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ABSTRACT Collateral optimization refers to the systematic allocation of financial assets to satisfy obli-
gations or secure transactions while simultaneously minimizing costs and optimizing the usage of available
resources. This involves assessing the number of characteristics, such as the cost of funding and quality
of the underlying assets to ascertain the optimal collateral quantity to be posted to cover exposure arising
from a given transaction or a set of transactions. One of the common objectives is to minimize the cost of
collateral required to mitigate the risk associated with a particular transaction or a portfolio of transactions
while ensuring sufficient protection for the involved parties. Often, this results in a large-scale combinatorial
optimization problem. In this study, we initially present a mixed-integer linear programming formulation for
the collateral optimization problem, followed by a quadratic unconstrained binary optimization (QUBO)
formulation in order to pave the way toward approaching the problem in a hybrid-quantum and noisy
intermediate-scale quantum-ready way. We conduct local computational small-scale tests using various
software development kits and discuss the behavior of our formulations as well as the potential for perfor-
mance enhancements. We find that while the QUBO-based approaches fail to find the global optima in the
small-scale experiments, they are reasonably close suggesting their potential for large instances. We further
survey the recent literature that proposes alternative ways to attack combinatorial optimization problems
suitable for collateral optimization.

INDEX TERMS Financial management, mathematical programming, optimization, quantum annealing
(QA), quantum computing, simulated annealing (SA).

I. INTRODUCTION
In the context of a financial transaction, wherein one party
lends assets to another, the lender assumes a credit risk aris-
ing from the possibility that the counterparty may default on
its obligations. This risk also arises in derivatives’ transac-
tions where the party “in-the-money” is exposed to the party
“out-of-the-money.” To mitigate this risk, the borrower is
required to provide low-risk securities (such as cash, bonds,
or equities) to the lender for the duration of the transaction.
This practice, known as collateralization [1], serves as a form
of security against loan defaults as the lender can seize these
assets to offset any losses resulting from default. The value of
the collateral received is expected to be commensurate with
the outstanding exposure, in order to effectively counterbal-
ance the associated risk.

Often, a bilateral contract (or schedule) is formed to agree
on the terms under which securities can be considered col-
lateral, the process of evaluating the value of these assets,
and other regulations. The relevant party may then accord-
ingly select the assets they post to the counterparty. For
large financial institutions, such as banks, this can involve
a pool of numerous assets to choose from which need to
be distributed amongst a portfolio of various counterparties
(other banks, hedge funds, central banks, etc.). Each asset
has an associated opportunity cost, which is a measure of
how valuable the asset would be if it were used for another
purpose, as well as a cost related to the risk of posting to a
particular counterparty amongst other administrative costs.
The bank must, therefore, carefully consider their choice of
transactions to reduce these costs. However, themagnitude of
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the possible combinations of allocations for large institutions
makes this a time-consuming process. In addition, poor col-
lateral management can have significant consequences. The
2008 financial crisis was partly due to the collateralization of
high-risk securities and led to the bankruptcy of some of the
largest financial institutions, among other consequences [2].

This crisis has led to the reformation of many financial
processes through the implementation of regulations, such as
Basel III [3], Dodd–Frank Act [4], EMIR [5], as well as mo-
tivating academic research with regard to how collateral can
be better managed [6], [7]. These studies relating to collat-
eral management are generally centered on financial theories,
such as risk aversion and its global financial impact. A crucial
aspect of collateral management is the development of an au-
tomated process that selects the optimal allocations. Despite
the importance of collateral optimization (ColOpt), the liter-
ature surrounding this topic is sparse due to the competitive
advantage these strategies offer to financial institutions.
Naturally, linear programming algorithms can provide

a framework for tackling such problems [8]. Specifically,
ColOpt is suitable to be implemented using mixed-integer
linear program (MILP) solvers, such as the ones available
with IBM CPLEX [9], Gurobi [10], or Mosek [11]. The
success of a given ColOpt instance, or the quality of its
solution, is dependent on a clear mapping between the busi-
ness problem and the mathematical formulation as well
as the choice of the precise implementing algorithm. The
benefit of using numerical optimization is that we attain
the allocation selections in a single process, which is in
contrast to the other proposed models, such as “ranking-
based,” “economic-cost,” and “waterfall” models, which
are sequential in nature, rather than automated [12]. How-
ever, there are several limitations of MILP solvers when
applied to problems, such as ColOpt, which potentially in-
volve complex nonlinearities and large-scale datasets. For
example, MILP solvers have exponential worst-case com-
plexity and can take a significant amount of time to solve
large-scale complex optimization problems. While having
convergence certificates is very desirable, the exponential
complexity is often a problem formanyColOpt instances that
involve a large number of decision variables and constraints
and it is not uncommon to either have long solution times or
even infeasibility. That said, MILP solvers are the standard in
both industrial and academic applications but the community
is very keen on exploring alternative approaches.
Different avenues to (approximately) solve such computa-

tionally challenging problems could be provided through al-
ternative computational models. For example, in [13], IBM’s
True Spike neuromorphic computer [14] was utilized to find
approximate solutions for the graph partitioning problem.
More interest is directed toward quantum computing [15].
These computers rely on quantum-mechanical effects for
storing and processing information. However, because of
the fragile environment required for these effects to occur,
the realization of fault-tolerant quantum computers is still a
difficult task.

Despite this, it is believed that noisy intermediate-scale
quantum (NISQ) era devices can provide an advantage in
the finance industry since these business use cases can be
well formulated for near-term quantum devices [16], [17].
The field of “quantum finance” can be divided into three
sections: stochastic modeling (for example, quantum alter-
natives to Monte Carlo simulations) [17], [18], [19], [20],
machine learning [17], [18], [21], [22], [23], [24], and opti-
mization [22], [25], [26], [27], [28], [29], [30], [31], all of
which have had a recent gain in interest.
Very often, in this context, the prototypical optimization

use case is that of (Markowitz) portfolio optimization. While
this use case shares a few similarities with ColOpt, there are
a few fundamental differences as well. The constraints of
ColOpt, seem to be more involved even within the simpli-
fications we present in Section III. An important difference
is also the fact that our objective function is inherently linear,
at first glance. However, several “tricks” can be performed in
order to end up with a well-behaved formulation suitable for
a variety of Ising NISQ or hybrid solvers.
Quantumly, there are many approaches to follow in or-

der to approximate better solutions for a variety of NP-hard
problem instances encountered in finance. Themain three ap-
proaches (listed below) have a common theme: conversion of
the original mathematical formulation of the problem from a
linear program (LP) formulation to a quadratic unconstrained
binary optimization (QUBO) problem. The reason lies in the
inherent ability of quantum or hybrid approaches by model-
ing the Ising model type of systems (see Appendix B). There
an optimization problem is mapped to the classical Hamil-
tonian of the Ising model, where its ground state encodes
the optimum. As a matter of fact, many NP-hard problems,
including Karp’s list of 21 NP-hard problems, are known to
admit at least one formulation of the Ising model [32]. The
QUBO or Ising approach can be used and problems can be
mainly tackled as follows.

1) Using variational quantum algorithms (VQAs) [33],
such as the quantum approximate optimization algo-
rithm (QAOA) [34], on gate-based quantum comput-
ers (e.g., IBM’s superconducting quantum computer).
A variety of tests have been performed in this con-
text with significant (qubit) resource improvements
recently [35].

2) Using quantum annealing (QA) [36], [37], [38], [39],
[40] on adiabatic quantum computers (quantum an-
nealers), such as the D-wave hardware [41] (see [42]
for an application to portfolio optimization).

