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ABSTRACT In this article, we propose two quantum algorithms for a problem in bioinformatics, position
weight matrix (PWM) matching, which aims to find segments (sequence motifs) in a biological sequence,
such as DNA and protein that have high scores defined by the PWM and are, thus, of informational
importance related to biological function. The two proposed algorithms, the naive iteration method and
the Monte-Carlo-based method, output matched segments, given the oracular accesses to the entries in the
biological sequence and the PWM. The former uses quantum amplitude amplification (QAA) for sequence
motif search, resulting in the query complexity scaling on the sequence length n, the sequencemotif lengthm,
and the number of the PWMs K as Õ(m

√
Kn), which means speedup over existing classical algorithms with

respect to n andK. The latter also uses QAA and, further, quantumMonte Carlo integration for segment score
calculation, instead of iteratively operating quantum circuits for arithmetic in the naive iteration method;
then, it provides the additional speedup with respect tom in some situation. As a drawback, these algorithms
use quantum random access memories, and their initialization takes O(n) time. Nevertheless, our algorithms
keep the advantage especially when we search matches in a sequence for many PWMs in parallel.

INDEX TERMS Bioinformatics, position weight matrix (PWM) matching, quantum algorithm, quantum
amplitude amplification (QAA), quantum Monte Carlo integration (QMCI).

I. INTRODUCTION
Quantum computing [1] is an emerging technology that has
a potential to provide large benefits to various fields. Many
quantum algorithms that speed up time-consuming problems
in classical computing have been proposed, and their applica-
tions to practical problems in industry and science have been
studied. In this article, we focus on an important problem in
bioinformatics: position weight matrix (PWM) matching.
As a field in bioinformatics, sequence analysis, which fo-

cuses on biological sequences such as DNA sequences and
protein amino acid sequences, has a long history. Such a
sequence is represented as a string of alphabets A, e.g.,
{A,G,T,C} for nucleobases in DNA and 20 letters for 20
types of amino acids in a protein, and holds biological in-
formation. As a tool to extract important information from
a sequence, PWMs, also known as position-specific scoring
matrices, are often used. More concretely, a PWM is a tool to

find segments with fixed length m that seems to hold specific
information from a sequence. A PWM M is a matrix of real
values, and its entries reflect the occurrence frequency of
each alphabet in a collection of aligned m-length sequences
that are similar but different in some positions and thought to
be functionally related: for example, if in the ith position, the
jth alphabet appears most frequently, the (i, j)th entry of M
is set larger than the other entries in the ith row. Conversely,
given a PWM M and a sequence, we calculate the score of
each m-length segment in the sequence as follows: if the ith
position in the segment has the jth alphabet, the (i, j)th entry
ofM is the score of that position, and the score of the segment
is the sum of the scores at all the positions. We then search
segments that have scores higher than the predetermined
threshold. In this way, we can find some specific patterns
(sequence motifs) in a sequence, admitting fluctuation of al-
phabets to some extent. PWMs is in fact used to, for example,
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find transcription factor binding sites in DNA [2] and infer
the 3-D structure of a protein [3].

Following recent developments of next-generation DNA
sequencing technology, the volume of data handled in se-
quence analysis is exponentially growing. Although many
classical algorithms and tools for PWM matching have been
devised so far [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], it is interesting to investigate the potential of
novel technologies, such as quantum computing, to speed up
this numerical problem to the extent that classical algorithms
cannot reach.
Based on such a motivation, in this article, we propose

two quantum algorithms for PWM matching. As far as the
authors know, this is the first proposal on quantum algo-
rithms for this problem, although there are some quantum
algorithms for exact and/or approximate string match [17],
[18], [19], [20].
Our quantum algorithms are twofold: calculating scores of

segments and searching high-score segments. For the latter,
we use quantum amplitude amplification (QAA) [21], which
is a generalization of Grover’s algorithm for unstructured
database search [22]. As is well known, this provides the
quadratic quantum speedup with respect to the number of
entries in the database, which now corresponds to n, the
length of the sequence.
On the former, we consider two approaches for score cal-

culation, which differentiate the two proposed algorithms.
The first one is calculating the segment score by adding the
positionwise scores one by one using the quantum circuits for
arithmetic. We name the PWMmatching quantum algorithm
based on this approach the naive iteration method. By this
method, for any sequence with length n and any K PWMs
for sequence motifs with length m, given the oracles to get
the specified entry in them, we can find nsol matches with
high probability making Õ(m

√
Knnsol ) queries1 to the ora-

cles. As far as the authors know, there is no known classical
PWM matching algorithm whose worst case complexity is
sublinear to n, and thus, the above complexity just shows
the quantum speedup. Moreover, note that we aim to search
the matches for the multiple PWMs at the same time, which
has not been considered in classical algorithms. We achieve
the quantum speedup with respect to K too, compared with
the K-times sequential runs of the algorithm for the different
PWMs, whose complexity obviously scales with K linearly.
The second quantum algorithm uses the quantum Monte

Carlo integration (QMCI) [23] to calculate the segment
score; we call this method the QMCI-based method. QMCI
is, similarly to classical Monte Carlo, the method to estimate
expectations of random variables, integrals, and sums and
also provides the quadratic speedup compared with the clas-
sical counterpart. We, therefore, use this to calculate the seg-
ment score, which is the sum of the positionwise scores, ex-
pecting the further speedup from the naive iteration method,
especially whenm is large, and thus, the sum hasmany terms.

1The symbol Õ(·) hides logarithmic factors in O(·).

This combination of QMCI and QAA is similar to the quan-
tum algorithm for gravitational wave (GW) matched filtering
proposed in [24]. A drawback of this approach is the possi-
bility of false detection: the result of QMCI inevitably has an
error, and the erroneous estimate on the segment score can
exceed the threshold even if the true score does not. To cope
with this issue, we introduce two levels of the threshold,wsoft
andwhard, which have the following meaning: we never want
to miss segments with scores higher thanwhard or falsely find
those with scores lower than wsoft, and it is not necessary but
good to find those with scores betweenwsoft andwhard. Then,
designing the procedure according to evaluation of the error
occurring in QMCI calculation of the segment score, by the
QMCI-based method, we get all the segments with scores
higher than whard possibly along with some of those with
in-between scores with high probability. In this method, we

make Õ
(
mnsoft

√
Kn

whard−wsoft

)
oracle calls at most, where nsoft is the

number of segments with scores higher than wsoft. Although
this complexity seemingly has the same dependence on m as
the naive iteration method, it can be sublinear to m, since, as
explained later, a reasonable choice ofwsoft andwhard is such
that whard − wsoft ∼ √

m.
Although the complexities of the proposed quantum al-

gorithms are sublinear to n and/or m, they require time for
preparation. The oracles used in the algorithms can be imple-
mented by quantum random-access memory (QRAM) [25],
and the initialization of QRAM, that is, registering the values
of the entries in the sequence and the PWMs, takes time,
which is estimated as O(n) in usual situations. Despite this
initialization cost, our quantum algorithms still have the ad-
vantage over the existing classical algorithms, since, among
classical ones with O(n) initialization cost, none has the
worst case complexity sublinear to n in the main part. Also
note that, once we prepare the QRAM for a sequence, our
quantum algorithms can search the matches between that
sequence and many PWMs, with much smaller initialization
cost of the QRAM for the PWMs.
The rest of this article is organized as follows. Section II

is preliminary one, where we introduce PWM matching and
some building-block quantum algorithms such as QAA and
QMCI. Section III is the main part, where we explain our
quantum algorithms for PWM matching, the naive iteration
method and the QMCI-based method, presenting the detailed
procedures in them and the estimations on their complexities.
In Section IV, we discuss the aforementioned issues on our
algorithms, the preparation cost for the QRAMs, and the
plausible setting on the segment score thresholds. Finally,
Section V concludes this article.

II. PRELIMINARY
A. NOTATION
We denote the set of all positive real numbers by R+ and the
set of all nonnegative real numbers by R≥0.

For each n ∈ N, we define [n] := {1, . . ., n}, [n]0 :=
{0, . . ., n− 1}, and N≥n := {m ∈ N | m ≥ n}.
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For any probability space (�,F,P ) and any random vari-
able X on it, we denote the expectation of X by EP [X].

