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ABSTRACT The key relay protocol (KRP) plays an important role in improving the performance and
the security of quantum key distribution networks. On the other hand, there is also an existing research
field called secure network coding (SNC), which has similar goal and structure. In this article, we analyze
differences and similarities between KRPs in general and key relay using SNC schemes (KRPs-by-SNC)
rigorously. We found, rather surprisingly, that there is a definite gap in security between KRPs in general
and KRPs-by-SNC; that is, certain KRPs achieve better security than any SNC schemes on the same graph.
We also found that this gap can be closed if we generalize the notion of SNC by adding authenticated
public channels; that is, KRPs are equivalent to KRPs-by-SNC schemes augmented with authenticated public
channels.

INDEX TERMS Communication networks, network coding, quantum key distribution.

I. INTRODUCTION
A quantum key distribution (QKD) link realizes distribution
of secret keys to players at distant locations (see, e.g., [1]
and [2]). However, the key distribution length achievable by
a single QKD link is limited by the technological level of
quantum optics [2]. The key relay protocol (KRP) plays an
important role in improving the performance and the security
of QKD networks [3], [4], [5], [6] for an expanding service
area. KRPs are used to enable key distribution beyond such
limitation of a single QKD link. The basic idea of the KRP is
to pass a secret key of one QKD link on to another QKD link
with the help of insecure public channels, such as the internet
(cf., Figs. 2 and 3). The simplest type of KRPs are those
using trusted nodes only, and they have been used in several
QKD testbeds in the world [7], [8], [9], [10]. In Japan, Tokyo,
the QKD Network has operated since 2010, and secure data
transfer, storage, and secondary use have been demonstrated.
Such KRPs, based on trusted nodes, are standardized in
ITU-T [6]. In order to improve the convenience of QKD
networks further, it is important to research and develop se-
cure and efficient KRPs. To this end, some articles proposed
improved schemes by reinterpreting the KRP as a secure data
relay technique over nodes. In particular, KRPs using secure
network coding (SNC) indeed turned out useful (see, e.g.,
[11] and [12]).

We note that KRPs as well as our results in the follow-
ing can also be applied to networks of any information the-
oretically secure key sources, besides QKD. For example,
they can be applied to key sources utilizing physical layer
security [13].

The goal of this article is to rigorously analyze if there
is a difference between such KRPs using SNC (henceforth,
KRPs-by-SNC) andKRPs in general. This question is impor-
tant for the following reason. The KRP and SNC are similar
in many aspects. SNC has been studied in much greater depth
than the KRP. If the KRP and SNC were not only similar but
equivalent, there would be no need to study the KRP, because
one could simply import the vast results of SNC into theKRP.
This question can be elaborated as follows. The KRP has

similarities and differences with SNC (see Table 1). Namely,
while they share the same goal of sharing secret messages,
they differ in the following.

1) Public channels are available in KRPs, but not in SNC
schemes.

2) KRPs use QKD links (or more generally, local key
sources), while SNC schemes use secret channels.

3) In KRPs senders’ role is to send secret keys, which are
random bits, while in SNC schemes, they can freely
choose their messages.
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TABLE 1 Similarities and Differences Between the KRP, the Conventional SNC, SNC With Public Channels, and KRP-by-SNC

FIG. 1. Inclusion relation of KRPs in general, and KRPs based on SNC
schemes (KRPs-by-SNC). In this article, SNC schemes refer to those
without public channels unless otherwise stated. The settings and the
goals of KRP-by-SNC and the KRP are summarized in Table 1. The security
of KRPs in general is better than that of KRPs-by-SNC (see Theorem 2).

FIG. 2. Simplest example of the KRP. On each edge ei , there is a local
key source LKSei

, which distributes a random bit rei
∈R {0, 1} to both

ends. Each node can also use public channels freely. User pair u1, u2

wishes to share a relayed key k = (k1, k2). To this end, the midpoint v

announces �r = re1 + re2 , and then, user u1 and u2 each calculate
k1 = re1 and k2 = re2 + �r.

Here, it is straightforward to see that an SNC scheme can
always be converted to a KPR-by-SNC, by restricting the
messages of the SNC scheme to random keys. The nontrivial
question naturally is whether KRPs-by-SNC thus obtained
exhaust all KRPs in general. In other words, is it possible to
convert KRP in general to a KRPs-by-SNC? This is the main
question of this article. For the sake of simplicity, we will
limit ourselves to the one-shot scenario.
The outline of our results is shown in Fig. 1 (or for more

detail see Fig. 8). If we generalize SNC [11] schemes by
adding public channels (see the third column of Table 1),
then KRPs and the corresponding KRPs-by-SNC (with pub-
lic channels) on the same graph are always equivalent (see
Theorem 1). On the other hand, if we do not generalize SNC
and limit ourselves to its conventional form (without public
channels; see the second column of Table 1), then there is a
definite gap in security between the KRP and SNC: on some

graphs a KRP achieves better security than any conventional
KRPs-by-SNC (see Theorem 2 and Corollary 1). Hence, the
accumulation of past research on the conventional SNC is not
sufficient to explore the potential of KRPs. This suggests that
the KRP is a new research field. In other words, clarifying
the relationship between KRPs-by-SNC andKRPs in general
is extremely useful in clarifying the security and efficiency
bounds of key relay.

II. KEY RELAY PROTOCOL
A. MOTIVATION AND EXAMPLES OF THE KRP
QKD distributes secret keys to two separate players. How-
ever, the communication distance achievable by a single set
of QKD devices, or a QKD link, is limited by the technolog-
ical level of quantum optics, and is currently in the order of
100 km [2]. For this reason, in this article, we refer to a QKD
link also as a local key source.

There is of course a strong demand to distribute secret
keys globally, or beyond the reach of a single QKD link.
The KRP [3], [4], [5] aims to fulfill this demand by connect-
ing multiple QKD links, and also by using insecure public
channels, such as the internet.
Fig. 2 illustrates the simplest example of such KRPs.

Users u1 and u2 are separated by twice the reach of a lo-
cal key source, and are connected by two local key sources
LKSe1 and LKSe2 . From these local key sources, users u1

and u2 receive distinct local keys re1, re2 ∈R {0, 1}, respec-
tively. Then, in order for both u1 and u2 to share the same
key k1 = k2, which we call the relayed key, they execute the
following procedure with the help of the midpoint v.

1) The midpoint v announces the difference of the two
local keys, �r = re1 + re2 .

2) Users u1 and u2 calculate the relayed keys k1 = re1 and
k2 = re2 + �r, respectively.

Note that k1 = k2 is indeed satisfied. Note also that ki
remains secret even if the announcement �r is revealed.

This idea can be generalized to more complex network
configurations. For example, one can improve the distance
by serially extending the aforementioned construction [see
Fig. 3(a)], or can improve the security by extending it in
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FIG. 3. Somewhat complex examples of the KRP. (a) Serialization of
Fig. 2. Nodes vi each announce �ri = rei

+ rei+1
, and then, users u1 and

u2 calculate relayed keys k1 = re1 and k2 = ren + ∑n−1
i=1 �ri , respectively.

(b) Parallelization of Fig. 2. Nodes vi each announce �ri = rei1
+ rei2

, and
then, users u1, u2 each calculate k1 = re11 + re21 , k2 = ∑

i=1,2(re2i
+ �ri ).

Note that the relayed key k = (k1, k2) remains secret here even if
someone takes over an edge set Ei = {ei1, ei2} (i = 1 or 2) and leaks local
keys rei1

, rei2
. In this sense, we regard this construction more secure

than that of Fig. 2.

parallel [see Fig. 3(b)]. In Section II-B, we will give a for-
mal definition of KRPs, applicable to an arbitrary network
configuration.

B. FORMAL DEFINITION OF THE KRP
The outline is as follows: on an undirected graphG = (V,E ),
pairs of users wish to share a relayed key with the help of
other players on nodes V having access to local key sources
and a public channels, without disseminating the message to
the adversary.

1) SETTING
An undirected graphG = (V,E ) consists of a node setV and
an edge set E. For the sake of simplicity, we assume that G
is connected. Each node v ∈ V has an individual player (de-
noted by the same symbol as the node), some of which con-
stitute npair pairs of users ui = (u1i , u

2
i ) with i = 1, . . . , npair.

There is also an adversary, who can wiretap some edges⊂ E.
Each edge e ∈ E has a local key source LKSe and a public

channel PCe, which behave as follows.
Definition 1 (Local Key Sources and Public Channels):

LKSe and PCe operate as follows.

1) Local key source LKSe [see Fig. 4(a)]: On input “start”
command from an end node v orw, it sends a local key
or a uniformly random bit re ∈R {0, 1} to both v and
w. When edge e is wiretapped, it also sends re to the
eavesdropper.

2) Public channel PCe [see Fig. 4(b)]: On input a bit string
pe ∈ {0, 1}∗ from an end node, it sends pe to the other
end node and to the adversary.

FIG. 4. (a) Behavior of local key source LKSe in the absence of the
adversary, on edge e having end nodes v, w. (b) Public channel PCe on
the same edge.

FIG. 5. Behavior of secret channel SCe in the absence of the adversary.

2) KEY RELAY PROTOCOL
With the aforementioned setting, each user pair ui = (u1i , u

2
i )

wishes to share a relayed key ki = (k1i , k
2
i ) with the help of

players V , without disseminating ki to the adversary. To this
end, they request all nodes V to execute a procedure of the
following type.
Definition 2: A protocol L of the following type, per-

formed by players V , is called a KRP.

