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ABSTRACT Shor’s algorithm solves the integer factoring and discrete logarithm problems in polynomial
time. Therefore, the evaluation of Shor’s algorithm is essential for evaluating the security of currently used
public-key cryptosystems because the integer factoring and discrete logarithm problems are crucial for the
security of these cryptosystems. In this article, a new approximate quantum Fourier transform is proposed,
and it is applied to Rines and Chuang’s implementation. The proposed implementation requires one-third the
number of T gates of the original. Moreover, it requires one-fourth of the T -depth of the original. Finally, a
T -scheduling method for running the circuit with the smallest KQ (where K is the number of logical qubits
and Q is the circuit depth) is presented.

INDEX TERMS Approximate quantum Fourier transform, controlled modular multiplication, Shor’s
algorithm.

I. INTRODUCTION
A. BACKGROUND
Evaluation of Shor’s algorithm [1] is extremely important.
Shor’s algorithm is a method for solving the integer
factorization and discrete logarithm problems, which take
subexponential time in classical computers [2]. These prob-
lems are fundamental problems for the security of the current
public-key cryptosystems, including the RSA cryptosys-
tems [3] and elliptic curve cryptosystems [4], [5]. Currently,
the scale of quantum computers is considerably small for
breaking these two public-key cryptosystems [6], [7], [8],
[9], [10], [11]. However, the scale of quantum computers is
increasing [12], and it is important to estimate the time when
Shor’s algorithm breaks these two public-key cryptosystems.
To estimate the time when Shor’s algorithm breaks the
current public-key cryptosystems, precise evaluation of
Shor’s algorithm is important. This article discusses Shor’s
algorithm on a single quantum computer. If there are more
than two computers, recently proposed distributed Shor’s
algorithm [13] will reduce computational costs. Our results
will be able to combine with this result, and a single quantum
computer is considered in this article. This article focuses
on Shor’s algorithm factoring an n-bit composite number N.

Previous researchers have evaluated the computational
cost of Shor’s algorithm by constructing quantum circuits for
it. Shor’s algorithm consists of modular exponentiation and a
quantum Fourier transform (QFT). The modular exponentia-
tion has a higher computational cost than the QFT. Previous
research works [14], [15], [16], [17], [18] have decomposed
a modular exponentiation into smaller arithmetic circuits,
adders, and multipliers. These methods have different ap-
proaches for addressing carry, which is an overflow at each
digit. The most widely used methods are the following.

1) Ripple-Carry [14], [17]: Carry is calculated sequen-
tially from the least significant bit (LSB) to the most
significant bit (MSB).

2) Carry-Lookahead [16]: Carry is calculated first before
the actual calculation.

3) Fourier-Basis [15], [18]: All carries in each digit are
calculated by QFT.

The first (ripple-carry) and the second (carry-lookahead)
methods calculate each carry only on the corresponding digit.
Unlike these two methods, the third method (Fourier ba-
sis) calculates a carry on all digits in the Fourier basis. Ta-
ble 1 shows the computational cost of each method. Without

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see http://creativecommons.org/licenses/by/4.0/

VOLUME 4, 2023 3102016

https://orcid.org/0000-0002-8436-0059
https://orcid.org/0000-0003-1822-7476


Engineeringuantum
Transactions onIEEE

Oonishi and Kunihiro: SHOR’S ALGORITHM USING EFFICIENT APPROXIMATE QFT

TABLE 1. Computational Cost for Factorization an n-Bit Number

fault tolerance, the Fourier-basis circuit is better than other
constructions. This difference occurs because the Fourier-
basis method calculates carry with higher parallelization than
the other methods.
To consider the actual computational cost for the future,

we must consider fault tolerance. Several researchers [17],
[18] have considered fault tolerance in Shor’s algorithm. In a
fault-tolerant setting, non-Clifford gates, including T gates,
have a higher cost than Clifford gates. Usually, we realize
non-Clifford gates by magic state distillation [19], resulting
in a heavy cost. Therefore, previous researchers have rep-
resented a quantum circuit with Clifford+T gates and min-
imized the computational cost of T , including the number
of T gates (called “T -count” in this article) and depth of T
gates (called “T -depth” in this article).

This article focuses on Shor’s algorithm using the Fourier-
basis method. As noted previously, the Fourier-basis method
has a lower computational cost than other methods with-
out fault tolerance. However, the computational cost of
the Fourier-basis method increases with fault tolerance, as
shown in Table 1. Inmore detail, the T -count and T -depth are
O(log n) times with fault tolerance. This increase occurs be-
cause the Fourier-basis method requires phase gates, which
require O(log n) Clifford+T gates [20].
However, the Fourier-basis method proposed by Rines

and Chuang [18] needs improvement. Previous research has
shown that approximate QFTs, which omit phase gates with a
small phase, remain a desired result in Shor’s algorithm [21],
[22]. Rines and Chuang [18] method adopts QFTs but does
not consider approximate QFTs. Therefore, we should con-
sider the computational cost of adopting approximate QFTs
for evaluating the Fourier-basis method more precisely.

B. OUR CONTRIBUTIONS
We evaluate Shor’s algorithm using the Fourier-basis
method [18] more precisely. Especially, the controlled mod-
ular multiplier using Montgomery reduction is improved by
reducing T -depth. The contributions consist of the following.

1) Montgomery multiplication [18] is improved (see Sec-
tion III).

2) The proposedMontgomery multiplication is applied to
Shor’s algorithm (see Section IV).

First, the improvement of Rines and Chuang [18] imple-
mentation of the Montgomery multiplication is described in
Section III. Their quantum circuit is improved where the
dominant term is 2n, namely, almost the same number of
qubits as in Rines and Chuang [18] construction. The method

FIGURE 1. Intuition of reducing the computational cost for the
Montgomery multiplication. Major computational cost of the original
circuit consists of multiplication and QFTs. By reducing the
computational cost of QFTs, an efficient Montgomery multiplication is
realized.

for reducing the computational cost for the Montgomery
multiplication is shown in Fig. 1, namely reducing the com-
putational cost of QFTs. In Section III-A, the thresholds in
approximation are discussed. Rines and Chuang [18] orig-
inal Montgomery multiplication is modified for Shor’s al-
gorithm in Section III-B because we cannot directly apply
their method to Shor’s algorithm. Moreover, a method for
reducing the computational cost by approximate QFTs is
proposed in Sections III-C and III-D. In Section III-C, a
naive application of approximate QFTs is discussed. This
implementation requires only one-third the T gates of Rines
and Chuang [18] original implementation. In addition to this
naive method, an approximate QFT with a smaller T -depth
for realizing a smaller T -depthMontgomerymultiplication is
proposed in Section III-D. By applying the proposed approx-
imate QFTs and parallelizing quantum gates by negligible
ancilla qubits, this implementation requires only one-fourth
of the number of T -depth of Rines and Chuang [18] original
implementation.
Finally, the proposed Montgomery multiplication is ap-

plied to Shor’s algorithm in Section IV. First, the pro-
posed Montgomery multiplication is applied directly in Sec-
tion IV-A. Next, a small T -depth circuit is proposed in Sec-
tion IV-B by using many ancilla qubits. Moreover, similar to
Oonishi et al. [23] method, a T -scheduling method is pro-
posed for minimizing KQ (where K is the number of logical
qubits and Q is the circuit depth) [24], the product of the
number of qubits and depth, in Section IV-C. It is then shown
that the proposed circuit takes the smallest KQwhen�

(
n1.5

)
T gates are run simultaneously.

3102016 VOLUME 4, 2023



Oonishi and Kunihiro: SHOR’S ALGORITHM USING EFFICIENT APPROXIMATE QFT Engineeringuantum
Transactions onIEEE

II. PRELIMINARIES
First, notations are provided in Section II-A. Next, evaluation
indices for quantum circuits are introduced in Section II-B.
Moreover, the previous approximate QFT is described in
Section II-C. Finally, the Fourier-basis method for the mul-
tiplication proposed by Rines and Chuang [18] is introduced
in Section II-D.

A. NOTATIONS
The following gate set is used.

1) Clifford gates: H, S, and cnot gates.
2) Non-Clifford gates: T gates.