For any finite set A and any n ∈ N, we denote S =
{s0, . . ., sn−1} ∈ An, where si ∈ A for each i ∈ [n]0, by S =
s0, . . . , sn−1.
For any equation or inequalityC, 1C takes 1 ifC is satisfied,

and 0 otherwise.
For any x ∈ R, if |x− y| ≤ ε holds for some y ∈ R and

ε ∈ R+, we say that x is an ε-approximation of y.

B. PWM MATCHING
Here, we formally define the problem we hereafter consider.
Problem 1 (PWM Matching): Suppose that we are given

the following:

1) a finite set A called the alphabet, whose elements are
labeled with integers in [|A|]0;

2) K matrices Mk = (Mk(i, a))i∈[m]0,a∈A ∈ Rm×|A|, k ∈
[K]0, called the PWMs, where K ∈ N and m ∈ N≥2
is called the length of the PWM;

3) an element S = s0, . . . , sn−1 inAn, where n is an inte-
ger larger than m; we call it a sequence;

4) wth ∈ R called the threshold.

For each (k, i) ∈ Pall := [K]0 × [n− m+ 1]0, define

wk,i :=WMk (si, . . . , si+m−1) (1)

where, for each Mk and u0, . . . , um−1 ∈ Am, we have

WMk (u0, . . . , um−1) :=
m−1∑
j=0

Mk( j, u j ). (2)

Then, we want to find all the elements in the set

Psol := {(k, i) ∈ Pall | wk,i ≥ wth}. (3)

Example 1 (PWM Score Calculation): An example of cal-
culating scores for segments using PWM is shown below.
The following PWM of length 8 represents the binding site
motif for a transcription factor:

Given this PWM M, the scoreWM for the DNA sequence
(segment) “TACATGCA” is calculated as follows:

WM (TACATGCA)

=
T︷ ︸︸ ︷

+0.89

A︷ ︸︸ ︷
−0.62

C︷ ︸︸ ︷
+1.12

A︷ ︸︸ ︷
+0.63

T︷ ︸︸ ︷
−0.21

G︷ ︸︸ ︷
+0.27

C︷ ︸︸ ︷
+1.37

A︷ ︸︸ ︷
+0.48

= 3.93.

This PWM matching is then applied to a long genome DNA
sequence of million bases such that every segment i in the
DNA sequence is assigned a scoreWM (ui, . . . , ui+m−1) and
we search Psol, segments with scores higher than the thresh-
old wth.

In Problem 1, we consider the match with the multiple
PWMs simultaneously (K ≥ 2), although Example 1 is a
single-PWM case (K = 1). In general, the DNA sequence
of a genome contains hundreds of sequence motifs, and the
annotation for a genome sequence must be completed by
finding all sequence motifs using multiple PWMs simulta-
neously. As we will see later, we can achieve the quantum
speedup with respect to the number K of multiple PWMs,
that is, our quantum algorithm finds all the matches between
the sequence S and the multiple PWMsM0, . . .,MK−1 faster
than iterating individually searching for the matches between
S and each PWM. One might concern that, although it is
assumed that all the K PWMs have same length, this is
not always the case. This point is easily settled as follows.
Denoting the lengths of M0, . . .,MK−1 by m0, . . .,mK−1,
respectively, we set m := max{m0, . . .,mK−1} and, for each
k ∈ [K]0, replaceMk with the m× |A| matrix whose first to
mkth rows are those in the originalMk and (mk + 1)th to mth
rows are filled with 0. Note that the score of each segment in
S does not change under this modification.2

The typical orders of magnitudes of the parameters in
PWM matching are as follows. The sequence length n can
be of order 108 (respectively, 106–107), and the number of
PWMs K may be of order 102 (respectively, 104) for DNA
(respectively, protein) [11]. The sequence motif length m
is typically about ten or several tens [11], but motifs with
lengths greater than 102 are sometimes considered for pro-
tein [26].
Hereafter, we assume that entries of PWMs are bounded

0 ≤ Mk(i, a) ≤ 1 (4)

for every k ∈ [K]0, i ∈ [m]0, and a ∈ A. This is just for
the later convenience in using QMCI for score calculation.
Although this condition is not satisfied in general cases in-
cluding Example 1, we can meet it by rescaling. That is, we
redefine M′

k as Mk, where

M′
k(i, a) :=

Mk(i, a) −Mmin

Mmax −Mmin
(5)

with

Mmax = max
(k,i,a)∈[K]0×[m]0×A

Mk(i, a)

Mmin = min
(k,i,a)∈[K]0×[m]0×A

Mk(i, a). (6)

It is easy to see that after this redefinition, (4) holds. We also
need to replace the threshold wth with

w′
th :=

wth − mMmin

Mmax −Mmin
. (7)

Note that the set (3) is invariant under the above rescaling.

2Note that, for k ∈ [K]0 such that mk < m, this modification makes the
last m− mk segments with length mk out of the scope of the matching, al-
though they should be considered.We calculate the scores for such segments
and check whether they exceed the threshold, separately from our algorithm.
We can reasonably assume that these additional calculations and checks take
the negligible time, as far as the number of these exceptional segments,
m− mk , is much smaller than that of all the segments, n− mk + 1.
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C. QUANTUM ALGORITHMS
Here, we briefly explain the building-block quantum algo-
rithms for our PWM matching algorithm.

1) ARITHMETIC ON A QUANTUM COMPUTER
Before introducing the quantum algorithms, let us summa-
rize the setup for quantum computation and the elementary
operations we use in this article.
We consider computation on the system consisting of the

multiple quantum registers. We treat real numbers in fixed-
point binary representation, and for each x ∈ R, we denote by
|x〉 the computational basis state on a quantum register where
the bit string on the register corresponds to the binary repre-
sentation of x. We assume that each register has a sufficient
number of qubits, and thus, the error from finite-precision
representation is negligible.
We use the oracles for elementary arithmetic, such as the

adder Oadd |x〉 |y〉 = |x〉 |x+ y〉, the subtracter Osub |x〉 |y〉 =
|x− y〉 |y〉, and the multiplier Omul |x〉 |y〉 = |x〉 |xy〉, where
x, y ∈ R. Many proposals on implementations of such
oracles have been made so far: see [27] and the references
therein.
Besides, we also assume the availability of the follow-

ing oracles. The oracle O= checks whether two num-
bers are equal or not: for any x, y ∈ R, O= |x〉 |y〉 |0〉 =
|x〉 |y〉 (1x=y |0〉 + 1x 	=y |1〉). Also, the comparator Ocomp

acts asOcomp |x〉 |y〉 |0〉 = |x〉 |y〉 (1x≥y |1〉 + 1x<y |0〉) for any
x, y ∈ R. These oracles can be implemented via subtraction.
To check x = y or not, we may calculate x− y and see
whether it is 0 or not. Therefore, we can implement O= by
using a subtracter, followed by a multiple controlled-not
(cnot) gate activated if and only if all the bits of x− y are 0,
and at last a not gate. Moreover, we can implementOcomp by
combining a subtracter with a cnot gate activated if and only
if the most significant bit of x− y is 0; this is because, if we
adopt 2’s complementmethod to represent negative numbers,
the most significant bit represents the sign of a number [28].
In addition, for any N ∈ N≥2, we assume the availability

of the oracle OEqPr
N that generates the equiprobable super-

position of |0〉 , |1〉 , . . ., |N − 1〉: OEqPr
N |0〉 = 1√

N

∑N−1
i=0 |i〉.

If N = 2n with some n ∈ N, we can implement this oracle
just by operating a Hadamard gate on each qubit of the
n-qubit register. If not, letting n be 
log2 N�, we can im-
plement OEqPr

N by the method in [29] to generate a state in
which a given probability density function p(x) is amplitude-
encoded, with p(x) defined on [0,1] as p(x) = 1x≤N/2n .

Finally, we use the oracle Omed
N that outputs the median

med(x1, . . ., xN ) of any N real numbers x1, . . ., xN , that is,
Omed
N |x1〉 · · · |xN〉 |0〉 = |x1〉 · · · |xN〉 |med(x1, . . ., xN )〉. The

implementations of this oracle have been discussed in [24].
Hereafter, we collectively call the above oracles the arith-

metic oracles.