1) All playersV communicate using public channels PCe
and local key sources LKSe.1 Here, each LKSe can
only be used once, while PCe can be used arbitrarily
many times.

2) Each user u ji calculates a relayed key k ji .

3) SECURITY CRITERIA
There is a known collection Eadv = {Eadv

1 ,Eadv
2 , . . . } of edge

setEadv
i ⊂ E, which the adversary can wiretap. In each round

of the protocol, the adversary chooses Eadv
l ∈ Eadv and wire-

taps edges e ∈ Eadv
l .

Definition 3 (Security of the KRP): A KRP L is secure
against Eadv, if it satisfies the following.

1) Soundness: The relayed keys k1i , k
2
i generated by

user pair ui = (u1i , u
2
i ) are equal and uniformly dis-

tributed, i.e., Pr[K1
i = K2

i ] = 1, and Pr[K j
i = 0] =

Pr[K j
i = 1] = 1/2. Also, k ji generated by different user

pairs are independent.

1More precisely, the outputs (pe, re, or “start”) of playersV are defined as
functions of previously received data (⊂ {pe, re|e ∈ E}) and of random vari-
ables generated by the player. Each player sends out the outputs whenever
necessary data are all received.
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2) Secrecy: The relayed key pairs ki = (k1i , k
2
i ) are un-

known to the adversary even when any edge set Eadv
l ∈

Eadv is wiretapped. That is, for any l, we have

I(K1,K2, . . . ,Knpair;A(Eadv
l )) = 0 (1)

where A(Eadv
l ) denotes the information that the adver-

sary obtains by eavesdropping on edge set Eadv
l .

Note that following the standard notation of information
theory, throughout this article, we write actual values in a
lowercase alphabet, and the corresponding random variables
in the uppercase of the same alphabet. For example, the ran-
dom variable corresponding to the value k ji is represented by

K j
i .
A(Eadv

l ) appearing in Definition 3 consists of local keys re
on edges e ∈ Eadv

l , and of all public information pe (e ∈ E).

C. NOTES ON KRPS USED IN PRACTICAL QKD NETWORKS
In fact, the KRP defined previously is slightly different from
those used in actual QKD networks. In the following, we
elaborate on their relation.

1) EDGE ADVERSARY MODEL VERSUS NODE ADVERSARY
MODEL
In the aforementioned definition, we employed the edge ad-
versary model (where the adversary eavesdrops on some
edges), while in actual QKD networks, the node adversary
model (where the adversary can eavesdrop on information
that goes in and out of a certain edges set) is usually assumed.
This is not really a limitation, since the former model incor-
porates the latter: the situation where “the adversary eaves-
drop on a node v” in the node adversary model can always
be described as “all edges surrounding v are wiretapped” in
the edge adversary model.

2) PASSIVE ADVERSARY VERSUS ACTIVE ADVERSARY
In the aforementioned, we assumed that the adversary is pas-
sive (honest but curious), meaning that she eavesdrops on, but
does not tamper with, communication. On the other hand, in
QKD, one usually assumes that the adversary is active, i.e.,
she can both eavesdrop on and tamper with communication.
The easiest way to convince oneself of this limitation, of

course, is to accept it merely as a simplification introduced
at the first step of continuing research.
On the other hand, there are also ways of justifying this

limitation to some extent. That is, if the adversary is active,
the following two problems arise.

1) Problem with soundness: The relayed keys may not
match, Pr[k1i �= k2i ] > 0.

2) Problem with secrecy: PlayersV may malfunction and
leak extra information to the adversary, damaging the
secrecy.

But, in practical QKD networks, there are ways to solve or
work around both these problems.

a) How to work around the problem with soundness:
The basic idea here is the following. The relayed keys ki =
(k1i , k

2
i ) are random bits and are not meaningful by them-

selves, and thus, can be discarded at any time. Hence, even
if the event k1i �= k2i occurs, players can discard k1i , k

2
i and

repeat new rounds the KRP (including QKD as local key
sources) until they obtain k1i , k

2
i satisfying k

1
i = k2i . This can

generally decrease the key generation speed, but the secrecy
remains intact.
Of course, in order for the aforementioned idea to actually

function in practice, user pairs ui must be able to detect an
error (check if k1i = k2i or not) with a sufficiently small fail-
ure probability. This is also realizable by using information
theoretically secure message authentication codes (see, e.g.,
[14, Sec. 4.6]).
Combining these ideas, we obtain the following method.

a) User pairs ui = (u1i , u
2
i ) repeat a KRP n times and share

n-bit relayed keys �k1i ,
�k2i ∈ {0, 1}n.

b) User u1i calculates the hash value σi = h(�k1i ) of
�k1i using

an ε-difference universal hash function h [14]. User u1i
then encrypts σi by the one-time pad (OTP) scheme
(see, e.g., [14]) and sends it to u2i . (In fact, this entire
step corresponds to authenticating message �k1i using
[14, Construction 4.24].)

c) User u2i decrypts the received ciphertext to obtain

σi. If σi �= h(�k2i ), u
2
i announces that the relayed keys

�k1i and
�k2i must be discarded. (Here, u2i authenticates

his announcement by again using Construction 4.24 of
[14].)

In this method, steps 2 and 3 each consume a preshared
key2 of a length proportional to |σi|, the length of σi. How-
ever, one can set |σi| negligibly small compared with n,
with an appropriate choice of the function h and for suffi-
ciently large n. Thus, the net relayed key obtained by this
method almost equals n. For example, by using a polynomial-
based ε-difference universal hash function, we have |σi| =
O(ε−1 log n) with ε being the failure probability of the error
detection.

b) Countermeasure against problem with secrecy:
As for the problem with secrecy, one countermeasure is to
restrict ourselves with linear KRPs.

Here, a linear KRP means the one where players V are
linear. A player v ∈ V being linear means that its outputs
pe and re are all linear functions of previously received data
(⊂ {pe, re|e ∈ E}) and of random variables generated by the

2The security proofs of QKD require that its public communication be
authenticated. A customary way to fulfill this requirement in practical QKD
systems is that each user pair always keeps sharing a relatively small amount
of the secret key (preshared key), and uses it to authenticate their public
communication, e.g., by the methods given in [14, Sec. 4.6] and [15]. Here,
we use those preshared keys also for KRPs.
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player. In such restricted case, we can prove the following
lemma.
Lemma 1: If a linear KRP is secure against passive (i.e.,

honest but curious) adversaries, it is also secure against active
adversaries.
This lemma is a variant of Theorem 1 in [16], which was

previously obtained for the SNC. As the proof is essentially
the same as in [16], we here only give a sketch.
Suppose, for example, that the active adversary modifies a

local key re′ to re′ + �r, which is to be input to a node v.With
v being linear, v’s subsequent outputs all change linearly
in �r; for example, a public message pe, which v outputs,
changes to pe + f (�r) with f being a linear function. Since
those linear responses to tampering, such as f (�r), are all
predictable, we can conclude that the adversary gains nothing
by tampering with communication.
Of course, this countermeasure is not applicable when one

must use nonlinear KRPs. Such cases must be considered
separately. In this respect, the existing literature on network
codes resilient against active attackers, e.g., [17], would be
helpful.

III. MAIN RESULTS: RELATION BETWEEN THE KRP AND
SNC
As readers familiar with SNC (see, e.g., [11] and [12]) may
have already noticed, the KRP defined in the previous section
has similarities and differences with SNC (see Table 1). That
is, while they both share the same goal that each sender–
receiver pair (or each user pair) share a secret message, they
differ in the following.

1) Public channels PCe are used in the KRP, but not in
SNC.

2) The KRP uses local key sources LKSe, while SNC uses
secret channels.

3) In SNC, the sender can choose the message freely.
However, in the KRP, the message (which we called
the relayed key ki in the previous section) must be
uniformly random, and thus, the sender does not have
freedom to choose it.

From this observation, the question naturally arises
whether these differences are really essential. For example, is
it not possible that there is actually a way of converting KRPs
to SNC schemes, and that they are shown to be equivalent?
In this section, we answer this question. The outline of our
results is as follows.
First, if we eliminate the aforementioned difference 1) by

hand, that is, if we generalize SNC [11] by adding public
channels, then we can simultaneously resolve the remaining
differences, 2), and 3), as well. As a result of this, we can
show that the generalized form of SNC (i.e., SNCwith public
channels, in the third column of Table 1) and the KRP are
equivalent (see Theorem 1).

On the other hand, if we do not generalize SNC and limit
ourselves with its conventional form (the second column of
Table 1), then there is a definite gap in security between

SNC and the KRP: there are situations where KRPs achieve
better securities than the conventional SNC schemes, without
public channels (see Theorem 2).

A. DEFINITION OF SNC WITH PUBLIC CHANNELS
We begin with a formal definition of SNC with public chan-
nels, which is mentioned previously and corresponds to the
third column of Table 1.
The conventional SNC (the second column of Table 1)

is the special case of this scheme where the use of public
channels is prohibited.

1) Setting
The setting is the same as that of the KRP, given in
Section II-B1, except the following.

1) Of each user pair ui = (u1i , u
2
i ), one user (e.g., u1i ) is

named the sender ai, and the other (e.g., u2i ) the receiver
bi. Thus, either (u1i , u

2
i ) = (ai, bi) or (u1i , u

2
i ) = (bi, ai)

holds.
This nonidentical correspondence is necessary be-
cause, in SNC, messages are not a random bit (as in
the KRP), but must be chosen by the sender ai; see
Definition 5.