Phase gates P(θ ) are defined as
[
1 0
0 exp(iθ )

]
. Especially, Pj

is defined as Pj = P(2π/2 j ). For example, S = P2 and T =
P3. In addition, the n-qubit register is represented as |x〉n =
|xn−1〉 . . . |x1〉 |x0〉, where x =

∑n−1

j=0
x j2

j, this subscript n

is omitted when n = 1. Moreover, the Fourier-basis register,
namely a register applied QFT, is represented by superscript
�. For example, we represent QFT|x〉n as |x〉�n .

B. EVALUATING INDICES FOR QUANTUM CIRCUITS
This article focuses on the number of qubits, T -count, T -
depth, and KQ [24]. The emphasis is on T gates because
T gates require the highest cost in this gate set. KQ is the
product of the number of qubits and depth. Jones et al. [25]
reported that the probability of correct output is gate preci-
sion to the power of KQ. A smaller KQ realizes quantum
computation faster because quantum circuits with a smaller
KQ require lower precision in each gate. Therefore, a smaller
KQ is important for realizing quantum computation. This ar-
ticle proposes a T -scheduling method for minimizing KQT ,
which is defined as the product of the number of qubits and
T -depth.

C. PREVIOUS APPROXIMATE QFT
In this section, approximate QFT is introduced. First, QFT
without approximation is discussed in Section II-C1. Next, a
naive approximate QFT is introduced in Section II-C2. Sev-
eral studies have focused on how to implement approximate
QFT efficiently. Nam et al. [26] approximate QFT is the
focus of one of these studies. Their construction realizes a
smaller T -count, and this construction is introduced in Sec-
tion II-C3. The previous constructions have the same dom-
inant term—the n-bit QFT requires approximately n qubits.
Moreover, the approximate QFT of Cleve and Watrous [27]
is introduced in Section II-C4. Unlike the previous construc-
tions, their construction achieves a smaller T -depth with
many ancilla qubits.

1) QFT WITHOUT APPROXIMATION
The QFT is one of the fundamental transformations in the
quantum circuit. Fig. 2 shows the QFT where the num-
ber of qubits n is four. As Fig. 2 shows, the QFT consists

FIGURE 2. Quantum circuit of QFT where n = 4.

Algorithm 1: QFT.
Input: #(Qubits) n, Input state |ψ〉n
Output: Output state QFT |ψ〉n
1: for j = 1 to n do
2: Apply the H gate on the qubit j.
3: for k = 1 to n− j do
4: Apply controlled Pk+1 gates whose control qubit

is the qubit j and target bit is the qubit j + k.
5: end for
6: end for
7: return QFT |ψ〉n

Algorithm 2: Approximate QFT.
Input: #(Qubits) n, Input state |ψ〉n, Threshold εq
Output: Output state AQFT |ψ〉n
1: for j = 1 to n do
2: Apply the H gate on the qubit j.
3: for k = 1 to min(

⌈
log(1/εq)

⌉ − 1, n− j) do
4: Apply controlled Pk+1 gates whose control qubit

is the qubit j and target bit is the qubit j + k.
5: end for
6: end for
7: return AQFT |ψ〉n

of H gates and controlled Pj gates. The QFT is now ex-
plained in more detail. Let x be an integer satisfying 0 ≤
x ≤ 2n − 1. The QFT transforms a quantum state |x〉n into
1√
2n

∑2n−1

y=0
exp

(
2π i

xy

2n

)
|y〉n. This QFT is realized by Al-

gorithm 1. In Algorithm 1, |ψ〉n is the superposition of some
|a〉n’s. The label in N is set from the left qubit to the right
qubit, namely, the qubit j corresponds to |xn− j〉.

2) NAIVE APPROXIMATE QFT
The approximate QFT realizes efficient computation by
omitting phase gates having a small phase, which have a
small effect on computation. In the approximate QFT, we
determine threshold εq from the overall computation. Then,
controlled phase gates whose phase is less than εq are
omitted. The upper bound of for loop on Step 3 in Algo-
rithm 1 is rewritten. In more detail, n− j is replaced into
min(

⌈
log(1/εq)

⌉ − 1, n− j) as Algorithm 2.

3) NAM ET AL. [26] APPROXIMATE QFT
We now explain Nam et al. [26] approximate QFT. Their
method parallelizes Steps 3–5 in Algorithm 2 and reduces

VOLUME 4, 2023 3102016
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T -count using Gidney [28] ripple-carry adder. Let b be⌈
log(1/εq)

⌉
. In Step 4, a phase gate works when both

the qubit j and the qubit j + k are |1〉. Let p j,k be one
when both the qubit j and the qubit j + k are |1〉, and
otherwise zero. The change of phase from qubit j is then

2π i
∑b−1

k=1

p j,k2b−1−k

2b
.

Based on the earlier discussion, Nam et al. [26] method
prepares the following ancilla qubits.

1) b− 1 qubits for storing |p j,k〉.
2) An auxiliary quantum state

|φ〉b = 1√
2b

2b−1∑
l=0

exp

(
−2π i

l

2b

)
|l〉b . (1)

3) Ancilla b− 1 qubits for storing carries in the adder.

Nam et al. [26] method then calculates Steps 3–5 in
Algorithm 2 as follows.

1) First, p j,k is calculated and stored in an ancilla qubit.
Especially, we calculate the and operation with the
qubit j and the qubit j + k using the relative Toffoli
gate.

2) Let |p〉b−1 be |p j,1 . . . p j,b−1〉.
3) Then, |p〉b−1 is added into |φ〉b using Gidney [28]

ripple-carry adder. After this calculation, the register

|φ〉b changes into exp
(
2π i

p

2b

)
|φ〉b.

4) Finally, p j,k is reset by measurement.

By adopting the previous method, the T -count is
8n log(1/εq) with 3 log(1/εq) ancilla qubits. In each control
qubit j, this method requires 4b T gates in the calculation
of |p j,k〉 and 4b T gates in the adder. Therefore, this method
requires 8n log(1/εq) T gates in total.

4) APPROXIMATE QFT OF CLEVE AND WATROUS [27]
We now explain Cleve and Watrous [27] approximate QFT.
QFT on |x〉 realizes the following state:

1√
2n

2n−1∑
y=0

exp
(
2π i

xy

2n

)
|y〉n

=
n−1⊗
k=0

1√
2

⎛
⎝|0〉 + exp

⎛
⎝2π i

n−1−k∑
j=0

xn−1−k− j

2 j+1

⎞
⎠ |1〉

⎞
⎠ .

(2)

Now, let b be
⌈
log(1/εq)

⌉
, similar to Section II-C. In the

approximate QFT, the above phases of |1〉 in the state (2)
are then replaced as

2π i
min(b−1,n−1−k)∑

j=0

xn−1−k− j

2 j+1
. (3)

Their approximate QFT calculates the Fourier-basis state
of all qubits simultaneously. In more detail, their method

calculates

1√
2

⎛
⎝|0〉 + exp

⎛
⎝2π i

min(b−1,n−1−k)∑
j=0

xn−1−k− j

2 j+1

⎞
⎠ |1〉

⎞
⎠ (4)

corresponding to qubit k simultaneously. To realize the
earlier calculation, we prepare |x〉n |0〉n(b−1) |0〉n |0〉n(b−1),
where the first register is an input value, the second register is
b− 1 ancilla qubits for each input qubit, the third register is
an output value, and the fourth register is b− 1 ancilla qubits
for each output qubit. The approximate QFT is calculated as
follows.

1) An H gate is applied to qubit k in the third register.
2) The value of this qubit k is copied on correspond-

ing b− 1 ancilla qubits in the fourth register. The
state 1/

√
2(|0 . . . 0〉b + |1 . . . 1〉b) is then obtained.

This state is defined as |ψ ′〉b. Moreover, b− 1 copies
of |x〉n are generated by copying the value of each
qubit |x j〉 on corresponding b− 1 ancilla qubits in the
second register.

3) Controlled phase gates are applied. In more detail, a
controlled Pj+1 gate is applied whose control qubit is
one of |xn−1−k− j〉′s and target qubit is |ψ ′

j〉.
4) The value in the second and fourth registers is then

erased.

