to have the
generator distribution replicate the training data distribu-
tion, which is mathematically equivalent to minimizing the
Jensen–Shannon (JS) divergence between them [1]. GANs
have been deployed in many application areas, such as

image generation [2], future prediction in videos [3], text-
to-image synthesis [4], and image-to-image translation [5].
Despite their empirical success, GANs suffer from a vari-
ety of problems during training in practice, namely vanish-
ing gradients, mode collapse, and a lack of stopping crite-
ria [6], [7]. There have been many proposed improvements
to tackle these problems. One particular proposal is the
Wasserstein GAN (WGAN) [7], where the training is refor-
mulated to minimize the Wasserstein distance instead. The
WGAN framework has demonstrated empirically that it can
effectively tackle the aforementioned problems. However,
as with other classical GANs, training on complex datasets
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FIGURE 1. Overview of PQWGAN framework. Our framework is identical to the WGAN-GP framework, with the difference being the fake images are
now being generated by a quantum generator. The framework operates as follows. First, a latent vector z is sampled from the latent space and is
encoded using RY rotations as |z〉 in each subgenerator of the quantum generator. The relevant qubits are measured at the end of the circuit and
postprocessed to create a patch of the image. The patches are stitched together to form a complete generated image. The generated and real images are
then passed to the critic, which estimates the Wasserstein distance between the generator and real distribution. Finally, these statistics are used to
update the generator and the critic.

requires large networks and amounts of computational
resources.
The emergence of quantum computing as a new com-

puting paradigm has led to quantum algorithms that show
great promise to solve many of the computationally hard
problems in computer science, such as Shor’s algorithm for
efficient prime number factorization [8]. Since quantum me-
chanics can generate counter intuitive patterns in data, it is
believed that quantum computers can recognize classically
challenging patterns [9]. These promises have led to the
development of quantum machine learning (QML), where
quantum algorithms are used to improve existing machine
learning techniques [15]. Benefits that QML brings include
providing speed-ups in training time [10], [11], [12] or ob-
taining better model performance [13], [14], [16], [17], [18],
[19]. This may allow QML models to complement or even
replace classical methods in the future as the complexity
of the tasks continuously increases. However, we are cur-
rently in the noisy intermediate-scale quantum (NISQ) era
of quantum computation [20]. Reliably executing large-scale
quantum algorithms on current quantum hardware is diffi-
cult due to engineering challenges, such as noise mitigation.
Under these restrictions, much QML research has been fo-
cused on quantum algorithms that are compatible with NISQ
devices [9], such as developing hybrid quantum classical
solutions with parameterized quantum circuits (PQCs) [21].

The intersection of quantum computing and GANs have
led to the birth of a new research direction known as quantum
generative adversarial networks (QGANs) [22], [23], which
aims to push forward generative learning. Currently, QGANs
are still in its infancy, and many proposed frameworks deal
with low-dimensional data, such as simple probability dis-
tributions [24], [25], [26]. In the realm of image genera-
tion, QGANs built using quantum generators have only been
able to generate low-resolution images in [27] or require
dimensionality reduction with principal component analysis
(PCA) [28], [29]. Also, there exists an important knowledge
gap in QGANs on how varying different parameters within
the quantum generator affects the performance and output
quality of QGANs. In previous works, the evaluation of the
QGANs are conducted on low-dimensional data, where the
images have either been compressed to a lower dimensional
space in [28] and [29], or are from a synthetic 2 × 2 pixels
dataset in [27]. This restricts their application for realistic
problems and the scope of the acquired understanding is also
limited.
In this article, we aim to bridge the gap between classical

and quantum GANs by generating high-dimensional data in
the form of images. Specifically, we propose a new hy-
brid quantum–classical framework as shown in Fig. 1, which
we call the patch quantum Wasserstein GAN (PQWGAN).
Our framework leverages the theoretical benefits that the
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WGAN-gradient penalty (GP) [30] brings to improve the
patch strategy QGAN [27]. The patch strategy QGAN splits
the output image generated into different patches, each gen-
erated by a separate quantum circuit. This is useful in the
NISQ era, where splitting up the output can reduce the quan-
tum resources required. On the other hand, the WGAN-GP
is an extension to theWGAN that has improved convergence
properties owing to the use of a GP for regularization. Indi-
vidually, the patch QGANwith the GAN framework [27] and
the WGAN-GP framework with a single PQC quantum gen-
erator (see Section VII-A) are both unable to generate high-
resolution images. However, combining these two ideas our
PQWGAN is capable of generating high-resolution images
without dimensionality reduction, which was not possible
using previous QGANs directly.
First, we numerically demonstrate the viability of the

framework by applying it to learn to generate full resolution
28 × 28 pixels images from the standard Modified National
Institute of Standards and Technology (MNIST) [31] and
Fashion MNIST (FMNIST) [32] datasets. To the best
of authors’ knowledge, this is the first demonstration of a
QGAN that uses quantum circuits as a generator that can suc-
cessfully generate images without dimensionality reduction
or classical pre/postprocessing at this scale. Second, we gain
a deeper understanding of the effects that varying different
quantum generator parameters have on output quality by
experimenting directly on the 28 × 28 pixels images. Param-
eters explored include the number of patches, qubits, layers,
shape of patches, and choice of prior. Simulations provide the
crucial insight that increasing the generator size in general
correlates with better output quality. Our results demonstrate
that our framework has the potential to serve as a foundation
for future QGAN research on more complex tasks.
The rest of this article is organized as follows. First, we

go over some preliminaries in Section II and related work
on QGANs in Section III. Next, we introduce our novel
PQWGAN framework in Section IV and our experimental
setup in Section V. Then, we put our PQWGAN to the test
by applying it to generate images of MNIST and FMNIST in
Section VI and evaluating the effects of different parameters
in Section VII. Finally, Section VIII concludes this article.

II. PRELIMINARIES
A. GENERATIVE ADVERSARIAL NETWORKS
GANs were first proposed in [1]. The framework consists of
a discriminator and a generator that compete in an adver-
sarial game. The generator and discriminator can in theory
be any machine learning model, but are commonly neural
networks due to its empirical success. The generator G takes
an input noise vector z sampled from some distribution Pz
(e.g., Gaussian) and produces an output. The goal is to have
the learned distribution PG match the real distribution Pdata.
On the other hand, the discriminator D takes an input x and
outputs the probability it believes x originated from Pz. If the
probability is greater than one half, the input is classified as

originating from the real data and vice versa. The goal of D
is to maximize the probability of assigning the correct labels,
whereas the goal of G is to produce samples that confidently
fools D. The objective of the GAN training can be expressed
in terms of a zero-sum game

min
G

max
D

Ex∼Pdata [logD(x)] + Ez∼Pz [log(1 − D(G(z)))]. (1)