2) Local key sources LKSe are replaced by the secret
channels SCe, defined in Definition 4 as follows.

Definition 4 (Secret Channels): On input a bit se ∈ {0, 1}
from one end node, secret channel SCe sends se to the other
end node; see Fig. 5.When edge e is wiretapped, it also sends
se to the eavesdropper.
In comparison with the conventional SNC [11], the afore-

mentioned setting differs only in that playersV can use public
channels PCe in addition to secret channels SCe (see Table 1).

2) SNC With Public Channels
The goal of our SNC with public channels is the same as
that of the conventional SNC [11]. Each sender–receiver pair
(ai, bi) wishes to exchange message mi with the help of
other players on nodes V , without disseminating mi to the
adversary.
Definition 5 (SNCWith Public Channels): Wecall a proto-

col of the following type a SNC schemewith public channels.

1) Each sender ai chooses a messagemi ∈ {0, 1} aimed at
the receiver bi.

2) Players V communicate by using public channels PCe
and secret channels SCe.3 Here, each SCe can only
be used once, while PCe can be used arbitrarily many
times.

3) Each receiver bi calculates message m̂i ∈ {0, 1}.
In comparison with Definition 2 for the KRP, the afore-

mentioned Definition 5 differs only in that LKSe are replaced

3As in the case of the KRP, we assume that the outputs (pe, se) of players
are defined as functions of previously received data (⊂ {pe, se|e ∈ E}) and
of randomvariables generated by the player.We also assume that each player
sends out the output whenever necessary data are all received.
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by SCe, and that senders ai can arbitrarily choose message
mi, which need not be uniformly distributed, unlike the
relayed key k1i (cf., Table 1).

3) Security Criteria
The security criteria is essentially the same as Definition 3 for
the case of the KRP. That is, there is again a known collection
Eadv = {Eadv

1 ,Eadv
2 , . . . } of wiretap sets Eadv

l ⊂ E. In each
round of the SNC scheme, the adversary choosesEadv

l ∈ Eadv

and wiretap edges e ∈ Eadv
l .

Definition 6 (Security of SNCWith Public Channels): An
SNC scheme L is secure against Eadv, if it satisfies the fol-
lowing.

1) Soundness: Sender ai’s message mi reaches receiver bi
without error; Pr[Mi = M̂i] = 1.

2) Secrecy: Messages mi and m̂i are unknown to the
adversary even when any edge set Eadv

j ∈ Eadv is
wiretapped. That is, for any l, we have

I(M1,M2, . . . ,Mnpair;A(Eadv
l )) = 0 (2)

where A(Eadv
l ) denotes the information that the ad-

versary obtains by eavesdropping on edges Eadv
l , i.e.,

A(Eadv
l ) consists of secret bits se on edges e ∈ Eadv

l ,
and of all public information pe (e ∈ E).

In comparison with Definition 3 for the KRP, the
aforementioned Definition 6 differs in that mi need not be
uniformly distributed (cf., Table 1), and that local keys re
included in the adversary’s information A(Eadv

j ) are replaced
by secret bits se.

B. SNC WITH PUBLIC CHANNELS AND THE KRP ARE
EQUIVALENT
SNC with public channels thus defined are in fact equivalent
to the KRP defined in the previous section.
Theorem 1 (Equivalence of SNC With Public Channels,

and KRP): SNC schemes with public channels and KRPs
can always achieve the same security as follows.

1) Given a KRP L compatible with a graph G and user
configuration ui = (u1i , u

2
i ), which is secure against

wiretap sets Eadv, one can construct an SNC scheme
with public channels L′, which is compatible with the
same G and ui, and also secure against the same Eadv.
This is truewhether the sender and the receiver for each
user pair ui in L′ are assigned as (u1i , u

2
i ) = (ai, bi) or

(u1i , u
2
i ) = (bi, ai) (for themeaning of this notation, see

Section III-A1).
2) Given an SNC scheme L (with or without public chan-

nels) compatible with a graph G and a sender–receiver
configuration ui = (ai, bi), which is secure against
Eadv, one can construct a KRP L′ compatible with the
same G and ui, which is secure against the same Eadv.

Therefore, if one wishes to analyze the potential and
limitations of the KRP, it is necessary and sufficient to in-
vestigate SNC with public channels.
We will prove Theorem 1 in Section IV.

C. SNC WITHOUT PUBLIC CHANNELS AND THE KRP ARE
NOT EQUIVALENT
However, in order for the aforementioned Theorem 1 to hold,
it was in fact essential that we generalized SNC by adding
public channels. The equivalence with the KRP no longer
holds if we limit ourselves with the conventional SNC, i.e.,
SNC schemes without public channels. More precisely, we
have the following theorem.
Theorem 2 (SNC Without Public Channels (Conventional

SNC) and KRP Are Not Equivalent): There exists a com-
bination of a graph G, a user configuration ui, and wiretap
sets Eadv for which there exists a secure KRP LKRP, but there
exists no secure SNC scheme without public channels.
This is true whether the sender and the receiver for each

user pair ui (in the SNCwithout public channels) are assigned
as (u1i , u

2
i ) = (ai, bi) or (u1i , u

2
i ) = (bi, ai) (for the meaning

of this notation, see Section III-A1).4

The proof of this theorem is give in Section V.
In short, there are situations where the KRPs achieve better

securities than the conventional SNC. Hence, the accumula-
tion of past research on the conventional SNC is not sufficient
to explore the potential of the KRP. In this sense, the KRP is
a new research field.
Combining Theorems 1 and 2, we can also obtain the

following corollary.
Corollary 1 (The Security of SNCWith Public Channels �=

The security of SNC Without Public Channels (Conventional
SNC)): There exists a combination of a graph G, a user con-
figuration ui, and wiretap sets Eadv for which there exists a
secure SNC scheme with public channel, but there exists no
secure SNC scheme without public channels.

IV. PROOF OF THEOREM 1
To prove item 1), note that operations of LKSe can be simu-
lated by using SCe. That is, if an end node v of edge ewishes
to send a local key re to the other end node w, it suffices that
v generates a random bit re ∈R {0, 1} by itself and sends it to
w via SCe (see Fig. 6).
By applying this simulation to all LKSe included in L, one

obtains a protocol L′ where user pairs ui = (u1i , u
2
i ) share

relayed key ki = (k1i , k
2
i ) in the same setting as in SNC with

the public channel, given in Section III-A1.
Then, by using ki thus obtained to encrypt message mi by

the OTP encryption scheme [14], one obtains L′. Here, the
OTP encryption scheme is the following. User u1i encrypts
mi as the ciphertext ci = mi + k1i and sends it to u

2
i via public

channel. Then, u2i decrypts it as m̂i = ci + k2i .

4It is important to note that this theorem applies even to SNC schemes
on undirected graphs. If one is somehow allowed to limit oneself with SNC
on directed graphs, the counterexample LKRP can be constructed straight-
forwardly.
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FIG. 6. Construction for simulating a local key source LKSe (Definition 1
and Fig. 4) by using a secret channel SCe. We add a function h1

e to an end
node v of e (the one that would start LKSe), and regard them as a new
node v′ . The function h1

e operates as follows: when it receives “start”
command from v, it generates a uniformly random bit re ∈R {0, 1} and
sends it to SCe.

FIG. 7. Construction for simulating a secret channel SCe [see Definition 4
and Fig. 5(a)] by using the local key source LKSe and the public channel
PCe. We add a function h2

e to an end node v of e (the one that would
start LKSe), and regard them as a new node v′ . Function h2

e has two
operations, namely, on receiving se from v, h2

e sends out “start”
command to LKSe, and on receiving re from PCe, h2

e sends out
pe = se + re to PCe. Similarly, we add a function h3

e to the other end node
w, and regard them as a new node w′ . Function h3

e has one operation: on
receiving re from LKSe and pe from PCe, h3

e sends out se = re + pe to w.

The soundness of L′ is obvious from the construction. The
secrecy of L′ follows from that of L, since the adversary’s in-
formation is the same in L and L′. Indeed, in L′, the secrecy of
re on nonwiretapped edges e is obvious by the construction,
and thus, the security of ki from that of L. Then, the secrecy
of mi follows from that of the OTP. This completes the proof
of item 1 of Theorem 1.

For the proof of item 2), note that SCe can be simulated by
the local key source LKSe and the public channel PCe. When
an end node u wishes to send a bit se to the other end node
v, it first distributes a random bit re by switching on the local
key source LKSe. Then, u sends se to v secretly by encrypting
it by the OTP encryption scheme with re being the secret key
(see Fig. 7).

By applying this construction to all secret channels in-
cluded in L, one obtains a new KRP, which we denote by
L′. By construction, it is obvious that message mi as well as
the adversary’s information are the same, whether in L or in
L′. This completes the proof of item 2) of Theorem 1.

V. PROOF OF THEOREM 2
Theorem 2 asserts that the difference of structure between
the KRP and the conventional SNC (shown in the first and
the third columns of Table 1, and also explained in the first

FIG. 8. Inclusion relation of SNC schemes with and without public
channels, KRPs, and KRPs by using SNC without public channels
(KRPs-by-SNC).

paragraph of Section III) cause a definite gap in security (see
Fig. 1). In the following, we prove this theorem by proving a
set of more general lemmas (see Fig. 8).
That is, we introduce another new type of protocols that

we call KRP-by-SNC (KRP by the setting of SNC without
public channels), which corresponds to the fourth column
of Table 1. Then, we show that secure schemes satisfy the
relations \begin{equation*}

Conventional SNC ⊆ KRP-by-SNC ⊆ KRP

(Lemmas 2 and 3), as well as

KRP-by-SNC �= KRP.