3) Using quantum-inspired methods that can be under-
stood as using the QUBO formulation of the problem
of interest with any approach that ranges from simu-
lated annealing (SA) [43] on high-performance clus-
ters or digital annealing [44], such as Fujitsu’s field-
programmable gate array (FPGA)-based “quantum-
inspired” classical hardware time to solution digital
annealing unit (DAU) [45].
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These approaches are very promising and it is widely ex-
pected that near-term quantum computers, as well as the ded-
icated quantum-inspired hardware, may have a good chance
to provide computational or business advantage1 [46], [47]
in the near term. Note that the formulation we will present
below in Section III is hardware agnostic and, in that sense,
any of the above approaches would be suitable in principle.
Additionally, there exists evidence that the class of prob-

lems that NISQ computers can solve is not a subset2 of
BPP [48]. However, we realize that their heuristic nature
can conceal their applicability, especially when considering
problem instances with sizes suitable for high-quality MILP
solvers. Such a result was reported in [49], in which Pusey-
Nazzaro et al. discuss howD-wave’s 2000Qmachine (as well
as classical SA) failed to even come close to the branch-and-
bound approaches [50], [51] for solving certain instances of
the Knapsack Problem (KnapsackProb) (see Section II). One
can potentially try to use the VQA approach instead [18],
[33], [52], [[53], for example]. In this context, Nannicini
[54] reported that there seems to be a lack of transparent
computational advantage in introducing entanglement when
VQAs are used. This lack of computational advantage is
expected to some extent due to the well-known local minima
problem that VQAs exhibit [55] (see [56] for the proposed
way to avoid this problem). In addition, bias in the noise
of circuits that implement VQAs can unfavorably affect the
convergence ratios [57]. Other limitations are discussed in
[58].
However, performance advantages have been showcased

in a variety of applications within the context of digital and
QA solutions, tensor networks, and analog and digital (gate-
based) quantum computing. For example, Ebadi et al. [59]
studied the maximal independent set (MaxIndSet) problem
and found a superlinear quantum speedup, as opposed to
classical solutions, when considering very hard graphs. From
the point of view of computational complexity, the MaxInd-
Set problem is not particularly different from other NP-
hard problems, such as the KnapsackProb (which actually
is weakly NP-complete) or other NP-hard problems that ad-
mit an MILP formulation, and as such, the results of [59]
are encouraging for other problems as well. An interesting
benchmark test [60] using the D-wave machine showed very
promising results. It is worth mentioning that D-wave re-
cently announced [61] the largest quantum simulation done
in different contexts (spin glasses) to what is of interest here.
In this article, we study the ColOpt problem in detail and

provide an MILP formulation that we use as a testbed for
formulating a QUBO version of ColOpt, which makes it suit-
able for feeding into quantum and quantum-inspired solvers
and performing small-scale simulations of such solvers and

1By the term “business advantage,” we mean enough computational
resource savings or improvement in performance, enough to justify the
adoption of the underlying technology.

2Chen et al. [48] define NISQ as the class that contains all problems that
can be solved by a polynomial-time probabilistic classical algorithm with
access to a noisy quantum device and where BPP⊆NISQ⊆BQP.

comparing to MILP. Specifically, in our MILP formulation,
we choose our objective to be minimization of the cost of
posting collateral (different approaches to the objective of
ColOpt have been proposed, for example, see [12]). We
survey and try numerous QUBO encodings and find that,
modulo emulator limitations, in such small instances, the
quantum-inspired formulations perform well enough to be
promising for implementation on real quantum or quantum-
inspired hardware for very large instances. The rest of this
article is organized as follows. In Section II, we provide an
overview of some of the different QUBO formulations for
the KnapsackProb problem. This section serves both as an
introduction to the concepts used throughout the article and
to inform the ColOpt problem that follows. In Section III,
we provide the MILP formulation of the ColOpt problem as
well as a few QUBO proposals. In Section IV, we provide
a few numerical results using the formulation of Section III.
Finally, Section V concludes this article.
We want to clarify that while our article investigates var-

ious QUBO formulations for the KnapsackProb, our ulti-
mate goal is to apply this information to the ColOpt prob-
lem. Specifically, we plan to use the best-performing QUBO
formulations from our KnapsackProb study to formulate
and solve the collateral optimization problem using QUBO.
However, we would like to note that our article does not aim
to provide an empirical comparison between quantum and
classical approaches for solving MILPs, given the limited
computational resources available to us (see [62] for work
on the comparison of classical and quantum (adiabatic) opti-
mization, wherein the authors discovered “surprising” results
favoring the D-wave machine). Additionally, we focus on
small problem instances only, and we acknowledge that all
the results presented in our study are heuristic in nature.
Nevertheless, based on the literature results on the potential
of QUBO formulations (quantumly and not only), we believe
that the formulations we propose may have value in tackling
larger instances of the collateral optimization problem and,
therefore, may warrant further investigation.
In summary, the main objective of our article is to present

a case study on the formulation and approach of the ColOpt
problem using quantum computing techniques, with the
overarching aim of advancing the ongoing effort toward
achieving “quantum advantage” in practical applications.

II. INTERLUDE WITH THE KNAPSACK PROBLEM
To inform and ensure our formulations and the subsequent
computations, we perform a simple test using a small Knap-
sackProb instance. In essence, KnapsackProb involves deter-
mining the optimal approach to filling a knapsack of capacity
W with the highest possible value from a set of n items that
have specific sizes and corresponding values (see Table 1).
This problem is of interest due to its simplicity to formulate
and its simple constraints. For us, it is further interesting
since we view the ColOpt problem as a (somewhat compli-
cated) generalization.
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TABLE 1. Input Data Used of the Specific KnapsackProb instance
Considered in This Article

Given the large number of “hard” constraints of the ColOpt
problem, see Section III, we aim to compare formulation for
small instances of the Knapsack problem with the hope to
inform our approach for collateral optimization. The “stan-
dard route” to encode constraints to a QUBO model is by
using (balanced) slack variables for penalization [63] (see
Appendix B). A different approach is using “unbalanced”
penalization [64] that turns out to be particularly useful for
QAOA solutions as it reduces the resources required by a
gate-based machine. The MILP formulation of the Knap-
sackProb is a well-known and straightforward approach. In
the problem instance we consider, we are given a set of
weights w ∈ Zn≥0 and their corresponding values v ∈ Zn≥0,
and the objective is to maximize the total value of the items
that can be packed into a knapsack subject to a given weight
limit. The problem can bemathematically defined as follows:

max
n∑
i=1

vixi

s.t.
n∑
i=1

wixi ≤W (1)

where W is the maximum weight limit (threshold) of the
knapsack and xi is the binary variable representing whether
the ith item is to be placed in the knapsack. The best running-
time algorithm for solving the KnapsackProb is based on
dynamic programming with pseudopolynomial complexity
O(dnW ) [65], where dn is the number of distinct weights
available while near-linear running-times’ algorithms (in
dn,W ) were documented in [66].
The specific problem instance we consider in our study, as

outlined in [67], comprises ten items and possesses a known
optimal solution.We leverage this knowledge to heuristically
evaluate the effectiveness of our approach and guide our ef-
forts toward tackling the larger ColOpt problem, as discussed
in Section III. The relevant (toy) data pertaining to the items
in this problem instance can be found in Table 1.

Although the KnapsackProb is known to be (weakly)
NP-complete, simple instances, such as the one we consider
in this study, can be efficiently solved by a range of
classical solvers. For our experimental analysis, we used the
HiGHS [68] and GLPK [69] solvers, both of which yielded
solutions that were in agreement with the known optimal
solution of the problem instance, as expected, while for the
QUBO-formulated problem, we tested the open-source Julia
libraries ToQUBO.jl [70], Qiskit’s optimization module
[71], the open-source Python library PyQubo [72] (in

both cases operating under SA), and the emulation of the
proprietary digital annealer of Fujitsu [45].