2) QUANTUM AMPLITUDE AMPLIFICATION
The first building block for our PWM matching algo-
rithm is QAA [21]. Given the oracle to generate the

superposition state |�〉, QAA amplifies the amplitude of the
“marked state” in |�〉 so that we can obtain it quadratically
faster than naively iterating the process of generating |�〉
and measurement on it. Here, we give the following theorem,
which was presented in [24] as a slight modification of the
original one in [21].
Theorem 1 (See [24, Th. 2], Originally [21, Th. 3]): Sup-

pose that we are given an access to an oracle V that acts on
the system R consisting of a quantum register R1 and a qubit
R2, as

V |0〉 |0̄〉 = √
a |φ1〉 |1̄〉 + √

1 − a |φ0〉 |0̄〉 =: |�〉 (8)

where |φ1〉 and |φ0〉 are some quantum states on R1 and
a ∈ [0, 1). Then, for any γ , δ ∈ (0, 1), there exists a quantum
algorithm QAA(V, γ , δ) that behaves as follows.

1) The output of the algorithm is either of:
A) the message “success” and the quantum state

|φ1〉;
B) the message “failure.”

2) If a ≥ γ , the algorithm outputs (A) with probability at

least 1 − δ, making O( log δ
−1√
a

) queries to V .
3) If 0 < a < γ , the algorithm outputs either (A) or (B),

making O( log δ
−1√
γ

) queries to V .
4) If a = 0, the algorithm certainly outputs (B), making

O( log δ
−1√
γ

) queries to V .3

For the detailed procedure of QAA(V, γ , δ) and the proof
of Theorem 1, see [24] and the original paper [21].

3) QUANTUM MONTE CARLO INTEGRATION
QAA leads to quantum amplitude estimation (QAE) algo-
rithm [21], which estimates the amplitude of the marked
state; QAE is further extended to the quantum algorithm for
estimating the expectation of a random variable [23], which
we call QMCI in this article. This is the second building
block. There are various versions of QMCI for different sit-
uations. For the PWM matching problem, we can use the
following one, which assumes that the variable is bounded.
Theorem 2 (See [23, Th. 2.3], Modified): Let N ∈ N and

X be a set of N real numbers X0, . . .,XN−1, each of which
satisfies 0 ≤ Xi ≤ 1. Suppose that we are given an oracle OX
that acts as

OX |i〉 |0〉 = |i〉 |Xi〉 (9)

for any i ∈ [N]0. Then, for any ε and δ in (0,1), there is an
oracle Omean

X,ε,δ such that

Omean
X,ε,δ |0〉 =

∑
y∈Y

αy |y〉 (10)

where some ancillary qubits are undisplayed. Here, Y is a
finite set of real numbers that includes a subset Ỹ consisting

3Although [24, Th. 2] does not mention the case that a = 0, the statement
on this case is proved in Appendix A.
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of ε-approximations of the mean of X0, . . .,XN−1

μ := 1

N

N−1∑
i=0

Xi (11)

and {αy}y∈Y are complex numbers satisfying∑
ỹ∈Ỹ

|αỹ|2 ≥ 1 − δ. (12)

In Omean
X,ε,δ ,

O

(
1

ε
log

(
1

δ

))
(13)

queries to OX are made.
The proof is presented in Appendix B, where the detailed

way to construct the oracle Omean
X,ε,δ is also shown. Note that

this theorem is slightly modified from the original one, [23,
Th. 2.3], in some points. First, our Theorem 2 is on the algo-
rithm to calculate the average μ of a sequence and the sum,
which is instantly obtained by multiplying the sequence size
N to the average. On the other hand, [23, Th. 2.3] presents the
algorithm to calculate the expectation of a random variable,
and therefore, calculation of the average and the sum is a
special case. This is sufficient for us, since we use QMCI to
calculate the score of a segment in the sequence S, which is
in fact the sum of the scores of the entries in the segment.
Second, although the algorithm in [23, Th. 2.3] outputs the
approximation of μ, Theorem 2 mentions only generating
the state in (10). Although we obtain the approximation of μ
by measuring the state, we do not do so in our PWM match-
ing algorithm. This is because our algorithm uses QMCI as
a subroutine to calculate the score of each segment in the
sequence S in the high-score segment search by QAA. This
modification is similar to that in [24], which also presents
QMCI with no measurement. However, QMCI in this article
is different from that in [24] too, since the former assumes
that each Xi is bounded, but the latter assumes that the upper
bound on the variance of the sequence is given.

III. QUANTUM ALGORITHM FOR PWM MATCHING
We now present the quantum algorithm for PWM matching.
The basic strategy is as follows: we calculate {wk,i}k,i for all
the pairs (k, i) ∈ Pall parallelly in a quantum superposition
and find the pairs with high scores by QAA. We present the
two versions of the quantum algorithm, the naive iteration
method and the QMCI-based method, whose difference is
how to calculate wk,i.

A. ASSUMPTION ON THE QUANTUM ACCESSES TO THE
SEQUENCE AND THE PWMS
Before presenting the quantum algorithm, we need to make
some assumptions on the available oracles. First, for score
calculation on a quantum computer, we need to load the
entries in the sequence S and the PWMs Mk onto quantum
registers. This is formally stated as follows.
Assumption 1: We have accesses to the following oracles.

Procedure 1: Calculate wk,i by Naive Iteration.

1) Oseq: for any i ∈ [n]0,

Oseq |i〉 |0〉 = |i〉 |si〉 . (14)

2) OPWM: for any (k, i, a) ∈ [K]0 × [m]0 ×A,

OPWM |k〉 |i〉 |a〉 |0〉 = |k〉 |i〉 |a〉 |Mk(i, a)〉 . (15)

Here and hereafter, |a〉 with a ∈ A is regarded as the
computational basis state corresponding to the integer that
labels a. We can implement these oracles if QRAM [25] is
available, but nonnegligible preprocessing cost is needed.We
will discuss this point in Section IV-A.
Besides, we assume that we can use the oracle that deter-

mines whether a given index pair (k, i) ∈ Pall is in a given
subset P ⊂ Pall or not.
Assumption 2: For any subsetP ⊂ Pall, we have an access

to the oracle OP that acts as

OP |k〉 |i〉 |0〉 = |k〉 |i〉 (1(k,i)∈P |0〉 + 1(k,i)/∈P |1〉) (16)

for any (k, i) ∈ Pall.
We can also implement this oracle using QRAM, as dis-

cussed in Section IV-A.
Since Oseq, OPWM, and OP are supposed to be realized by

QRAM, we hereafter consider the number of queries to them
as a metric of the complexity of our algorithm.

B. ALGORITHM 1: THE NAIVE ITERATION METHOD
We now explain the first algorithm, the naive iteration
method.
We can calculate wk,i by naively iterating the queries to

Oseq and OPWM and additions as Procedure 1.
In this procedure, the quantum state is transformed as

follows:

|k〉 |i〉 |0〉 |i〉 |0〉 |0〉 |0〉
3−→ |k〉 |i〉 |0〉 |i〉 |si〉 |0〉 |0〉
4−→ |k〉 |i〉 |0〉 |i〉 |si〉 |Mk(0, si)〉 |0〉
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5−→ |k〉 |i〉 |0〉 |i〉 |si〉 |Mk(0, si)〉 |Mk(0, si)〉
7−→ |k〉 |i〉 |0〉 |i〉 |0〉 |0〉 |Mk(0, si)〉
8−→ |k〉 |i〉 |1〉 |i+ 1〉 |0〉 |0〉 |Mk(0, si)〉
3−→ |k〉 |i〉 |1〉 |i+ 1〉 |si+1〉 |0〉 |Mk(0, si)〉
4−→ |k〉 |i〉 |1〉 |i+ 1〉 |si+1〉 |Mk(1, si+1)〉 |Mk(0, si)〉

5−→ |k〉 |i〉 |1〉 |i+ 1〉 |si+1〉 |Mk(1, si+1)〉
∣∣∣∣∣∣

1∑
j=0

Mk( j, si+ j )

〉

7−→ |k〉 |i〉 |1〉 |i+ 1〉 |0〉 |0〉
∣∣∣∣∣∣

1∑
j=0

Mk( j, si+ j )

〉

→ . . .