B. WASSERSTEIN GENERATIVE ADVERSARIAL NETWORKS
As briefly mentioned in Section I, GANs suffer from a va-
riety of problems during training due to the mathematical
properties of minimizing the JS divergence. Tomitigate these
issues, there have been efforts to reformulate GAN training
with completely different objectives in order to obtain better
theoretical guarantees. One of the most successful frame-
work is the WGAN [7]. The WGAN minimizes the Wasser-
stein distance, and the value function of the WGAN is

min
G

max
D∈D

Ex∼Pdata [D(x)] − Ez∼Pz [D(G(z))] (2)

whereD is the set of 1-Lipschitz functions. Instead of having
a discriminator that produces a binary output as in GANs,
the discriminator now outputs a score, which is interpreted
as the Wasserstein distance between PG and Pdata. Hence, the
discriminator is known as a critic instead. Minimizing the
Wasserstein distance exhibits much nicer theoretical guar-
antees than minimizing the JS divergence, and is shown to
converge in many instances where the JS divergence fails to
do so [7]. First, the gradient of the critic with respect to the
input is much better behaved than that of the discriminator in
GANs, allowing the generator to be trained more easily and
the critic to be trained to optimality without having to deal
with vanishing gradients. Next, the WGAN has shown em-
pirical evidence of being able to avoid mode collapse, as the
authors were able to train various discriminator and generator
architectures that were previously hard to train successfully.
Also, since the WGAN value function provides an estimate
of the Wasserstein distance, it has empirically observed to be
correlated with sample quality of the generator. Hence, this
can be used as a stopping condition in WGAN training.
To enforce the 1-Lipschitz constraint, Arjovsky et al. [7]

proposed to clip the gradients of the each critic parameter
within a fixed range such as [−0.01, 0.01]. However, the
choice of the clipping range poses new problems. If the gra-
dient magnitude is large, it can take a long time for the critic
to reach optimality, but if the magnitude is small it can also
easily lead to vanishing gradients. Instead, Gulrajani et al.
[30] proposed the WGAN-GP, where a GP is used instead to
enforce the 1-Lipschitz constraint. The new value function is

min
G

max
D∈D

Ex∼Pdata [D(x)] − Ez∼Pz [D(G(z))]

− λEx̂∼Px̂[(||∇x̂D(x̂)||2 − 1)2] (3)

where λ is a constant and Px̂ is a distribution sampled uni-
formly in between Pdata and PG. In the WGAN framework,
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the optimal critic has unit gradient norm for straight lines be-
tween Pdata and PG. Hence, by enforcing this condition in (3),
the critic is able to be trained to optimality without vanishing
gradients. This is supported by the fact that the WGAN-GP
framework was applied to successfully train many random
variations of the DCGAN architecture, such as having dif-
ferent activation functions, depth, use of batch normalization
and filter count [30]. Compared with the GAN framework,
the WGAN-GP framework is able to successfully train a
significantly larger portion of these random architectures to
some minimum Inception score [33] (which quantitatively
measures the output variety and quality of a GAN) on the
32 × 32 pixels ImageNet dataset.

III. RELATED WORK ON QGANS
The notion of a QGAN was first introduced theoretically
in [22], and demonstrated to be viable numerically in [23].
In general, QGANs can take in either quantum or classical
data. For classical data, Lloyd and Weedbrook [22] claimed
that although there are no guarantees for quantum advantage,
it is reasonable to expect that the quantum GAN can learn
the data distribution in less time due to efficient quantum
algorithms to solve linear equations, such as the Harrow–
Hassidim–Lloyd algorithm [34]. However, early methods fo-
cus on generating relatively simple low-dimensional distri-
butions. As such, many of the proposed QGAN frameworks
provide limited use for high-resolution image generation in
the NISQ era.

A. QGANS FOR IMAGE GENERATION
Given a quantum computer with n qubits and the task of gen-
erating anM-dimensional output, Huang et al. [27] suggested
the batch and patch strategies for QGANs in the NISQ era.
The patch strategy is useful for the case where n < �logM�,
which is likely the case in higher resolution image gener-
ation on NISQ devices. In the patch QGAN, the generator
is composed of k quantum circuits that are each sampled
to generate a patch of the image, whereas the discriminator
can be either a classical or quantum classifier. The resulting
patches are then stitched together to form the final image.
The patch QGAN was able to generate 8 × 8 pixels images
of handwritten digits of 0 s and 1 s by training on the optical
recognition of handwritten digits dataset [35] on both simu-
lations and a superconducting quantum computer. Although
this approach successfully generated images of handwritten
digits, the quality of the images were quite low.
Another method explored to generate images is the state

fidelity-based QGAN (QuGAN) [28]. The core of the frame-
work is a swap test to measure the fidelity between the
discriminator and generator state for the loss function. Re-
cently, the IQGAN [29] was proposed as an extension to the
QuGAN framework. It features a new trainable classical to
quantum encoder to embed classical data and amore compact
quantum generator that avoids costly two qubit gates. Both
frameworks carried out experiments using simulations and
real devices on a subset of the MNIST dataset compressed

using PCA, and were both able to successfully generate the
target images. However, due to the use of an inverse PCA to
generate the images from a low-dimensional representation,
the images are often quite blurry. Also, since the diversity
of the output only stems from the randomness when doing a
finite measurement on the generator state, it may be difficult
to scale to more complex tasks, such as having more digits.

B. QUANTUM WASSERSTEIN GENERATIVE
ADVERSARIAL NETWORKS
The idea of a fully quantum version of the WGAN (qW-
GAN) was proposed in [36] and [37]. Both of these works
were concerned with the task of learning to generate pure
and mixed states using the Wasserstein distance with PQCs.
In both cases, simulations showed that the frameworks are
able to learn the target states and converge to a high fidelity
quickly. However, since their framework is designed to work
on quantum data, it cannot be directly applied to image gen-
eration, which is what we are interested in.
Another extension of theWGAN is the QWGAN-GP [38],

which considered a hybrid quantum–classical version of the
WGAN-GP. In this framework, the generator is a single PQC
that takes a latent vector as input, while the remaining com-
ponents of the QWGAN-GP are identical to the WGAN-GP.
Experiments on the credit card fraud dataset [39] showed that
the QWGAN-GP has comparable performance to a fully con-
nected WGAN-GP architecture on anomaly detection while
having less trainable parameters. However, the results in-
dicate that the dataset is too simple, as both the classical
and quantum networks converge to the optimum with a low-
dimensional latent vector and low depth for the generators.

C. COMPARISON OF OUR WORK TO EXISTING QGANS
A summary of the related works on image generation with
QGANs mentioned in Section III-A can be found in Table I.

IV. PQWGAN FRAMEWORK
In this section, we present the PQWGAN framework for
generating high-resolution images on NISQ devices. A com-
parison of our work to existing QGANs for image generation
is shown in Appendix A. The PQWGAN integrates the patch
method for image generation on NISQ devices [27] and the
WGAN-GP [30].We choose to useWGAN-GP due to its im-
proved convergence properties compared with weight clip-
ping. Furthermore, during initial explorations with QGANs,
we noticed that when applying the GAN loss function as in
(1), the QGANs exhibited unstable behavior, and were hard
to train. Hence, this challenge further motivated us to use a
theoretically stable method, such as WGAN-GP. In our case,
the setup is the same as in WGAN-GP, but instead of a clas-
sical generator, we replace it with a patch quantum generator
as in [27]. The overall architecture of the PQWGAN is shown
in Fig. 1.
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TABLE 1 Comparison of Our Work to Existing QGANs for Image
Generation

Algorithm 1: Algorithm to Generate an Image From the
Patch Quantum Generator.