A. QUADRATIC UNCONSTRAINED BINARY OPTIMIZATION
The QUBO model can be applied to a wide range of combi-
natorial optimization problems that are known to beNP-hard,
such as the maximum cut, minimum vertex cover, multiple
knapsack, and graph coloring problems. Its applications span
a diverse set of domains, including the automotive industry
[73], portfolio optimization [74], [75], traffic flow optimiza-
tion [75], job scheduling [76], [77], [78], railway conflict
management [79], bioinformatics [80], and others [81]. An
extensive list of QUBO formulations for interesting problems
can be found in [82].
Due to its one-to-one mapping to the Ising Hamiltonian,

QUBOs have become a fundamental element of quantum-
inspired computing. Both the digital annealer developed by
Fujitsu and the adiabatic quantum computers manufactured
by D-wave systems (as well as other vendors, such as Qili-
manjaro) employ the QUBOmodel to address complex opti-
mization problems. Additionally, several approaches based
on tensor networks seem to be suitable for a variety of
QUBO-formulated optimization problems [83], [84], [85],
[86]. Although QUBO is particularly well suited to these
technologies, it can also be employed in NISQ devices using
algorithms, such as the QAOA. As such, the QUBO model
is an important tool for quantum optimization with potential
applications across a range of quantum computing platforms
and formulating constrained problems as such highly affects
the quality of the solutions obtained.
Let us summarize the basics of QUBO via a graph prob-

lem. Given an undirected graph G = (V,E ) with a vertex set
V = {1, 2, . . .,N} connected by the edge set E = {(i, j), },
i, j ∈ V , the cost function is defined as follows:

min
N∑
i=1

Aiixi +
N−1∑
i=1

N∑
j>i

Ai jxix j (2)

where x ∈ {0, 1} are the binary variables and the elements
Ai j ∈ RN×N are the problem instance parameters.
At its most fundamental level, a QUBO can be expressed

as follows:

min xTQx+ b (3)

where the decision matrix Q ∈ RN×N contains the problem
instance and b ∈ R is a constant offset term.
By using a suitable change of variables xi = 1−σi

2 , (2) can
be mapped onto the Ising model Hamiltonian as follows:

H = −
∑
j

h jσ j −
∑
j<k

Jjkσ jσk (4)

where σ ∈ {−1, 1}N are the (classical) spins, h ∈ RN is the
magnetic field, and J ∈ RN×N , diag(J) = 0, the spin–spin
interaction symmetric matrix between adjacent spins j and k.
See Appendix B for more details. The problem to be solved

3101818 VOLUME 4, 2023
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then is

min
σi∈{−1,1}

H. (5)

For the QUBO formulation of KnapsackProb, we can take
several slack-based approaches, including off-the-shelf LP-
to-QUBO converters, such as Qiskit’s QuadraticProgramTo-
Qubo class and methods as well as the Julia package To-
QUBO.jl. Further to that, we can perform a “custom” slack
formulation and also use the unbalanced penalizationmethod
we mentioned previously.

B. SLACK VARIABLE FORMULATION
In the process of converting MILPs to QUBOs, it is common
practice to introduce a slack variable, S ∈ R≥0 (whose pur-
pose will be discussed shortly), for each linear inequality and
transform it into an equivalent linear equality. Subsequently,
a penalty term is constructed based on the slack variable, and
the term is squared as per the standard approach, as outlined
in [63] (see also [87]).
A variety of different slack-based QUBO formulations

exist for the KnapsackProb [88]. Here, the corresponding pe-
nalization term with weight λ0 ∈ R+ is given by the equality

λ0

(
n∑
i=1

wixi −W + S

)2

= 0. (6)

The purpose of the auxiliary slack variable S is to reduce
this term to 0 once the constraint has been satisfied, 0 ≤ S ≤
maxx

∑n
i wixi −W . In practice, S is decomposed into binary

representation using variables sk ∈ {0, 1} as follows:

S =
Ns∑
k=1

2k−1sk. (7)

The parameter Ns corresponds to the number of binary vari-
ables required to represent the maximum value that can be
assigned to the slack variable, and in the case of Knapsack-
Prob, Ns = �log2(W )�, where �x� is the ceiling function.
Formulating the slack variable as in (7) is commonly referred
to as the “log encoding.”
The full QUBO formulation for the KnapsackProb takes

the form of maximizing the objective function

n∑
i

vixi − λ0

(
n∑
i

wixi −W +
N∑
k=1

2k−1sk

)2

(8)

which can be understood as an augmented Lagrangian [89].
Alternatively, there are other QUBO formulations of the
KnapsackProb that we could decide to use that follow a
similar Lagrangian paradigm. For example, we can instead
consider maximizing the following objective function:

n∑
i

vixi − λ0

(
n∑
i

wixi −
W∑
k=1

ksk

)2

− λ1

(
1 −

W∑
k=1

sk

)2

.

(9)

In this formulation, known as one-hot encoding, the number
of slack bits is equal to the capacity of the knapsackW . Here,
an additional penalty term is required to enforce only one of
these slack bits to be assigned a value of 1. A drawback of
this formulation is that the binary input length for the slack
variables scales linearly with the values of the constraints;
hence, it can lead to an unreasonably large number of bits
for problem instances with largeW that can exhaust available
resources. This issue becomes quite relevant in Section IV.

C. BALANCED SLACK-BASED APPROACHES
In this section, we give an overview of the approaches used
to determine solutions for different balanced formulations of
the KnapsackProb QUBO. The known optimal solution for
our small instance that we consider corresponds to an objec-
tive value of 309 and uses the full capacity of the knapsack.
Off-the-Shelf Converters: The first off-the-shelf approach

we tried is ToQUBO.jl, an open-source Julia package that
automatically reformulates a variety of optimization prob-
lems, including MI(L)Ps, to a QUBO. The user can use the
JuMP [90] package to build the MILP form of Knapsack-
Prob. ToQUBO.jl provides six ways for encoding variables
into binary representations. This includes the logarithmic and
one-hot approaches mentioned above as well as other less
well-known techniques. For continuous decision variables,
this can be very useful since the user can provide a tolerance
factor to manage the upper bound on the representation error
caused by the binarization. Additionally, ToQUBO.jl works
in conjunction with QUBODrives.jl, a companion package
that provides common API to use QUBO sampling and
annealing machines, such as D-wave’s simulated annealer
and, with license, the quantum annealer via DWaveNeal.jl.
We make use of ToQUBO.jl to employ both of the afore-
mentioned binary encodings, both successfully finding the
optimal solution. However, the unbalanced QUBO formu-
lation is a recent development, which has not been widely
adopted; hence, its encoding is not available as a part of the
ToQUBO.jl package.
Another off-the-shelf converter is provided by Qiskit’s op-

timization module that includes functionality for automati-
cally transforming quadratic programs into QUBOs (the bi-
nary property allows us to use such). This transformation
can be accomplished by first initializing a QuadraticProgram
and, subsequently, utilizing the QuadraticProgramToQubo
class to convert it into a QUBO via the log-encoding method
for slack variables. Themodule allows the formulatedQUBO
to feed into several algorithms used by Qiskit to solve opti-
mization problems, such as SamplingVQE or QAOA; how-
ever, the user can also extract the coefficient matrix to use
with other solvers. We input this coefficient matrix into neal
and Fujitsu’s digital annealer, where we found that both
solvers are able to reach optimum, with the caveat that a large
number of runs are needed comparedwith othermethods. For
larger problem instances, this can become computationally
expensive and, thus, may be an inadequate choice for ColOpt.
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There are several variations of the balanced slack-based
approach to QUBO formulations, which we summarize now.
Log Encoding: This approach refers to implementing (8).

The number of slack bits required for this approach, for the
instance of interest, is Ns = 8. Two different regimes for the
weight of the penalty term, λ0, are checked:

1) where the penalty term and the cost function have equal
weighting (λ0 = 1);

2) where the penalty term is more important than the cost
function (λ0 = 1 × 104).

We utilized the neal package to implement D-wave’s sim-
ulated annealer as our heuristic optimizer in both scenarios.
The simulated annealer successfully returned the optimal
solution in both cases, which was consistent with the results
obtained from the classical solvers. The (emulation of the)
digital annealer from Fujitsu was employed for both sce-
narios as well. Similar to the case with neal, it successfully
produced optimal solutions in both instances.
One-Hot Encoding:We repeated the previously described

process but with a focus on analyzing the solutions of (9).
As previously mentioned, this type of formulation requires a
large number of bits to encode the slack variables for large
knapsack capacities, in this case, 165 bits. In this approach,
we once more explored various weight regimes for λ0 and
λ1, in relation to the weight of the cost function term. By se-
lecting λ0 = 10−1 and λ1 = 103, we consistently identified
the optimal solution for both neal and Fujitsu cases.