5−→ |k〉 |i〉 |m− 1〉 |i+ m−1〉 |si+m−1〉 |Mk(m−1, si+m−1)〉

⊗
∣∣∣∣∑m−1

j=0
Mk( j, si+ j )︸ ︷︷ ︸

=wk,i

〉
. (17)

Here, the numbers on the arrows correspond to the steps in
Procedure 1. We denote by Osc,it the quantum circuit for the
above operation.
Then, usingOsc,it, we can construct the quantum algorithm

to find the high-score segments.
Theorem 3: Consider Problem 1 under Assumptions 1 and

2. Suppose that we are given δ ∈ (0, 1). Then, there exists a
quantum algorithm that behaves as follows.

1) If nsol := |Psol| > 0, the algorithm outputs all the el-
ements in Psol with probability at least 1 − δ, making

O

(
m
√
Knnsol log

(
Kn

δ

))
(18)

queries to Oseq and OPWM, and

O

(√
Knnsol log

(
Kn

δ

))
(19)

queries to OP with P being some subsets in Pall.
2) If Psol is empty, the algorithm certainly outputs the

message “no match,” making

O

(
m

√
Kn log

(
Kn

δ

))
(20)

queries to Oseq and OPWM, and

O

(√
Kn log

(
Kn

δ

))
(21)

queries to OP with P being some subsets in Pall.

Postponing the proof to Appendix C, we just present the

naive iteration method as Algorithm 1. Here, Õ
Ptemp
sc,it is an

Algorithm 1: Naive Iteration Method.

oracle that generates a quantum state√√√√∣∣∣Psol ∩Ptemp

∣∣∣
Kn

|ψPtemp,1〉 |1〉

+

√√√√∣∣∣Psol ∪Ptemp

∣∣∣
Kn

|ψPtemp,0〉 |0〉 (22)

where

|ψPtemp,1〉 :=
1√∣∣∣Psol ∩Ptemp

∣∣∣
∑

(k,i)∈Psol∩Ptemp

|k〉 |i〉 (23)

|ψPtemp,0〉 :=
1√∣∣∣Psol ∪Ptemp

∣∣∣
∑

(k,i)∈Psol∪Ptemp

|k〉 |i〉 (24)

and some ancillary registers are omitted in these equations
(see Appendix C for details). Here and hereafter, the com-
plement of a set is determined with the universal set being
Pall.

Let us comment on the number of qubits used in the naive
iteration method. As we see in (17) and (22), this algorithm
uses several quantum registers to represent the indexes for
PWMs, positions in a sequence, and positions in a segment.
The sufficient qubit numbers in these types of registers are
O(logK), O(log n), and O(logm), respectively, and thus, the
total qubit number is O(logK + log n+ logm), logarithmic
on the parameters that characterize the problem. Besides, the
algorithm uses a few registers to represent real numbers, such
as an entry Mk( j, s) of a PWM and a segment score wk,i. If
we take some typical setting for binary representation of real
numbers (say double precision with 64 bits) independently of
the problem, a few registers for real numbers amount qubits
of order 102, which surpasses the qubits for the indexes for
typical values of the parameters K, n, and m mentioned in
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Section II-B. In summary, for a typical PWMmatching prob-
lem, the qubit number used in the naive iteration method is
of order 102. This also applies to the QMCI-based method,
which is explained in Section III-C.

C. ALGORITHM 2: QMCI-BASED METHOD
Next, we present the QMCI-based method. It is basically the
same as the naive iteration method, but it calculates the score
of each segment by QMCI. Although in the naive iteration
method, we calculate the score of one segment, which is a
sum of the m positionwise scores, calling Oseq and OPWM
O(m) times, this query number can be reduced by QMCI,
whose complexity depends on the required accuracy, if we
can set it sufficiently loose.
This method is inspired by the algorithm for GWmatched

filtering presented in [24]. It is the twofold problem of calcu-
lating the quantity called SNR, which is given as the sum of
many terms, for each template waveform of the GW signal,
and searching the high-SNR templates. In this regard, it has a
same structure as PWMmatching, which consists of calculat-
ing the scores of the segments and searching the high-score
segments. Therefore, we naturally conceive the idea to apply
the algorithm in [24], which is a combination of QMCI and
QAA, to PWM matching.
As pointed out in [24], there is an issue in using QMCI.

The result of QMCI inevitably contains the error, and it can
cause the false match. That is, even if wk,i for some (k, i) ∈
Pall is smaller than the threshold wth, the estimation of it
by QMCI might exceed wth due to the error, and we might
misjudge that the ith segment matches withMk. To cope with
this, we set the threshold in the similar way to [24]. That is,
we set the two levels of the threshold, wsoft and wsoft, which
have the following meanings.

1) We want to find (k, i) ∈ Pall such that wk,i ≥ whard
with high probability.

2) We never want to falsely find (k, i) such that wk,i <

wsoft.
3) If there are (k, i) such that wsoft ≤ wk,i < whard, it is

not necessary but fine to find them.

Then, we set the accuracy of QMCI to whard−wsoft
2 and take

the following policy: if the estimation of wk,i by QMCI is
larger than or equal to

wmid := wsoft + whard

2
(25)

we judge (k, i) as “matched,” and if not, we judge as “mis-
matched.” Under this policy, (k, i) is judged as “matched”
if wk,i ≥ whard and “mismatched” if wk,i < wsoft with high
probability. We will discuss the validity to assume that such
two threshold levels are set in Section IV-B.
Now, let us present the theorem on the QMCI-based

method.
Theorem 4: Consider Problem 1 under Assumptions 1 and

2. Suppose that we are given δ ∈ (0, 1) and wsoft,whard ∈ R

such that 0 < wsoft < whard < m. Define

Phard := {(k, i) ∈ Pall | wk,i ≥ whard} (26)

and

Psoft := {(k, i) ∈ Pall |wk,i ≥ wsoft}. (27)

Then, there is a quantum algorithm that makes queries to
Oseq, OPWM, and OP, withP being some subsets inPall, and
behaves as follows.

1) If nhard := |Phard| > 0, the algorithm outputs all the el-
ements in Phard and 0 or more elements in Psoft\Phard
with probability at least 1 − δ. In the algorithm, Oseq

and OPWM are called

O

(
mnsoft

√
Kn

whard − wsoft
log

(
K2n2

δ

)
log

(
Kn

δ

))
(28)

times, and OP are called

O

(
nsoft

√
Kn log

(
K2n2

δ

)
log

(
Kn

δ

))
(29)

times, where nsoft := |Psoft|.
2) If nsoft = 0, the algorithm certainly outputs the

message “no match.” In the algorithm, Oseq and OPWM
are called

O

(
m

√
Kn

whard − wsoft
log

(
K2n2

δ

)
log

(
Kn

δ

))
(30)

times, and OP are called

O

(√
Kn log

(
K2n2

δ

)
log

(
Kn

δ

))
(31)

times.
3) If nsoft > 0 and nhard = 0, the algorithm certainly out-

puts the message “no match” or 1 or more elements in
Psoft. In the algorithm, the number of queries to Oseq

and OPWM is of order (28), and the number of queries
to OP is of order (29).

Now, we just present the QMCI-based method as Algo-
rithm 2 and leave the proof of Theorem 4 to Appendix D.
Here, Õsc,QMCI

ε,δ,Ptemp
is an oracle that by QMCI and some addi-

tional operations generates a quantum state

βPtemp,1 |ξPtemp,1〉 |1〉 + βPtemp,0 |ξPtemp,0〉 |0〉 . (32)

|ξPtemp,1〉 is a quantum state written as

|ξPtemp,1〉 :=
∑

(k,i)∈Ptemp

∑
y

αk,iy |k〉 |i〉 |y〉 (33)

except the normalization factor, where y runs over a finite
set of real numbers larger than wmid/m and the amplitudes
αk,iy concentrate on y’s close to wk,i/m. |ξPtemp,0〉 is another
quantum state. βPtemp,1 and βPtemp,0 are complex numbers
and |βPtemp,1| = �(

√
1/Kn). In (32) and (33), some ancillary

registers are omitted. For details, see Appendix D.
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Algorithm 2: QMCI-Based Method.

Seemingly, the bounds on the number of queries to Oseq

and OPWM in (28) and (30) linearly scale with m, which is
similar to (18) and (20) and makes us consider that there is
no speedup with respect to m compared to the naive iteration
method. However, if we can set wsoft and whard with larger
difference for larger m, the dependence of the bounds in
(28) and (30) on m becomes milder than linear. This seems
reasonable because, naively thinking, the typical value of the
segment score, which is the sum of m terms, becomes larger
for larger m, and so do wsoft, whard, and their difference. In
fact, in Section IV-B, we argue that it is reasonable to take
whard and wsoft so that

whard − wsoft = �(
√
m) (35)

from which (28) and (30) turn into

O

(
nsoft

√
Knm log

(
K2n2

δ

)
log

(
Kn

δ

))
(36)

and

O

(√
Knm log

(
K2n2

δ

)
log

(
Kn

δ

))
(37)

respectively. If so, the QMCI-based method can be beneficial
compared to the naive iteration method for small nsoft and
large m, that is, in the case that there is a small number of
matches and the sequence motif length is large.