(Lemma 4). These two relations together assert that the KRP
is strictly more secure than the conventional SNC, which
completes the proof of Theorem 2.

A. DEFINITION OF KRP-BY-SNC
KRP-by-SNC (KRP by the setting of SNC without public
channels) is a variant of SNC corresponding to the fourth
column of Table 1. That is, it uses the same setting as in the
conventional SNC, where players V use the secret channels
SCe only. On the other hand, the goal is the same as in the
KRP, where user pairs ui aim to share a random bit ki.

Alternatively, KRP-by-SNC can also be considered as a
variant of KRP, obtained by replacing the public channels
PCe and the local key sources LKSe with the secret channels
SCe.
The formal definition of KRP-by-SNC is as follows.

1) Setting
The setting is the same as that of SNC without public
channels (the conventional SNC), except the following.

1) We denote user pairs by ui = (u1i , u
2
i ), as in the case of

KRP. We make no distinction between the sender and
the receiver.
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We use this notation to stress that our goal here is to dis-
tribute a random bit ki, and thus, no particular user (u1i or u

2
i )

is entitled to choose the value ki.

2) KRP-by-SNC
The goal here is the same as that of KRP. Each user pair
ui = (u1i , u

2
i ) shares a uniformly random key ki = (k1i , k

2
i ),

without disseminating it to the adversary. Thus, the basic
form of the protocol should be the same as that of the KRP
given in Definition 2. However, as the setting here is different
(SCe are used instead of PCe and LKSe), we need to modify
Definition 2 as follows.
Definition 7 (KRP-by-SNC): Aprotocol L of the following

type, performed by players V , is called a KRP-by-SNC.

1) PlayersV communicate by using secret channels SCe.5

Here, each SCe can only be used once.
2) Each user u ji calculates its relayed key k ji .

3) Security Criteria of KRP-by-SNC
We use the same security criteria as in the KRP, namely,
Definition 3. However, there is a caveat here: in the present
case of KRP-by-SNC, the adversary’s information A(Eadv

l )
appearing inDefinition 3 consists of the secret bits se onwire-
tapped edges e ∈ Eadv

l . This is because, in KRP-by-SNC,
players V use the secret channels SCe only.

B. PROOF OF THEOREM 2
The following two lemmas assert that the security of KRP-
by-SNC is between those of SNC and KRP.
Lemma 2 (Secure Conventional SNC ⊆ Secure KRP-by-

SNC): KRP-by-SNCs can always achieve the same security
as the conventional SNC schemes. That is, given a con-
ventional SNC scheme L compatible with a graph G and
a sender–receiver configuration ui = (ai, bi) that is secure
against wiretap sets Eadv, one can construct a KRP-by-SNC
L′ compatible with the same G and ui that is secure against
the same Eadv.
Proof: KRP-by-SNC L′ can be realized by letting the

sender ai of SNC L choose a random bit ki and send it out as
a message mi. It is straightforward to verify that the security
of L′, defined in Section V-A2, follows from the security of
L, defined in Section III-A3. �
Lemma 3 (Secure KRP-by-SNC⊆ Secure KRP): KRP can

always achieve the same security as KRP-by-SNC. That is,
given a KRP-by-SNC L compatible with a graphG and a user
configuration ui that is secure against wiretap sets Eadv, one
can construct a KRP L′ compatible with the same G and ui
that is secure against the same Eadv.
Proof: This can be proved in the same manner as in the

proof of item 2) of Theorem 1. By rewriting all the secret

5We also assume that the outputs of players are defined as functions of
previously received data and of random variables generated by the player,
and that each player sends out the output whenever necessary data are all
received.

FIG. 9. Subgraph Gbn is defined by the black nodes and edges on the
right-hand side. This subgraph Gbn is in fact the well-known modified
butterfly network. When there are multiple copies of Gbn, we distinguish
them as Gbn

s,i by indices s, i. Gray edges are the external edges that

connect Gbn
s,i with another subgraph Gbn

s′,i′ or with a user u1
i or u2

i .

channels SCe appearing in KRP-by-SNC L as the OTP-
encrypted channels using LKSe and PCe, we obtain KRP
L′. �
According to the aforementioned Lemma 3, there still

remains the possibility that the securities of KRP-by-SNC
and KRP are equal. Lemma 4 as follows disproves this
possibility.
Lemma 4 (Secure KRP-by-SNC �= Secure KRP): For a

graph G0, a user configuration ui (defined in Section V-D),
and the empty wiretap set Eadv = {∅}, there exists a secure
KRP LKRP (defined in Section V-E1), but there exists no
secure KRP-by-SNC.
Hence, there is a definite gap in security between KRP-

by-SNC and KRP. Combined with Lemma 2, this also means
that there is a definite gap in security between KRP and the
conventional SNC, which completes the proof of Theorem 2.

The rest of this section is devoted to the proof of
Lemma 4. The outline of the proof is as follows. First, we
define a graph G0 and a configuration of user pairs ui (see
Section V-D), as well as a KRP LKRP compatible with them
(see Section V-E1). Then, we show that LKRP is secure
against Eadv,G0 := {∅}, i.e., secure when no edge is wire-
tapped (see Section V-E2). Then, we show that there exists
no secure KRP-by-SNC compatible with the same G0 and ui
even when no edge is wiretapped (see Section V-F).

C. NOTATION
For ease of notation, we will often write re and pe defined
in Definition 1 as r[e] and p[e]. Similarly, we often write se
defined in Definition 4 as s[e].

D. DESCRIPTION OF THE GRAPH G0 AND THE USER
CONFIGURATION ui

1) Description Using Figures
We define the graphG0 by a nested structure as in Figs. 9–11.

That is, we first define a subgraphGbn by Fig. 9, which is in
fact the well-known modified butterfly network [18]. Then,
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FIG. 10. Graph G0 and the user configuration ui . Subgraphs Gbn
s,i are

copies of the subgraph Gbn defined in Fig. 9. Edges are wired according
to the rule of Fig. 11.

FIG. 11. Fundamental wiring rule of the graph G0 depicted in Fig. 10.
One can reconstruct graph G0 by repeating this rule.

we construct the graphG0 by connecting subgraphs6 Gbn
s,i and

users u ji , as in Figs. 10 and 11.

2) Alternative Description Using Equations
The same graph G0 = (V0,E0) and the user pairs ui =
(u1i , u

2
i ) can also be defined using equations, as follows.

The node set V0 consists of the user pairs usi , and of

the nodes v
(α)
s,i composing subgraphs Gbn

s,i, where indices

s, i, and α are in the ranges s ∈ {1, 2}, i ∈ Z/9Z,7 and α ∈
{0, 1, 2, 3, 4, 5}. According to this notation, we identify usi ,

v
(α)
s,i , and G

bn
s,i with u

s
i+9, v

(α)
s,i+9, and G

bn
s,i+9, respectively, in

the following.
The edge set E0 consists of the internal edges of subgraphs

Gbn
s,i as

{v(0), v(4)} = e(4), {v(2), v(4)} = e(5), {v(0), v(3)} = e(6)

{v(4), v(5)} = e(7), {v(2), v(1)} = e(8), {v(5), v(3)} = e(9)

6Copies of the subgraph Gbn labeled with indices s, i.
7We use this notation to suggest that modulo 9 is implied in arithmetic

involving variable i.

{v(5), v(1)} = e(10) (3)

edges connecting different subgraphs Gbn
s,i

{v(1)1,i , v
(2)
2,2i} = e(1)1,i = e(2)2,2i (4)

{v(3)s,i , v
(0)
s,i+1} = e(3)s,i = e(0)s,i+1 (5)

and edges connecting subgraphs Gbn
s,i and users usi

{u1i+1, v
(2)
1,i } = e(2)1,i , {v(1)2,2i, u

2
i+4} = e(1)2,2i (6)

where s ∈ {1, 2}, i ∈ Z/9Z.

3) Notation Related With Gbn
s,i

In the following, for ease of notation, we will often suppress
subscripts s and i (corresponding to one of subgraphsGbn

s,i), if

it is clear from the context which subgraph Gbn
s,i we focus on.

Also, whenever we say a subgraph Gbn
s,i is a sender/receiver,

it means that a node inside Gbn
s,i is a sender/receiver.