D. UNBALANCED PENALIZATION APPROACH
Given that the number of qubits required scales proportion-
ally with the number of variables, we sought to employ the
methodology proposed by Montanez-Barrera et al. [64] in
order to eliminate the need for slack variables. To accomplish
this, we adopted an approximation technique that creates
penalty terms that take on small values when the constraint
is fulfilled and large values when it is violated. We rearrange
the inequality to define an auxiliary function

h(x) =
n∑
i

wixi −W ≤ 0. (10)

Using the exponential function f (x) := eh(x), the constraint
on h(x) is satisfied. However, since only linear and quadratic
terms may be encoded into a QUBO, it is necessary to use a
second-order Taylor approximation of f (x). For weights λ0
and λ1, the resulting QUBO for the KnapsackProb problem
reads
n∑
i

vixi + λ0

(
n∑
i

wixi −W

)
+ λ1

(
n∑
i

wixi −W

)2

= 0.

(11)

It should be noted that Montanez-Barrera et al. [64] investi-
gated this type of QUBO formulation for different instances
of the traveling salesperson problem (TravSalProb), bin
packing problem (BinPackProb), and KnapsackProb,

TABLE 2. Summary of Methods Used to Solve the Provided Instance of
the KnapsackProb

and found that the minimum energy eigenvalue of the
corresponding Hamiltonian did not necessarily coincide
with the optimal solution. However, the optimal solution was
always found to be amongst the lowest energy eigenvalues,
which enhances the confidence for this approach in
large-scale experiments.
To clarify, the advantage of reformulating the problem as

an unbalanced QUBO rather than the traditional balanced
approaches is that one significantly reduces the number
of variables, and hence, the bits required to represent the
problem, which in effect reduces the resource cost, as
well as the search space of the optimal solution. However,
drawbacks associated with the unbalanced approach are
that, because of the use of a heuristic penalization function,
our constraints are less strict and the groundstate of the
corresponding Ising Hamiltonian is less likely to coincide
with the optimal solution of the problem at hand.
By using the weights provided by Montanez-

Barrera et al. [64] as a quick check, we were able to
reach optimality for this KnapsackProb instance for both
PyQUBO and Fujitsu unbalanced approaches, signifying
that the unbalanced formulation exhibits (some) robustness.
For larger KnapsackProb instances tested, we produced
close to optimal results which, however, would periodically
softly break the maximum weight limit.

E. SUMMARY OF THE SIMULATIONS
Below, in Table 2, we provide a list of MILP and QUBO
solvers, using the two aforementioned approaches, slack
based and unbalanced.

F. SURVEY OF ALTERNATIVE APPROACHES
There exist various alternative approaches that exhibit vary-
ing degrees of divergence, in terms of algorithmic imple-
mentation, from the aforementioned methods. This section
serves solely to provide a survey of some of these approaches
without undertaking an experimental analysis.
Quantum Hybrid Frank–Wolfe Method: Recently, a

hybrid-quantum generalization to the Frank–Wolfe method
was proposed in [91]. This hybrid (Quantum) Frank–Wolfe
(Q-FW) augmented Lagrangian method is suitable to tackle
large QUBO instances due to a tight copositive relaxation of

3101818 VOLUME 4, 2023



Giron et al.: APPROACHING COLLATERAL OPTIMIZATION FOR NISQ Engineeringuantum
Transactions onIEEE

the original QUBO formulation while dealing with the ex-
pensive hyperparameter tuning found in other QUBO heuris-
tics. The Q-FW method first formulates constrained QU-
BOs as copositive programs, then employs the Frank–Wolfe
method while satisfying linear (in)equality constraints. This
is converted to a set of unconstrained QUBOs suitable to be
run on, e.g., quantum annealers. It was found that Q-FW suc-
cessfully satisfied linear equality and inequality constraints,
in the context of QUBOs in computer vision applications,
and Yurtsever et al. [91] solved intermediary QUBO prob-
lems on actual quantum devices demonstrating that Q-FW
offers a promising alternative validity of Q-FW to “tradi-
tional” quantum QUBO solvers.
In a broader context, Q-FW seems to have the ability to

address the costly hyperparameter tuning associated with
other QUBO heuristics. By formulating constrained QU-
BOs as copositive programs, it adeptly handles linear equal-
ity and inequality constraints and transforms them into un-
constrained QUBOs compatible with quantum annealers or
other Ising machines. The general applicability and compar-
ative efficiency of Q-FWagainst established quantumQUBO
solvers is still unclear and subject to further research.
Grover Adapted Binary Optimization (GABO):Moving to

fault-tolerant architectures, quadratic speed-up for combina-
torial optimization problems is achievable with the GABO
[92] when compared with brute force search. However, to
achieve this, efficient oracles must be developed to represent
problems and identify states that satisfy specific search crite-
ria. Quantum arithmetic is commonly utilized to accomplish
this task, but this approach can be expensive in terms of
required Toffoli gates and ancilla qubits, which may pose a
challenge in the near future. Interestingly, Gilliam et al. [92]
provide such an oracle construction that makes GABO a
promising approach for future quantum computers.
GABO might be able to offer a significant quantum ad-

vantage, a Grover-like quadratic speed-up for combinatorial
optimization problems compared with the traditional brute
force search. However, this speed-up can be only impactful
in the realm of fault-tolerant quantum architectures, and thus
not applicable to NISQ devices.
Graph Neural Networks (GNNs): Physics-inspired GNNs

have been used in [93] (see [94] for a survey), where
a physics-informed GNN-based scalable general-purpose
QUBO solver is proposed. The approach therein is
suitable for encoding any k-local Ising model, such as the
k = 2 ColOpt problem discussed later. The GNN solver first
drops the integrality constraints in order to obtain a differ-
entiable relaxation f ′ of the original objective function f
and, subsequently, proceeds to unsupervised learning on the
node representations. The GNN is then trained to generate
soft assignments, predicting the likelihood of each vertex
in the graph belonging to one of the two distinct classes in
conjunction with heuristics that aid in the consistency of the
problem. Interestingly, the authors benchmark this approach
in demanding problem instances of MAXCUT to find that it

competes with the best in class SDP algorithms, such as the
Goemans–Williamson algorithm [95].
The parallel processing capabilities of modern GPUs are

well suited for GNN operations, making it feasible to handle
large-scale graphs and complex optimization problems.
Furthermore, the adaptability of GNNs, combined with
unsupervised learning, allows for general-purpose solutions
that can be applied across a variety of problem instances
without the need for extensive retraining. This universality
potentially saves computational resources in the long run.
However, possible relaxations of integrality constraints for
differentiability can sometimes lead to solutions that are
not directly applicable or optimal for the original discrete
problem. Another remark is that while GNNs can predict
soft assignments efficiently, converting these into definitive
solutions might lead to suboptimal results.
QUBO Continuous Relaxations With Light Sources: Fi-

nally, let us mention a recent heuristic quantum-inspired (re-
laxation) approach for solvingQUBOs, as introduced in [96].
Concretely, the binary variables of the QUBO problem are
represented by the relative phases of laser sources, transform-
ing the discrete optimization problem into a continuous one.
The lasers interact through a unique optical coupler, which
uses programmable diffractive elements and additional opti-
cal components to control the interaction between all pairs
of lasers, with a dynamic range of up to 8 bits. This design
enables a fully connected network between all lasers, facil-
itating high-resolution pairwise interactions that are crucial
in solving QUBO problems.
In [96], a benchmarking was performed for instances of

the 3-regular 3-XORSAT problem and it was found that
this method achieved significantly better time to solution
(TTS) results as the instance size was increased. Despite
this, seemingly incredible result, it is quite unclear whether
this approach can perform on par for problems that do not
have known polytime solutions (for generic instances of 3-
XORSAT, there exists an algorithm with O(N2.736...) com-
plexity). In fact, it would be interesting to benchmark this
approach against specialized SAT and MIP solvers.
Among its advantages, the method’s transformation of

discrete variables into continuous may offer new avenues
for efficient problem solving. The fully connected network
ensures precise pairwise interactions, a fundamental require-
ment for many combinatorial problems, also one that not
all Ising machines can achieve. The aforementioned results
of this method are obtained via an emulation architecture,
rather than the physical machine which, in turn, might be
able to perform even better. Another benefit of this tech
is that it is readily available. However, there are a num-
ber of uncertainties. While the method showed promise on
specific benchmarks, such as the 3-XORSAT problem, its
general applicability and competitiveness against established
solvers remain untested and benchmarking, e.g., within the
MaxSAT, evaluation challengewould be highly enlightening.
Furthermore, its performance on problems lacking known
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polynomial-time solutions is yet to be determined, raising
questions about its versatility.
Simulated Quantum Annealing (SQA): Obtaining quan-