We then obtain |x〉n |0〉n(b−1) (QFT |x〉n)|0〉n(b−1). We
erase the value of the first register by the inverse method from
the third register to the first register.
The previous method requires 2n log(1/εq) qubits,

2n log(1/εq) controlled Pj gates, and two controlled
Pj-depth. As discussed later in Section III-A, the desired εq
is�(n−2). Thus, we require 4n log n qubits to run these gates
simultaneously, which is larger compared with Nam et al.
[26] approximate QFT. However, this method calculates all
Pj gates simultaneously and requires O(log n) cnot depth
and two controlled Pj-depth. Therefore, it requires a smaller
depth compared with Nam et al. [26] approximate QFT.

D. PREVIOUS MULTIPLIER [18]
In this section, we explain Rines and Chuang [18] controlled
modular multiplier using Montgomery reduction. The con-
trolled modular multiplier is the calculation given as

|c〉 |y〉n →
{|0〉 |y〉n (c = 0)
|1〉 |Xy mod N〉n (c = 1)

(5)

where X is a classical n-bit number. This controlled modular
multiplier consists of two modular multipliers without con-
trol. First, the controlled modular multiplier is decomposed
into modular multipliers without control in Section II-D1.
Realizing modular multipliers without control is discussed
in Section II-D2. Finally, the calculation cost of a modular
multiplier is explained in Section II-D3.

3102016 VOLUME 4, 2023
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1) DECOMPOSITION OF CONTROLLED MODULAR
MULTIPLIER
In this decomposition, |c〉 |y〉n |0〉n is prepared. The first reg-
ister |c〉 is a control qubit. The controlled modular multiplier
is realized as follows.

1) The second and third registers are swapped when the

first register |c〉 is |0〉. Then,
{|0〉 |0〉n |y〉n (c = 0)
|1〉 |y〉n |0〉n (c = 1)

.

2) Next, X times the second register is added into the third

register. Then,

{|0〉 |0〉n |y〉n (c = 0)
|1〉 |y〉n |Xy〉n (c = 1)

.

3) The second and third registers are swapped when the

first register |c〉 is |1〉. Then,
{|0〉 |0〉n |y〉n (c = 0)
|1〉 |Xy〉n |y〉n (c = 1)

.

4) Then, −X−1 mod N times the second register is added
into the third register. Actually, we calculate the
inverse of a calculation adding X−1 mod N times
of the second register into the third register. Then,{ |0〉 |0〉n |y〉n (c = 0)

|1〉 |Xy〉n |0〉n (c = 1)
.

5) The second and third registers are swapped when the

first register |c〉 is |0〉. Then,
{|0〉 |y〉n |0〉n (c = 0)
|1〉 |Xy〉n |0〉n (c = 1)

.

In the previous calculation, operations 2) and 4) are mod-
ular multipliers without control, and these operations require
�(n2 log n) T -count and �(n log n) T -depth, respectively.
Different from operations 2) and 4), operations 1), 3), and
5) require O(n) T -count and O(n) T -depth, respectively.
Therefore operations 1), 3), and 5) are negligible compared
to operations 2) and 4). In conclusion, a controlled modular
multiplier consists of almost twomodularmultipliers without
control.

2) CONSTRUCTION OF MODULAR MULTIPLIER
First, it is necessary to explainMontgomery reduction.Mont-
gomery reduction realizes efficient multiplication. Then, the
multiplication of two n-bit integers x and y must be ex-
plained. Let R be a constant, and x and y are transformed as
xR mod N, yR mod N. We then calculate the multiplication
by

(xR) · (yR) · R−1 = xyR (6)

on modulo N. This calculation is efficient when we set R
as the power of two. Let m be �log n�, and let R be 2m for
simplicity.
We now explain how to realize a modular multiplier. This

method requires m+ 1 more ancilla qubits. We then calcu-
late a modular multiplier as

|yR mod N〉n |0〉m+1 |0〉n
→ |yR mod N〉n |XyR mod N〉n |0〉m+1 . (7)

We then calculate a modular multiplier as follows.

1) Multiplication:We calculate a multiplication as

|yR mod N〉n |0〉m+1 |0〉n = |yR mod N〉n |0〉n+m+1
(8)

→ |yR mod N〉n |0〉�n+m+1 (9)

→ |yR mod N〉n |t〉�n+m+1 (10)

where t = (XR mod N)(yR mod N). Naively, the fol-
lowing are performed in this order.

a) A QFT on the second register, state (8) → (9).
b) Fourier-basis multiplication, which is repre-

sented as “Mult,” state (9) → (10).
However, to reduce the T -depth, these calculations are
performed simultaneously. The previous calculation
consists ofH gates and controlled Pj gates. In Pj gates,
a control qubit and a target qubit are interchangeable.
Therefore, all the controlled Pj gates whose control
qubit is in the second register of the state (8) are per-
formed simultaneously.

2) Reduction: We apply Montgomery reduction on the
second register of the state (10) and only focus on this
register. We then conduct the following.
a) Estimation:Wemultiply 2−m mod N in this pro-

cedure. In more detail, we perform the following
from j = 1 to m.

i) The lower order j − 1 qubits are disre-
garded.

ii) The H gate is applied on the LSB.
iii) The LSB is set as a control qubit. Then,

(N − 1)/2 is subtracted from the remain-
ing qubits with this control qubit.

A calculation in each j corresponds to division
by two. The calculation result is

|(t − uN) /2m〉�n+1 |u〉m . (11)

The first register of state (11) takes from −(N −
1) to N − 1, when the MSB of this register is
regarded as the sign bit. This value is corrected
from 0 to N − 1 in the Extraction and Correction
procedures.

b) Extraction: The sign qubit on the first register of
state (11) is extracted, and only this register is
focused on. QFT−1 is applied, and the MSB is
extracted as the sign qubit. Moreover, QFT is ap-
plied to the lower-order n qubits. This procedure
changes state (11) as

|s〉 |(t − uN) /2m〉�n |u〉m (12)

where |s〉 is the sign qubit. In Rines and Chuang
[18] construction, QFT−1, the first operation, is
combined with the previous Estimation proce-
dure, and QFT, the second operation, is com-
bined with the later Correction procedure.
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FIGURE 3. Quantum circuit of controlled Pj gates.

FIGURE 4. SWAP gate.

c) Correction: The exact t2−m mod N is calculated
in this procedure. Then, the focus is on all reg-
isters of state (12). The first register is set as
a control qubit and N is added to the second
register using this control qubit. Then, the cnot
gate is applied, whose control qubit is the LSB
of the second register and target qubit is the first
register. Moreover, the first register is added as
the MSB of the third register. The result state is
then

|t2−m mod N〉�n |tN−1 mod 2R〉m+1 . (13)

3) Uncomputation: By the previous procedure, we ob-
tained the following state:

|yR mod N〉n |XyR mod N〉�n |tN−1 mod 2R〉m+1 (14)

because t = (XR mod N)(yR mod N). The focus is on
all registers of state (14). First, a QFT is applied to
the third register. We then simultaneously conduct the
following as Multiplication.

a) An inverse QFT is applied to the second register.
b) Then, (XR mod N)N−1 mod 2R times of the first

register is subtracted from the third register,
which is represented as “Inv mult.”

Finally, the third register is reset into |0〉 by applying
H gates to these qubits.

3) COMPUTATIONAL COST OF A MODULAR MULTIPLIER
In the previous construction, controlled P(θ ) gates, which
require approximately one P(−θ/2) gate [18], are only non-
Clifford gates. Controlled P(θ ) gates naively require one
P(−θ/2) gate and two P(θ/2) gates, as shown in Fig. 3. We
only employ one P(−θ/2) gate between two cnot gates.
The other two P(θ/2) gates can be combined with other
phase gates applied on the same qubit if there is noH gate be-
tween them. We can calculate correctly under this summary
because the value of a qubit does not change because of the
phase gates. Therefore, the computational cost of two P(θ/2)
gates is small compared to P(−θ/2) in Fig. 3.

According to the earlier discussion, controlled phase
gates require almost one phase gate. A phase gate requires
3 log(1/εa) T gates, where εa is the precision of phase
gates [20]. In more detail, εa is the upper bound of ‖U −

TABLE 2. Computational Cost of Montgomery Multiplication of n-Bit
Number With QFT

P(θ )‖, where U is an approximate matrix of phase gate.
Therefore, controlled phase gates require almost 3 log(1/εa)
T gates in Rines and Chuang [18] construction. By using
this precision εa, T -count is 9n2 log(1/εa) and T -depth is
12n log(1/εa), as shown in Table 2.