IV. DISCUSSION
A. IMPLEMENTATIONS OF THE ORACLES WITH QRAMS
AND THE COST TO PREPARE THEM
Now, we consider how to implement the oraclesOseq,OPWM,
and OP, which we have simply assumed are implementable
so far.
It seems that, in order to realize the quantum access to

the elements in the sequence S like (14), we need to use a
QRAM [25]. Although some difficulties in constructing it
in reality have been pointed out [30], it is the very device
that provides the access to the indexed data in superposition
in O(logN) time with respect to N the number of the data
points. Of course, preparing a QRAM, that is, registering the
N data points into the QRAM requiresO(N) time. To prepare
Oseq, we need O(n) time.

We can use a QRAM also for OPWM in (15). Although
the indexes are now threefold, (k, i, a), it is straightforward
to combine them and regard it as an integer. Preparing this
takes O(m|A|K) time, which is expected to be much shorter
than O(N) in usual situations.

We can also construct OP, especially OPtemp , using a
QRAM. Naively thinking, we can do this by registering 0 or
1, which represents (k, i) ∈ P or not, for every (k, i) ∈ Pall.
However, this takes O(nK) time, which exceeds O(nm) time
for the classical exhaustive search if K > m. Therefore, we
adopt the following approach that takes the shorter time for
QRAMpreparation. First, we plausibly assume that the num-
ber of the matched PWMs at every position i in the sequence
S is at most κ , which is O(1). Then, we prepare the QRAM
ÕPtemp that outputs κ indices ki,1, . . ., ki,κ ∈ [K]0 such that
(ki,1, i), . . ., (ki,κ , i) ∈ Ptemp for each i ∈ [n]0

ÕPtemp |i〉 |0〉 · · · |0〉︸ ︷︷ ︸
κ

= |i〉 |ki,1〉 · · · |ki,κ〉 . (38)

If κ ′, the number of such indices, is smaller than κ , we
set ki,κ ′+1, . . ., ki,κ to some dummy number (say, −1) not
contained in [K]0. Using this, we can perform the following
operation for any (k, i) ∈ Pall:

|k〉 |i〉 |0〉 · · · |0〉︸ ︷︷ ︸
κ

|0〉 · · · |0〉︸ ︷︷ ︸
κ

|0〉

→ |k〉 |i〉 |ki,1〉 · · · |ki,κ〉 |0〉 · · · |0〉 |0〉
→ |k〉 |i〉 |ki,1〉 · · · |ki,κ〉

∣∣1k 	=ki,1 〉
· · · ∣∣1k 	=ki,κ 〉 |0〉 → |k〉 |i〉 |ki,1〉 · · · |ki,κ〉

∣∣1k 	=ki,1 〉
· · · ∣∣1k 	=ki,κ 〉 ∣∣1k 	=ki,1∧···∧k 	=ki,κ

〉
. (39)

Here, the first to (κ + 2)th kets correspond to registers with
the sufficient number of qubits and the other kets correspond
to the single qubits. In (39), we use ÕPtemp at the first arrow
and O=’s at the second arrow, and the last operation is done
by the multiply controlled not gate on the last κ + 1 qubits.
Note that “1” on the last qubit means (k, i) /∈ Ptemp. There-
fore, the above operation is in fact OPtemp , with some regis-
ters in (39) regarded as ancillas. In this implementation, the
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QRAM ÕPtemp is queried once in a call to the oracle OPtemp ,
along with O(κ ) uses of arithmetic oracles. For initializing
ÕPtemp , O(κn) time is taken at the very beginning of Algo-
rithm 2, where Ptemp = ∅ and thus ki,1 = · · · = ki,κ = −1
for any i ∈ [n]0. After that, every time an index pair (k, i) is
added toPtemp in the QAA loop in Algorithm 2, one memory
cell in ÕPtemp is updated, which takes O(1) time.
Let us summarize the above discussion. At the beginning

of both the naive iteration method and the QMCI method, we
need to initialize the QRAMsOseq,OPWM, and ÕPtemp , which
takes O(n+ m|A|K + κn) time in total. If we reasonably
assume that m|A|K < n and κ = O(1), the time complexity
is estimated as O(n).
Although we need to take O(n) time at the preliminary

stage, after that the quantum algorithms run with complex-
ities shown in Theorems 3 and 4, which scales with n as
O(

√
n), for any sequence S and any PWMs Mk. Also note

that, once we prepare Oseq, whose preparation is the bot-
tleneck under the current assumption, we can search the
matches between S and another set ofK PWMsM′

k by prepar-
ing OPWM and ÕPtemp and running the quantum algorithm,
which no longer takes O(n) time.4 As far as the authors
know, there is no knownmethod for PWMmatching in which
initialization takes O(n) time and the main search algorithm
takes the sublinear complexity to n. As an algorithm having
the initialization cost of same order, we refer to [11], for
example. In this classical algorithm based on an enhanced
suffix array (ESA), it takesO(n) time to construct ESA. After
that, the worst case complexity to findmatches isO(n+ m) if
some condition is satisfied, but it can beO(nm) in the general
case.

B. SCORE THRESHOLD IN THE LARGE m LIMIT
Here, we consider the asymptotic distribution of scores
of segment when the sequence motif length m is large
and, based on it, discuss the plausible setting on the score
threshold.
In many cases, the score threshold wth in matching with

a PWM M ∈ Rm×|A| is determined by the p-value. That is,
we set wth so that the probability that the score of a segment
becomes equal to or larger thanwth is equal to the given value
p ∈ (0, 1) in the background model. Here, the background
model means the assumption that, when we take a segment
of length m in the sequence S randomly and denote by ui the
alphabet in the ith position in the segment, u0, . . ., um−1 are
independent and identically distributed. The rigorous defini-
tion is as follows. Supposing that every a ∈ A is associated
with pa ∈ (0, 1) satisfying

∑
a∈A pa = 1, we consider the

finite probability space (Am,PBG) consisting of the sample

4Initializing ÕPtemp
seems to takeO(κn) time again. However, if we have

ÕPtemp
used in the previous algorithm run, resetting its updated memory

cells gives us the properly initialized ÕPtemp
. Since the number of the mem-

ory cells to be reset is equal to that of the matches found in the previous run
and it is usually much smaller than n, this reset-based initialization does not
take O(n) time.

space Am and the probability function PBG : Am → R≥0
such that, for any u0, . . ., um−1 ∈ Am, we have

PBG(u0, . . ., um−1) =
m−1∏
i=0

pai (40)

if u0 = a0, . . ., um−1 = am−1 with a0, . . ., am−1 ∈ A. Then,
we define

wth :=max{w ∈ R|PBG ({u0, . . ., um−1 |WM (u0, . . ., um−1)

≥ w}) ≥ p} (41)

where, for any subset U ∈ Am, we define PBG(U ) :=∑
u∈U PBG(u).
Now,we regardW :=WM (u0, . . ., um−1) as a randomvari-

able and consider its asymptotic distribution in the case of
large m. We use the following theorem, a variant of the cen-
tral limit theorem.
Theorem 5 (See [31, Th. 27.4], Modified): Let {Xn}n∈N≥0

be the sequence of the independent random variables on
some probability space (�,F,P ) such that, for any n ∈
N≥0, Xn has the expectation μn and the finite variance
σ 2
n . For each n ∈ N, define Sn :=

∑n−1
i=0 (Xi − μi) and s2n :=∑n−1

i=0 σ
2
i . Suppose that there exists δ ∈ R+ such that

lim
n→∞

1

s2+δn

n−1∑
i=0

EP [|Xi − μi|2+δ] = 0. (42)

Then, Sn/sn converges in distribution to a standard normal
random variable, as n goes to infinity.
We can apply this theorem to the case of PWM matching

by, for each i ∈ [m]0, regarding Xi in Theorem 5 as M(i, ui),
the score of the alphabet in the ith position in the background
model. μi and σi correspond to the mean and the variance of
the score of the alphabet in the ith position, that is,

μi =
∑
a∈A

paM(i, a) (43)

and

σ 2
i =

∑
a∈A

pa(M(i, a) − μi)
2 (44)

respectively. We must check the condition (42) is satisfied,
and it is in fact satisfied in the following plausible situation.
First, recall that we have rescaled the PWM so that (4) holds.
Therefore

EPBG
[|Xi − μi|2+δ] ≤ 1 (45)

holds obviously. Besides, we may additionally assume that
there exist r ∈ (0, 1) and σ 2

min ∈ R+ independent of m such
that, for at least 
rm� elements i in [m]0, σ 2

i ≥ σ 2
min holds.