tum advantage for certain problem instances may be, in
some cases, closer than one would anticipate by utilizing
the technique of SQA [97]. Specifically, in [97], a method
to rigorously demonstrate that the Markov chain underlying
SQA effectively samples the target distribution and discovers
the global minimum of the spike cost function in poly time
supporting is developed. While the analysis is limited to a
very specific model and cannot be considered conclusive, the
authors use interesting techniques, such as initiating warm
starts (a very popular technique applied to deep learning [98]
as well as in QAOA [99]), from the adiabatic path and using
the quantum ground state probability distribution to compre-
hend the stationary distribution of SQA.
Interestingly, SQA might be considered effective, as com-

pared with a purely classical algorithm, for optimization
problems with spike (deep and narrow) global optima. As
such, exploiting hybrid solvers that combine SQA and clas-
sical algorithms could offer an alternative approach [100]
due to SQA’s effectiveness in sampling target distributions.
However, to the best of our knowledge, its applicability is
currently limited to specific models, and the broader effec-
tiveness remains an open question.

III. COLLATERAL OPTIMIZATION
In Section II, ourmain objective was to identify themost suit-
able formulations of the KnapsackProb as a QUBO. How-
ever, for smaller scale problems, MILP solvers are gener-
ally expected to perform better than heuristic, hybrid, and
near-term quantum solvers. Therefore, in this section, we first
formulate the collateral optimization problem ColOpt as an
MILP and, subsequently, reformulate it as a QUBO, similar
to the approach taken in Section II.
The objective is to conduct several small-scale problems

utilizing hybrid solvers with the purpose of algorithmic re-
formulation of the problem and its implementation. The
ultimate goal is not to demonstrate the potential of hy-
brid or quantum alternatives for combinatorial optimization
but rather to establish an automated approach to solving
the problem once hardware capabilities become more ad-
vanced. In Table 4, we describe the most common financial
terms used in the context of ColOpt, while Table 5 summa-
rizes the mathematical notation that will be utilized in the
following.

A. COLOPT MILP FORMULATION
In order to mitigate the risk of a borrower defaulting on a
loan, it is necessary for them to furnish collateral in the form
of stocks, bonds, cash, or other assets to offset any outstand-
ing exposure. In the present scenario, we consider a financial
institution that has a collection (or inventory) of assets, indi-
cated by I, which must be allocated among a set of accounts,
indicated by A. We shall use the indices i and j to refer
to an asset and an account, respectively. The total number

FIGURE 1. Schematic representation of the collateral optimization
problem. The figure above can be seen as a bipartite graph where one
has to make optimal allocation of nonunique and weighted pairings.

of assets and accounts is given by n and m, respectively. It
should be noted that our primary focus in this section is on the
algorithmic reformulation of the problem and its implemen-
tation, which could be automated once sufficiently powerful
hardware becomes available. Consequently, we shall run a set
of small-scale problems employing hybrid solver emulators,
as shown in Section II. Our objective is not to demonstrate the
superior performance of hybrid or quantum alternatives for
combinatorial optimization but rather to heuristically iden-
tify the most appropriate formulation of the problem at hand.
Interestingly, ColOpt can be formulated as a bipartite

matching problem, as shown in Fig. 1. This bipartite graph
is created with two sets of nodes: one set representing the
inventory of assets I, and the other set representing accounts
A. The edges between these nodes represent potential allo-
cations of assets to accounts, with weights on these edges
representing the suitability, cost, or value of the allocation,
and the edges are multidirected and need to respect certain
constraints. To model the constraints of ColOpt modifies the
graph accordingly, as we will explain in the following text.
Limits: Delving deeper into the problem, consider each

asset ik ∈ I, where I = i1, i2, . . . , in. Each asset i (momen-
tarily simplifying the indices) is subdivided into a maximum
quantity denoted by ai. In more formal terms, there is a
constraint on the maximum quantity of asset i that can be
assigned. This is useful because, in the context of utilizing
stocks as collateral, a financial institution may need or re-
quire the enforcement of an upper limit regarding the number
of shares that can be allocated. The quantity of asset ik can be
converted into a corresponding dollar value by multiplying
by the dimensionful term vi, which is themarket value (USD)
per unit quantity.
Tiers: Every asset is linked to a tier, represented as ωi ∈

[0, 1]. This tier acts as a measure of the asset’s quality, where
distinct tiers correspond to various degrees of quality or
attractiveness in the context of the ColOpt problem. The
higher the value of ωi, the higher the quality of asset i.
Exposure: When a financial institution borrows from one

of its lenders, collateral must be posted to adequately cover
capital that could be lost in the event of a default. This cap-
ital requirement is known as “exposure.” For each account
j, there is a required exposure (in USD) that must be met
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indicated by c j. Additionally, the duration of a transaction to
a particular account can either be short term or long term.
A binary variable d j ∈ {0, 1} is used to indicate the dura-
tion of account j. A value 1 is assigned to short-term and
0 for long-term transfers. To reduce the risk of losing posted
collateral, it is required to minimize the use of high-quality
assets for long-term transactions while maximizing their use
for short-term transactions. We chose our decision variable
to be a matrix Q ∈ Qn×m

≤1 , where the element Qi j is the frac-
tional amount of asset i that is allocated to account j. That
is, the rows of Q correspond to the number of assets and the
columns of the partition of each

Q =

⎛
⎜⎜⎝
a11 . . . a1 m
...

. . .
...

a1n . . . anm

⎞
⎟⎟⎠ . (12)

To illustrate an objective function that represents our goals
considers the simple case of allocating a single asset i across
two accounts, j and l, which have long- and short-term re-
quirements, respectively. In this case, the objective function
can be formulated as follows:

min
Q

ωiQi j + (1 − ωi)Qil . (13)

In the expression above, the coefficient preceding short-term
allocations is set to 1 − ωi. This is so that we favor alloca-
tions of higher quality assets for trades with a short duration.
To generalize this for all assets and accounts, we need a
mechanism that updates these tiers according to the type of
account they are posting collateral toward. This can be done
by constructing a coefficients matrix �, where each element
can be determined using

�i j = |ωi − d j|. (14)

Just as with the tiers, each element of � has a range of [0,1].
The objective function is then just the sum of elementwise
multiplications between � and Q

min
Q

n∑
i=1

m∑
j=1

�i jQi j. (15)

To post collateral such that the financial institution meets
the exposure for each account, we include a requirement
constraint

n∑
i=1

Qi jaiviHi j ≥ c j ∀ j ∈ A. (16)

Here, vi denotes the dollar market value for a single unit of
quantity for asset i. Hence, the term on the left-hand side
(LHS) represents the dollar value for the quantity of collat-
eral that is chosen to be allocated, adjusted by a fractional
factor Hi j, which is referred to as the haircut. Since markets
are dynamic, the value of a posted collateral can diverge from
its market value over time. In the case that the value drops
below the required collateral value, the receiver is at risk. To
avoid this, each account owner can evaluate the risk and place

a haircut factor to reduce the value of an asset. The haircut
is defined as the percentage difference between the market
value and its value while used as collateral. For example, a
haircut of 10% corresponds to Hi j = 0.9, meaning that the
collateral value is 90% of the original market value.
We need to ensure that we do not allocate more collateral

than we have available in inventory (i.e., we do not allocate
more than 100% of the maximum available quantity). In
financial terms, this prevents us from short selling the asset.
This is done by including a consistency constraint

m∑
j=1

Qi j ≤ 1 ∀i ∈ I. (17)

There is also the trivial constraint to make sure that Qi j does
not take negative values

Qi j ≥ 0 ∀i ∈ I,∀ j ∈ A. (18)

Further Constraints That Can Be Imposed: For example,
there may be limits on the amount of a particular asset i
to account j, given by Bi j. If Bi j = 0, the allocation is not
eligible. This is a one-to-one constraint and has the following
mathematical form:

Qi jai ≤ Bi j ∀i ∈ I,∀ j ∈ A. (19)

Moreover, there are constraints that restrict the allocation of
specific groups of assets to a single account, which exhibits
a many-to-one relationship. For instance, certain types of
assets, say {iX1 , iX2 , iX3}, may be subject to restrictions due
to their interrelationships (for example, there exists a parent
company X that posts these assets). To formalize this con-
straint, we introduce G, which represents the set of all groups
of assets. The binary variable Tig is used to indicate whether
asset i belongs to the group g, while Kgj represents the upper
bound on the total amount of assets from group g that can be
allocated to account j

n∑
i=1

TigQi jai ≤ Kgj ∀g ∈ G,∀ j ∈ A. (20)

The aim of imposing limits on the allocation of assets is to
promote diversification and thereby reduce the risk borne
by the receiver. In this article, we concentrate on allocat-
ing cash rather than equity and bonds, which allows us to
avoid the constraint that Qi jai must take an integer value.
Consequently, we can formulate the problem of collateral
optimization as a continuous optimization problem without
the need for additional constraints.
The Complete ColOpt Problem: Taking into account the

information presented in the previous paragraphs, we can
express the ColOpt problem using an MILP formulation

min
Q

n∑
i=1

m∑
j=1

�i jQi j ∀i ∈ I,∀ j ∈ A (21a)

s.t.
m∑
j=1

Qi j ≤ 1 ∀i ∈ I (21b)
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Qi jai ≤ Bi j ∀i ∈ I,∀ j ∈ A (21c)

n∑
i=1

TigQi jai ≤ Kgj ∀g ∈ G,∀ j ∈ A (21d)

n∑
i=1

Qi jaiviHi j ≥ c j ∀ j ∈ A (21e)

Qi j ≥ 0 ∀i ∈ I, ∀ j ∈ A. (21f)

For clarity, we will summarize the constraints presented
above. Constraint (21b) ensures that no asset is distributed to
the accounts beyond unity. Constraint (21c) amounts to the
limit constraints for each asset–account pairing. Constraint
(21d) limits the quantity of particular groups of assets to
certain accounts but will be ignored in what follows. Con-
straint (21e) is the requirement constraint that enforces that
we allocate a suitable value such that the lender’s loan is
secured.

B. COLOPT QUBO FORMULATION
Binarization: To formulate the QUBO, we need to make a
change of variables so that our decision variable is repre-
sented by binaries. This change imposes certain limitations
on the allocation of assets, which are discussed in detail in
the following text. We make use of an n-bit binary variable,
similar to the methods used by the authors in [101] and [102].
To enable binary encoding of the decision variableQ, we can
represent it as a matrix q containing binary elements. This
transformation enables us to only allocate assets in a limited
number of ways, as detailed in the following equation:

q =

⎛
⎜⎜⎝
q11 . . . q01
...

. . .
...

qn1 . . . qnm

⎞
⎟⎟⎠ . (22)

Here, qi j is an n-bit binary variable expressing the fractional
allocation of asset i to account j

qi j = xb=1
i j , . . . , xb=Bi j , xbi j ∈ {0, 1} (23)

where B is the number of bits chosen.
Using B = 4 as an example, the largest number that can be

represented by four bits is 1111bin = 15dec. Thus, we split
our allocation into 15 fractions, where if qi j = 0100bin =
4dec, then 4/15 of asset i is allocated to account j. By
increasing B, we increase the precision of our allocations.
By implementing a similar method to Braun et al. [103],

we can discretize our fractional allocation by discretizing the
interval [Qmin

i j ,Qmax
i j ]

Qmax
i j − Qmin

i j =
B∑
b=1

pi jb =
B∑
b=1

2(b−1)
(
Qmax
i j − Qmin

i j

)
M

.

(24)
M is the maximum value that can be represented by a binary
string of length B (M = 2B − 1). Remark: Qmax

i j ,Qmin
i j have

been included here for generality, but in our problem, Qmax
i j

= 1 and Qmin
i j = 0 by definition. Thus, Qmax

i j − Qmin
i j is

always 1.
The discretized amount of item i that is allocated to ac-

count j is then described by the dot product of the binary
vector xi jb = (xi j1, . . . , xi jB)T and pi jb = (pi j1, . . . , pi jB)T

qi j =
B∑
b=1

pi jbxi jb ≡ pi jbx
b
i j (25)

where we use the Einstein summation convention (upper–
lower repeated indices contract) for brevity. By pairing each
bit in the bit string of qi j with a coefficient pi jb allows us to
represent more values in the allowed range, which improves
accuracy.
The cost function is then written as follows:

n∑
i=1

m∑
j=1

�i j pi jbx
b
i j. (26)

We then make the same replacement of Qi j → pi jbxbi j in the
remaining constraints of the problem to construct the bina-
rized collateral optimization problem. Again, a wide number
of classical solvers (open source and commercial) are avail-
able that can find the global minimum of the problem in this
form.
The total number of variables used to construct this bi-

narized version of the problem is O(nmB). Since we have
replaced the continuous variables with discrete binaries, the
accuracy of the solution is expected to be reduced. This
can be mitigated by increasing B; however, a compromise
is needed between accuracy and resource usage. Regardless,
the granularity for the fractional allocation is 1/M.
Slack-Based Formulation: We hereby introduce a QUBO

formulation for the collateral optimization problem, incor-
porating slack variables. The constraints outlined in (21b)–
(21e) significantly influence the number of bits necessary to
encode these slack variables, potentially leading to an exten-
sive bit requirement. To address this issue, we employ the
log-encoding method earlier in Section II-C.

For constraints expressed as “less-than-or-equal-to” in-
equalities, the number of bits required to encode the slack
variable can be readily computed using �log2 u�, where u rep-
resents the upper bound of the constraint. Nonetheless, ad-
dressing the requirement constraint (21e) necessitates a more
nuanced approach. As the objective is to minimize the ex-
cess value of the collateral posted, employing slack variables
might prove inadequate since their purpose is to diminish the
corresponding penalty term to 0 for any values satisfying this
constraint. In contrast, withinMILP frameworks, the solution
to a minimization problem typically aligns closely with the
lower bound of such a constraint. In light of this observation,
we choose to alter the exposure requirement by transforming
it into an equality constraint, thereby relaxing the original
formulation

n∑
i=1

Qi jaiviHi j = c j, ∀ j ∈ A (27)

3101818 VOLUME 4, 2023



Giron et al.: APPROACHING COLLATERAL OPTIMIZATION FOR NISQ Engineeringuantum
Transactions onIEEE

and as a result, the associated penalty term requires no slack
variables.
Hence, with the objective of minimizing the associated

penalty terms originating from the aforementioned expres-
sion, the QUBO should yield a solution conforming to the
boundaries of the exposure constraints. A limitation of this
strategy is the intrinsic stochastic characteristic of annealing
techniques and their propensity to become ensnared in local
minima, potentially resulting in marginally exceeding or not
quitemeeting themandatory exposure. Furthermore, because
the upper bound for each consistency constraint is equal to
one, we need to adjust their form so that we can calculate the
number of slack bits required. We proceed by rearranging
the binarized version of this constraint, which then attains a
fractional form

m∑
j=1

pi jbx
b
i j =

m∑
j=1

B∑
b=1

2b−1xbi j
M

≤ 1 (28)

∀i ∈ I. By multiplying both sides byM, it is straightforward
to realize that the highest value that can be represented by the
bitstring is the one we use as our new upper bound, and this
further allows us to easily determine the number of slack bits
needed.
The penalty term for each of the n consistency constraints

is written as follows:

n∑
i=1

⎛
⎝ m∑

j=1

M(pi jbx
b
i j − 1) + Scon

⎞
⎠

2

(29)

where Scon is the slack variable for each constraint, which is
encoded by binary variables sk via

Scon =
�log2(M)�∑

k=1

2k−1sk. (30)

Instead of introducing a penalty term for one-to-one con-
straints (21c), we can ensure that these are satisfied by re-
ducing the number of bits representing each allocation so that
these limits cannot be violated. The number of bits represent-
ing an allocation ni j can be determined by

ni j =
⌊
log2

(
Bi j
ai j

M

)⌋
. (31)

Note that, now in (25), the upper limit of the summation is no
longerB but now ni j, as this is the number of bits representing
the allocation qi j.