III. IMPROVEMENT OF MONTGOMERY
MULTIPLICATION BY APPLYING APPROXIMATE QFTS
In this section, we explain how to improve the Montgomery
multiplication proposed by Rines and Chuang [18]. Their
quantum circuit is improved, where the dominant term is 2n,
almost the same number of qubits with their construction.
Tables 3 and 4 show the T -count and T -depth of the pro-
posed Montgomery multiplication, respectively. The domi-
nant term is mainly discussed in this section.We now explain
how to realize implementation realizing the computational
cost as shown in Tables 3 and 4.
Before explaining the proposed method, how to set thresh-

olds εq and εa is discussed in Section III-A. Previous research
used the thresholds εq [22], [26] and εa [18]. These thresh-
olds are discussed more rigorously to apply both approxima-
tions to the Montgomery multiplication.
In the remaining sections, the proposed method is de-

scribed. In these discussions, m is �log n� and R is 2m for
simplicity, as in Section II-D2.
First, modification for Rines and Chuang [18] controlled

modular multiplication is proposed because their method
cannot calculate correctly when using Montgomery reduc-
tion. A method for calculating the controlled modular multi-
plication correctly on Montgomery reduction is provided in
Section III-B.
Next, the computational cost is evaluated by the naively

application of approximate QFTs in Section III-C. Because
approximate QFTs are applied, the T -count is only one-third
that of Rines and Chuang [18] original implementation.

Finally, the T -depth of the previous quantum circuit is
minimized in Section III-D. The method minimizes the T -
depth by a new approximate QFT proposed in Section III-D1.
Moreover, the proposed method minimizes the T -depth by
parallelizing controlled phase gates by using ancilla qubits,
as discussed in Section III-D2. The proposed Montgomery
multiplication then requires only one-fourth of the T -
depth of Rines and Chuang [18] original implementation in
Section III-D3.
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TABLE 3. T -Count of Montgomery Multiplication of n-Bit Number Using Approximate QFT

TABLE 4. T -Depth of Montgomery Multiplication of n-Bit Number Using Approximate QFT

A. EVALUATING APPROXIMATION ERROR FROM
THRESHOLDS
In this section, thresholds εq and εa in Shor’s algorithm
are discussed. Especially, the approximation error occurring
from these thresholds is considered. First, each approxima-
tion error is analyzed in Section III-A1. We can then address
these errors easily. Next, the approximation error on Shor’s
algorithm from thresholds εq and εa is evaluated in Sec-
tion III-A2. It is then shown that Shor’s algorithm requires
εq = �(n−2) and εa = �(n−3) for outputting the correct an-
swer with a high probability.

1) APPROXIMATION ERROR IN EACH GATE
This section addresses thresholds εq and εa. The thresholds
εq and εa deal with different types of error. The threshold εq
addresses only the phase error. The threshold εa comprises
flip error in addition to phase error, and these errors are
dependent on previous research [29]. These errors are then
decomposed into flip error and phase error to address them
independently. Especially, it is shown that O(ε2a ) flip error
and O(εa) phase error occur in a phase gate.
We now review the threshold εa [29]. This threshold εa is

used for approximating a phase gate P(θ ). LetU be

U =
[
α + βi t

t α − βi

]
(15)

which is an approximate matrix of P(θ ) gate. The matrix of
the P(θ ) gate is written as

P (θ ) =
[
x+ yi 0

0 x− yi

]
. (16)

This representation is consistent with Section II-A without
a global phase. Let u be

[
α, β

]T
and z be

[
x, y

]T
. Moreover,

let φ be an angle between two vectors u and z. This angle φ
corresponds to phase error. Then, threshold εa satisfies the
following equation:

‖U − P (θ )‖2 ≤ ε2a ⇔ ‖u‖ ‖z‖ cosφ ≥ 1 − ε2a

2
(17)

which is shown by Selinger [29].
We now decompose approximation errors into flip error

and phase error to address them independently. First, the flip
error by matrixU is examined. In (17)

‖u‖ ≥ 1 − ε2a

2
(18)

because ‖z‖ = 1 and cosφ ≤ 1. Therefore, the flip error is
less than ε2a/2.
Next, the phase error φ by matrixU is investigated. From

(17)

cosφ ≥ 1 − ε2a

2
(19)
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because ‖u‖ ≤ 1 and ‖z‖ = 1. Then, φ satisfying (19) is
calculated. It is assumed that φ � 1. First the upper bound
of cosφ is calculated using

f (φ) ≡ 1 − φ2

2
+ φ4

24
− cosφ ≥ 0. (20)

Equation (20) is true when φ ≥ 0, because f (0) =
0, f (1)(0) = 0, f (2)(0) = 0, f (3)(0) = 0, and f (4)(φ) ≥ 0.
From (20)

cosφ ≤ 1 − φ2

2
+ φ4

24
≤ 1 − 11

24
φ2 (21)

where φ � 1. Therefore, from (19) and (21)

1 − 11

24
φ2 ≥ 1 − ε2a

2
⇔ −

√
12

11
εa ≤ φ ≤

√
12

11
εa. (22)

Thus, phase error φ is O(εa).

2) APPROXIMATION ERROR IN SHOR’S ALGORITHM
Next, the approximation error is evaluated from the thresh-
olds εq and εa for Shor’s algorithm. Especially, it is
shown that Shor’s algorithm requires εq = �(n−2) and εa =
�(n−3) to output the correct answer with a high probability.
A quantum circuit of the Montgomery multiplication

adopts thresholds εq and εa on controlled phase gates. The
thresholds εq and εa have phase error and flip error.

The analysis of flip error is simple, focusing only on the
correct state without flip. Let Mf be the number of all con-
trolled phase gates. The probability of no flip error is then

(
1 − O

(
ε2a

))Mf
(23)

because the probability of no flip error in each controlled
phase gate is 1 − O(ε2a ).
Next, the phase error is examined. Phase error is calculated

on the following procedure iterated in Shor’s algorithm:

1) approximate QFT;
2) actual calculation on Fourier basis;
3) approximate inverse QFT.

It is assumed that the dimension of the approximate QFT
is n. Moreover, let Mp be the maximal number of controlled
Pj gates on each qubit.
First, an approximate QFT is considered. In this calcu-

lation, phase error occurs from thresholds εq and εa. The
maximal value of phase error from the threshold εq in each
qubit is

2π i
∞∑

j=�log(1/εq)�
1

2 j+1
≈ 2π iεq. (24)

Moreover, the maximal value of phase error occurs from the
threshold εa is iO(εa) in each controlled phase gate. There
are at most

⌈
log(1/εq)

⌉
controlled phase gates in each qubit.

Therefore, the maximal value of phase error from the thresh-
old εa in each qubit is iO(εa) log(1/εq) In conclusion, the
phase error in each qubit is then 2π i(εq + O(εa) log(1/εq)).

Next, we must consider the actual calculation of the
Fourier basis. In the previous discussion, controlled Pj gates
on QFTs are omitted. However, we cannot omit phase gates
in this procedure because the phase is not always small. The
error source in each qubit is the phase error from the thresh-
old εa. Therefore, the phase error in each qubit is MpO(εa).

Finally, an inverse approximate QFT is considered. Sim-
ilar to Step 1), the phase error in each qubit is 2π i(εq +
O(εa) log(1/εq)). By gathering the above phase errors, the
total phase error in each qubit is

O
(
εq + (

Mp + log
(
1/εq

))
εa

)
. (25)

We now discuss how phase error affects the calculation.
Phase error is converted into flip error by an approximate
inverse QFT. In the approximate inverse QFT, we transform
the Fourier basis into the standard basis from the LSB to the
MSB. Especially, we recover each qubit with phase error ε
as follows where y ∈ {0, 1}

H

(
1√
2

|0〉 + 1√
2
exp

(
2π i

( y
2

+ ε
))

|1〉
)

= H

(
1√
2

|0〉 + (−1)y√
2

exp (2π iε) |1〉
)

(26)

= 1 + (−1)y exp (2π iε)

2
|0〉 + 1 − (−1)y exp (2π iε)

2
|1〉
(27)

= 1 + exp (2π iε)

2
|Correct〉 + 1 − exp (2π iε)

2
|Incorrect〉 .