This means that, although in some part of the positions the
positionwise score variances might be small, at least in the
certain ratio r of the positions, the variances exceeds the level
σ 2
min. This assumption yields

s2m ≥ rmσ 2
min. (46)
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Combining (45) and (46), we have

1

s2+δm

m−1∑
i=0

EPBG
[|Xi − μi|2+δ] ≤ m

(rm)1+δ/2σ 2+δ
min

(47)

for any δ ∈ R+, which converges to 0 in the large m limit.
Therefore, in the large m limit, we can approximate as

PBG (W ≥ wth) ≈
∫ ∞

(wth−μ̃m )/sm

1√
2π

e−x
2/2dx (48)

with μ̃m :=∑m−1
i=0 μi = EPBG

[W ] being the expected seg-
ment score under the background model.
Considering the above asymptotic distribution of S, it

seems reasonable to setwth as μ̃m + xσtot with some x ∈ R+.
Alternatively, if we set the two levels of the score whard and
wsoft in the QMCI-based method, it seems plausible to set
them aswsoft = μ̃m + xsoftsm andwhard = μ̃m + xhardsm with
xsoft, xhard ∈ R+ such that xsoft < xhard and xhard − xsoft =
O(1). For example, xsoft = 3 and xhard = 4, which corre-
spond to the p-values 1.35 × 10−3 and 3.17 × 10−5, respec-
tively, in the approximation as (48). In such a setting, using
sm = �(

√
m) that follows from (46), we get (35) and then

the complexity bounds (36) and (37).

V. CONCLUSION
In this article, we have proposed the two quantum algorithms
for an important but time-consuming problem in bioinfor-
matics, PWM matching, which aims to find sequence motifs
in a biological sequence whose scores defined by PWMs
exceed the threshold. Both of these algorithms, the naive
iteration method and the QMCI-based method, utilize QAA
for search of high-score segments. They are differentiated by
how to calculate the segment score. The former calculates
it by simply iterating to add up each positionwise score by
quantum circuits for arithmetic. The latter uses QMCI for
this summation, coping with false detection due to the QMCI
error by setting two levels of threshold, i.e., wsoft and whard.
Given the oracular accesses to the entries in the sequence and
PWMs, both of the quantum algorithms run with query com-
plexity scaling with the sequence length n and the number
of PWMs K as O(

√
Kn), thanks to the well-known quadratic

speedup by QAA. Furthermore, under some setting on wsoft
and whard, the complexity of the QMCI-based method scales
with the sequence motif length m as O(

√
m). These mean

the quantum speedup over existing classical algorithms. Al-
though our quantum algorithms take O(n) preparation time
for the initialization of QRAMs, they still have the advantage
especially when we perform matching between a sequence
and many PWMs.
It is interesting that the QMCI-based method is inspired

by the algorithm in [24] for GW astronomy, a completely
different field than bioinformatics. From this fact, we expect
that the scheme used in the algorithm, the combination of
QMCI andQAA, has a large potential for further applications

to problems of the “sum-and-search” type over various indus-
trial and scientific fields beyond bioinformatics and astron-
omy. For example, machine learning might be a promising
target, since large-scale matrix multiplication and maximiza-
tion are common subroutines in widely used models such as
convolutional neural network [32] and transformer [33]. In
future work, we will explore other applications of quantum
algorithms in this type interdisciplinarily.

APPENDIX A
PROOF OF THEOREM 1 FOR THE CASE THAT MAKES
a = 0
Proof: As described in [24] and the original paper [21], in

QAA, we repeatedly generate Gj |�〉 with various j ∈ N≥0
and measure R2, and output (A) if and only if the measure-
ment outcome is 1. Here

G := −AS0A−1Sχ (49)

where S0 and Sχ are the unitary operators on the system under
consideration acting as follows:

Sχ |φ〉 |x〉 =
{

|φ〉 |0〉 , if x = 0

− |φ〉 |1〉 , if x = 1
(50)

with any state |φ〉 on R1, and

S0 |�′〉 =
{

− |0〉 |0〉 , if |�′〉 = |0〉 |0〉
|�′〉 , if 〈�′| (|0〉 |0〉) = 0.

(51)

As we can see easily, if a = 0,G |�〉 = |�〉 = |φ0〉 |0〉 holds,
and thus, we never get 1 in measuring R2 in Gj |�〉 for any
j. Therefore, (A) is never output, which means that (B) is
output certainly. �
For the detailed procedure of QAA(A, γ , δ) and the proof

of Theorem 1 in the other cases, see [24] and the original
paper [21].

APPENDIX B
PROOF OF THEOREM 2
Before the proof, we present the following fact, [24, Th. 4].
It is almost same as [23, Lemma 2.1], but slightly modified
in reference to the original one, [34, Lemma 6.1].
Lemma 1: Let μ ∈ R and ε ∈ R+. Let A be an algo-

rithm that outputs an ε-approximation of μ with probability
γ ≥ 3

4 . Then, for any δ ∈ (0, 1), the median of outputs in
12
⌈
log δ−1

⌉+ 1 runs ofA is an ε-approximation of μ with
probability at least 1 − δ.

Then, the proof of Theorem 2 is as follows.
Proof of Theorem 2: According to [24, Th. 7], for any

integer t larger than 2, we can construct the oracle Õmean
X,t that

acts as Õmean
X,t |0〉 =∑y∈Y αy |y〉 using OX O(t ) times. Here,

Y is a finite set of real numbers that includes a subset Ỹ
consisting of elements μ̃ satisfying

|μ̃− μ| ≤ C

(√
μ

t
+ 1

t2

)
(52)
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with a universal real constant C, and {αy}y∈Y are complex
numbers satisfying

∑
ỹ∈Ỹ |αỹ|2 ≥ 8/π2. Following this, we

prepare a system with J quantum registers and generate the
state

|�〉 :=
⎛⎝∑
y1∈Y

αy1 |y1〉
⎞⎠⊗ · · · ⊗

⎛⎝∑
yJ∈Y

αyJ |yJ〉
⎞⎠ (53)

by operating Õmean
X,t on each register. Here, J and t are set as

J = 12
⌈
log δ−1

⌉
+ 1, t =

⌈
2C

ε

⌉
. (54)

It can be shown by easy algebra that, in this setting, each
μ̃ ∈ Ỹ satisfies |μ̃− μ| ≤ ε. By measuring |�〉, we obtain J
real numbers y1, . . ., yJ , each of which is an ε-approximation
of μ with probability at least 8

π2 >
3
4 . Therefore, because of

Lemma 1, the median of y1, . . ., yJ is an ε-approximation
of μ with probability at least 1 − δ. This means that, if we
generate

|� ′〉 :=
⎛⎝∑
y1∈Y

αy1 |y1〉
⎞⎠⊗ · · · ⊗

⎛⎝∑
yJ∈Y

αyJ |yJ〉
⎞⎠

|med(y1, . . ., yJ )〉 (55)

by adding one more register to |�〉 and then using Omed
J , this

is actually the state in (10), with the first J registers regarded
as undisplayed. In summary, we can construct Omean

X,ε,δ as

Omean
X,ε,δ = Omed

J

⎛⎜⎝Õmean
X,t ⊗ · · · ⊗ Õmean

X,t︸ ︷︷ ︸
J

⊗I

⎞⎟⎠ (56)

where I is the identity operator on the Hilbert space for the
register. Since each Õmean