E. KRP LKRP COMPATIBLE WITH G0 AND ui

1) Construction of LKRP

KRP LKRP consists of the following two steps.

a) First step: The goal here is that: for all s, i and β ∈
{0, 2}, the node v

(β )
s,i sends the local key r[e(β )s,i ] to the node

v
(β+1)
s,i secretly.
In order to realize this task, we use the following idea. Note

that, if secret channels SCe were available, this task could be
realized by using the well-known modified butterfly network
coding in each subgraph Gbn

s,i [18]. However, since we do not
have secret channels SCe in the present setting, we emulate
them with the OTP encryption using local keys supplied by
LKSe and with public communication on PCe (as we did in
the proof of Theorem 1; also see Fig. 7). Namely, whenever
a node v(α) wishes to secretly transmit a bit r to an adjacent
node v(α

′ ), it encrypts r using the key supplied by LKSe on
the edge e between v(α) and v(α

′ ), and sends it to v(α
′ ) via

the public channel PCe. In the following, we often write this
emulated secret transmission as v(α) → v(α

′ ) : r.
Due to this idea and notation, our first step of LKRP takes

the following form (see Fig. 12):

v(0) → v(3) : r[e(0)] (7)

v(0) → v(4) : r[e(0)] (8)

v(2) → v(1) : r[e(2)] (9)

v(2) → v(4) : r[e(2)] (10)

v(4) → v(5) : r[e(0)] ⊕ r[e(2)] (11)

v(5) → v(1) : r[e(0)] ⊕ r[e(2)] (12)

v(5) → v(3) : r[e(0)] ⊕ r[e(2)] (13)
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FIG. 12. First step of LKRP, given in Section V-E1a. This is essentially the
same as the well-known modified butterfly network coding.

and v(1) and v(3) obtain the values (r[e(0)] ⊕ r[e(2)]) ⊕
r[e(2)] and (r[e(0)] ⊕ r[e(2)]) ⊕ r[e(0)], respectively.

b) Second step: Next, using the local keys r[e(β )s,i ] thus

obtained, each user pair ui = (u1i , u
2
i ) shares a relayed key.

They do this by performing the serial KRP of Fig. 3(a), on
a straight path consisting of edges v

(3)
1,i+8, v

(1)
1,i , v

(3)
2,2i, and

v
(1)
2,2i+1.
Namely, the nodes in the middle of the path announce

r[e(2)1,i+8] ⊕ r[e(0)1,i ], r[e(0)1,i ] ⊕ r[e(2)2,2i], r[e(2)2,2i] ⊕ r[e(0)2,2i+1],

and r[e(0)2,2i+1] ⊕ r[e(1)2,2i+1], and then, the user u2i obtains the

bit r[e(2)1,i+8] by summing up the published bits and the local

key r[e(1)2,2i+1].

2) Security of LKRP

From the aforementioned construction, we immediately have
the following lemma.
Lemma 5 (Security of LKRP): The KRP LKRP is secure

against wiretap sets Eadv,G0 = {∅}.
Proof: We give a detailed proof in Appendix. The basic

idea of the proof is as follows.
The security (the secrecy and the soundness) of the em-

ulated secret channels used in the first step is obvious by
construction, and thus, the security of the local key r[e(β )s,i ]
is guaranteed by that of the modified butterfly network cod-
ing. The security of the serial KRP is also obvious by con-
struction. These two facts together guarantee the security of
LKRP. �

F. PROOF THAT THERE EXISTS NO SECURE KRP-BY-SNC
COMPATIBLE WITH G0 AND ui

Lemma 4 asserts that there exists no secure KRP-by-SNC
compatible with G0 and ui defined previously, even when no
edge is wiretapped. In the following, we prove this assertion
by first supposing that such KRP-by-SNC exists, and then,
deriving a contradiction.

In order to describe the contradiction, it is convenient to
number edges e according to the timewhen the secret channel
SCe is used. Obviously, such numbering is possible for any
KRP-by-SNC. Formally, this numbering is equivalent to the
following total order ≺.
Definition 8 (Total Order ≺ of Edges): Given a KRP-by-

SNC L on a graph G = (V,E ), we write e ≺ e′ (e ∈ E is
smaller than e′ ∈ E) if the secret channel SCe is used before
SCe′ is used in L.
Now, if we suppose that there exists a secure KRP-by-SNC

L0 (compatible withG0, ui, and Eadv = {∅}), L0 must satisfy
the condition of the following lemma.
Lemma 6: If a KRP-by-SNC L0 compatible with G0 and

ui is secure against Eadv = {∅}, then at least one of subgraphs
Gbn
s,i ⊂ G0 must satisfy the following four requirements.

R1 For β ∈ {0, 2} each, the secret bits conveyed on the
edges e(β )s,i and e(β+1)

s,i are completely random and

completely correlated, i.e., I(S[e(β )s,i ]; S[e(β+1)
s,i ]) = 1.

R2 The secret bit on e(0)s,i is independent of that on e(2)s,i ,

i.e., I(S[e(0)s,i ]; S[e(2)s,i ]) = 0.

R3 For β ∈ {0, 2} each, Gbn
s,i is the sender of the larger

edge of e(β )s,i and e(β+1)
s,i .

R4 Gbn
s,i is the receiver of the second largest edge in the set

{e(α)s,i }α∈{0,1,2,3}.

We will prove this lemma in Section V-G.
However, we can also show that no KRP-by-SNC can

satisfy such condition.
Lemma 7: In any KRP-by-SNC L0 compatible with G0

and ui, no subgraph Gbn
s,i can satisfy the four requirements

R1, . . . , R4 of Lemma 6 simultaneously.
This is a contradiction, and thus, a secure L0 cannot exist.

This completes the proof of Lemma 4.
Proof of Lemma 7:We suppose that one of subgraphs Gbn

s,i
satisfies R1, . . . , R4, and derive a contradiction.

Below, as we concentrate on one such Gbn
s,i satisfying

R1, . . . , R4, we omit subscripts s, i for ease of notation,
on the subgraph Gbn

s,i, edges e
(α)
s,i , and nodes v

(α)
s,i . Also, as

KRP-by-SNC here uses only one type of channels, SCe, we
will often identify an edge e with the secret channel SCe.

First note that the pair of the two largest edges in
{e(α)}α∈{0,1,2,3} must either be e(0) and e(1), or be e(2) and
e(3). This is because if it is not the case, then R3 says that
Gbn(= Gbn

s,i) is the sender of the second largest edge, but this

contradicts R4. Thus, out of 6! types as the order of e(0), e(1),
e(2), and e(3), it is sufficient to consider only eight types that
satisfy the aforementioned condition.
Conditions R1, · · · , R4 as well as the structure of the sub-

graphGbn are invariant under transpositions (e(0) ↔ e(1) and
e(2) ↔ e(3)) and (e(0) ↔ e(2) and e(1) ↔ e(3)). Hence, there
is a contradiction in the case of e(0) ≺ e(1) ≺ e(2) ≺ e(3), if
and only if there exists a contradiction in all of other three
cases e(1) ≺ e(0) ≺ e(3) ≺ e(2), e(2) ≺ e(3) ≺ e(0) ≺ e(1), and
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e(3) ≺ e(2) ≺ e(1) ≺ e(0). Similarly, there is a contradiction in
the case of e(1) ≺ e(0) ≺ e(2) ≺ e(3), if and only if there exists
a contradiction in all of other three cases e(0) ≺ e(1) ≺ e(3) ≺
e(2), e(2) ≺ e(3) ≺ e(1) ≺ e(0), and e(3) ≺ e(2) ≺ e(0) ≺ e(1).

Therefore, we only have to consider the two cases

Case 1) e(b) ≺ e(1−b) ≺ e(2) ≺ e(3);

where b = 0 or 1 and derive a contradiction. Due to R1
and R2, we have

2) I(S[e(0)]; S[e(1)]) = 1;
3) I(S[e(2)]; S[e(3)]) = 1;
4) I(S[e(0)]; S[e(2)]) = 0.

Gbn must be the sender of edges e(1−b) and e(3) due to R3,
and the receiver of e(2) due to R4. Thus, we have

5) v(1−b) is the sender of e(1−b);
6) v(2) is the receiver of e(2);
7) v(3) is the sender of e(3).

From the aforementioned relations 1),. . . ,7), we can also
prove the following two relations:

8) there exists a series of edges connecting v(0) and v(1)

insideGbn (e.g., e(4), e(7), and e(10)) that are all smaller
than e(1−b);

9) there exists a series of edges connecting v(2) and v(3)

inside Gbn (e.g., e(5), e(7), and e(9)) that are all larger
than e(2) and all smaller than e(3).

However, these two relations contradict each other, and
thus, Lemma 7 is proved.
Item 8) is obtained as follows. In order to realize relations

1), 2), and 5), the information of the secret bit on e(b) must
be transferred from v(b) to v(1−b) inside Gbn before using the
edge e(1−b). For this transfer, a series of edges connecting v(0)

and v(1) must be used. Here, we have used the fact that there
is no correlation between nodes before executing protocol L0.

Item 9) is obtained as follows. Relations 2) and 4) imply
that I(S[e(0)], S[e(1)]; S[e(2)]) = 0. Combining this fact and
relations 1) and 6), we find, that before the secret channel
on e(2) is used, any random variable obtained on the nodes
{v(α)}α is independent of S[e(2)]. As a result, relations 1), 3),
and 7) imply that the secret bit on e(2) must be transferred
from v(2) to v(3) inside Gbn before e(3) is used (and of course
after e(2) is used).

�

G. PROOF OF LEMMA 6
We first introduce the notion of the standard path along with
three lemmas related with it, and then, use them to prove
Lemma. 6

FIG. 13. Standard path i (∈ {1, . . . , 9}) consists of the five edges
{e〈γ〉

i }γ∈{0,1,2,3,4}, shown in black; also, see, Section V-G1. Note that each
standard path i connects between user pair ui = (u1

i , u2
i ). Note also that

the graph G0 of Fig. 10 is a disjoint union of these paths and subgraphs
Gbn

s,i (see Fig. 9), and that every subgraph Gbn
s,i are connected to exactly

two of these paths. As we will see in Lemma 8, in a secure KRP-by-SNC
L0, all the secret bits S[e〈γ〉

i ] transferred on the standard path i must

equal the relayed key k j
i , up to constants.