(28)

The probability pI (ε) with the |Incorrect〉 state is then

pI (ε) =
√(

1 − cosπε

2

)2

+
(

− sinπε

2

)2

(29)

=
√
1 − cosπε

2
(30)

= O (ε) (31)

because pI (0) = 0 and p′
I (ε) = π

√
(1 + cos ε)/8. There-

fore, the flip error occurring from phase error is almost the
same as the error (25), and the probability of no flip error is
then (

1 − O
(
εq + (

Mp + log
(
1/εq

))
εa

))n
. (32)

We now summarize probabilities (23) and (32) and calculate
the probability of obtaining the desired quantum states in
Shor’s algorithm. In Shor’s algorithm, the number of con-
trolled Pj gates is O(n3) [18], which means Mf = O(n3).
Modular exponentiation usesO(n) controlled modular multi-
plier [1], [30], with O(1) QFTs and O(n) controlled Pj gates
in each qubit. Especially, one controlled modular multiplier
outputs the desired state with the probability (32) where
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Mp = O(n). Therefore, the probability of obtaining the
desired quantum states in Shor’s algorithm is(
1 − O

(
ε2a

))Mf (
1 − O

(
εq + (

Mp + log
(
1/εq

))
εa

))O(
n2

)

∼ 1 − O
(
n3ε2a + n2εq + n3εa + n2 log

(
1/εq

)
εa

)
.

(33)

This probability (33) is �(1) when εq = O(n−2) and εa =
O(n−3).
In the previous discussion, the focus is on modular ex-

ponentiation. However, Shor’s algorithm obtains the output
by inverse QFT. Therefore, we should consider the effect of
approximation on this inverse QFT. Let r be the order of
y of a modulo N, namely r is the minimal value satisfying
yr = 1 mod N where r ∈ N.

The exact Shor’s algorithm [1] is calculated as

|0〉2n |1〉n →
22n−1∑
j=0

| j〉2n |1〉n (34)

→
22n−1∑
j=0

| j〉2n |y j mod N〉n (35)

→
22n−1∑
j=0

22n−1∑
l=0

exp

(
−2π i

l

22n
j

)
|l〉2n |y j〉n (36)

=
∑

k∈{y j |0≤ j≤r−1}

22n−1∑
l=0

pk |l〉2n |k〉n (37)

where

pk =
∑

j∈{y|0≤y≤22n−1,

y j=k mod N}

exp

(
−2π i

l

22n
j

)
(38)

and the first register |l〉2n is measured. An attempt is made to
obtain the state (35) by controlled multiplications. In more
detail, H gates are applied on all qubits in the first register of
state (34), and modular exponentiation is calculated [(34) →
(35)]. Next, inverse QFT is considered, namely (35) → (36).
Shor’s algorithm obtains l near 22n/r with high probability,
which takes a large pk.
When the approximate calculation is adopted, state (35) is

22n−1∑
j=0

2n−1∑
k=0

p j,k | j〉2n |k〉n (39)

where p j,k takes a high value when y j mod N = k and a
low value otherwise. In the previous discussion, only the
probability of taking the pair ( j, k) satisfying y j mod N =
k is evaluated. To clarify the effect of approximation, we
must evaluate the probability in the other pairs. However,
this probability is difficult to analyze, because it involves

exponential branches. To analyze the probability of obtaining
correct output, Assumption 1 is used.
Assumption 1:

p j,k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C, y j mod N = k

1 − 23n

r
C

23n − 23n

r

, otherwise
(40)

where C = �(1).
Assumption 1 means that all desired pairs take a high

probability, and the other pairs take the same small probabil-
ity. The number of desired pairs is 23n/r, namely, there are
22n/r js in each k. Moreover, it is assumed that the other pairs
take the same probability because phases on transformations
from (26) to (28) are almost random in the later calculation.
It is necessary to evaluate how much Assumption 1 realizes
the actual calculation in the future work. Here, the effect of
approximation based on Assumption 1 is discussed.
By using Assumption 1, Shor’s algorithm transforms the

state (39) as

22n−1∑
j=0

2n−1∑
k=0

p j,k | j〉2n |k〉n

→
22n−1∑
j=0

2n−1∑
k=0

22n−1∑
l=0

p j,k exp

(
−2π i

l

22n
j

)
|l〉2n |k〉n (41)

=
2n−1∑
k=0

22n−1∑
l=0

⎛
⎝22n−1∑

j=0

p j,k exp

(
−2π i

l

22n
j

)⎞
⎠ |l〉2n |k〉n .

(42)

Let pk be
∑22n−1

j=0 p j,k exp(−2π i l
22n

j), which corresponds to

(38). In the state (42), only ks in the set {y j|0 ≤ j ≤ r − 1}
remain for the following reasons.

1) When k does not satisfy y j mod N = k with any j,
pk = 0 because p j,k is a constant value from Assump-
tion 1.

2) When k has j satisfying y j mod N = k

pk ≈ C
∑

j∈{y|0≤y≤22n−1,

y j=k mod N}

exp

(
−2π i

l

22n
j

)
. (43)

Approximation (43) satisfies because p j,k is a constant
value when y j mod N �= k from Assumption 1, and
their phase uniformly distributes from 0 to 2π .

Therefore, when we apply approximation, we obtained the
state (37) under pk satisfying (43). Equations (38) and (43)
only differ in the constant termC. Thus, the exact and approx-
imate Shor’s algorithms have almost the same output—they
obtain l near 22n/r with high probability. Similar reasoning
is applicable to Ekerå and Håstad [30] construction—the
states are canceled when they are not calculated in the exact
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Algorithm 3: m-Bit Left Shift.
Input: #(Qubits) n, #(Shift) m, Input state |ψ〉n+m+1,
Output: Output state |ψ ′〉n+m+1
1: for j = 0 to �n/m� − 1 do
top = n− mj

2: for k = top − 1 down to max(top − n, 0) do
3: Swap the qubits |ψ〉k and |ψ〉k+m as shown in

Fig. 4.
4: end for
5: end for
6: return |ψ ′〉n+m+1

algorithm. Therefore, Shor’s algorithm outputs the correct
answer with a high probability when εq = �(n−2) and εa =
�(n−3). These εq and εa can vary in each procedure. This
optimization may reduce further computational costs, but the
constants εq and εa are focused on in this study.

B. MODIFICATION OF THE PREVIOUS CONTROLLED
MODULAR MULTIPLICATION
In this section, a small modification on Rines and Chuang
[18] controlled modular multiplication is explained. They
proposed the modular multiplication given as the transfor-
mation (7). However, we cannot directly apply this modu-
lar multiplication to the controlled modular multiplication
given in Step 2 in Section II-D1. In more detail, the correct
calculation is{|0〉 |0〉n |yR mod N〉n

|1〉 |yR mod N〉n |0〉n

→
{|0〉 |0〉n |yR mod N〉n
|1〉 |yR mod N〉n |XyR mod N〉n (44)

but we actually obtain{|0〉 |0〉n |y mod N〉n
|1〉 |yR mod N〉n |XyR mod N〉n . (45)

This difference occurs because previous researchers did not
consider Montgomery reduction on |0〉 |0〉n |yR mod N〉n.
To correct this miscalculation, we addm-bit left shift (mul-

tiplication by R = 2m) before applying the modular multipli-
cation. The previous calculation is realized by Algorithm 3.
In Algorithm 3, Steps 2–4 can be parallelized. Therefore,
the number of gates is O(n) and the depth is O(n/ log n) in
Algorithm 3, which is negligible compared with the other
calculation.

C. NAIVE APPLICATION OF APPROXIMATE QFTS
This section evaluates the Montgomery multiplication using
approximate QFTs, namely phase gates whose phase is less
than εq are omitted. We use the label of qubits in QFT similar
to that in Section II-C. In the Montgomery multiplication,
two types of QFT exist: log n-bit QFT and n-bit QFT. In the
former log n-bit QFT, we use all gates. Therefore, we only

focus on the approximation of n-bit QFT. By this approxi-
mation, the following costs decrease:

1) an n-bit QFT inMultiplication;
2) two n-bit QFTs in Reduction;
3) an n-bit inverse QFT in Uncomputation.