X,t uses OX O(t ) times, Omean
X,ε,δ uses

OX O(tJ) times, that is, O( 1
ε
log( 1

δ
)) times, in total. �

APPENDIX C
PROOF OF THEOREM 3
Proof: First, note that we can perform the following oper-

ation for any subset P ⊂ Pall:

|0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉

→ 1√
Kn

K−1∑
k=0

n−1∑
i=0

|k〉 |i〉 |0〉 |0〉 |0〉 |0〉 |0〉

→ 1√
Kn

K−1∑
k=0

n−1∑
i=0

|k〉 |i〉 |wk,i〉 |0〉 |0〉 |0〉 |0〉

→ 1√
Kn

K−1∑
k=0

n−1∑
i=0

|k〉 |i〉 |wk,i〉 |wth〉 |0〉 |0〉 |0〉

→ 1√
Kn

K−1∑
k=0

n−1∑
i=0

|k〉 |i〉 |wk,i〉 |wth〉(
1wk,i≥wth |1〉 + 1wk,i<wth |0〉) |0〉 |0〉

→ 1√
Kn

K−1∑
k=0

n−1∑
i=0

|k〉 |i〉 |wk,i〉 |wth〉 ⊗
(
1wk,i≥wth |1〉+1wk,i<wth |0〉) (1(k,i)∈P |0〉+1(k,i)/∈P |1〉) |0〉
→ 1√

Kn

K−1∑
k=0

n−1∑
i=0

|k〉 |i〉 |wk,i〉 |wth〉 ⊗
(
1wk,i≥wth ∧ (k,i)/∈P |1〉 |1〉 |1〉+1wk,i≥wth ∧ (k,i)∈P |1〉 |0〉 |0〉
+ 1wk,i<wth ∧ (k,i)/∈P |0〉 |1〉 |0〉+1wk,i<wth ∧ (k,i)∈P |0〉 |0〉 |0〉)
=:

√√√√∣∣∣Psol ∩P
∣∣∣

Kn
|ψP,1〉 |1〉 +

√√√√∣∣∣Psol ∪P
∣∣∣

Kn
|ψP,0〉 |0〉

=: |�P〉 . (57)

Here, the seven kets correspond to the seven quantum regis-
ters, amongwhich the first four ones have a sufficient number
of qubits and the last three ones are single-qubit.

|ψP,1〉 := 1√∣∣∣Psol ∩P
∣∣∣

∑
(k,i)∈Psol∩P

|k〉 |i〉 |wk,i〉 |wth〉 |1〉 |1〉

(58)
is the quantum state on the system consisting of the first
to sixth registers, and |ψP,0〉 is another state on the same
system. In (57),OEqPr

K andOEqPr
n are used at the first arrow. At

the second arrow,Osc,it is used with the register R3, . . .,R6 in
Procedure 1 undisplayed. At the third arrow, we just set wth
on the fourth register. The fourth and fifth transformations
are done by Ocomp and OP, respectively. Then, the last trans-
formation is done by a Toffoli gate on the last three qubits.
We denote by ÕPsc,it the oracle for the operation in (57). Note
that ÕPsc,it contains one call to OP and m calls to Oseq and
OPWM, since Osc,it makes O(m) calls to them.

Then the naive iteration method is presented as Algorithm
1.

Let us consider the case that nsol ≥ 1. In this case, we run
QAA repeatedly, and, if each run finishes with the message
“success,” we obtain an element in Psol\Ptemp, that is, an
element in Psol that has not been obtained in the previous
runs yet. Thus, if QAAs finish with “success” nsol times in
a row, we obtain all the nsol elements in Psol. This happens
with probability at least(

1 − δ

Kn

)nsol
≥
(
1 − δ

Kn

)Kn
≥ 1 − δ (59)

since each QAA finishes with the message “success” with
probability at least 1 − δ

Kn , according to Theorem 1. In the
lth QAA, at which the nsol − l + 1 elements in Psol remain
not to be obtained, the number of the queries to Õ

Ptemp
sc,it is

O

(√
Kn

nsol − l + 1
log

(
Kn

δ

))
(60)

VOLUME 4, 2023 3101214



Engineeringuantum
Transactions onIEEE

Miyamoto et al.: QUANTUM ALGORITHM FOR PWM MATCHING

according to Theorem 1, since the amplitude of |ψPtemp,1〉 in
|�Ptemp〉 is √√√√∣∣∣Psol ∩Ptemp

∣∣∣
Kn

=
√
nsol − l + 1

Kn
. (61)

Thus, in this step, the number of the queries to Oseq and
OPWM is

O

(
m

√
Kn

nsol − l + 1
log

(
Kn

δ

))
(62)

since Õ
Ptemp
sc,it contains O(m) calls to them, and that of the

queries to OP is of order (60), since Õ
Ptemp
sc,it calls it once with

P being Ptemp. Therefore, for OP, the total query number in
the series of QAAs is

O

( nsol∑
l=1

√
Kn

nsol − l + 1
log

(
Kn

δ

))
(63)

which turns into (19) by simple algebra, and that for Oseq

and OPWM is this times m, that is, (18). After nsol QAAs
with “success,” we run another QAA that outputs “failure”
and end the algorithm, since now Psol ∩Ptemp is empty and
the amplitude of |ψPtemp,1〉 in |�Ptemp

〉
is 0. In this last QAA,

the query number for Oseq and OPWM is of order (20) and
that for OP is of order (21), according to Theorem 1, but the
total query number in the algorithm remains of order (18) and
(19).
In the case that nsol = 0, the first QAA outputs “failure,”

and then, the algorithm ends. The query number in this is of
same order as that in the last QAA in the case that nsol > 0,
that is, (20) and (21). �

APPENDIX D
PROOF OF THEOREM 4
Proof.
First, note that, for any k ∈ [K]0, i ∈ [n− m+ 1]0, and j ∈

[m]0, we can perform the following operation:

|k〉 |i〉 | j〉 |0〉 |0〉 |0〉
→ |k〉 |i〉 | j〉 |i+ j〉 |0〉 |0〉
→ |k〉 |i〉 | j〉 |i+ j〉 |si+ j〉 |0〉
→ |k〉 |i〉 | j〉 |i+ j〉 |si+ j〉 |Mk( j, si+ j )〉 (64)

whereOadd,Oseq, andOPWM are used at the first, second, and
third arrows, respectively.We denote byOsc,one the oracle for
the above operation. According to Theorem 2, for any ε, δ ∈
(0, 1), we use Osc,one O(ε−1 log(δ−1)) times to construct the
oracle Osc,QMCI

ε,δ that acts as

Osc,QMCI
ε,δ |k〉 |i〉 |0〉 = |k〉 |i〉

∑
y∈Yk,i

αk,iy |y〉 . (65)

Here,Yk,i is a finite set of real numbers that includes a subset
Ỹk,i consisting of ε-approximations of wk,i

m , and {αk,iy }y∈Yk,i

are complex numbers satisfying∑
ỹ∈Ỹk,i

|αk,iỹ |2 ≥ 1 − δ. (66)

Furthermore, with (22), we can construct Õsc,QMCI
ε,δ,P that acts

on the seven-register system as

Õsc,QMCI
ε,δ,P |0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉

= 1√
Kn

K−1∑
k=0

n−1∑
i=0

∑
y∈Yk,i

αk,iy |k〉 |i〉 |y〉
∣∣∣wmid

m

〉
⊗

(
1y≥ wmid

m ∧ (k,i)/∈P |1〉 |1〉 |1〉+1y≥ wmid
m ∧ (k,i)∈P |1〉 |0〉 |0〉

+ 1y<wmid
m ∧ (k,i)/∈P |0〉 |1〉 |0〉+1y<wmid

m ∧ (k,i)∈P |0〉 |0〉 |0〉
)

=: βP,1 |ξP,1〉 |1〉 + βP,0 |ξP,0〉 |0〉
=: |�P〉 (67)

for any subsetP ⊂ Pall, usingO
sc,QMCI
ε,δ ,OP, and some arith-

metic oracles. Here

|ξP,1〉 := 1√∑
(k,i)∈P

∑
y∈Yk,i

y≥wmid/m
|αk,iy |2

×
∑

(k,i)∈P

∑
y∈Yk,i

y≥wmid/m

αk,iy |k〉 |i〉 |y〉
∣∣∣wmid

m

〉
|1〉 |1〉

(68)

is the quantum states on the first six register, and |ξP,0〉 is
another state on the same system.