A. STRUCTURE OF QUANTUM GENERATOR
Algorithm 1 shows the process of generating an image using
the quantum generator. The inner workings of our quan-
tum generator is very similar to that of [27] and is de-
tailed here, with the schematic diagram plotted in Fig. 2.
The generator first takes in a N-dimensional latent vector
z = (z1, z2, . . ., zN ) from some distribution pz (e.g., uniform,

Gaussian). The latent vector is then encoded in each sub-
generator using a layer of RY rotations parameterized by the
components of z. So, starting in the |0〉⊗n state, we obtain the
latent state |z〉 by applying the encoding circuit

|z〉 = R1Y (z1)R
2
Y (z2). . .R

N
Y (zN )|0〉⊗N

where RiY (zi) is the RY gate applied to the ith qubit with the
rotation angle zi. Then, the latent state passes through the L
layers of the hardware-efficient ansatz structure [41], each
consisting of parameterized arbitrary rotations R(φ, θ, ω)
followed by cnot gates on each adjacent qubit to generate
entanglement. The R(φ, θ, ω) gate can be expressed as

R(φ, θ, ω) = RZ (ω)RY (θ )RZ (φ)

=
[
e−i(φ+ω)/2 cos(θ/2) e−i(φ−ω)/2 sin(θ/2)
e−i(φ−ω)/2 sin(θ/2) e−i(φ+ω)/2 cos(θ/2)

]

This gate was chosen as it can represent any single-qubit
rotation that we want up to a phase shift. Furthermore, it can
be easily decomposed as a series of ZYZ gates, which can
be implemented on a real device. The L parameterized layers
act essentially as one big unitary operation UL(φi, θi, ωi) that
performs a linear transformation on the state |z〉, and the
resulting quantum state generated by the ith subgenerator is

|ψGi〉 = UL(φi, θi, ωi)|z〉.
The success of deep learning methods, such as neural net-
works lies in its ability to learn nonlinear transformations of
its input. To introduce nonlinearity into the subgenerators,
we make a partial measurementM on the ancilla qubits, then
trace out the ancilla qubits to obtain the resulting state of
the data qubits. Since we will be making projector measure-
ments, the state-of-the-data qubits |ψD〉 after tracing out the
ancilla qubits will be

|ψD〉 = TrA

(
M ⊗ I|ψGi〉〈ψGi |
〈ψGi |M ⊗ I|ψGi〉

)
.

In our case, we pick the partial measurement to be M =
(|0〉〈0|)⊗A for simplicity. Hence, the final state of the data
qubits will be

ρD = TrA

(
(|0〉〈0|)⊗A ⊗ I|ψGi〉〈ψGi |
〈ψGi |(|0〉〈0|)⊗A ⊗ I|ψGi〉

)
.

The state now depends on |ψGi〉 in both the denominator and
the numerator, which is in turn dependent on |z〉. Hence, the
state is a nonlinear transformation of |z〉. We, then, measure
the probability of each computational basis state-of-the-data
qubits to obtain the sub-generator output given by

Gi(z) = [p(0), p(1), . . ., p(2D−1)]

We would like each element of the generator output to have
values between [0,1] to be interpreted as pixel values. Al-
though it is possible to interpret the probabilities as pixel
values directly, it would be problematic due to the normal-
ization constraint, which would not give us the desired pixel
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values. Hence, we apply postprocessing by taking

G′
i(z) = Gi(z)

max(Gi(z))

in order to obtain valid pixel values. Since the size of the
outputs from the quantum circuit are power of 2 s, we only
keep the first HW/P pixels to create a patch with the correct
dimensions. Finally, the output from all the subgenerators are
stacked together to form an image of size H ×W

G(z) = [G′
1(z), . . .,G

′
P(z)]

T .

It is possible to use other more complex nonlinear trans-
formations from classical machine learning, such as passing
the output through different activation functions as discussed
in [27]. However, due to time constraints we deemed it to be
out of scope.

B. STRUCTURE OF CRITIC
The critic in this case is the same as in WGAN-GP, which is
a classical neural network. We believe that a classical neural
network would be better for the PQWGAN framework as it
is developed for NISQ devices in mind. Recall that the critic
is responsible for taking in an image and outputting a real
value that serves as an estimate for the Wasserstein distance.
This poses several problems for a quantum critic. First, we
would have to load high-dimensional data into a quantum
circuit, which is hard to do in practice due to the amount of
quantum resources required. Second, the learning process of
quantum circuits are not as well understood as classical neu-
ral networks. There are limited solutions to problems that are
frequently encountered in quantum learning, such as barren
plateaus [42].

C. TRAINING OBJECTIVE
We adopt the objective of WGAN-GP defined in (3) to train
the PQWGAN. A subtle difference to WGAN-GP is that the
output from the generator originates from multiple subgen-
erators as detailed in Section IV-A. The use of this objective
is motivated by the empirical observation that WGAN-GP
can be used to train a variety of different architectures suc-
cessfully with minimal hyperparameter tuning. We view this
as an important benefit for the NISQ era since quantum re-
sources are scarce. Although quantum models can be proto-
typed using quantum simulators, the difficulty of simulating
quantum circuits means that searching for optimal hyper-
parameters is a time-consuming and tedious task. Until we
can more efficiently execute quantum circuits, fine-grained
hyperparameter tuning will most likely be out of reach for
larger models. Hence, this objective will in principle allows
us to train QGANs in general with a greater success rate.

D. TRAINING ALGORITHM
The training algorithm for PQWGAN follows the
WGAN-GP training algorithm, except for the use of
quantum generators (see Algorithm 2). With the generator
now being split into subgenerators, we have to update

Algorithm 2: PQWGAN Training Algorithm.

the parameters of different subgenerators given a loss
that is calculated on the entire images. Furthermore, the
loss function L(w, θ) depends on both the critic and
generator parameters, respectively. Since the training is
done in alternating steps, and either the critic or generator
is assumed to be fixed while training, we can still use
the parameter shift rule [44] to compute the gradient.
Assuming we have NG subgenerators with n parameters
each, the generator’s parameters can be expressed as a vector
θ = [θ1, . . ., θNG] = [θ1,1, . . ., θ1,n, . . ., θNG,1, . . ., θNG,n].
Hence, the gradient of the jth parameter of the ith
subgenerator with respect to the loss is

∂〈L(w, θ)〉
∂θi, j

= 1

2
(〈L(w, [θ1,1, . . ., θi, j + π/2, . . ., θNG,n])〉

− 〈L(w, [θ1,1, . . ., θi, j − π/2, . . ., θNG,n])〉).

V. EXPERIMENTAL SETUP
A. DATASET AND LIBRARIES
We pick the publicly available MNIST [31] and FM-
NIST [32] datasets to conduct our experiments on. Although
MNIST and FMNIST are simple datasets for classical GANs,
they are still a considerable step-up in terms of complexity to
previous studies of QGANs especially with the full 28 × 28
resolution. Due to resource limitations, we will only be using
the first 1000 samples of every class that we include in our
training set to ensure that the training process can be carried
out in a reasonable amount of time.
All models are implemented in Python3 using

PyTorch [46] and PennyLane [47]. PyTorch is a
high-performance machine learning library, whereas
PennyLane is a QML library that provides interfaces to
PyTorch. The training of all PQWGANs are simulated
without noise using high-performance computing resources
from the National Computational Infrastructure, Pawsey and
the University of Melbourne.

3102419 VOLUME 4, 2023



Tsang et al.: HYBRID QUANTUM-CLASSICAL GENERATIVE ADVERSARIAL NETWORK Engineeringuantum
Transactions onIEEE

B. CLASSICAL CRITIC AND GENERATOR STRUCTURES
To systematically investigate the performance of the quan-
tum generator, we fix the critic in the PQWGAN to be the
same in all of our experiments. The critic is a fully connected
network with two hidden layers of 512 and 256 neurons, re-
spectively. Both of these hidden layers have a leaky rectified
linear unit (ReLU) activation with a slope of 0.2. The final
hidden layer is connected to an output layer of one neuron
with no activation to obtain a real-valued output.
To contrast our framework with classical GANs, we com-

pare our results with aWGAN-GP. For consistency, the critic
used is the same as in the PQWGAN. The generator is now
also a fully connected network with three hidden layers of
256, 512, and 1024 neurons, respectively. Again, the hidden
layers all have leaky ReLU activations with a slope of 0.2.
Finally, the hidden layers are connected to an output layer
consisting of the same number of neurons as the output pixels
with a tanh activation, which are then rearranged to form an
image.
Since our experiments are conducted on relatively simple

datasets, we opted for a simple architecture across all classi-
cal components of our experiments. To validate the capability
of the classical parts in learning, we applied the WGAN-
GP to learn the full MNIST and FMNIST datasets. In both
datasets, the Wasserstein distance converges toward 0, while
manually inspecting the outputs confirmed that the generator
is indeed learning successfully. This shows that our classical
components should not affect the learning capabilities of the
PQWGAN.