First, the T -count is evaluated. As Algorithm 2 shows,
n-qubit approximate QFT applies at most log(1/εq) Pk gates
in Step 3. This procedure means that an approximate QFT
applies log(1/εq) controlled Pk gates to each qubit. As
noted in Section II-D3, each controlled Pk gate requires
3 log(1/εa) T gates [20]. Therefore, an approximate QFT
requires 3n log(1/εq) log(1/εa) T gates. Thus, using approx-
imate QFTs, T -count of the Montgomery multiplication is
only one-third of Rines and Chuang [18] original implemen-
tation.
Next, the T -depth is evaluated. In the previous construc-

tion, all controlled Pj gates whose control qubit is in the
second register of the state (8) are used simultaneously.When
we apply approximate QFTs, the number of phase gates
with the same control qubit decreases. However, the T -depth
in each control qubit does not change. Therefore, adopting
naive approximate QFTs maintains the T -depth.

D. OPTIMIZATION OF MONTGOMERY MULTIPLICATION
This section minimizes the T -depth of the Montgomery mul-
tiplication. The T -depth of theMontgomery multiplication is
minimized using the following:

1) a new approximate QFT with less T -depth (see Sec-
tion III-D1);

2) a method for parallelizing controlled phase gates in
the “Inv mult” procedure by using ancilla qubits (see
Section III-D2).

We then evaluate the computational cost by using the
techniques in Section III-D3.

1) PROPOSED APPROXIMATE QFT
We now propose a new approximate QFT with less T -depth.
This approximate QFT has less T -depth than that of Nam et
al. [26]. Their method minimizes the number of T gates by
replacing phase gates into Gidney [28] adder. However, the
same calculation can be realized by the other adders because
this calculation only adds two numbers without using any
specific property in Gidney [28] adder. The proposed method
adopts Draper et al. [16] adder using Gidney [28] relative
Toffoli gates, which was discussed by Thapliyal et al. [31]
and reviewed by Oonishi et al. [23]. The proposed method
is shown in Algorithm 4. By using more qubits and T gates,
the above adder reduces T -depth. Draper et al. [16] adder
requires O(log n) T -depth while Gidney [28] adder requires
O(n) T -depth. Table 5 shows the computational cost of the
proposed approximate QFT.
Here, the computational cost of the proposed approxi-

mate QFT is discussed. Let b be
⌈
log(1/εq)

⌉
, similar to

Section II-C.
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TABLE 5. Computational Cost of Approximate QFT Using Adder With
Threshold εq

Algorithm 4: Proposed Approximate QFT.

Input: #(Qubits) n, Input state |ψ〉n, 4.5
⌈
log(1/εq)

⌉
ancilla qubits, Threshold εq
Output: Output state AQFT |ψ〉n
1: b = ⌈

log(1/εq)
⌉

2: Prepare an auxiliary quantum state

|φ〉b = 1√
2b

2b−1∑
l=0

exp

(
−2π i

l

2b

)
|l〉b.

3: for j = 1 to n do
4: Apply the H gate on the qubit j.
5: for k = 1 to min(

⌈
log

(
1/εq

)⌉ − 1, n− j) do
6: Calculate the AND operation with the qubit j

and the qubit j + k using the relative Toffoli
gate. The result is represented as |p j,k〉.

7: end for
8: Let |p〉b−1 be |p j,1 . . . p j,b−1〉.
9: |p〉b−1 is added into |φ〉b by Draper et al. [16]

adder using Gidney [28] relative Toffoli gates.
10: |p〉b−1 is reset by measurement.
11: end for
12: return AQFT |ψ〉n

First, regarding the number of qubits, the previous method
uses b− 1 qubits for storing |p j,k〉, an auxiliary quantum
state |φ〉b, and b− 1 ancilla qubits for storing carries in the
adder. Draper et al. [23] adder uses 2.5b ancilla qubits in
addition to two b-qubit numbers. Therefore, the proposed
method requires 4.5b ancilla qubits.
Next, regarding the T -count, the previous method requires

T gates in the calculation of each control qubit as follows:

1) 4b T gates in the calculation of |p j,k〉;
2) 4b T gates in the adder.

Draper et al. [23] adder uses 28b T gates in the addition
of two b-qubit numbers. Therefore, the proposed method
requires 32b T gates.

Finally, the T -depths of previous and proposed methods
are discussed. In the previous study, the T -depth was not
investigated. Here, the T -depth of the previous method is
evaluated. The previous method consists of storing |p j,k〉,
addition, and resetting |p j,k〉. This addition requires 2b T -
depth from each control qubit. Now, the remaining proce-
dure, storing and resetting |p j,k〉, is discussed. Fig. 5 shows
a method for storing |p j,k〉, and Fig. 6 shows a method for
resetting |p j,k〉. For storing |p j,k〉, b circuits of Fig. 5 are
used. The first qubit |xn− j〉 of Fig. 5 is common in these

FIGURE 5. AND operation in calculating |pj,k〉 [26]: We can parallelize the
gates excluding the CNOT gate surrounded by a dotted line.

FIGURE 6. Resetting |pj,k〉 [26]: We can parallelize the gates excluding
the controlled-Z gate surrounded by a dotted line.

b circuits, and the other two qubits differ between these b
circuits. Therefore, we can parallelize the gates excluding the
cnot gate surrounded by a dotted line, and the T -depth is
O(1) on these gates. Moreover, the b cnot gates surrounded
by a dotted line, whose depth is b, are used. This depth is
negligible compared with the other depth because a cnot
gate is a Clifford gate. Similar reasoning is applicable to
resetting |p j,k〉 because a controlled-Z gate is a Clifford gate.
In conclusion, Nam et al. [26] QFT requires 2b T -depth.

The proposed method consists of storing |p j,k〉, addition,
and resetting |p j,k〉, similar to the previous result. This ad-
dition requires 8 log b T -depth from each control qubit [31].
The remaining procedure is storing and resetting |p j,k〉. For
storing |p j,k〉, we run b cnot gates, surrounded by a dotted
line shown in Fig. 5. Naively, this procedure requires b cnot-
depth, and this depth is nonnegligible compared with 8 log b
T -depth in addition. However, we reduce this depth by using
b ancilla qubits prepared for the adder. Especially, we can
store |p j,k〉 as follows.
1) We copy the value of qubit |xn− j〉 into b ancilla

qubits. This operation requires log b cnot-depth (Clif-
ford), which is negligible compared with 8 log b T -
depth (non-Clifford) in addition.

2) We store |p j,k〉 by parallelized computation. This op-
eration requires O(1)-depth, which is negligible com-
pared to depth in addition.

3) We reset the value of b ancilla qubits by the inverse
operation of Step 1).

Therefore, this depth is negligible compared with depth in
addition. Similar reasoning is applicable to resetting |p j,k〉
because a controlled-Z gate is a Clifford gate, as shown in
Fig. 6. In conclusion, the proposed QFT requires 8 log b T -
depth.

2) PARALLELIZING CONTROLLED PHASE GATES
This section proposes a method for parallelizing controlled
phase gates by using ancilla qubits, which is similar to
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Cleve and Watrous [27] study. The T -depth is reduced in the
following procedures:

1) “Estimation” in the Reduction procedure;
2) “Correction” in the Reduction procedure;
3) “Inv mult” in the Uncomputation procedure.

In the computation, the Pj-depth is

#
(
Pj gates

)
min(#(control qubits), #(target qubits))

. (46)

Therefore, by using k log n ancilla qubits, the T -depth de-
creases as in Table 4. In more detail, we generate

k log n

min(#(control qubits), #(target qubits))
(47)

copies of target or control qubits with fewer qubits. Con-
trolled phase gates are then calculated as many as possible.