We choose to floor the result from the logarithmic func-
tion, as the alternative would still allow violations. However,
a consequence of this is that the one-to-one constraints in the
QUBO are more restrictive than their MILP counterpart.
Aside from these nuances above and the additional step of

binarization, constructing the balanced formulation for this
QUBO follows the same process described above in the dis-
cussion of the KnapsackProb instance. For the many-to-one
constraints (21d), we introduce log-encoded slack variables

SKi j . It is straightforward to derive the full QUBO objective
as follows:

λ0

n∑
i=1

m∑
j=1

�i j pi jbx
b
i j

+ λ1

n∑
i=1

⎛
⎝ m∑

j=1

M(pi jbx
b
i j − 1) + Scon

⎞
⎠

2

+ λ2

m∑
j=1

(
n∑
i=1

pi jbx
b
i jaiviHi j − c j

)2

+ λ3

m∑
j=1

G∑
g=1

(
n∑
i=1

pi jbx
b
i jTigai − Kgj + SKgj

)2

. (32)

Unbalanced Formulation: The previous constraints, set in
(21b)–(21f), can be converted into penalty terms for the
QUBO through unbalanced penalization, as we displayed
with the KnapsackProb instance in Section II-D. For this ap-
proach, auxiliary functions are defined from the constraints,
and Taylor approximations of appropriate exponentiations of
these functions are used to derive the penalty terms.
For instance, consider the consistency constraint (21b).We

move the upper bound to the LHS of the inequality and set
this as our auxiliary function h(x)

h(x) =
m∑
j=1

pi jbx
b
i j − 1 ≤ 0. (33)

Since this is a “less equal to zero” inequality, we use eh(x)

to derive a penalty term that takes small values when this
constraint is satisfied and large values when violated. As
mentioned previously, QUBOs may only contain linear and
quadratic terms so, therefore, we need to take a second-order
Taylor approximation to obtain

λ1

⎛
⎝ m∑

j=1

pi jbx
b
i j − 1

⎞
⎠+ λ2

⎛
⎝ m∑

j=1

pi jbx
b
i j − 1

⎞
⎠

2

(34)

for all i ∈ I. Essentially, the first of these terms favor solu-
tions that satisfy the constraint while being as far away from
the upper bound as possible. The second term, instead, favors
solutions that are as close to this upper bound. Effective
tuning of the parameters is, therefore, necessary to balance
the effects of each term. Note, however, that in this case, we
do not need to relax the exposure constraint to an equality
as we can better manage how far beyond the solution is from
these lower bounds. This equation is valid only for one asset;
therefore, we can modify (34) to consider all assets

λ1

n∑
i=1

⎛
⎝ m∑

j=1

pi jbx
b
i j − 1

⎞
⎠+ λ2

n∑
i=1

⎛
⎝ m∑

j=1

pi jbx
b
i j − 1

⎞
⎠

2

.

(35)
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FIGURE 2. Optimal allocations of assets among accounts with short-term
(red) and long-term (blue) requirements, determined through solving the
ColOpt instance as a continuous LP with HiGHS. Assets IDs of 1−4 are
low-tier, 5−6 are mid-tier, and the final 7−10 are the high-tier assets.

Following the same methods and the discussion on the one-
to-one constraints used in the previous formulation, we can
promote the remaining constraints to penalty terms in the
QUBO.
The final QUBO can be written as follows:

λ0

n∑
i=1

m∑
j=1

�i j pi jbx
b
i j + λ1

n∑
i=1

⎛
⎝ m∑
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b
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⎞
⎠

+ λ2
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⎛
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b
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⎞
⎠

2
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(
n∑
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b
i jaiviHi j − c j
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(
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b
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)

+ λ6
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j=1

G∑
g=1

(
n∑
i=1

pi jbx
b
i jTigai − Kgj

)2

(36)

IV. NUMERICAL ILLUSTRATIONS
Utilizing the formulations, as presented in Section III, we
now define a small instance of the ColOpt problem based
on a synthetic (however, realistic) small dataset. We per-
form our tests on an Apple MacBook Pro with M2 Max
processor and 16 GB of memory. We remark that unlike the
KnapsackProb that even with a small instance of a few items
has a relatively simple structure with a single constraint, the
small ColOpt problem instance we describe below has more
complex constraints, and the interdependencies between the
accounts and assets lead to a larger QUBOmatrix and amuch

more challenging optimization landscape. In what follows,
we utilize SA, which as a metaheuristic algorithm [104], is
quite sensitive to the problem structure and its performance
can vary significantly depending on the problem instance.
The increased complexity of the collateral optimization prob-
lem may make it harder for the SA to explore the solution
space effectively, leading to suboptimal results or longer
convergence times. In such cases, it might be beneficial to
fine-tune the parameters of SA to improve its performance
on more complicated problem instances. An interesting ap-
proach toward that direction was followed in [31] which, for
our context, we leave for future work.
Concretely, we have a portfolio of ten assets that have an

approximate combined value of $8.86M. These assets can
be categorized by their tier rating, ω = {0.2, 0.5, 0.8}, into
low-, mid-, and high-tiered assets, respectively. Furthermore,
the number of assets belonging to each category is chosen
to be 4, 2, and 4, respectively. These assets are to be dis-
tributed in order to meet the requirements of five accounts.
These requirements are distinguished by their duration, two
of which are long term and have a combined exposure of
∼ $1.49M. The remaining are short-term requirements with
a total exposure of ∼ $1.09M.
Due to restrictions, we slightly relax the problem by re-

moving many-to-one constraints (21d). It is clear that, in the
absence of these constraints, this instance of the ColOpt has
a global optimum that can be easily obtained using clas-
sical strategies. As mentioned earlier, a compromise was
needed between the precision of our results and the runtime
performance, along with the limitation of the total number of
bits that can be implemented in the solvers. To do this, we set
the length of the bitstring representing each allocation, (23),
to be 7. Hence, the granularity of our allocations is 1/127 ≈
0.0079% (since M = 127). In other words, the lowest per-
centage of available asset quantity we may post to any one
account is approximately 0.0079%. This becomes important
if an asset quantity is significantly large, as the corresponding
solution will allocate more than what is necessary to meet
the requirements. Also, if very strict limits were considered,
many violations could occur if the bitstring length chosen
was inadequate. To this effect, we ensure that our sample
contains sensible values for the quantity of each asset so
that they can be distributed with enough precision to satisfy
the exposure requirements efficiently. If no inequality con-
straints are included in the instance, then a total of 350 qubits
are required for both formulations (10 assets, 5 accounts, 7).
However, due to the way we introduce the constraints, as
discussed in Section III, we can reduce this number to 228
qubits in the case of the unbalanced formulation and 298
qubits for the balanced form, as the consistency constraint
in this case still requires slack variables.
Solving QUBO equations to obtain results that accurately

reflect the goal of the objective function while simultane-
ously satisfying all constraints relies on the fine-tuning of
the Lagrange multipliers. A potential solution is to make use
of “hybrid solvers,” such as D-wave’s constrained quadratic
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TABLE 3. Values Used for Tuning the Lagrangian Multipliers for Each Term in the QUBO for Differing Implementations

FIGURE 3. Allocation of different assets amongst accounts with (red) short-term and (blue) long-term requirements. Results are determined by (top)
D-wave’s simulated annealer and (bottom) Fujitsu’s digital annealer with (left) balanced and (right) unbalanced formulations. The asset IDs of 1−4 are
low-tier, 5−6 are mid-tier, and the final 7−10 are the high-tier assets.

model [105] that automatically calculates these, we instead
use an intuitive approach. The consistency constraint (21b)
is a hard constraint, as a solution that violates this constraint
does not translate into a sensible business solution. Con-
versely, we treat the exposure requirement (21e) as a soft con-
straint and allow for small violations to some margin ε. Ad-
ditionally, for both balanced and unbalanced formulations,
it is important to note that there are significant differences
between the magnitudes of the coefficients of each term in
the QUBO. This can make fine-tuning of the penalty weights
a difficult task. To manage this, we normalize each term in
the QUBOs by dividing by their largest coefficient and then
scale such that the lowest coefficient in each term has an order
of magnitude of 1. We chose the weight for the cost function
to be a magnitude larger than those of the constraints so that
we achieve high-quality solutions. We then retrospectively
increase the weight of the exposure and consistency terms to
ensure that the system’s constraints are satisfied.