C. HYPERPARAMETERS
Unless otherwise specified, the hyperparameters for all our
experiments are chosen as follows. We follow the default
values for the learning process in WGAN-GP [30], where
we use the values λ = 10, nC = 5, and Adam [48] for op-
timization with hyperparameters β1 = 0 and β2 = 0.9. We
decided on having 28 subgenerators generating 28 patches,
so that one patch would correspond to one row of pixels in
the image. Each subgenerator also has one ancilla qubit. Fur-
thermore, after some hyperparameter tuning, we found that
the learning rate for the quantum generator needs to be higher
than the classical critic to learn, andwe set the learning rate to
be 0.01 and 0.0002 for the generator and critic, respectively.
Also, in our initial explorations the quantum generator was
observed to learn quicker when using a uniform prior, so we
chose a uniform prior over a Gaussian prior. The uniform
prior is restricted to be in the range [0, 1) instead of [−π, π ).
Although using the latter can cover the whole range of pos-
sible rotations in the quantum circuit, we found that it led to
poorer learning due to the larger space that the generator has
to learn from.
Due to the time required to simulate the quantum circuits,

we use a batch size of 25 to ensure that the generator is
sufficiently updated during the training process. In all our
experiments, we train the generator for 600 iterations, which
is equivalent to processing 3000 batches of data in total.

Depending on the number of classes used in our experiments,
this corresponds to 37.5 or 25 epochs for the two and three
class experiments, respectively. We pick this number as it is
a considerable number of epochs for training under current
resource constraints while also being able to be completed in
a reasonable amount of time.

VI. IMAGE GENERATION WITH PQWGAN
In this section, we apply our PQWGAN framework to gen-
erate images of MNIST and FMNIST. To compare between
classical and quantum learning, we repeat each task with
a fully classical WGAN-GP with identical hyperparameters
except for the use of a Gaussian prior and the learning rate,
where it was a constant 0.0002 for both the generator and
critic. These exceptions were made to ensure that we are not
severely crippling the learning ability of the WGAN-GP. We
also sampled from a latent space that has the same number
of dimensions as available in the quantum case to ensure that
the WGAN-GP cannot exploit extra dimensions in the latent
space. Our results are shown in Fig. 3.

A. BINARY MNIST
First, we applied the PQWGAN to generate digits 0 and 1
from MNIST. In this task, each subgenerator consists eight
layers of seven data qubits and one ancilla qubit to conserve
resources. As such, the latent vector has eight dimensions.
Looking at Fig. 3(a) and (b), it is evident that for both the

classical and quantum case, the generators are successfully
learning to generate images of 0 s and 1 s. Furthermore from
Fig. 3(d), we can see that the Wasserstein distance slowly
decreases as the training progresses, which corresponds to
an increase in image quality when we inspect the generated
images during the training process. However, there are still
imperfections in both cases, which allows them to be eas-
ily distinguished from the real images. In particular for the
quantum case, there are some samples that resemble neither
a 0 nor 1 and appear to be a combination of the two, such
as row 3 column 3 in Fig. 3(a). These mixed images can be
attributed to the incomplete learning process when the gen-
erator has yet not learned a comprehensive mapping for the
entire latent space. Due to the limitations of running quantum
simulations, 600 generator iterations is a very small amount
compared with experiments conducted in the classical case,
where the number is around 104–105 generator iterations
albeit for a more complex task. Furthermore, in classical
GAN training, the generator also outputs samples that look
like a combination of the different classes in the early stages
of training before slowly learning to diversify into the sep-
arate digits. The similar behavior between PQWGAN and
WGAN-GP suggests that the problem of having mixed im-
ages can be mitigated by training the generator more.
Another imperfection in the quantum case is the fuzziness

of the images. Even in images that look plausible, such as
row 1 column 3 in Fig. 3(a), we can still see that the edges
are not very sharp. Since the pixel values originate from the
amplitudes of the quantum state at the end of the circuit, to
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FIGURE 2. Quantum circuit of a subgenerator. First, each component of the latent vector is encoded into the rotation angle of a RY gate. Then, the state
passes through L layers of arbitrary parameterized rotations R and CNOTs using the hardware-efficient structure. The subscripts i, j of the parameters of
the R gates refer to the ith layer and the jth qubit. The ancilla qubits are measured to perform a nonlinear transformation on the state. In this article, we
use only one ancilla qubit and pick the resulting state where the ancilla is 0. Finally, the data qubits are measured to form a patch.

generate a completely dark pixel, we require the correspond-
ing amplitude to be 0. However, due to the nature of a highly
entangled circuit, it is very difficult for a particular state to
have exactly 0 amplitude. This effect is magnified by the
postprocessing step, where the amplitudes are normalized to
be in [0, 1]. In terms of image sharpness, classical GANs have
an advantage since it is easier for the optimization process to
change the value of a specific pixel.
The fact that the PQWGAN can generate images of com-

parable quality to WGAN-GP further supports the result that
PQCs have a stronger expressive power than those of clas-
sical neural networks [19]. For our WGAN-GP architecture,
the generator consists of roughly 1.46 million trainable pa-
rameters, whereas our quantum generator consists of 5376
trainable parameters. Yet, our quantum generator is able to
keep up with the classical generator. In comparison, a classi-
cal generator with a similar parameter count is unable to learn
anything meaningful. In the future when the technology is
sufficiently developed, it would be interesting to investigate
how larger scale QGANs can compare with classical GANs
in terms of performance.

B. BINARY FMNIST
Next, we investigate whether the PQWGAN can learn from
and generate more complex data, namely images from the
classes of T-shirt and trousers from FMNIST. In this exper-
iment, each of the subgenerators now has 11 layers to ac-
commodate the increase in the data complexity. We keep the
structure of having seven data qubits and one ancilla qubits
and observed that it worked well.
The results in Fig. 3(e) and (f) show that again for both the

classical and quantum case, the generators can successfully
learn to generate images of T-shirts and trousers. However,
the problems of samples being uncertain and fuzzy also per-
sist in this case. With the increased complexity of the task,
it is expected that these problems will be more apparent as
the generator now has a harder time of generating a sharp

image with more detail. Still, we observe that our PQWGAN
is attempting to learn more subtle details, such as different
shades and thickness of legs in the trousers of Fig. 3(e). This
shows that there is potential for quantum generators to learn
from more complex images in the future.
Looking at the training curve for the PQWGAN in

Fig. 3(h), the Wasserstein distance is not decreasing much
and has a high variation as it gets updated. This suggests that
the generator is nearing its capacity, and is failing to learn a
representation that can capture all the variations in details of
the samples it is generating due to its limited expressiveness.
To rectify this problem, we could increase the number of
layers in each subgenerator to increase the expressiveness of
the generator. Furthermore, we could also increase the batch
size of the learning process to obtain more stable gradients.
However, both these methods are expensive to simulate as
they increase the amount of resources required to simulate
the circuits and are out of the scope for this work.