3) COMPUTATIONAL COST OF PROPOSED MONTGOMERY
MULTIPLICATION
In Sections III-D1 and III-D2, the T -depth of the Mont-
gomery multiplication is minimized. In this construction,
QFTs are run independently from the other procedure, and
“mult” in the Multiplication procedure becomes the dom-
inant term of T -depth. This T -depth is only one-fourth of
Rines and Chuang [18] original implementation. The com-
putational cost of the proposed method is given in Tables 3
and 4.

IV. APPLICATION OF PROPOSED MONTGOMERY
MULTIPLICATION TO SHOR’S ALGORITHM
In this section, the proposed Montgomery multiplication is
applied to Shor’s algorithm. First, the proposedMontgomery
multiplication is applied directly to Shor’s algorithm in Sec-
tion IV-A. Then, the T -depth is minimized in Section IV-B.
Moreover, a quantum circuit with the smallest KQ is pro-
posed in Section IV-C using Oonishi et al. [23] method.
Before evaluating the computational cost in each setting,

we should review the total cost of Shor’s algorithm. Shor’s
algorithm consists of modular exponentiations and an inverse
QFT. Modular exponentiations, having a higher computa-
tional cost than an inverse QFT, require 3n times the Mont-
gomery multiplications [30] as follows.

1) Modular exponentiations require 1.5n times the con-
trolled Montgomery multiplications [30].

2) The controlled Montgomery multiplication requires
two times the Montgomery multiplications [18].

In the previous construction, only one qubit is required for
the control qubit for controlled Montgomery multiplications
by qubit recycling [32]. We now discuss the computational
cost of Shor’s algorithm.

A. DIRECT APPLICATION TO PROPOSED MONTGOMERY
MULTIPLICATION
This section evaluates the direct application of the proposed
Montgomery multiplication. Table 4 and the discussion in
Section III-D reveal that the proposed Montgomery multi-
plication requires 9n2 log n T gates and 9n log n T -depth,
where k = ω(1). Moreover, the proposed Montgomery mul-
tiplication requires 2n+ k log n qubits. This k log n term is
negligible compared to 2n when k = o(n/ log n), and there
are k satisfying k = ω(1) and k = o(n/ log n). Therefore, the
proposed Montgomery exponentiations require 27n3 log n
T gates and 27n2 log n T -depth with 2n qubits.

B. SHOR’S ALGORITHM MINIMIZING T -DEPTH
This section discusses Shor’s algorithm with a low T -depth.
First, the T -depth of eachMontgomerymultiplication is min-
imized in Section IV-B1. The T -depth of Shor’s algorithm
is then minimized by parallelizing Montgomery multiplica-
tions in Section IV-B2.

1) MINIMIZING T -DEPTH IN EACH MONTGOMERY
MULTIPLICATION
The T -depth can be minimized by the following techniques:

1) Cleve and Watrous [27] approximate QFT given in
Section II-C4;

2) parallelizing controlled phase gates given in
Section III-D2.

Table 6 shows the computational cost by adopting the
aforementioned techniques.
First, we minimize T -depth in approximate QFT. This

minimization is applicable to the following procedures:

1) an n-bit QFT inMultiplication;
2) two n-bit QFTs in Reduction;
3) an n-bit inverse QFT in Uncomputation;
4) A log n-bit QFT in Uncomputation.

In Steps 1–3, Cleve and Watrous [27] n-bit approximate
QFT is adopted. As noted in Section II-C4, their approximate
QFT requires the following computational cost:

1) 2n(1/εq) qubits;
2) 2n(1/εq) controlled Pj gates;
3) O(log n) cnot depth and two controlled Pj-depth.

In the aforementioned computational cost, εq = �
(
n−2

)
.

Moreover, one Pj gate requires 3 log(εa) T gates and T -
depth, namely 9 log n T gates and T -depth, because εa =
�

(
n−3

)
. Therefore, n-bit approximate QFT requires 4n log n

qubits, 36n(log n)2 T gates, and 18 log n T -depth. Next,
Step 4, log n-bit QFT without approximation in Uncompu-
tation, is considered. The log n-bit QFT requires (log n)2

qubits, (log n)2/2 controlled Pj gates, and two controlled
Pj-depth. Therefore, log n-bit QFT requires (log n)2 qubits,
9(log n)3/2 T gates, and 18 log n T -depth.
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TABLE 6. Computational Cost of T -Depth Minimized Montgomery Multiplication of n-Bit Number, Which Requires 2n2 Ancilla Qubits

Algorithm 5: Parallelized Modular Exponentiation.
Input: #(Multiplier)M, N, y0, y1, . . ., yM−1
Output: y0y1 . . . yM−1 mod N
1: for k = 0 toM − 1 do
2: y0,k = yk
3: end for
4: for j = 0 to �logM� − 1 do
5: for k = 0 to �M/2 j+1� − 1 do
6: y j+1,k = y j,2 ky j,2k+1 mod N
7: end for
8: if �(M − 1)/2 j� mod 2 = 0 then
9: y j+1,�M/2 j+1� = y j,2�M/2 j+1�
10: end if
11: end for
12: return y�logM�,0

Next, the other calculations are considered. We can paral-
lelize controlled phase gates by using ancilla qubits. All gates
in these calculations are controlled phase gates. If there are L
controlled phase gates, these controlled phase gates are used
in L/K Pj-depth by preparing 2K qubits (K control qubits
and K target qubits). In the Montgomery multiplication, the
Multiplication procedure employs n2 controlled phase gates.
Therefore, by preparing 2n2 qubits, all the calculation steps
require one controlled Pj-depth: the 9 log n T -depth.

The total computational cost of Shor’s algorithm is now
evaluated. The previous discussion reveals that the number
of qubits is 2n2 qubits. Moreover, the Montgomery multi-
plication requires 9n2 log n T -count and 108 log n T -depth,
as shown in Table 6. Therefore, Shor’s algorithm requires
27n3 log n T -count and 324n log n T -depth.

2) MINIMIZING T -DEPTH BY PARALLELIZING
MONTGOMERY MULTIPLICATION
Section IV-B1 considers the computational cost by assum-
ing sequential Montgomery multiplications. However, we
can parallelize these Montgomery multiplications [27], [33].
Cleve and Watrous [27] method realized modular exponen-
tiations with O(log n)-depth controlled multiplications. In

more detail, we realize M Montgomery multiplications us-
ing number y0, y1, . . . , yM−1 as Algorithm 5. In Line 6, the
multiplication is carried out as

|xR mod N〉n |yR mod N〉n |0〉n |0〉m
→ |xR mod N〉n |yR mod N〉n |xyR mod N〉n |g〉m (48)

wherem = �log n� and |g〉 is a garbage register. This garbage
state is erased only when y0y1 . . . yM−1R mod N is obtained.
The other garbage states are retained because all values ex-
cept for the obtained value y0y1 . . . yMR mod N are erased by
reverse computation. This implementation then requires the
following procedure:

1) Multiplication;
2) Reduction;
3) “Inv n-QFT” in Uncomputation.

Moreover, to realize the previous computation, we cannot
adopt qubit recycling [32] on a control qubit for controlled
Montgomery multiplications. Therefore, we must prepare
control qubits for controlled Montgomery multiplications.
We now discuss how to realize parallelizing Montgomery

multiplications. Parallelizing Montgomery multiplications
changes “Mult” in Multiplication. In this procedure, phase
gates with two control qubits were employed using the fol-
lowing qubits in Montgomery multiplication (48):

1) control qubit from the first register;
2) control qubit from the second register;
3) target qubit from the third register.

These combinations of these three qubits were run, and
the number of combinations is n3 in “Mult” in a Multiplica-
tion procedure. Therefore, n3 phase gates with two control
qubits are used in one controlled Montgomery multiplica-
tion. To run these gates simultaneously, 2n3 ancilla qubits are
required as follows:

1) n copies of each AND results on n2 pairs of two control
qubits;

2) n2 copies of n target qubits.
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Moreover, n2 copies of n target qubits are realized by
log(n2) cnot-depth. To realize the remaining states, a similar
method to that of storing |p j,k〉 in Section III-D1 is adopted.
In more detail, we adopt and gates given in Fig. 5, run
one-qubit gates on the third qubit simultaneously, and run
cnot gates with O(log n) depth with O(n2) ancilla qubits.