βP,1 =

√√√√∑(k,i)∈P
∑

y∈Yk,i
y≥wmid/m

|αk,iy |2

Kn
(69)

and βP,0 is another complex number satisfying |βP,0|2 +
|βP,1|2 = 1. Note that Õsc,QMCI

ε,δ,P uses Osc,QMCI
ε,δ once, and

thus Osc,one O(ε−1 log(δ−1)) times. Since Osc,one calls Oseq

and OPWM once each, Õsc,QMCI
ε,δ,P calls them O(ε−1 log(δ−1))

times, consequently. Also note that Õsc,QMCI
ε,δ,P uses OP once.

Then we present the QMCI-based method as Algorithm 2.
Let us consider the behavior of this algorithm in the fol-

lowing cases.
(i) nhard > 0: For any (k, i) ∈ Phard∣∣∣y− wk,i

m

∣∣∣ ≤ ε′ ⇒ y ≥ wmid

m
(70)

holds for any y ∈ R under the definitions (25) and (34), and
thus ∑

y∈Yk,i
y≥wmid/m

|αk,iy |2 ≥
∑
y∈Yk,i

|y−wk,i|≤ε′

|αk,iy |2 ≥ 1 − δ′ ≥ 1

2
(71)
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holds. This means that, if Phard ∩Ptemp 	= ∅, then

|βPtemp,1|2 =

∑
(k,i)∈P̃temp

∑
y∈Yk,i

y≥wmid/m
|αk,iy |2

Kn

≥

∑
(k,i)∈Phard∩Ptemp

∑
y∈Yk,i

y≥wmid/m
|αk,iy |2

Kn

≥
∑

(k,i)∈Phard∩Ptemp

1

2Kn

≥ 1

2Kn
(72)

and thus QAA
(
Õsc,QMCI
ε′,δ′,Ptemp

, 1
2Kn , δ

′′
)
outputs |ξPtemp,1〉 with

probability at least 1 − δ′′ = 1 − δ
2Kn .

On the other hand, for (k, i) /∈ Psoft

y ≥ wmid

m
⇒
∣∣∣y− wk,i

m

∣∣∣ > ε′ ⇒ y /∈ Ỹk,i (73)

holds for any y ∈ R, and thus∑
y∈Yk,i

y≥wmid/m

|αk,iy |2 =
∑

y∈Yk,i\Ỹk,i
y≥wmid/m

|αk,iy |2 ≤
∑

y∈Yk,i\Ỹk,i
|αk,iy |2 < δ′

(74)
holds. From this, the probability that we obtain (k, i) ∈ Psoft
in measuring the first two registers in |ξPtemp,1〉 is evaluated
as ∑

(k,i)∈Psoft∩Ptemp

∑
y∈Yk,i

y≥wmid/m
|αk,iy |2∑

(k,i)∈Ptemp

∑
y∈Yk,i

y≥wmid/m
|αk,iy |2

= 1 −

∑
(k,i)∈Psoft∩Ptemp

∑
y∈Yk,i

y≥wmid/m
|αk,iy |2∑

(k,i)∈Ptemp

∑
y∈Yk,i

y≥wmid/m
|αk,iy |2

≥ 1 − 2
∑

(k,i)∈Psoft∩Ptemp

δ′

≥ 1 − 2Knδ′

= 1 − δ

2Kn
. (75)

At the first inequality, we used (74) and∑
(k,i)∈Ptemp

∑
y∈Yk,i

y≥wmid/m

|αk,iy |2 = Kn|βPtemp,1|2 ≥ 1

2
(76)

which follows from (72).
Combining the above discussions, we see that, if Phard ∩

Ptemp 	= ∅, we obtain an element in Psoft ∩Ptemp by

QAA(Õsc,QMCI
ε′,δ′,Ptemp

, 1
2Kn , δ

′′) and the subsequent measurement

on |ξPtemp,1〉 with probability at least (1 − δ
2Kn )

2 ≥ 1 − δ
Kn .

Therefore, with some probability, the following happens:

we successively obtain elements in Psoft in loop 2–12 in
Algorithm 2, until we get all the elements in Phard. Since
the number of loops is at most nsoft, the probability that this
happens is at least

(
1 − δ

Kn

)nsoft
≥
(
1 − δ

Kn

)Kn
≥ 1 − δ. (77)

We can evaluate the query complexity in this loop as
(28) and (29) under the current setting of ε′, δ′ and δ′′,
recalling that QAA

(
Õsc,QMCI
ε′,δ′,Ptemp

, 1
2Kn , δ

′′
)

calls Õsc,QMCI
ε′,δ′,Ptemp

O
(√

Kn log
( 1
δ′′
))

times and that Õsc,QMCI
ε′,δ′,Ptemp

calls Oseq and

OPWM O
( 1
ε′ log

( 1
δ′
))

times and OP O(1) times.
(ii) nsoft > 0: With certainty, the first run of QAA outputs

the message “failure” or, even if not, wk,i classically calcu-
lated at step 6 inAlgorithm 2 is smaller thanwsoft, since every
(k, i) ∈ Pall yields wk,i < wsoft in this case. Therefore, the
algorithm certainly ends outputting “no match,” with QAA
run only once. The query complexity of this is evaluated as
(30) and (31).
(iii) nhard = 0 and nsoft > 0: The algorithm ends with

only one QAA that outputs “failure” or (k, i) ∈ Pall such
thatwk,i < wsoft, or QAA runs sometimes outputting (k, i) ∈
Psoft. The number of QAA loops is at most nsoft, and thus,
the query complexity is evaluated as (28) and (29) similarly
to case (i). �
Let us make a comment on the scaling of the complexity

bounds (28) and (29) on nsoft. Note that, although (18) and
(20) scale with nsol as O(

√
nsol), (28) and (29) scale linearly

with nsoft, which means that the QMCI-based method has
the worse scaling with respect to the number of matches.
This difference can be understood as follows. In the naive
iteration method, among the computational basis states con-
tained in the state |�Ptemp〉, those with the last qubit tak-
ing |1〉, are |k〉 |i〉 |wk,i〉 |wth〉 |1〉 |1〉 |1〉 with (k, i) ∈ Psol ∩
Ptemp, each of which having the amplitude

√
1
Kn . They con-

stitute |ψPtemp,1〉 |1〉, the target state of QAA, whose am-

plitude decreases as
√

nsol
Kn ,

√
nsol−1
Kn , . . .,

√
1
Kn in the QAA

loop, and this leads to the evaluation of the total complexity
in (28) and (29). On the other hand, in the QMCI-based
method, among the computational basis states contained in
the state |�Ptemp〉, those with the last qubit taking |1〉 are
|k〉 |i〉 |y〉 |wth

m

〉 |1〉 |1〉 |1〉, with (k, i) being any elements in

Ptemp, although those for (k, i) ∈ Psoft constitute the most
part of |�Ptemp〉 in terms of the squared amplitude. When we
write |�Ptemp〉 as

|�Ptemp〉 = 1√
Kn

∑
(k,i)∈Ptemp

γk,i |ξ̃Ptemp,1;k,i〉

+ βPtemp,0 |ξPtemp,0〉 |0〉 (78)

VOLUME 4, 2023 3101214



Engineeringuantum
Transactions onIEEE

Miyamoto et al.: QUANTUM ALGORITHM FOR PWM MATCHING

with

|ξ̃Ptemp,1;k,i〉 = 1

γk,i
|k〉 |i〉

∑
y∈Yk,i

y≥wmid/m

αk,iy |y〉
∣∣∣wth

m

〉
|1〉 |1〉 |1〉

γk,i =
√∑

y∈Yk,i
y≥wmid/m

∣∣∣αk,iy ∣∣∣2 (79)

the squared amplitude of |ξ̃Ptemp,1;k,i〉, |γk,i|2
Kn , is at least 1

2Kn
for (k, i) ∈ Phard as we see from (71), but that for (k, i) ∈
Psoft\Phard can be much smaller than it. Nevertheless, the
squared amplitudes of the states |ξ̃Ptemp,1;k,i〉 for (k, i) ∈
Psoft\Phard can pile up to the value comparable with 1

2Kn .
In such a situation, it is possible that, in the QAA loop,

QAA
(
Õsc,QMCI
ε′,δ′,Ptemp

, 1
2Kn , δ

′′
)

continues to output |ξPtemp,1〉,
and we continue to get (k, i) ∈ Psoft, until we get O(nsoft )
elements in Psoft and the squared amplitude |βPtemp,1|2 of

|ξPtemp,1〉 |1〉 in |�Ptemp〉 decreases below 1
2Kn . When this hap-

pens, the query complexity becomes comparable with the
bounds (28) and (29).
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