1) Standard Path and the Related Lemmas
The standard path is defined as follows.
Definition 9 (Standard Path e〈γ 〉

i ): For each user pair ui =
(u1i , u

2
i ), we define standard path i connecting them via sub-

graphs Gbn (more precisely, subgraphs Gbn
1,i+8, G

bn
1,i, G

bn
2,2i,

and Gbn
2,2i+1) as in Fig. 13 . The standard path i consists of

the following five edges:

e〈0〉i := e(2)1,i+8

e〈1〉i := e(3)1,i+8 = e(0)1,i

e〈2〉i := e(1)1,i = e(2)2,2i

e〈3〉i := e(3)2,2i = e(0)2,2i+1

e〈4〉i := e(1)2,2i+1. (14)

We can show that all the edges e〈γ 〉
i on a standard path i

convey essentially the same information, the relayed key ki.
Lemma 8: In each standard path i, the secret bits S[e〈γ 〉

i ]
conveyed there must be equal to the relayed key k1i = k2i
shared by the user pair u1i and u2i at the end points, up to
constants. That is, for any i, j, and γ

S[e〈γ 〉
i ] = K j

i ⊕ d[e〈γ 〉
i ] (15)

with d[e〈γ 〉
i ] being constants.

We will prove this lemma in Section V-I.
Further, we can also show that ki is first generated locally

by one entity (a subgraph Gbn
i′,s′ or a user u

j
i ) on the standard

path i, and then, repeatedly conveyed to an adjacent entity,
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FIG. 14. Example of the flow of secret information S[e〈β〉
i ] on a standard

path i, as stated in Lemma 9. Recall that all the secret bits S[e〈β〉
i ]

transferred on the standard path i must equal the relayed key k j
i , up to

constants (Lemma 8 and Fig. 13). In the aforementioned example, k j
i is

first generated by Gbn
2,2i or by Gbn

2,2i+1, and then, transferred via e〈3〉
i . It is

then repeatedly conveyed to an adjacent entity, until it is shared by the
users u1

i and u2
i at the end points.

until it is shared by the users u1i and u
2
i at the end points; see

Fig. 14. This phenomenon can be stated formally in terms of
the ordering ≺ as follows.
Lemma 9: In each standard path i, the edges are used in

the following manner. Let e〈γi〉i denote the first edge used.

1) Edges to the upper left of e〈γi〉i are used in order from
lower right to upper left as

e〈γi〉i ≺ e〈γi−1〉
i ≺ · · · ≺ e〈0〉i (16)

and secret bits S[e〈γ 〉
i ] on these edges besides e〈γi〉i flow

left or upward.
2) Similarly, edges to the lower right of e〈γi〉i are used in

order from upper left to lower right

e〈γi〉i ≺ e〈γi+1〉
i ≺ · · · ≺ e〈4〉i (17)

and secret bits S[e〈γ 〉
i ] on these edges besides e〈γi〉i flow

right or downward.

We will prove this lemma in Section V-J.
We can also show the following lemma.
Lemma 10: At least one of the following two conditions

is false.

C1 For any subgraph Gbn
s,i, e

(0)
s,i or e(1)s,i is the smallest

edge in the standard path containing the two edges
e(0)s,i and e(1)s,i , when they are the two largest edges in

{e(α)s,i }α∈{0,1,2,3}.
C2 For any subgraph Gbn

s,i, e
(2)
s,i or e(3)s,i is the smallest

edge in the standard path containing the two edges

e(2)s,i and e(3)s,i , when they are the two largest edges in

{e(α)s,i }α∈{0,1,2,3}.

We will prove this lemma in Section V-K.

2) Proof of Lemma 6
From Lemma 8 (respectively, from Lemma 9), all the sub-
graph Gbn

s,i satisfy R1 and R2 (respectively, R3) in Lemma 6.
Here, in order to derive R2, we used themutual independence
of {K j

i }i additionally.
Hence, it remains to show that R4 holds for some Gbn

s,i. To

this end, we suppose that R4 does not hold for any Gbn
s,i, and

derive a contradiction with Lemma 10.
This is equivalent to showing, that in any subgraph Gbn

s,i

1) C1 and C2 hold if R4 does not hold.

In the following, we will choose one ofGbn
s,i and show how

to prove item (1). As Gbn
s,i is fixed, we omit subscripts s, i on

the notation e(α)s,i for simplicity.
For the sake of the simplicity, we consider only the case

of e(0) ≺ e(1) and e(2) ≺ e(3); all other cases can be shown
similarly.
Then, we divide the remaining situation into the following

three cases.
First, if the second largest edge in the set {e(α)}α∈{0,1,2,3}

is e(1) or e(3), the order e(0), e(2) ≺ e(1), e(3) must be derived
from the assumptions e(0) ≺ e(1) and e(2) ≺ e(3), i.e., item (1)
holds.
Second, if the second largest edge in the set {e(α)}α is

e(0), we find that e(2), e(3) ≺ e(0),≺ e(1) hold (as a result, C2
holds) and the sender of e(0) must be Gbn

s,i. Here, we have
used the assumption that R4 does not hold. From this fact
and e(0) ≺ e(1), Lemma 9 guarantees that e(0) is the smallest
edge in the standard path where it belongs, i.e., C1 holds.
Thus, the item (1) also holds in this case.
Finally, if the second largest edge in the set {e(α)}α is e(2),

we can also show that item (1) holds in the same way as in
the previous case.
This completes the proof of Lemma 6.

H. NOTE ON NOTATION: vs,i AND E st
0

In the proofs of Lemmas 8–10 given later, we only need
to consider communication between subgraphs Gbn

s,i, and
do not need to refer to communication occurring inside
each Gbn

s,i. Therefore, in order to simplify the presentation,

we will often denote a subgraph Gbn
s,i as a single node

vs,i. For example, the edge set {u1i , vs,i} denotes the set

{u1i , v(0)s,i , v
(1)
s,i , v

(2)
s,i , v

(3)
s,i , v

(4)
s,i , v

(5)
s,i }.

Accordingly, we will also regard the graph G0 as consist-
ing of edges that connect nodes vs,i (=Gbn

s,i) and u
i, which we

denote by Est
0 . This edge set E

st
0 in fact consists of edges on

the standard paths i, defined in the previous section

Est
0 := {e〈γ 〉

i }i∈Z/9Z,γ∈{0,1,2,3,4}. (18)
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I. PROOF OF LEMMA 8
1) Case of e〈0〉

i

We divide nodes V0 into u1i and the others

V (1)
i := {u1i } (19)

V̄ (1)
i := V0\V (1)

i . (20)

Since these two sets are connected by e〈0〉i only, there must

be functions f ( j)i that satisfy the relation

f (1)i

(
S[e〈0〉i ], {Cv}v∈V (1)

i

)
= K1

i

= K2
i = f (2)i

(
S[e〈0〉i ], {Cv}v∈V̄ (1)

i

)
(21)

whereCv denotes all the random variables possessed by node
v ∈ V0 before executing protocol L0. The first (last) equality
in (21) comes from the facts that the node u1i (u

2
i ) are in the set

V (1)
i (V̄ (1)

i ). The second equality follows from the soundness
of L0.
Recall that the two setsV (1)

i and V̄ (1)
i are connected by e〈0〉i

only. Also, note that from the setting of the KRP-by-SNC,
the secret bit S[e〈0〉i ] must be generated locally by the sender.
Then, we have

I(S[e〈0〉i ], {Cv}v∈V (1)
i

; S[e〈0〉i ], {Cv}v∈V̄ (1)
i

)

= H(S[e〈0〉i ]). (22)

Also, since S[e〈0〉i ] is one bit

H(S[e〈0〉i ]) ≤ 1. (23)

It remains to apply the following lemma to relations
(21)–(23), and H(K j

i ) = 1 .
Lemma 11: If B, C0, and C1 are random variables, and

f0 and f1 are functions, satisfying

f0(B,C0) = f1(B,C1) =: A (24)

H(A) ≥ I(B,C0;B,C1) = H(B) (25)

with A ∈ A, B ∈ B where |A| = |B|, then there is a bijective
function g such that g(A) = B.

Proof of this lemma is shown in Appendix. By using this
lemma, we can find a bijective function g such that

S[e〈0〉i ] = g
(
K j
i

)
. (26)

In other words, we can find a certain constant values d[e〈0〉i ] ∈
Z2 such that the relation

K j
i = S[e〈0〉i ] ⊕ d[e〈0〉i ] (27)

holds for i ∈ Z/9Z and j ∈ {1, 2}. When we apply the
aforementioned Lemma 11, we have substituted K j

i , S[e
〈0〉
i ],

{Cv}v∈V (1)
i
, and {Cv}v∈V̄ (1)

i
into A, B, C0, and C1 in Lemma,

respectively.
Note, that from the constraint of soundness K1

i = K2
i , we

do not have to discriminate K1
i and K2

i hereafter. Therefore,

we abbreviate the K j
i into Ki in the following.

2) Case of e〈4〉
i

This case can be shown completely in the same manner as
the case of e〈0〉i . We have the relation

Ki = S[e〈4〉i ] ⊕ d[e〈4〉i ] (28)

for a certain constant d[e〈4〉i ].