C. TRIPLE MNIST
After investigating the performance of our framework for
image generation in two classes of a dataset, we now investi-
gate whether our framework can be applied to generate more
classes simultaneously. From Section VI-B, we observed that
the generator struggles to properly learn the more complex
and diverse features on FMNISTwith its current size. Hence,
we focused on the task of learning on three classes ofMNIST.
We selected the digits 0, 1, and 3 to learn as they have a
distinct structure to them. In this case, we use 11 layers per
subgenerator of seven data qubits and one ancilla qubit.
Our results show that both the classical and quantum

frameworks are able to generate images that correspond to
the three digits. However, for the PQWGAN, there are now
artifacts that persist in the same location of every output
image. The reason for such simulation results is not fully
known. However, it is empirically observed that varying cer-
tain parameters, such as the number of data qubits in the
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FIGURE 3. Random images generated using PQWGAN and WGAN-GP. The images generated by our PQWGAN are of comparable quality to that using a
WGAN-GP albeit having orders of magnitude less trainable parameters. Especially, for MNIST 0/1 and FMNIST T-shirts/trousers, the PQWGAN is able to
keep up with WGAN-GP in terms of image sharpness. However, for MNIST 0/1/3 both the PQWGAN and WGAN-GP start to struggle.

quantum generator reduces the impacts of these artifacts.
This will be further explored in Section VII.
Ignoring these artifacts, both the classical and quantum

frameworks are able to learn to generate images of 0, 1, and
3. However, there is an increased proportion of mixed images
in PQWGAN when compared with Section VI-A. This is
expected as the dataset is now more complex, with fewer
epochs. Furthermore, the Wasserstein distance as shown in
Fig. 3(l) is plateauing, which suggests that the generator is
nearing its capacity. Hence, we require more layers and a
longer training process to better learn from triple MNIST.

D. WALKING IN THE LATENT SPACE
In classical GANs, interpolations between two points in the
latent space have been used to demonstrate that the gen-
erator has learned to output a smooth mapping instead of
memorizing specific samples [2]. Here, we perform linear

interpolation to visualize the mapping that the PQWGAN
has learned. There exists more complex interpolation meth-
ods, such as spherical linear interpolation [49] for high-
dimensional latent spaces (> 50 dimensions). However, as
the dimensions of our latent space is equal to the number
of qubits in a subgenerator, it is of low dimensions (< 10 di-
mensions) due to resource constraints. Furthermore, since we
are only interested in verifying that the generator has learned
a smooth mapping for now, we use linear interpolation as it
is more intuitive.
We pick two latent vectors corresponding to two well-

defined images and divide the straight line connecting them
into ten equal segments. Then, we use the points that lie on
the ends of these segments to generate outputs. The results
are shown in Fig. 4. For all our experiments, including both
the two and three class experiments, the generator is able
to learn a smooth mapping for points in the latent space.
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FIGURE 4. Linear interpolation on PQWGAN. Performing linear
interpolation between two points of the PQWGAN shows a smooth
transition. This shows that our PQWGAN can learn a smooth mapping
from the latent space to the output space. (a) 0–1. (b) 7–9. (c) 1–7.
(d) T-shirt–trousers. (e) Sneakers–trousers.

This shows that our generator is indeed capable of learning
a meaningful mapping from the latent space to the output
space.

VII. EFFECTS OF GENERATOR PARAMETERS
To this end, we showed that our framework can be suc-
cessfully applied to generate high-resolution images of both
MNIST and FMNIST, we now turn to investigate how the
structure of the quantum generator will affect the quality of
the images generated to provide guidance on how to pick
the generator architecture. Since there are many different
choices that one can make for the generator to generate an
image, we choose a set of parameters that we believe has a
significant impact on the learning process. Namely, we inves-
tigate how altering the number of patches, qubits and layers
in the generator, the shape of the patches, and the choice of
prior distribution affects the resulting image quality. In each
experiment, we vary the parameter in question and fix all
other parameters. The training curves obtained from these
experiments can be found in Appendix C.

A. NUMBER OF PATCHES
First, we investigate how the number of patches affects the
quality of our generated samples. To focus on the effects
of the number of patches, we use one ancilla qubit and the
minimum number of data qubits required for the patch size
in every subgenerator. Furthermore, we adjust the number of
layers per subgenerator to keep a similar number of trainable
parameters so that the expressiveness of the generator stays

TABLE 2 Various Generator Structures Used to Investigate the Effects of
Different Number of Patches

relatively constant. We pick the structure with 28 subgener-
ators and ten layers as a baseline, then vary the number of
layers with the number of batches accordingly. Our various
generator structures are given in Table 2, and we applied
these generators to learn from MNIST 0/1 and FMNIST
T-shirt/trousers.
From Fig. 5, the results show that there is a significant

effect in terms of the number of patches on the quality of the
outputs. Starting with only one patch, the generator fails to
output anything meaningful. Instead if we inspect intermedi-
ate outputs during the training process, the outputs oscillate
between being dark and something that resembles a mode
collapse. As we increase the number of patches, the im-
ages become increasingly sharper, and there are fewer mixed
images.
The drop in the output quality as we decrease the number

of patches is likely due to the effects of barren plateaus. It has
been shown that for a hardware-efficient ansatz, training with
a global cost function exhibits barren plateaus regardless of
circuit depth [50]. In our framework, the cost function is
global as we are directly comparing the final state of the
subgenerators to images, which can be thought of as gener-
ated from some arbitrary state. As we increase the number of
patches, the effect of barren plateaus decreases due to having
smaller quantum circuits in the subgenerators. Hence, the
subgenerators are able to more effectively explore the Hilbert
space, which allows it to quickly search for a mapping. This
is evident from the training curves, where the Wasserstein
distance converges to a lower value and also has less variance
as we increase the number of patches in both experiments.
On the other hand, artifacts do not exist when we have

fewer patches for the MNIST experiments. Hence, using less
patches may be useful for avoiding artifacts. However, the
quality of the outputs decreases significantly as we decrease
the number of patches. Hence, having more patches will in
general corresponds to better output quality.

B. NUMBER OF QUBITS
Next, we investigate how the number of qubits affects the
quality of our generated outputs. We focus on varying the
number of data qubits used to generate a patch by increasing
the number of data qubits while keeping the same number
of patches and discarding an increasing number of pixels.
Specifically, we focus on the architecture with 28 patches
in our subgenerator, and have 5–8 data qubits while having
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FIGURE 5. Effect of number of patches. Varying the number of patches without changing other parameters will change the expressiveness of the
generator by adding more trainable parameters. Hence, in our experiments we fixed the number of trainable parameters to be roughly constant and
varied the number of data qubits and layers accordingly. The images show random outputs sampled from generators with varying number of patches
trained on MNIST and FMNIST. In both cases, having a small number of patches led to poor learning. As we increase the number of patches, the
generated images become sharper. MNIST. (a) 1 patch. (b) 2 patches. (c) 4 patches. (d) 7 patches. (e) 14 patches. (f) 28 patches. FMNIST. (g) 1 patch.
(h) 2 patches. (i) 4 patches. (j) 7 patches. (k) 14 patches. (l) 28 patches.