Overall, our results were mixed in the sense that none of
our runsmanaged to reach the global optimum nor to produce
the globally optimal allocation with each run converging in
a different local minimum. We estimate that one reason for
this behavior is the limited number of runs performed that do
not allow the annealing process to explore sufficient search
space. This can easily be redeemed by increasing the number
of runs (potentially decreasing the step size) and utilizing
more compute powers. However, due to limited resources
and compromising between computational runtime and
the accuracy of the solution, we opted to choose a modest
number of runs.
Table 3 displays the values chosen for each of the penalty

weights and the resultant objective value that was outputted.
Fig. 2 shows the global optimal solution solved using
HiGHS. The asset allocations using neal and Fujitu’s digital
annealer are shown in Fig. 3. Additionally, Fig. 4 displays
the percentage differences, for each of the solvers, between
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FIGURE 4. Percentage of the exposure requirements that have been met
for each account. The dashed line represents the solution given by
HiGHS solver that perfectly meets each requirement. We see greater
deviations for the requirement of account 4, which is due to its
outstanding exposure being an order of magnitude less than those of the
other accounts; hence, it has a lower weighting in the QUBO.

the total values posted and the required exposures for all the
accounts.

V. SUMMARY AND CONCLUSION
We surveyed the problem of collateral optimization from a
business perspective and provided a business-realistic MILP
formulation suitable to be mapped to a QUBO. In turn, we
provided two QUBO formulations, one based on slack vari-
ables and one based on unbalanced penalization, and we
implemented a small ColOpt problem instance on small em-
ulations of hybrid solvers. We observed that the unbalanced
penalization approach yields objective function values much
closer to the global optimum, obtained using the simplex
method, while the slack-based (balanced) approaches were
further off. To this end, both approaches fail to find the global
optimum even for such a relatively small, but nontrivial,
problem instance. While we did not run our computations on
specialized hardware (quantum annealer or digital annealer),
to some extent, we indeed rediscover the expectation that
heuristic approaches fail to find globally optimal solutions
very often, including when implemented in quantum hard-
ware [106]. The “take-home message” from the numerical
illustrations clearly showcases the relevance of the formula-
tion chosen for a given problem when one is interested in
making it quantum ready.
Note, however, that the aim of this article is to show the

relevance aswell as the technical formulation of the collateral
optimization problem for quantum or hybrid solutions rather
than to perform a detailed benchmarking and, as a matter
of fact, several improvements can be performed in order to
obtain higher quality solutions (warm starting techniques,
optimizing the annealing schedule, QUBO parameter opti-
mization, utilization of GPU and tensor cores, and explore
improved methods for SA [107]).

TABLE 4. Definition of Financial Terms Used

The question of whether MILPs, such as the collateral
optimization problem, should be cast as QUBOs and ap-
proached by heuristic solvers (quantum or not) is tricky.
To some extent, classical solvers, such as Gurobi, CPLEX,
or even HiGHS, perform exceptionally well in many large
instances. Improving thereof could be less or more bene-
ficial depending on the situation or problem instance and
its complexity. If a “quantum” solution is preferred, finding
the ultimate strategy for this approach is a crucial problem
(formulation of the problem, hyperparameter choice, solver
choice, etc.).
The ColOpt problem, as presented above, can be extended

in a variety of ways. The formulations provided above are in
no way unique and further investigation might yield better
results even for the local solvers. For example, recent re-
search [108] has shown that an alternative formulation based
on implicit penalization by restricting the Hamiltonian dy-
namics, in the context of parallelizedQAOA, can be powerful
and such an approach can be suitable for the collateral opti-
mization problem as well. A different approach based on a
stochastic quantumMonte Carlo algorithm, that mimics QA,
was proposed [109] for such large-scale optimization prob-
lems, making it another suitable candidate for ColOpt. The
benefit of this approach is that it can handle fully connected
graphs that can be the case in certain ColOpt instances.

APPENDIX A
COLLATERAL OPTIMIZATION TERMINOLOGY
In Table 4, we collect a few of the common terms used
in the context of ColOpt and, more generally, collateral
management.
Table 5 collects all relevant ColOpt-related quanti-

ties/variables used in the main body of this article.

APPENDIX B
CONSTRAINT PENALIZATION IN QUBOS AND THE ISING
MODEL
In the main body of this article, we have seen that in order
to encode penalty terms into QUBOs, we need to use, for
example, slack variables. Here, we summarize how we pro-
ceed to do so. In the KnapsackProb as well as the collateral
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TABLE 5. List of All Symbols Used in the Formulation of the Collateral
Optimization Problem

optimization problem, we have constraints of the form

Ax ≤ c (37)

Bx ≥ d. (38)

Let us consider the former constraint since the latter is essen-
tially the same up to a factor of−1. It is common to view this
constraint as Ax− c ≤ 0 and then introduce a slack variable
s ∈ R≥0 such that we define the penalty termAx− c+ s = 0.
This is defined such that

sup s = c− inf Ax. (39)

Then, as mentioned already in Section II, one needs to map
a QUBO to the Ising Hamiltonian that performs QA, a re-
strictedmodel of adiabatic quantum computation. Let us now
briefly explain this connection.
The (classical) Ising model was first introduced as a math-

ematical model of ferromagnetism [110]. The variables take
values in a discrete (binary) set σi = {±1} and are typically
referred to as spin since, in the physical model, they describe
the atomic spin of the particles. The model consists of a lat-
tice �, with each lattice site, j ∈ �, having an assigned spin
σ j. The energy of a specific spin configuration is measured
by the Hamiltonian of the system

H = −
∑
j<k

Jj, j+1σ jσ j+1 −
∑
j

h jσ j + ε

where Jj, j+1 encodes the “nearest neighbor interaction” be-
tween adjacent sites, and h j describes some external field that
interacts with each site [32]. The overall minus sign is just a
convention3 and ε refers to a constant energy overhead.
In the quantum version of the Ising Hamiltonian, the sites

are represented by a qubit. The spins are then simply given

3However, the sign of Jjk does have a more interesting interpretation. If
Jjk > 0, the model describes ferromagnetism, while if Jjk < 0, it describes
antiferromagnetism.

by the Pauli matrix σ z
j acting on the jth site, with eigen-

values ±1 when acting on the computational basis states
{|0〉, |1〉}. In physics, the interesting problem is typically to
find the ground state energy, or lowest energy eigenstate, of
the Hamiltonian.
One thing we can immediately notice is that this model is

quadratic in the spins and, thus, resembles the QUBO. By the

simple change of variables x j = 1−σ j
2 , we directly see that the

spin variables ±1 are mapped to the binary variables {0, 1}.
In the quantum version, we map the QUBO variables x j
to the operators x j = 111 ⊗ · · · ⊗ 1

2 (111 − σz) ⊗ 111 ⊗ · · ·, where
the nontrivial operator acts on the jth site. This operator has
eigenvalues 0 or 1 when acting on the states |0〉, respectively
|1〉. Through this change of variables, the QUBO problem
is, thus, equivalent to finding the ground state energy of the
Ising Hamiltonian. When mapping between the QUBO and
the Ising model, we might also need to account for the fact
that we only minimize over the Ising model, while some-
times, for example in the KnapsackProb, we are seeking a
maximum. This is of course easily accounted for by changing
the relevant signs.
As an example, the KnapsackProb (8) has an Ising

Hamiltonian with

Jj, j+1 = − λ0

4
w jw j+1

h j = −
(v j

2
+ λ0Kw j

)

ε = − λ0

4

n∑
i

w2
i − 1

2

n∑
i

vi − λ0K
2

where we define K = S−W + 1
2

∑n
i=1 wi for convenience.
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