3) Cases of e〈1〉
i , e〈2〉

i , and e〈3〉
i

First, we use the same idea as in the case of e〈0〉i . We define
the sets

V (3)
i := {u1i+1, u

1
i+2, u

2
i+8, u

2
i+4, u

2
i , u

2
i+5,

v1,i, v1,i+1, v2,2i+8, v2,2i, v2,2i+1, v2,2i+2} (29)

V (4)
i := {u1i+1, u

1
i+2, u

1
i+3, u

2
i+4, u

2
i , u

2
i+5,

v1,i, v1,i+1, v1,i+2, v2,2i, v2,2i+1, v2,2i+2} (30)

V (5)
j := {u1i+1, u

1
i+2, u

1
i+3, u

2
i+4, u

2
i , u

2
i+5, u

2
i+6,

v1,i, v1,i+1, v1,i+2, v2,2i, v2,2i+1, v2,2i+2, v2,2i+4}
(31)

V (6)
i := {u1i+1, u

1
i+2, u

1
i+6, u

2
i+4, u

2
i , u

2
i+5,

v1,i, v1,i+1, v1,i+5, v2,2i, v2,2i+1, v2,2i+2} (32)

and V̄ (μ)
i := V0\V (μ)

i .

Since the two sets V (3)
i and V̄ (3)

i are connected only by

e〈1〉i , e〈1〉i+2, e
〈3〉
i+1, e

〈3〉
i+8, e

〈2〉
i+4, and e

〈2〉
i+5, there exists a bijective

function g(3,i)(
S[e〈1〉i ], S[e〈1〉i+2], S[e

〈3〉
i+1], S[e

〈3〉
i+8], S[e

〈2〉
i+4], S[e

〈2〉
i+5]

)

= g(3,i) (Ki,Ki+1,Ki+2,Ki+4,Ki+5,Ki+8) . (33)

Similarly, we have bijective functions g(μ,i) for μ ∈ {4, 5, 6}
and i ∈ Z/9Z such that(

S[e〈1〉i ], S[e〈1〉i+3], S[e
〈3〉
i+4], S[e

〈3〉
i+1], S[e

〈2〉
i+2], S[e

〈2〉
i+5]

)

= g(4,i) (Ki,Ki+1,Ki+2,Ki+3,Ki+4,Ki+5) (34)
(
S[e〈1〉i ], S[e〈1〉i+3], S[e

〈3〉
i+4], S[e

〈3〉
i+1],

S[e〈3〉i+6], S[e
〈3〉
i+2], S[e

〈2〉
i+5]

)

= g(5,i) (Ki,Ki+1,Ki+2,Ki+3,Ki+4,Ki+5,Ki+6) (35)
(
S[e〈1〉i ], S[e〈1〉i+2], S[e

〈1〉
i+5], S[e

〈1〉
i+6], S[e

〈3〉
i+4], S[e

〈3〉
i+1]

)

= g(6,i) (Ki,Ki+1,Ki+2,Ki+4,Ki+5,Ki+6) . (36)

From these relations, we see that, for any e ∈ Est
0 , random

variable S[e] is generated by at least one of bijective functions
on a subset of {Ki}i∈Z/9Z, i.e., (27), (28), and (33)–(36). This
fact and the complete randomness of {Ki}i guarantee that the
S[e] must have the maximum entropy, i.e.,

H(S[e]) = 1. (37)
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for e ∈ Est
0 .

Equations (33)–(36) allow to write the random variable
S[e〈1〉i ] in multiple expressions as follows:

S[e〈1〉i ] = g(4,i)1 (Ki,Ki+1,Ki+2,Ki+3,Ki+4,Ki+5)

= g(4,i+6)
2 (Ki+6,Ki+7,Ki+8,Ki,Ki+1,Ki+2)

= g(6,i+3)
4 (Ki+3,Ki+4,Ki+5,Ki+7,Ki+8,Ki). (38)

Here, g(μ,i)
k (·) denotes the kth element of the list of variables

defined by the function gμ,i(·). From the complete random-
ness of {Ki}i, S[e〈1〉i ] must depend only on the intersection of
the sets as arguments of these functions

{Ki,Ki+1,Ki+2,Ki+3,Ki+4,Ki+5, }
∩ {Ki,Ki+1,Ki+2,Ki+6,Ki+7,Ki+8}
∩ {Ki,Ki+3,Ki+4,Ki+5,Ki+7,Ki+8} = {Ki}. (39)

This fact and the relation (37) imply that

S[e〈1〉i ] = Ki ⊕ d[e〈1〉i ] (40)

for a certain constant d[e〈1〉i ].
In the same way, from the multiple representations of

S[e〈2〉i ] and S[e〈3〉i ]

S[e〈2〉i ] = g(3,i+5)
5 (Ki+5,Ki+6,Ki+7,Ki,Ki+1,Ki+4)

= g(3,i+4)
6 (Ki+4,Ki+5,Ki+6,Ki+8,Ki,Ki+3)

= g(4,i+7)
5 (Ki+7,Ki+8,Ki,Ki+1,Ki+2,Ki+3) (41)

S[e〈3〉i ] = g(4,i+8)
4 (Ki+8,Ki,Ki+1,Ki+2,Ki+3,Ki+4)

= g(5,i+3)
5 (Ki+3,Ki+4,Ki+5,Ki+6,Ki+7,Ki+8,Ki)

= g(6,i+5)
5 (Ki+5,Ki+6,Ki+7,Ki,Ki+1,Ki+2) (42)

we can find that there are certain constants d[e〈γ 〉
i ] such that

the relation

S[e〈γ 〉
i ] = Ki ⊕ d[e〈γ 〉

i ] (43)

hold for γ ∈ {2, 3}.
Equations (27), (28), (40), and (43) prove the lemma.

J. PROOF OF LEMMA 9
Protocol L0 can be viewed as a communication protocol
performed by the subgraphs Gbn

s,i using the standard paths.

In this picture, the communication betweenGbn
s,i satisfy the

following properties.

1) Subgraphs Gbn
s,i are connected solely by the standard

paths.
2) Each standard path i′ is a straight line.
3) All edges in the standard path i′ convey the same ran-

dom bit Ki′ , up to a constant (Lemma 8).
4) Random bits Ki′ are independent of each other (due to

the definition of the KRP).

For these properties to hold, the following are necessary

1) Random bit Ki′ is generated inside one of subgraphs
Gbn
s,i on the standard path i′;

2) The value ofKi′ , thus generated is conveyed repeatedly
to adjacent subgraphsGbn

s,i on the same standard path i′.

Thus the lemma holds.
Indeed, if 1) is not true, i.e., if Ki′ is generated indepen-

dently by two or more of Gbn
s,i, there is a nonzero probability

that their values differ. For other subgraphs Gbn
s,i to be able

to send out Ki′ thus generated, they must learn it from an
adjacent subgraph which already knows Ki′ .

K. PROOF OF LEMMA 10
We will take two steps.
First, we will show that, for any order ≺, there is a subset

E ′ of Est
0 , which satisfies the following four items.

1) The subset E ′ contains the smallest edge in any
standard path i.

2) Est
0 �= E ′.

3) When i ∈ Z/9Z is a value satisfying e〈γ 〉
i , e〈γ ′〉

i+1 ∈ E ′

for γ ∈ {1, 2} and γ ′ ∈ {0, 1}, the relation e〈3−γ 〉
i ,

e〈1−γ ′〉
i+1 ∈ E ′ holds.

4) When i ∈ Z/9Z is a value satisfying e〈γ 〉
i , e〈γ ′〉

i+5 ∈ E ′

for γ ∈ {3, 4} and γ ′ ∈ {2, 3}, the relation e〈7−γ 〉
i ,

e〈5−γ ′〉
i+5 ∈ E ′ holds.

Second, we will show that the existence of E ′ defined
previously and conditionsC1 andC2 are incompatible for the
order ≺ defined from a secure protocol L0.
Thus, Lemma 10 holds.
The first step is shown as follows: We constructively show

that for any sequence {γi ∈ {0, 1, 2, 3, 4}}i∈Z/9Z, there is a
subset that satisfies

1’) ∀i, e〈γi〉i ∈ E ′;

2)–4) such a subset is one of E (1), E (2), E (3)
i,i′ , and E

(4)
q for

i �= i′ ∈ Z/9Z and q ∈ {0, 1, 2} defined as follows:

E (1) := {e〈γ 〉
i |i ∈ Z/9Z, γ ∈ {2, 3, 4}} (44)

E (2) := {e〈γ 〉
i |i ∈ Z/9Z, γ ∈ {0, 1, 2}} (45)

E (3)
i′,i′′ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e〈γ 〉
i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(i = i′, γ ∈ {0, 1})
∨(i ∈ {i′ + 1, i′ + 2, . . . , i′′ − 1},

γ = 2)
∨(i = i′′, γ ∈ {3, 4})
∨(i ∈ {i′′ + 1, i′′ + 2, . . . , i′ + 4},

γ ∈ {0, 1, 2, 3, 4})
∨(i ∈ {i′ + 5, i′ + 6, . . . , i′′ + 4},

γ ∈ {0, 1, 2})
∨(i ∈ {i′′ + 5, i′′ + 6, . . . , i′ + 8},

γ ∈ {0, 1, 2, 3, 4})

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(46)
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E (3)
i′′,i′ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e〈γ 〉
i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(i = i′, γ ∈ {3, 4})
∨(i ∈ {i′ + 1, i′ + 2, . . . , i′′ − 1},

γ ∈ {0, 1, 2, 3, 4})
∨(i = i′′, γ ∈ {0, 1})
∨(i ∈ {i′′ + 1, i′′ + 2, . . . , j′ + 4},