TABLE 3 Various Generator Structures Used to Investigate the Effects of
Different Number of Data Qubits

one ancilla qubit. Again, to keep the expressiveness of the
subgenerator similar, we keep the parameter count roughly
the same by varying the number of layers accordingly. The
list of generator configurations tested is given in Table 3.
Since varying the data qubits may have an effect on the
learning capabilities of the subgenerators, we apply these
configurations to the more difficult tasks, namely MNIST
0/1/3 and FMNIST trousers/sneakers to obtain a more
pronounced effect.
From Fig. 6, the outputs from generators with extra data

qubits are in general smoother and less convoluted, which is
supported by the fact that theWasserstein distance converges
to a lower value when we increase the number of qubits.
With more qubits, the generator has more flexibility as it can
utilize the extra data qubits to manipulate the final amplitude
into a higher quality image. However, there is a diminishing
return in terms of output quality and Wasserstein distance as
we continue to increase the number of qubits. From visually
inspecting the outputs and training curve included in Fig. 12
from Appendix C, there does not seem to be much benefit
going past six qubits in terms of the image sharpness for these
two tasks.

In addition to improving the output quality, we observe
that having additional qubits helps in reducing the amount
of artifacts present in the final outputs. Other than running
our framework with more data qubits on these two tasks,
we also tried having more data qubits for the experiments
in Section VI when trying to achieve better outputs. We ob-
served a similar trend, where in general having more data
qubits also reduced the amount of artifacts present in the
learned outputs. To investigate this, we inspected the out-
puts of the quantum circuits of the subgenerators for our
two experiments. Since we are running simulations, we can
obtain precisely the quantum state produced at the end of the
quantum circuits. We observed that there is a large difference
between the sum of the probabilities of the basis states that
are used and discarded. In both experiments for the five-qubit
case, the sum of the probabilities of the used basis states
were very often greater than 0.9, whereas for the eight-qubit
case it was very often less than 0.1. This suggests that the
presence of artifacts is due to the lack of excess qubits for
the subgenerators to iron out the imperfections in a highly
entangled output state.

C. NUMBER OF LAYERS
We now turn to investigate the effect of having different
number of subgenerator layers. Unlike previous experiments,
varying the number of layers will directly change the number
of parameters, which affects the expressiveness of the circuit.
As we add more layers, the quantum circuit can learn more
complex transformations of the input quantum state, which
should allow the generator to learn a more complex distribu-
tion. Hence, to observe a pronounced effect, we again apply
it to the more complex tasks of generating MNIST 0/1/3 and
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FIGURE 6. Effect of number of qubits. Varying the number of data qubits without varying the number of layers will change the expressiveness of the
generator by adding more trainable parameters. Hence, in our experiments we fixed the number of trainable parameters to be roughly constant by using
28 patches while having a varying number of layers. The images show random outputs sampled from generators with varying number of data qubits
trained on MNIST and FMNIST. In both cases as we increase the number of qubits, the outputs become sharper and less convoluted while also leading
to less artifacts. MNIST. (a) 5 qubits. (b) 6 qubits. (c) 7 qubits. (d) 8 qubits. FMNIST. (e) 5 qubits. (f) 6 qubits. (g) 7 qubits. (h) 8 qubits.

FMNIST trousers/sneakers. To be consistent with previous
experiments and to conserve resources, we use 28 patches
with five data qubits and one ancilla qubit for each generator.
We experimented with having 5, 10, 15, 20, and 25 layers of
parameterized gates.
From Fig. 7, the quality of the outputs increases with

more layers and there are less mixed images. Furthermore,
the Wasserstein distance converges to a lower value albeit
having greater variance. However, the gain is marginal as
we keep increasing the number of layers, and there is not
a big improvement as we go past 15 layers. The marginal in-
crease in output quality and the larger variance inWasserstein
distance estimates can be explained by the expressibility of
PQCs [51]. As we add more layers to our subgenerators, it
can represent a larger set of unitaries U. Hence, as we add
more layers to our generator, it becomes increasingly likely
that the generator is complete, and thatU contains an accept-
able solution. However, the larger set of unitaries also means
that the optimization process has to search through a larger
space for the solution. Hence, it is likely that the optimization
process has to navigate a more complex parameter space,
which leads to a higher variance in the Wasserstein distance.
On the other hand, the fact that the Wasserstein distance

starts to plateau in all configurations suggests that our choice
of ansatz may not be the most suitable for the image gener-
ation task. Our choice of the PQC structure is chosen such
that it can represent any hardware-efficient ansatz of repeat-
ing single qubit rotations followed by cnot gates. However,

there are no theoretical motivations as to why we should use
a hardware-efficient ansatz instead of other types of ansatz
for image generation. Problem-inspired ansatz, such as the
quantum alternating operator ansatz [52] have been shown
to be useful in more efficiently implementing solutions to
combinatorial optimization problems. Thus, it is possible
that there are other types of ansatz that are more suitable for
image generation.

D. SHAPE OF PATCHES
Next, we investigate how the shape of the generated patches
affects the final outputs. In previous experiments, the data
points generated by a patch always fit entirely in one row and
are then stacked vertically. In this experiment, we considered
having 7 × 4 patches and stacking them across horizontally.
We are now more focused on whether the generator is able
to generate images with a different layout of patches, and
so we apply it to the easier tasks of generating MNIST 0/1
and FMNIST T-shirts/trousers. Again, we use 28 patches of
ten layers with five data qubits and one ancilla qubit for
consistency.
From Fig. 8, the shape of the patches does not have a big

effect on the final output quality. This is also supported by the
training curves, where the evolution of Wasserstein distance
is similar in both patch shapes. However, there is a noticeable
gap in theWasserstein distance estimates, which is due to the
location of artifacts in the 7 × 4 patch images. Due to the way
the patches are positioned, any artifacts generated using the
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FIGURE 7. Effect of number of layers. In this experiment, we are
interested in having a more expressive generator. Hence, we fixed the
number of patches and data qubits to be 28 and 5, respectively. The
images show random outputs sampled from generators with varying
number of layers trained on MNIST and FMNIST. In both cases, increasing
the number of layers improves the sharpness of the outputs. However,
there is a diminishing return as we keep increasing the number of layers.
MNIST. (a) 5 layers. (b) 10 layers. (c) 15 layers. (d) 20 layers. (e) 25 layers.
FMNIST. (f) 5 layers. (g) 10 layers. (h) 15 layers. (i) 20 layers. (j) 25 layers.

7 × 4 patches will appear in center of the final image. Hence,
the critic has a very easy time of spotting imperfections that
exist, leading to a larger Wasserstein distance estimate.
Ignoring the artifacts, both patch shapes were still able

to learn to produce images of the corresponding objects.
Given that we already know it works for 1 × 28 patches, we
would expect the generator to be able to successfully learn
regardless of the intended shape of its outputs. Initially, we
chose having 1 × 28 patches as it was easier to implement,
and did not take into account any of the structure of the
images. Since it was able to learn successfully, it showed that
the optimization process can successfully guide the patches
in producing what it needs for that region. Hence, changing
the patch shape would not affect whether the generator can
learn to output images. Having said that, changing the patch
shape may be useful for more complex datasets with more
structure to the images. For example, we can imagine for
CIFAR-10 [53] images of natural scenes, it might be benefi-
cial to have patches that corresponds to certain segments of
the photo, such as the background, foreground, and objects
within.