Next, the computational cost of the above implementation
is evaluated. To calculate the computational cost, the values
of εq and εa must be clarified. In a controlled Montgomery
multiplication, the number of controlled phase gates corre-
sponding is n2 in each qubit. Therefore,Mp = n2. Moreover,
this implementation requires 1.5n4 qubits, because of the
following.

1) In each multiplication, 2n3 qubits are prepared.
2) At most, 0.75nmultiplications are run simultaneously.

This implementation runs 1.5n Montgomery multiplica-
tions with overhead from running as (48). In each Mont-
gomery multiplication, O(n2) T gates are required for copy-
ing and results of control qubits, but this is negligible com-
pared with n3 controlled phase gates. Therefore, the number
of controlled phase gates is 3n4, and this means Mf = 3n4.
By substituting these values Mp and Mf on (33), the proba-
bility of obtaining the desired quantum states is

1 − O
(
n4ε2a + n2εq + n4εa + n2 log

(
1/εq

)
εa

)
. (49)

Thus, when εq = �
(
n−2

)
and εa = �

(
n−4

)
, the probability

of obtaining the desired quantum states is�(1). Based on the
previous discussion, the T -count is

1.5n× 2 × n3 × 3 log (1/εa) = 36n4 log n. (50)

Each term, from left to right, represents the following.

1) 1.5n: The number of Montgomery multiplications.
2) 2: Forward calculation and reverse computation for

erasing ancilla qubits.
3) n3: Dominant term of the number of Pj gates in each

Montgomery multiplication.
4) 3 log(1/εa): The number of T gates for each Pj gate.

Moreover, Montgomery multiplications in this implemen-
tation require 33 log(1/εa) T -depth, which is obtained from
Table 6 excluding “Inv mult.” Therefore, the T -depth is

log n× 2 × 33 log (1/εa) = 264 (log n)2 . (51)

C. SHOR’S ALGORITHM MINIMIZING KQ
Next, the KQ optimized quantum circuit is evaluated. In
the earlier sections, the T -depth was minimized. These con-
structions realize smaller a T -depth by using more ancilla
qubits. These constructions run many T gates simultane-
ously. Therefore, circuits with a smaller T -depth require
more ancilla qubits for magic states of the T gate [34], [35].
To realize an efficient circuit, we should consider the above
tradeoff between the T -depth and the number of ancilla
qubits. KQ [24] is an index considering both circuit depth and

TABLE 7. Comparison of KQT on Each Proposed Construction: This Table
Only Shows the Dominant Term

the number of ancilla qubits. Thus, an efficient construction
based on KQ is proposed.
Before this quantum circuit is evaluated, Oonishi et al. [23]

method for optimizing KQ is introduced. Draper et al. [16]
decreased KQ on a controlled modular adder using Draper et
al. [16] adder. Their method decreases KQ by considering the
distillation of T gates [19]. Let nT be the maximal number
of T gates running simultaneously, and let cg + 1 be the
number of required qubits for a T gate. Note that cg is the
number of qubits for a distillation circuit, and +1 is used for
an S gate correcting phase. Based on these parameters, Oon-
ishi et al. [23] method calculates KQT , namely, #(Qubits) ×
(T -depth). Their method then minimizes the KQT . Similar
to their method, KQT is now calculated and minimized.
We now calculate nT realizing the smallest KQT . Based

on the previous discussion, Table 7 shows KQT in each pro-
posed construction. As Table 7 shows, KQT increases as the
T -depth decreases. This relationship is attributed to the fact
that the T -depth decreases only a part of circuit when the
number of qubits increases. The implementations other than
the implementation in Section IV-B2 are now discussed be-
cause the implementation in Section IV-B2 has a larger KQT
than the other implementations in Table 7. In these imple-
mentations, nT is at most n2, and n ≤ nT ≤ n2 is considered.
It is assumed that we use 2nT ancilla qubits for copying
control and target qubits, and KQT is given as follows.

1) n log n ≤ nT ≤ n2: In these nT , the number of qubits is
2n+ (cg + 3)nT and T -depth is

27n3 log n

nT
+ 297n log n. (52)

In (52), the first term, namely 27n3 log n/nT , is T -
depth of “mult” inMultiplication. From Table 6, the T -
depth without multiplication is 108 log n− 9 log n =
99 log n in each Montgomery multiplication. The
Montgomery multiplication is run 3n times, and T -
depth of “mult” except forMultiplication is 297n log n,
which is the second term. Therefore, T -depth is given
as (52) and

KQT = (
2n+ (

cg + 3
)
nT

)(27n3 log n
nT

+ 297n log n

)
(53)

= (
297

(
cg + 3

)
n log n

)
nT + 54n4 log n

nT
+C(n)

(54)
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where C(n) is a function independent from nT . The
value in (54) is minimized when

nT =
√

2n3

11
(
cg + 3

) . (55)

KQT is then

KQT = 27
(
cg + 3

)
n3 log n

+ 54
√
22

(
cg + 3

)
n2.5 log n+ 594n2 log n (56)

= 27
(
cg + 3

)
n3 log n+ O

(
n2.5 log n

)
. (57)

2) nT ≤ n log n: The focus is now on the KQT of “Mult”
inMultiplication. In this part, KQT is

(
2n+ (

cg + 3
)
nT

) 27n3 log n
nT

= 27
(
cg + 3

)
n3 log n+ 54n4 log n

nT
(58)

= 27
(
cg + 3

)
n3 log n+�

(
n3

)
. (59)

Therefore, KQT is larger than the value in (57) when
nT ≤ n log n.

In conclusion, KQT takes the smallest value when nT =√
2n3

11(cg + 3)
, and the dominant term of KQT is 27(cg +

3)n3 log n.

V. CONCLUSION AND FUTURE WORKS
We examined Shor’s algorithm using the Fourier basis by
improving Rines and Chuang [18] implementation of the
Montgomery multiplication. The contributions of this study
are as follows.

1) Montgomery multiplication [18] was improved (see
Section III).

2) The proposed Montgomery multiplication was applied
to Shor’s algorithm (see Section IV)

First, Rines and Chuang [18] implementation of the Mont-
gomery multiplication was improved, as discussed in Sec-
tion III. Their quantum circuit was improved so that the
dominant term is 2n, almost the same number of qubits as
in Rines and Chuang [18] construction. Their Montgomery
multiplication for Shor’s algorithm was modified because
the original implementation did not consider the situation
without changing the value. Moreover, a method was pro-
posed for reducing the computational cost by two approxi-
mate QFTs (a naive method and the proposed method) based
on the rigorous analysis on approximation errors. By apply-
ing the naive approximate QFT, the implementation requires
only one-third the number of T gates of Rines and Chuang
[18] original implementation. Moreover, the implementation
requires only one-fourth of the T -depth of Rines and Chuang

[18] original implementation when the proposed approxi-
mate QFT is applied.
Next, the proposed Montgomery multiplication was ap-

plied to Shor’s algorithm in Section IV. First, the pro-
posed Montgomery multiplication is applied directly. Next,
a small T -depth circuit was proposed by adopting Cleve and
Watrous [27] method. Moreover, as in Oonishi et al. [23]
method, a T -scheduling method for minimizing KQ [24], the
product of the number of qubits and depth, was proposed.
The construction was then given with the smallest KQ, and
we obtained the smallest KQ when we run �

(
n1.5

)
T gates

simultaneously.
We now discuss future works. First, constants εq and εa

were adopted in this article. However, nonconstant εq and εa
values can lead to more-efficient construction. Therefore, the
appropriate values of εq and εa in each procedure should be
considered. Moreover, Assumption 1 must be evaluated in
more detail.
Next, the quantum computer architecture should be inves-

tigated. In this study, it was assumed that all qubits are fully
connected, but actual quantum computers may not be fully
connected. Therefore, the computational cost on specific
structures of quantum computers as in previous research [36],
[37] should be considered.

Moreover, the appropriate costs for phase gates should be
examined. Ross and Selinger [20] method for decomposing
a phase gate into Clifford+T gates was adopted. The opti-
mal decomposition for the proposed method requires further
investigation. In addition, the optimal distillation and error
correction for the proposed method should be determined.
Finally, this study only focused on the Fourier-basis Shor’s

algorithm, but there are many different constructions. There-
fore, it is necessary to clarify the best one based on the result
proposed in this article.
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