γ = 2)
∨(i ∈ {i′ + 5, i′ + 6, . . . , i′′ + 4},

γ ∈ {2, 3, 4})
∨(i ∈ {i′′ + 5, i′′ + 6, . . . , i′ + 8},

γ = 2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(47)

E (4)
q :=

⎧⎨
⎩e

〈γ 〉
i

∣∣∣∣∣∣
(i ≡ q mod 3, γ ∈ {0, 1})

∧ (i ≡ q+ 1 mod 3, γ ∈ {2, 3, 4})
∧ (i ≡ q+ 2 mod 3, γ ∈ {3, 4})

⎫⎬
⎭
(48)

where i′′ ∈ {i′ + 1, i′ + 2, i′ + 3, i′ + 4} ⊂ Z/9Z. We can
straightforwardly check that all the subsets satisfy the
last three items 2)–4) directly. For any sequence {γ j ∈
{0, 1, 2, 3, 4}} j∈Z/9Z, we can find that one of the aforemen-
tioned subsets satisfies the item 1) as well. We confirmed this
fact by a brute force search using a computer. This completes
the first step of the proof.
For the second step, for any given order ≺ defined from a

secure protocol L0, we will derive a contradiction from the
assumptions that conditions C1 and C2 hold and that there
exists E ′, which satisfies the four items 1)–4). We pick up
the smallest edge e〈γm〉

im
in Est

0 \E ′. Existence of it guaranteed
from the item 2). From the first item 1) and Lemma 9, there

is a node e〈γ ′〉
im

∈ E ′ such that |γ ′ − γm| = 1.
When γ ′, γm ∈ {0, 1}, we will give a contradiction, as an

example. The third item 3) enforces

e〈1〉im+8, e
〈2〉
im+8 ∈ Est

0 \E ′. (49)

From this relation and the minimality of e〈γm〉
im

in Est
0 \E ′,

the order e〈γ ′〉
im

≺ e〈γm〉
im

≺ e〈1〉im+8, e
〈2〉
im+8 must hold. From this

order, C1 enforces us that e〈1〉im+8 or e
〈2〉
im+8 must be a smallest

edges in the standard path im + 8. Here, we have use the

facts that e〈γ ′〉
im

= e(γ
′+2)

1,im+8, e
〈γm〉
im

= e(γm+2)
1,im+8 , e

〈1〉
im+8 = e(0)1,im+8,

and e〈2〉im+8 = e(1)1,im+8. As a result, the item 1) enforces us that

e〈1〉im+8 or e
〈2〉
im+8 must be in E ′. However, this relation contra-

dicts the relation (49).
In the same way, we can derive contradictions in the

other cases, i.e., γ ′, γm ∈ {1, 2} or γ ′, γm ∈ {2, 3} or γ ′, γm ∈
{3, 4}.

VI. SUMMARY AND OUTLOOK
We investigated relations between the KRP and SNC under
the one-shot scenario, as well as under the scenario where
wiretap sets are restricted. We found that there is a definite
gap in security between these two types of protocols; namely,
certain KRPs achieve better security than any SNC schemes
on the same graph. We also found that this gap can be closed
by generalizing the notion of SNC by adding free public

channels; that is, the KRP is equivalent to SNC augmented
with free public channels.
There are still many open problems. For example, in

Section IV, we gave only one counterexample, which is a
9-to-9 unicast situation where no node is compromised. On
the other hand, it is an interesting open problem whether one
can find other counterexamples in more general settings [19].
Another open problem is whether the gap we found here
persist even under the asymptotic case.
It is also interesting to figure out on what types of graphs

the gap occurs. Our conjecture is that there is no gap on
plane graphs, and also for the case where there is only one
sender–receiver pair, though the rigorous proofs remain as
future works.

APPENDIX
FORMAL PROOF OF LEMMA 5
Proof: We prove the lemma by using a slightly modified

protocol LmKRP, such that LKRP being secure is equivalent to
LmKRP being secure.
LmKRP is obtained by the following three process. First,

when a public message made at any node in LKRP can be
expressed as a linear combination of the other public mes-
sages px and the local keys ry held by the node, i.e.,

⊕
x px ⊕⊕

y ry, the corresponding message made at the node in LmKRP
is a linear combination of the local keys ry only, i.e., the
parity of them

⊕
y ry. Second, all the public communications

in LmKRP are used only for sending the parities to all users.
Finally, as relayed keys, the users evaluate the same values
as for LKRP.

From this relation, we know that any bit obtained by the
adversary in the case of LmKRP can be evaluated by the adver-
sary in the case of LKRP, and vice versa. This is why LKRP
being secure is equivalent to LmKRP being secure.

Self-contained definition of LmKRP is as follows. L
m
KRP is the

protocol in which the following four phases are implemented
in sequence.

1) Local key generation phase: All channels LKSe are
used to generate local keys.

2) Parity evaluation phase: Each node evaluates parities
of (part of) local keys held by the node.

3) Public communication phase: Evaluated parities are
transferred from each node to users via public com-
munications.

4) Relayed key generation phase: Each user generates the
relayed key from received local keys and the parities.

Parity evaluation phase and relayed key generation phase
are explicitly identified by the following definitions.

1) All the parities each nodes evaluate: In each subgraph
Gbn
s,i, all the parities each nodes v(α) evaluate are

v(0) : p[v(0), 1] := r[e(0)] ⊕ r[e(4)] (50)

p[v(0), 2] := r[e(4)] ⊕ r[e(6)] (51)
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v(1) : p[v(1)] := r[e(8)] ⊕ r[e(10)] ⊕ r[e(1)]
(52)

v(2) : p[v(2), 1] := r[e(5)] ⊕ r[e(8)] (53)

p[v(2), 2] := r[e(2)] ⊕ r[e(5)] (54)

v(3) : p[v(3)] := r[e(6)] ⊕ r[e(9)] ⊕ r[e(3)] (55)

v(4) : p[v(4)] := r[e(4)] ⊕ r[e(5)] ⊕ r[e(7)] (56)

v(5) : p[v(5), 1] := r[e(7)] ⊕ r[e(10)] (57)

p[v(5), 2] := r[e(7)] ⊕ r[e(9)]. (58)

In order to simplify the next expression, we introduce
the following notation:

p(0)s,i := p[v(0), 1] ⊕ p[v(4)] ⊕ p[v(2), 1]

⊕ p[v(5), 1] ⊕ p[v(1)] (59)

p(1)s,i := p[v(2), 2] ⊕ p[v(4)] ⊕ p[v(0), 2]

⊕ p[v(5), 2] ⊕ p[v(3)]. (60)

2) The function which gives the relayed keys: The relayed
keys generated by u1i and u

2
i are

k1i := r[e(2)1,i+8] (61)

k2i := p(1)2,2i⊕p(1)1,i+8⊕ p(0)1,i⊕ p(0)2,2i+1⊕r[e(1)2,2i+1] (62)

for i ∈ Z/9Z.

From the definitions (50)–(60)

p(0)s,i = r[e(0)s,i ] ⊕ r[e(1)s,i ] (63)

p(1)s,i = r[e(2)s,i ] ⊕ r[e(3)s,i ] (64)

are obtained for each subgraph Gbn
s,i. Here, we have used the

fact that r ⊕ r = 0 for r ∈ {0, 1}. By using the relations (63)
and (64), the relayed keys (61) and (62) are evaluated as

k1i = k2i = r[e(2)1,i+8]. (65)

This relation implies the soundness of LKRP. Since the gen-
erated relayed keys are part of the local keys, and the public
information is linear combinations of the local keys, the se-
crecy can be checked from the fact that the relayed keys are
linearly independent of all the published information. �

PROOF OF LEMMA11
From the assumption (24)

I(B,C0;B,C1) ≥ I(A;B,C1) ≥ I(A;A) = H(A). (66)

This relation and the assumption (25), guarantee that

I(B,C0;B,C1) = I(A;B,C1) (67)

H(A) = H(B). (68)

The first relation and the assumption (24) imply

P(A = a)P(A = a,B = b,C0 = c0,C1 = c1)

= P(A = a,B = b,C0 = c0)P(A = a,B = b,C1 = c1)
(69)

for any a, b, c0, c1. Here, we have used the fact
that, if I(Z;Y ) = I(X;Y ) for Z := f (X ), the relation
∀x, y, z, P(X = x,Y = y,Z = z)P(Z = z) = P(X = x,Z =
z)P(Y = y,Z = z) holds. By summing up with respect to c1,
the relation becomes

P(A = a,B = b,C0 = c0)P(A = a)

= P(A = a,B = b,C0 = c0)P(A = a,B = b). (70)

Since A = f0(B,C0), we can define functions h0 and h1 such
that a = f0(h0(a), h1(a)) and P(A = a,B = h0(a),C0 =
h1(a)) �= 0 hold, if P(A = a) �= 0. Using these functions,
by substituting h0(a) and h1(a) into b and c0, respectively,
in the aforementioned relation the following is attained:

P(A = a) = P(A = a,B = h0(a)). (71)

This relation guarantees the following relation:
∑
a,b

P(A = a,B = b)δ(b, h0(a))

=
∑
a

P(A = a,B = h0(a))

=
∑
a

P(A = a) = 1 (72)

i.e., h0(A) = B. Therefore

I(A;B) = H(B) = H(A) (73)

holds where (68) is used in the second equality. As a result,
there is a function h2 such that h2(B) = A. The last assump-
tion, i.e., the number of candidates for A is equal to that for
B, and the existence of the functions h0 and h2 guarantee the
existence of the bijective function g such that g(A) = B.
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