E. PRIOR DISTRIBUTION
Finally, we investigate the effect of different prior distribu-
tions on the outputs. In classical GANs, the prior distribution
is usually chosen to be a Gaussian due to its nice mathe-
matical properties and empirical performance. However in
our preliminary testing, we observed that the generator only
learns to output meaningful samples on some of the inputs
from a Gaussian prior. Hence, we opted to use a uniform
prior instead. Here, we make a more detailed comparison
of the PQWGAN trained on a Gaussian prior and uniform
prior. As before, the uniform prior is chosen to be fromU[0,1),
whereas the Gaussian prior is chosen to be the standard nor-
mal N (0, 1). We applied it to the task of generating MNIST
0/1/3 and FMNIST trousers and sneakers using 28 patches of
five data qubits, one ancilla qubit and 15 layers.
From Fig. 9, in both cases the generator with the Gaussian

prior has not learned to fully map the latent space to the
output space while the uniform prior has, which is due to
the small number of training iterations done coupled with the
low-dimensional latent space. Since the latent vectors sam-
pled from the Gaussian distribution are concentrated around
the mean, the small number of training iterations means that
the generator has potentially not fully explored the latent
spaces far from the mean. For the uniform prior, this does not
happen as the latent vectors are sampled with equal probabil-
ity. Hence, in our case the generator will likely have learned
a more complete mapping of the latent space when using a
uniform distribution.
On the other hand, the well-formed samples generated

from a Gaussian prior are arguably of better quality than
compared with the uniform prior. Especially for the MNIST
images, such as row 1 column 1, row 2 column 1, and row 5
column 2 of Fig. 9(b), the images appear sharper and have
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FIGURE 8. Effect of shape of patches. In this experiment, we fixed the number of patches, layers, and data qubits to be 28, 10, and 5, respectively, and
varied the shape of the patches. The images show random outputs sampled from generators with either 1 × 28 or 7 × 4 patches trained on MNIST and
FMNIST. In both cases, having different patches shapes do not affect the quality of the outputs. However, should artifacts exist, having different patch
shapes can lead to artifacts appearing in more obvious locations. MNIST. (a) 1 × 28 patches. (b) 7 × 4 patches. FMNIST. (c) 1 × 28 patches. (d) 7 × 4
patches.

FIGURE 9. Effect of prior distribution. In this experiment, we fixed the number of patches, layers, and data qubits to be 28, 15, and 5, respectively, and
varied the choice of prior distribution. The images show random outputs sampled from generators with a uniform or Gaussian prior trained on MNIST
and FMNIST. In both cases, the uniform prior allows the generator to learn a more complete mapping for every latent vector, whereas the Gaussian prior
allows the generator to produce sharper images for those that are well formed. MNIST. (a) Uniform prior. (b) Gaussian prior. FMNIST. (c) Uniform prior.
(d) Gaussian prior.

less noise compared with those in Fig. 9(a). Furthermore,
the outputs from the Gaussian prior are free from artifacts.
Since the generator is frequently trained on latent vectors
centered around the mean, the outputs generated from this
region of the latent space will be of better quality. As the
training progresses using a Gaussian prior, we observed that
there are less instances of white noise generated by the gener-
ator, which supports the argument of the white noise coming
from an unexplored region of the latent space. In the future
when there are more resources to run larger scale training,
the PQWGAN trained on a Gaussian prior may generate
better outputs than using a uniform prior while avoiding the
problem of artifacts.

F. SUMMARY OF EFFECTS OF GENERATOR PARAMETERS
In this section, we have investigated the effects of various
parameters on our quantum generator. Here, we summa-
rize some general observations on the impact of different
parameter choices on the output quality. First, in terms of
number of patches to use, we observe that having more
patches in general corresponds to better output quality. In

our experiments, we were unable to learn anything mean-
ingful with one patch, and the output quality improved as
we increased the patches. Next, as we increase the number
of data qubits, the outputs were sharper and less artifacts
were observed. Third, as we increased the number of layers
in a subgenerator, the images are visibly sharper when we
go from 5 to 10 and to 15 layers but are less noticeable
from 15 layers onward. Fourth, the shape of the patches do
not have much impact on the quality and general sharpness
of the outputs, but having square patches will lead to more
noticeable artifacts if they exists. Finally, using a uniform
prior allows the generator to quickly explore the whole la-
tent space while the Gaussian prior is slower and leads to
more white noise in our small-scale experiments. However,
the well-formed outputs generated by the Gaussian prior are
arguably of higher quality and do not suffer from artifacts.

VIII. CONCLUSION AND FUTURE DIRECTIONS
Classical GANs have seen great success in image generation
while QGANs are still far away from that level. However,
with the promise that quantum computing brings, QGANs
are an exciting area of research. In this article, we proposed
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our novel PQWGAN framework for image generation and
empirically evaluated the effects of varying its different pa-
rameters. The PQWGAN is composed of a quantum genera-
tor and classical critic, and is inspired by the patch strategy
QGAN and the training algorithm ofWGAN-GP.We applied
our PQWGAN to learn on subsets of 28 × 28 pixels im-
ages of MNIST and FMNIST. Specifically, we successfully
learned the two-class subsets of MNIST 0/1 and FMNIST
T-shirts/trousers, and the three-class subset of MNIST 0/1/3.
We compared these results with aWGAN-GP and found that
our PQWGAN was able to achieve comparable results de-
spite having three orders of magnitude less trainable param-
eters in the generator. To the best of authors’ knowledge, this
is the first time that a QGAN with a quantum generator has
demonstrated that it can successfully learnmultimodal image
data of this resolution on these standard datasets. Finally, we
investigated how varying different parameters has an effect
on the output image quality. We found that as a general rule
of thumb, having more patches, data qubits, and layers is
beneficial, while the shape of the patches did not matter too
much. We also found that using a uniform prior is beneficial
in the near term, but may be outperformed by a Gaussian
prior in the future.
We suggest four future directions to explore. In this work,

we have shown the working of our method based on noiseless
simulations due to the challenges associated with the limited
capabilities of the current generation of NISQ devices. The
scope of this article was to develop a new quantum gener-
ative learning technique, which can produce high-resolution
images and demonstrate its working in the theoretical setting.
However, future work could implement these methods on
quantum processors to test and benchmark their performance
in the presence of noise. The patch strategy QGAN [27] suc-
cessfully learned to generate simple 8 × 8 pixels images on
a 12-qubit superconducting computer. With 100+ qubit de-
vices currently available and 1000+ qubit devices projected
to arrive in the near future, it would be interesting to observe
how our framework performs on a real quantum computer.
Second, we could try more complex images, such as natural
scenes with CIFAR-10 [53] or human faces with CelebA [54]
in future work to see how our framework holds up in the pres-
ence of color and irregular image structure. Given adequate
quantum resources, our framework is theoretically capable
of breaking down and handling these larger generative tasks.
Third, we noted that our choice of the quantum circuit for the
generator lacked theoretical motivations. Like how convolu-
tions have allowed deep learning for images to leap forward,
there may be some operations that a quantum circuit can
do that are especially helpful for images. Future work could
look to experimenting with different ansatz to discover im-
age manipulation techniques more suited for QML. Finally,
our critic in this work is implemented using classical neural
networks. As the field of QML develops, having a quan-
tum critic can be beneficial due to the promises that QML
brings. Combining the last three directions, our framework
has the potential to be the foundation of newmethods to push

forward what is currently capable of QGANs, and work to-
ward closing the gap in what is possible with classical and
QML methods.

APPENDIX A
FURTHER DISCUSSIONS OF THE PQWGAN FRAMEWORK
A. POTENTIALS OF A QUANTUM CRITIC
A quantum critic is an interesting research avenue in the
future. In classical GAN training, the discriminator and gen-
erator architectures are usually chosen such that one does not
significantly overpower the other [43]. Although it is unclear
whether this is a desirable property to have in GANs, having
a rough idea of the expressive power of the GAN components
can be used to help stabilize the training process. However,
the relationship between the expressibility of classical neural
networks and PQCs is unclear. Hence, having a quantum
critic will be advantageous in this case as it can give a rough
estimate of the expressiveness of the generator and critic.
In practice, a quantum critic may be constructed in the

same way as a subgenerator with PQCs. Instead of measur-
ing all qubits, we can measure one qubit at the end of the
circuit to obtain a value, such as the Z expectation value.
Then, to obtain an unbounded real-valued output to serve as
an estimate of the Wasserstein distance, we could pass the
output value through a tan function, similar to an activation
in a classical neuron. However, due to the limited time and
scope of this work, we were not concerned with this.

B. DISCUSSIONS OF THE TRAINING PROCESS
Arjovsky et al. [7] proved that for WGAN, the optimization
process is principled when the critic and generator are con-
structed with neural networks. Here, we argue that this is
also the case for our form of PQCs. We rely on the following
assumption and theorem proved in [7].
Assumption 1: Let g : Z × R

d → X be locally Lipschitz
between finite dimensional vector spaces. Denote gθ (z) as
the result of evaluating g with parameters θ at z. g satisfies
the assumption for some probability distribution p over Z if
there exists local Lipschitz constants L(z, θ ) such that

Ez∼p[L(z, θ )] < +∞
Theorem 1: Let Pr be some distribution. Let Pθ be the

distribution generated by gθ (z) where g is some function
satisfying assumption 1 and z is some random variable with
density p(z). There exists a solution f : X → R to

max
|| f ||L≤1

Ex∼Pr [ f (x)] − Ex∼Pθ
[ f (x)] (A1)

and

∇θW (Pr,Pθ ) = −Ez∼p(z)[∇θ f (gθ (z))]
when both terms are well defined.
Intuitively, Theorem 1 tells us that it is possible for the gen-

erator to learn the target distribution under theWGAN objec-
tive as defined in (2) using the min–max method in GANs.
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The inner maximization correspond to the Wasserstein dis-
tance reformulated under the Kantorovich–Rubinstein du-
ality. By searching for a function f from the family of
1-Lipschitz functions that maximizes the difference in ex-
pectations in (A1), we obtain the Wasserstein distance be-
tween our target distribution and our generator distribution.
We would like to minimize theWasserstein distance between
the target distribution and generator distribution, and hence
we can use the usual gradient descent of on the Wasserstein
distance. This corresponds to the outer minimization in the
WGAN objective. With the GP term in WGAN-GP, the op-
timal critic is shown to have unit norm for straight lines
connecting samples fromPr andPθ . Hence, if expected value
of the norm of the gradient deviates from 1, the critic will
be penalized and will unlikely be the one that maximizes
(A1). This preserves the nice properties of Theorem 1 and
is empirically observed to support this claim. So, to show
that the training of PQWGAN is also principled, it suffices
to show that the quantum generator satisfies Assumption 1.
Using the theorem proved in [45] on the Lipschitz conti-
nuity of PQCs, we argue that our generator satisfies this
assumption.
Theorem 2. Given a function f : [0, 2π ]M → R of the

form f (θ) = 〈ψ |U†(θ)OU (θ)|ψ〉, where |ψ〉 ∈ C
n is some

arbitrary state for a finite n,U (θ) is a quantum circuit param-
eterized by θ consisting of an arbitrary number of fixed gates,
and M parameterized gates Ui(θi) = exp(−i(θi + ci)Hi) for
some constant ci and HermitianHi. Then, for any observable
O and any set of Hermitian operators, f (θ) is L-Lipschitz
with

L =
√
M

[
max
i

(
sup

θ

(∣∣∣∣∂ f (θ)∂θi

∣∣∣∣
))]

Since each subgenerator is a PQC of the form stated
in Theorem 2, the subgenerators are Lipschitz continuous.
Then, to obtain our final output, we apply a series of linear
transformations to the subgenerator outputs, which preserves
Lipschitz continuity. Hence, our full generator satisfies
Assumption 1 and the optimization process is principled.

APPENDIX B
ADDITIONAL IMAGE GENERATION EXPERIMENTS
A. COMPLEX BINARY FMNIST
For the case of FMNIST T-shirt/trousers in the main text,
the generator is having an easier time as since many of the
pixels of the T-shirt and trousers are overlapping. So, the
difference between them are mostly around the sleeves of the
T-shirt and between the legs of the trousers. Hence, we also
investigated whether the our framework can learn distinctly
different patterns in the form of trousers and sneakers. In this
experiment, each subgenerator consists of 13 layers of six
data qubits and one ancilla qubits, and thus the latent space
will have seven dimensions. The results are shown in Fig. 10.

FIGURE 10. Samples and training curves of classical and quantum
architecture on FMNIST trousers/sneakers. These samples are generated
randomly from (a) PQWGAN, (b) WGAN-GP, and (c) the dataset—real
samples. (d) Tracked Wasserstein distance of PQWGAN and WGAN-GP
during training.

FIGURE 11. Samples and training curves of classical and quantum
architecture on MNIST 1/7/9. These samples are generated randomly
from (a) PQWGAN, (b) WGAN-GP, and (c) the dataset—real samples.
(d) Tracked Wasserstein distance of PQWGAN and WGAN-GP during
training.
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FIGURE 12. Collection of the training curves from the parameter experiments conducted in Section VII.

Compared to the previous results, the PQWGAN is strug-
gling more to converge to a set of parameters that can gen-
erate a comprehensive mapping of the latent space in this
case. This is evident when we look at the training curve,
where the Wasserstein distance of the PQWGAN converges

and plateaus at a high value even if we continue to train
it. Compared with the binary cases in the main text, there
is a higher proportion of mixed samples of trousers and
sneakers. This behavior is expected since the dataset is both
more complex and has a greater difference between the two
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classes that we are trying to learn. Again, this points to the
problem of having a limited expressiveness of the generator,
and hence being unable to capture the details of the dataset
we are learning from. However, the PQWGAN is clearly still
able to learn something meaningful, as it not only is able to
generate images of trousers and sneakers, but also there exists
some different details within the same class, such as different
shapes of sneakers in row 3 column 5 and in row 5 column
5 of Fig. 10(a). Hence, it is reasonable to expect that in the
future when more resources are available, we can have larger
models and training processes that can mitigate this problem.

B. TRIPLE MNIST
Wealso applied our PQWGAN to the simpler task of learning
the digits 1, 7, and 9. Compared with the MNIST 0/1/3 in
main text, the digits are similar in the sense that they are
all have some form of a vertical stroke, and hence should be
easier to generate. In this experiment, we use 11 layers per
subgenerator and seven data qubits. The results are shown in
Fig. 11.

In this experiment, both the classical and quantum frame-
works are able to learn to output images that corresponds to
the three digits. If we ignore the existence of the artifacts,
the PQWGAN samples have a comparable quality to the
WGAN-GP samples. Some of the samples generated from
both these frameworks closely resemble the real samples,
while others are still noisy. Furthermore, from the training
curve, the PQWGAN achieves a similarWasserstein distance
compared with the WGAN-GP in the early stages of train-
ing. However, the WGAN-GP slowly converges to a lower
score while it seems that the PQWGAN is starting to plateau,
which can be attributed to the generator being not expressive
enough for the PQWGAN.

APPENDIX C
TRAINING CURVES OF PARAMETER EXPERIMENTS
A collection of the training curves from the parameter exper-
iments conducted in Section VII can be found in Fig. 12.
Data availability: The data that support the findings of this

study are available within the article.
Code availability: The code to run the simulations can be

found at https://github.com/jasontslxd/PQWGAN.
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